
The Zope Book (2.6 Edition)

Amos Latteier, Michel Pelletier, Chris McDonough, Peter Sabaini

The Zope Book (2.6 Edition)

2

Preface 32

How the Book Is Organized 32

Conventions Used in This Book 34

Contributors to This Book 35

Introducing Zope 36

What Is A Web Application? 36

How You Can Benefit From Using An Application Server 37

Zope History 38

Why Use Zope Instead of Another Application Server 38

Zope Audiences and What Zope Isn't 39

Zope's Terms of Use and License and an Introduction to The Zope Community 40

Zope Concepts and Architecture 41

Fundamental Zope Concepts 41

Zope Is A Framework 41

Object Orientation 41

Object Publishing 41

Through-The-Web Management 42

Security and Safe Delegation 42

Native Object Persistence and Transactions 43

Acquisition 43

Zope Is Extensible 43

Fundamental Zope Components 44

Installing and Starting Zope 45

Downloading Zope 45

Installing Zope 45

Installing Zope for Windows With Binaries from Zope.org 46

Installing Zope on Linux and Solaris With Binaries from Zope.org 50

Compiling and Installing Zope from Source Code 52

Starting Zope 53

Using Zope With An Existing Webserver 54

Starting Zope On Windows 54

Starting Zope on UNIX 54

Starting Zope As The Root User 55

Your Zope Installation 55

Logging In 56

Controlling the Zope Process With the Control Panel 57

The Zope Book (2.6 Edition)

3

Controlling the Zope Process From the Command Line 57

Troubleshooting 58

Options To The Zope start or start.bat Script 58

Environment Variables that Effect Zope at Runtime 61

When All Else Fails 65

Object Orientation 66

Objects 66

Attributes 67

Methods 67

Messages 67

Classes and Instances 68

Inheritance 68

Object Lifetimes 69

Summary 69

Using The Zope Management Interface 70

Introduction 70

How The Zope Management Interface Relates to Objects 70

ZMI Frames 70

The Navigator Frame 70

The Workspace Frame 71

The Status Frame 72

Creating Objects 72

Moving and Renaming Objects 73

Transactions and Undoing Mistakes 75

Undo Details and Gotchas 76

Reviewing Change History 76

Importing and Exporting Objects 77

Using Object Properties 80

Using the Help System 82

Browsing and Searching Help 82

Logging Out 83

Using Basic Zope Objects 84

Basic Zope Objects 84

Content Objects: Folders, Files, and Images 84

Folders 84

Files 84

Creating and Editing Files 85

The Zope Book (2.6 Edition)

4

Editing File Contents 86

Viewing Files 86

Images 87

Presentation Objects: Zope Page Templates and DTML Objects 87

ZPT vs. DTML: Same Purpose, Different Audiences 88

Zope Page Templates 89

Creating A Page Template 89

Editing A Page Template 89

Uploading A Page Template 89

Viewing A Page Template 90

DTML Objects: DTML Documents and DTML Methods 90

Creating DTML Methods 91

Editing DTML Methods 91

Viewing a DTML Method 92

Uploading an HTML File as Content for a DTML Method 92

Logic Objects: Script (Python) Objects and External Methods 93

Script (Python) Objects 93

Creating A Script (Python) 94

Editing A Script (Python) 94

Testing A Script (Python) 94

Uploading A Script (Python) 95

External Methods 96

Creating and Editing An External Method File 96

Creating an External Method Object 96

Testing An External Method Object 96

SQL Methods: Another Kind of Logic Object 97

Creating a Basic Zope Application Using Page Templates and Scripts 97

Creating a Data Collection Form 98

Creatng A Script To Calculate Interest Rates 98

Creating A Page Template To Display Results 99

Dealing With Errors 99

Using The Application 100

The Zope Tutorial 100

Acquisition 102

Acquisition vs. Inheritance 102

Acquisition is about Containment 103

Say What? 103

The Zope Book (2.6 Edition)

5

Providing Services 104

Getting Deeper with Multiple Levels 104

Summary 104

Basic DTML 106

How DTML Relates to Similar Languages and Templating Facilities 106

When To Use DTML 106

When Not To Use DTML 106

The Difference Between DTML Documents and DTML Methods 107

Details 107

DTML Tag Syntax 108

DTML Tag Names, Targets, and Attributes 108

Creating a "Sandbox" for the Examples in This Chapter 109

Examples of Using DTML for Common Tasks 109

Inserting Text into HTML with DTML 109

Formatting and Displaying Sequences 111

Processing Input from Forms 112

Dealing With Errors 115

Dynamically Acquiring Content 115

Using Python Expressions from DTML 117

DTML Expression Gotchas 119

will call the method. However, 119

Common DTML Tags 120

The Var Tag 120

Var Tag Attributes 120

Var Tag Entity Syntax 121

The If Tag 121

Here's an example condition: 121

Name and Expression Syntax Differences 122

Else and Elif Tags 122

Using Cookies with the If Tag 123

The In Tag 124

Iterating over Folder Contents 124

In Tag Special Variables 125

Summary 127

Using Zope Page Templates 128

Zope Page Templates versus DTML 128

How Page Templates Work 128

The Zope Book (2.6 Edition)

6

Creating a Page Template 129

Simple Expressions 130

Inserting Text 130

Repeating Structures 131

Conditional Elements 132

Changing Attributes 133

Creating a File Library with Page Templates 133

Remote Editing with FTP and WebDAV 136

Debugging and Testing 137

XML Templates 138

Using Templates with Content 138

Creating Basic Zope Applications 140

Building "Instance-Space" Applications 140

Instance-Space Applications vs. Products 140

Using A Folder as A Container For Your Intstance-Space Application 140

Using Objects as Methods Of Folders Via URLs 141

Using Acquisition In Instance-Space Applications 141

The Special Folder Object index_html 141

Building the Zope Zoo Website 142

Navigating the Zoo 142

Adding a Front Page to the Zoo 144

Improving Navigation 145

Factoring out Style Sheets 147

Creating a File Library 148

148

Building a Guest Book 150

Extending the Guest Book to Generate XML 153

The Next Step 154

Users and Security 155

Introduction to Zope Security 155

Review: Logging In and Logging Out of the Zope Management Interface 155

Zope's "Stock" Security Setup 155

Identification and Authentication 156

Authorization, Roles, and Permissions 156

Managing Users 157

Creating Users in User Folders 157

Editing Users 159

The Zope Book (2.6 Edition)

7

Defining a User's Location 159

Working with Alternative User Folders 160

Special User Accounts 160

Zope Anonymous User 161

Zope Emergency User 161

Creating an Emergency User 162

Zope Initial Manager 163

Protecting Against Password Snooping 163

Managing Custom Security Policies 164

Working with Roles 164

Defining Global Roles 164

Understanding Local Roles 165

Understanding Permissions 165

Defining Security Policies 166

Security Policy Acquisition 167

Security Usage Patterns 168

Security Rules of Thumb 168

Global and Local Policies 168

Delegating Control to Local Managers 168

Different Levels of Access with Roles 169

Controlling Access to Locations with Roles 170

Performing Security Checks 170

Advanced Security Issues: Ownership and Executable Content 172

The Problem: Trojan Horse Attacks 172

Managing Ownership 172

Roles of Executable Content 173

Proxy Roles 174

Summary 174

Advanced DTML 176

How Variables are Looked up 177

DTML Namespaces 178

DTML Client Object 179

DTML Method vs. DTML Document 180

DTML Request Object 180

Rendering Variables 181

Modifying the DTML Namespace 181

In Tag Namespace Modifications 181

The Zope Book (2.6 Edition)

8

Additional Notes 182

The With Tag 182

The Let Tag 183

DTML Namespace Utility Functions 184

DTML Security 185

Safe Scripting Limits 186

Advanced DTML Tags 186

The Call Tag 186

The Comment Tag 187

The Tree Tag 188

The Return Tag 190

The Sendmail Tag 190

The Mime Tag 191

The Unless Tag 192

Batch Processing With The In Tag 193

Exception Handling Tags 195

The Raise Tag 195

The Try Tag 195

The Try Tag Optional Else Block 197

The Try Tag Optional Finally Block 197

Other useful examples 198

Forwarding a REQUEST 198

Sorting with the tag 198

Calling a DTML object from a Python Script 199

Explicit Lookups 199

Conclusion 199

Advanced Page Templates 200

Advanced TAL 200

Advanced Content Insertion 200

Inserting Structure 200

Dummy Elements 200

Default Content 201

Advanced Repetition 201

Repeat Variables 201

Repetition Tips 202

Advanced Attribute Control 203

Defining Variables 203

The Zope Book (2.6 Edition)

9

Omitting Tags 204

Error Handling 204

Interactions Between TAL Statements 205

Form Processing 207

Expressions 208

Built-in Page Template Variables 208

String Expressions 209

Path Expressions 210

Alternate Paths 210

Not Expressions 211

Nocall Expressions 211

Exists Expressions 211

Python Expressions 212

Comparisons 212

Using other Expression Types 212

Getting at Zope Objects 213

Using Scripts 214

Calling DTML 214

Python Modules 215

Macros 215

Using Macros 216

Macro Details 216

Using Slots 217

Customizing Default Presentation 218

Combining METAL and TAL 219

Whole Page Macros 219

Caching Templates 220

Page Template Utilities 221

Batching Large Sets of Information 221

Miscellaneous Utilities 223

Conclusion 223

Advanced Zope Scripting 224

Zope Scripts 224

Here is an overview of Zope's scripts: 224

Calling Scripts 224

Context 225

Calling Scripts From the Web 225

The Zope Book (2.6 Edition)

10

URL Traversal and Acquisition 226

Passing Arguments with an HTTP Query String 226

Calling Scripts from Other Objects 226

Calling Scripts from DTML 226

Calling scripts from Python and Perl 227

Calling Scripts from Page Templates 228

Calling Scripts: Summary and Comparison 229

Using Python-based Scripts 230

The Python Language 230

Creating Python-based Scripts 230

Binding Variables 232

Accessing the HTTP Request 233

String Processing in Python 234

Doing Math 234

Print Statement Support 235

Built-in Functions 236

Using External Methods 236

Processing XML with External Methods 241

External Method Gotchas 242

Using Perl-based Scripts 242

The Perl Language 243

Creating Perl-based Scripts 243

Perl-based Script Security 244

Advanced Acquisition 244

Context Acquisition Gotchas 246

Containment before context 246

One at a time 246

Readability 246

Fragility 247

Calling DTML from Scripts 247

Calling ZPT from Scripts 248

Passing Parameters to Scripts 249

Returning Values from Scripts 253

Script Security 254

Security Restrictions of Script (Python) 254

The Zope API 255

Get all objects in a folder 255

The Zope Book (2.6 Edition)

11

Get the id of an object 256

Get the Zope root folder 256

Get the physical path to an object 256

Get an object by path 256

Change the content of an DTML Method or Document 256

Change properties of an object 256

Get a property 256

Change properties of an object 257

Execute a DTML Method or DTML Document 257

Traverse to an object and add a new property 257

Add a new object to the context 257

DTML versus Python versus Perl versus Page Templates 258

Remote Scripting and Network Services 258

Using XML-RPC 259

Remote Scripting with HTTP 260

Conclusion 261

Zope Services 262

Access Rule Services 262

Temporary Storage Services 263

Version Services 263

Caveat: Versions and ZCatalog 265

Caching Services 265

Adding a Cache Manager 266

Caching an Object 267

Outbound Mail Services 268

Error Logging Services 268

Virtual Hosting Services 269

Searching and Indexing Services 269

Sessioning Services 269

Internationalization Services 269

Searching and Categorizing Content 270

Getting started with Mass Cataloging 270

Creating a ZCatalog 270

Creating Indexes 271

Finding and Cataloging Objects 273

Search and Report Forms 273

Configuring ZCatalogs 274

The Zope Book (2.6 Edition)

12

Defining Indexes 274

Defining Meta Data 276

Searching ZCatalogs 276

Searching with Forms 277

Searching from Python 278

Searching and Indexing Details 278

Searching ZCTextIndexes 279

Boolean expressions 279

Parentheses 279

Wild cards 279

Phrase search 279

Lexicons 280

Lexicons can: 280

Searching Field Indexes 280

Searching Keyword Indexes 282

Searching Path Indexes 283

Searching DateIndexes 283

Searching DateRangeIndexes 283

Searching TopicIndexes 283

Advanced Searching with Records 284

Keyword Index Record Attributes 284

FieldIndex Record Attributes 284

Allowed values: 285

Path Index Record Attributes 285

DateIndex Record Attributes 286

Allowed values: 287

DateRangeIndex Record Attributes 287

TopicIndex Record Attributes 287

ZCTextIndex Record Attributes 287

Creating Records in HTML 287

Automatic Cataloging 288

Conclusion 294

Relational Database Connectivity 296

Common Relational Databases 296

Database Adapters 297

Setting up a Database Connection 297

Z SQL Methods 300

The Zope Book (2.6 Edition)

13

Examples of ZSQL Methods 300

Displaying Results from Z SQL Methods 303

Providing Arguments to Z SQL Methods 304

Dynamic SQL Queries 305

Inserting Arguments with the Sqlvar Tag 306

Equality Comparisons with the sqltest Tag 306

Creating Complex Queries with the sqlgroup Tag 307

Advanced Techniques 309

Calling Z SQL Methods with Explicit Arguments 309

Acquiring Arguments from other Objects 309

Traversing to Result Objects 310

Other Result Object Methods 311

Binding Classes to Result Objects 312

Caching Results 314

Transactions 315

Further help 316

Summary 316

Virtual Hosting Services 317

Virtual Host Monster 317

Where to Put a Virtual Host Monster And What To Name It 317

Special VHM Path Elements VirtualHostBase and VirtualHostRoot 317

VirtualHostBase 318

VirtualHostRoot 318

Using VirtualHostRoot and VirtualHostBase Together 319

Testing a Virtual Host Monster 319

Arranginging for Incoming URLs to be Rewritten 320

Virtual Host Monster Mappings Tab 320

Apache Rewrite Rules 321

"Inside-Out" Virtual Hosting 322

Sessions 323

Introduction 323

Session Configuration 323

Using Session Data 324

Details 325

Terminology 326

Default Configuration 326

Advanced Development Using Sessioning 326

The Zope Book (2.6 Edition)

14

Overview 326

Obtaining A Session Data Object 327

Modifying A Session Data Object 327

Manually Invalidating A Session Data Object 327

Manually Invalidating A Browser Id Cookie 328

An Example Of Using Session Data from DTML 328

Using the mapping Keyword With A Session Data Object in a dtml-with 328

Using Session Data From Python 329

Interacting with Browser Id Data 329

Determining Which Namespace Holds The Browser Id 330

Obtaining the Browser Id Name/Value Pair and Embedding It Into A Form 330

Determining Whether A Browser Id is "New" 331

Determining Whether A Session Data Object Exists For The Browser Id Associated With This
Request

331

Embedding A Browser Id Into An HTML Link 331

Using Session onAdd and onDelete Events 332

Writing onAdd and onDelete Methods 333

Configuration and Operation 334

Setting Initial Transient Object Container Parameters 334

Instantiating Multiple Browser Id Managers (Optional) 334

Instantiating A Session Data Manager (Optional) 336

Instantiating a Transient Object Container 336

Configuring Sessioning Permissions 337

Permissions related to browser id managers: 337

Permissions related to session data managers: 337

Permissions related to transient object containers: 338

Concepts and Caveats 338

Security Considerations 338

Browser Id (Non-)Expiration 338

Session Data Object Expiration Considerations 339

Sessioning and Transactions 339

Mutable Data Stored Within Session Data Objects 339

Session Data Object Keys 340

In-Memory Session Data Container RAM Utilization 340

Mounted Transient Object Container Caveats 340

Conflict Errors 340

Zope Versions and Sessioning 341

The Zope Book (2.6 Edition)

15

Further Documentation 341

Scalability and ZEO 342

What is ZEO? 342

When you should use ZEO 343

Installing and Running ZEO 344

How to Run Multiple ZEO Clients 345

How to Distribute Load 346

User Chooses a Mirror 346

Using Round-robin DNS to Distribute Load 348

Using Layer 4 Switching to Distribute Load 348

Dealing with the Storage Server as A Single Point of Failure 349

ZEO Server Details 350

ZEO Caveats 351

Conclusion 352

Managing Zope Objects Using External Tools 353

General Caveats 353

FTP and WebDAV 354

Using FTP to Manage Zope Content 354

Determining Your Zope's FTP Port 354

Transferring Files with WS_FTP 355

Remote Editing with FTP/DAV-Aware Editors 355

Editing Zope Objects with Emacs FTP Modes 356

Caveats With FTP 357

Editing Zope Objects with WebDAV 357

Note 357

Using a PUT_factory to Specify the Type of Objects Created With FTP and DAV 358

Using The External Editor Product 359

Other Integration Facilities 360

Chapter 14: Extending Zope 361

Creating Zope Products 361

Creating A Simple Product 362

Creating ZClasses 365

365

367

Creating Views of Your ZClass 368

Creating Properties on Your ZClass 369

Creating Methods on your ZClass 371

The Zope Book (2.6 Edition)

16

ObjectManager ZClasses 373

ZClass Security Controls 373

Controlling access to Methods and Property Sheets 374

Controlling Access to instances of Your ZClass 375

Providing Context-Sensitive Help for your ZClass 375

Using Python Base Classes 376

Distributing Products 377

Maintaining Zope 379

Starting Zope Automatically at Boot Time 379

Debug Mode and Automatic Startup 379

Linux 379

Distributions with Prepackaged Zope 379

Automatic Startup for Custom-Built Zopes 380

This script lets you perform start / stop / restart operations: 384

Mac OS X 384

MS Windows 384

Installing New Products 384

Server Settings 385

Database Cache 385

Interpreter Check Intervals 386

ZServer Threads 386

Database Connections 387

Signals (POSIX only) 387

Monitoring 388

Monitor the Event Log and the Access Log 388

Monitor the HTTP Service 388

Log Files 389

Access Log 389

Event Log 389

Log Rotation 389

Packing and Backing Up the FileStorage Database 390

Database Recovery Tools 391

Appendix A: DTML Reference 393

call: Call a method 393

Syntax 393

Examples 393

See Also 393

The Zope Book (2.6 Edition)

17

comment: Comments DTML 393

Syntax 393

Examples 393

functions: DTML Functions 394

Functions 394

Attributes 397

See Also 397

string module 397

random module 397

math module 397

sequence module 397

Built-in Python Functions 397

if: Tests Conditions 397

Syntax 397

Examples 397

See Also 398

in: Loops over sequences 398

Syntax 398

Attributes 398

Tag Variables 399

Current Item Variables 399

Summary Variables 400

Grouping Variables 400

Batch Variables 400

Examples 401

let: Defines DTML variables 402

Syntax 402

Examples 402

See Also 403

mime: Formats data with MIME 403

Syntax 403

Attributes 403

Examples 404

See Also 404

raise: Raises an exception 404

Syntax 404

Examples 404

The Zope Book (2.6 Edition)

18

See Also 404

return: Returns data 405

Syntax 405

Examples 405

sendmail: Sends email with SMTP 405

Syntax 405

Attributes 405

Examples 406

See Also 406

sqlgroup: Formats complex SQL expressions 406

Syntax 406

Attributes 406

Examples 406

See Also 407

sqltest: Formats SQL condition tests 407

Syntax 408

Attributes 408

Examples 408

See Also 409

sqlvar: Inserts SQL variables 409

Syntax 409

Attributes 409

Examples 409

See Also 409

tree: Inserts a tree widget 409

Syntax 409

Attributes 410

Tag Variables 411

Tag Control Variables 411

Examples 411

try: Handles exceptions 411

Syntax 411

Attributes 412

Tag Variables 412

Examples 412

See Also 413

unless: Tests a condition 413

The Zope Book (2.6 Edition)

19

Syntax 413

Examples 413

See Also 413

var: Inserts a variable 413

Syntax 414

Attributes 414

Examples 415

with: Controls DTML variable look up 415

Syntax 416

Attributes 416

Examples 416

See Also 416

Appendix B: API Reference 417

module AccessControl 417

AccessControl: Security functions and classes 417

class SecurityManager 417

calledByExecutable(self) 417

validate(accessed=None, container=None, name=None, value=None, roles=None) 417

checkPermission(self, permission, object) 417

getUser(self) 417

validateValue(self, value, roles=None) 418

def getSecurityManager() 418

Returns the security manager. See the SecurityManager class. 418

module AuthenticatedUser 418

class AuthenticatedUser 418

getUserName() 418

getId() 418

has_role(roles, object=None) 418

getRoles() 418

has_permission(permission, object) 418

getRolesInContext(object) 419

getDomains() 419

module DTMLDocument 419

class DTMLDocument(ObjectManagerItem, PropertyManager) 419

manage_edit(data, title) 419

document_src() 419

__call__(client=None, REQUEST={}, RESPONSE=None, **kw) 419

The Zope Book (2.6 Edition)

20

From DTML 420

From Python 420

By the Publisher 420

get_size() 420

ObjectManager Constructor 420

manage_addDocument(id, title) 420

module DTMLMethod 421

class DTMLMethod(ObjectManagerItem) 421

manage_edit(data, title) 421

document_src() 421

__call__(client=None, REQUEST={}, **kw) 421

From DTML 422

From Python 422

By the Publisher 422

get_size() 422

ObjectManager Constructor 422

manage_addDTMLMethod(id, title) 422

module DateTime 422

class DateTime 422

strftime(format) 425

Return date time string formatted according to format 425

dow() 425

aCommon() 425

h_12() 425

Mon_() 425

HTML4() 425

greaterThanEqualTo(t) 425

dayOfYear() 426

lessThan(t) 426

AMPM() 426

isCurrentHour() 426

Month() 426

mm() 426

ampm() 426

hour() 427

aCommonZ() 427

Day_() 427

The Zope Book (2.6 Edition)

21

pCommon() 427

minute() 427

day() 427

earliestTime() 427

Date() 427

Time() 427

isFuture() 428

greaterThan(t) 428

TimeMinutes() 428

yy() 428

isCurrentDay() 428

dd() 428

rfc822() 428

isLeapYear() 429

fCommon() 429

isPast() 429

fCommonZ() 429

timeTime() 429

toZone(z) 429

lessThanEqualTo(t) 429

Mon() 429

parts() 430

isCurrentYear() 430

PreciseAMPM() 430

AMPMMinutes() 430

equalTo(t) 430

pDay() 430

notEqualTo(t) 430

h_24() 430

pCommonZ() 431

isCurrentMonth() 431

DayOfWeek() 431

latestTime() 431

dow_1() 431

timezone() 431

year() 431

PreciseTime() 431

The Zope Book (2.6 Edition)

22

ISO() 432

millis() 432

second() 432

month() 432

pMonth() 432

aMonth() 432

isCurrentMinute() 432

Day() 432

aDay() 433

module ExternalMethod 433

class ExternalMethod 433

manage_edit(title, module, function, REQUEST=None) 433

__call__(*args, **kw) 433

ObjectManager Constructor 433

manage_addExternalMethod(id, title, module, function) 433

module File 434

class File(ObjectManagerItem, PropertyManager) 434

getContentType() 434

update_data(data, content_type=None, size=None) 434

getSize() 435

ObjectManager Constructor 435

manage_addFile(id, file="", title="", precondition="", content_type="") 435

Creates a new File object id with the contents of file 435

module Folder 435

class Folder(ObjectManagerItem, ObjectManager, PropertyManager) 435

ObjectManager Constructor 435

manage_addFolder(id, title) 435

module Image 435

class Image(File) 435

tag(height=None, width=None, alt=None, scale=0, xscale=0, yscale=0, **args) 436

ObjectManager Constructor 436

manage_addImage(id, file, title="", precondition="", content_type="") 436

module MailHost 436

class MailHost 436

send(messageText, mto=None, mfrom=None, subject=None, encode=None) 436

simple_send(self, mto, mfrom, subject, body) 437

MailHost Constructor 437

The Zope Book (2.6 Edition)

23

manage_addMailHost(id, title="", smtp_host=None, localhost=localhost, smtp_port=25,
timeout=1.0)

437

module ObjectManager 437

class ObjectManager 437

objectItems(type=None) 438

superValues(type) 438

objectValues(type=None) 438

objectIds(type=None) 439

module ObjectManagerItem 439

class ObjectManagerItem 439

title_or_id() 439

getPhysicalRoot() 439

manage_workspace() 440

getPhysicalPath() 440

unrestrictedTraverse(path, default=None) 440

getId() 440

absolute_url(relative=None) 440

this() 440

restrictedTraverse(path, default=None) 441

title_and_id() 441

module PropertyManager 441

class PropertyManager 441

propertyItems() 441

propertyValues() 441

propertyMap() 441

propertyIds() 442

getPropertyType(id) 442

getProperty(id, d=None) 442

hasProperty(id) 442

module PropertySheet 442

class PropertySheet 442

xml_namespace() 442

propertyItems() 442

propertyValues() 442

getPropertyType(id) 443

propertyInfo() 443

getProperty(id, d=None) 443

The Zope Book (2.6 Edition)

24

manage_delProperties(ids=None, REQUEST=None) 443

manage_changeProperties(REQUEST=None, **kw) 443

manage_addProperty(id, value, type, REQUEST=None) 444

propertyMap() 444

propertyIds() 444

hasProperty(id) 445

module PropertySheets 445

class PropertySheets 445

get(name, default=None) 445

values() 445

items() 445

module PythonScript 445

class PythonScript(Script) 445

document_src(REQUEST=None, RESPONSE=None) 447

ZPythonScript_edit(params, body) 447

ZPythonScript_setTitle(title) 448

ZPythonScriptHTML_upload(REQUEST, file="") 448

write(text) 448

ZScriptHTML_tryParams() 448

read() 448

ZPythonScriptHTML_editAction(REQUEST, title, params, body) 448

ObjectManager Constructor 448

manage_addPythonScript(id, REQUEST=None) 448

module Request 448

class Request 449

get_header(name, default=None) 450

items() 450

keys() 450

setVirtualRoot(path, hard=0) 450

values() 451

set(name, value) 451

has_key(key) 451

setServerURL(protocol=None, hostname=None, port=None) 451

module Response 451

class Response 451

setHeader(name, value) 451

setCookie(name, value, **kw) 451

The Zope Book (2.6 Edition)

25

addHeader(name, value) 452

appendHeader(name, value, delimiter=,) 452

write(data) 452

setStatus(status, reason=None) 452

setBase(base) 452

expireCookie(name, **kw) 452

appendCookie(name, value) 453

redirect(location, lock=0) 453

class Script 453

ZScriptHTML_tryAction(REQUEST, argvars) 453

module SessionInterfaces 453

Session API 453

class SessionDataManagerErr 453

class BrowserIdManagerInterface 454

getBrowserId(self, create=1) 454

isBrowserIdFromCookie(self) 454

isBrowserIdNew(self) 454

encodeUrl(self, url) 454

flushBrowserIdCookie(self) 454

getBrowserIdName(self) 455

isBrowserIdFromForm(self) 455

hasBrowserId(self) 455

setBrowserIdCookieByForce(self, bid) 455

class BrowserIdManagerErr 455

class SessionDataManagerInterface 455

getSessionDataByKey(self, key) 456

getSessionData(self, create=1) 456

getBrowserIdManager(self) 456

hasSessionData(self) 456

module TransienceInterfaces 456

class TransientObject 456

delete(self, k) 457

setLastAccessed(self) 457

getCreated(self) 457

values(self) 457

has_key(self, k) 457

getLastAccessed(self) 457

The Zope Book (2.6 Edition)

26

getId(self) 457

update(self, d) 457

clear(self) 458

items(self) 458

keys(self) 458

get(self, k, default=marker) 458

set(self, k, v) 458

getContainerKey(self) 458

invalidate(self) 458

class MaxTransientObjectsExceeded 458

class TransientObjectContainer 459

new(self, k) 459

setDelNotificationTarget(self, f) 459

getTimeoutMinutes(self) 459

has_key(self, k) 459

setAddNotificationTarget(self, f) 459

getId(self) 460

setTimeoutMinutes(self, timeout_mins) 460

new_or_existing(self, k) 460

get(self, k, default=None) 460

getAddNotificationTarget(self) 460

getDelNotificationTarget(self) 460

module UserFolder 460

class UserFolder 461

userFolderEditUser(name, password, roles, domains, **kw) 461

userFolderDelUsers(names) 461

userFolderAddUser(name, password, roles, domains, **kw) 461

getUsers() 461

getUserNames() 461

getUser(name) 461

module Vocabulary 461

class Vocabulary 461

words() 462

insert(word) 462

query(pattern) 462

ObjectManager Constructor 462

manage_addVocabulary(id, title, globbing=None, REQUEST=None) 462

The Zope Book (2.6 Edition)

27

module ZCatalog 462

class ZCatalog 462

schema() 462

__call__(REQUEST=None, **kw) 463

uncatalog_object(uid) 463

getobject(rid, REQUEST=None) 463

indexes() 463

getpath(rid) 463

index_objects() 463

searchResults(REQUEST=None, **kw) 463

There are some rules to consider when querying this method: 464

uniqueValuesFor(name) 464

catalog_object(obj, uid) 464

ObjectManager Constructor 464

manage_addZCatalog(id, title, vocab_id=None) 464

module ZSQLMethod 464

class ZSQLMethod 464

manage_edit(title, connection_id, arguments, template) 465

__call__(REQUEST=None, **kw) 465

ObjectManager Constructor 465

manage_addZSQLMethod(id, title, connection_id, arguments, template) 465

module ZTUtils 466

ZTUtils: Page Template Utilities 466

class Batch 466

__init__(self, sequence, size, start=0, end=0, orphan=0, overlap=0) 466

module math 467

math: Python math module 467

See Also 467

module random 467

random: Python random module 467

See Also 467

module sequence 467

sequence: Sequence sorting module 467

def sort(seq, sort) 467

DTML Examples 468

Page Template Examples 468

See Also 468

The Zope Book (2.6 Edition)

28

module standard 468

Products.PythonScripts.standard: Utility functions and classes 468

def structured_text(s) 469

See Also 469

def html_quote(s) 469

See Also 469

def url_quote_plus(s) 469

See Also 469

def dollars_and_cents(number) 469

def sql_quote(s) 469

def whole_dollars(number) 469

def url_quote(s) 469

See Also 469

class DTML 470

__init__(source, **kw) 470

call(client=None, REQUEST={}, **kw) 470

def thousand_commas(number) 470

def newline_to_br(s) 470

module string 470

string: Python string module 470

See Also 470

Appendix C: Zope Page Templates Reference 472

TAL Overview 472

TAL Namespace 472

TAL Statements 472

Order of Operations 473

See Also 473

attributes: Replace element attributes 474

Syntax 474

Description 474

Examples 474

condition: Conditionally insert or remove an element 474

Syntax 475

Description 475

Examples 475

content: Replace the content of an element 475

Syntax 475

The Zope Book (2.6 Edition)

29

Description 475

Examples 475

See Also 476

define: Define variables 476

Syntax 476

Description 476

Examples 476

omit-tag: Remove an element, leaving its contents 476

Syntax 476

Description 477

Examples 477

on-error: Handle errors 477

Syntax 477

Description 477

Examples 478

See Also 478

repeat: Repeat an element 478

Syntax 478

Description 478

Repeat Variables 479

The following information is available from the repeat variable: 479

Examples 480

replace: Replace an element 480

Syntax 480

Description 480

Examples 481

See Also 481

TALES Overview 481

TALES Expression Types 481

Built-in Names 482

See Also 482

TALES Exists expressions 483

Syntax 483

Description 483

Examples 483

TALES Nocall expressions 483

Syntax 483

The Zope Book (2.6 Edition)

30

Description 483

Examples 484

TALES Not expressions 484

Syntax 484

Description 484

Examples 484

TALES Path expressions 484

Syntax 485

Description 485

Examples 485

TALES Python expressions 486

Syntax 486

Description 486

Security Restrictions 486

Built-in Functions 486

Python Modules 487

Examples 487

TALES String expressions 487

Syntax 488

Description 488

Examples 488

METAL Overview 488

METAL Namespace 488

METAL Statements 488

See Also 489

define-macro: Define a macro 489

Syntax 489

Description 489

Examples 489

See Also 490

define-slot: Define a macro customization point 490

Syntax 490

Description 490

Examples 490

See Also 490

fill-slot: Customize a macro 490

Syntax 490

The Zope Book (2.6 Edition)

31

Description 490

Examples 491

See Also 491

use-macro: Use a macro 491

Syntax 491

Description 491

Examples 491

See Also 492

ZPT-specific Behaviors 492

HTML Support Features 492

Appendix D: Zope Resources 494

Zope Web Sites 494

Zope Documentation 494

(Other) Zope Books 494

Mailing Lists 494

Python Information 494

DTML Name Lookup Rules 495

The Zope Book (2.6 Edition)

32

Preface

Welcome to The Zope Book . This book is designed to introduce you to Zope, the open source web application server.

To make effective use of the book, you should know how to use a web browser and you should have a basic
understanding of HTML (Hyper Text Markup Language) and URLs (Uniform Resource Locators). You don't need to be
a highly-skilled programmer in order to use Zope, but some programming background (particularly object-oriented
programming) will be extremely helpful.

How the Book Is Organized

A brief summary of each chapter is presented below.

1. Introducing Zope

This chapter explains what Zope is and what it can do for you. You also learn about the differences between Zope and
other web application servers.

2. Zope Concepts and Architecture

This chapter explains fundamental Zope concepts and describes some of Zope's architecture.

3. Installing and Starting Zope

This chapter explains how to install and start Zope for the first time. By the end of this chapter, you should have Zope
installed and working.

4. Object Orientation

This chapter explains the concept of object orientation , which is the development methodology most often used to
create Zope applications.

5. Using The Zope Management Interface

This chapter explains how to use Zope's web-based management interface. By the end of this chapter you should be
able to navigate around the Zope object space, copy and move objects, and use other basic Zope features.

6. Using Basic Zope Objects

This chapter introduces objects , which are the most important elements of Zope. We introduce the basic Zope objects:
content objects, presentation objects, and logic objects, and we build a simple application using these objects.

7. Acquisition

This chapter introduces acquisition , which is Zope's mechanism for sharing site behavior and content via
"containment".

8. Basic DTML

This chapter introduces DTML , Zope's tag-based scripting language. We describe how to use DTML's templating and
scripting facilities. We cover DTML syntax and the three most basic tags, var , if and in . After reading this chapter you'll

The Zope Book (2.6 Edition)

33

be able to create dynamic web pages.

9. Using Zope Page Templates

This chapter introduces Zope Page Templates, another Zope tool used to create dynamic web pages. This chapter
shows you how to create and edit page templates. It also introduces basic template statements that let you insert
dynamic content.

10. Creating Basic Zope Applications

This chapter walks the reader through several real-world examples of building a Zope application. It explains how to
use basic Zope objects and how they can work together to form basic applications.

11. Users and Security

This chapter looks at how Zope handles users, authentication, authorization, and other security-related matters.

12. Advanced DTML

This chapter takes a closer look at DTML. It covers DTML security and the tricky issue of how variables are looked up
in DTML. It also covers advanced uses of the basic tags covered in Chapter 3 and the myriad special purpose tags.
This chapter will turn you into a DTML wizard.

13. Advanced Page Templates

This chapter goes into more depth with templates. This chapter teaches you all the template statements and
expression types. It also covers macros which let you reuse presentation elements.

14. Advanced Zope Scripting

This chapter covers scripting Zope with Python and Perl. It explains how to write business logic in Zope using tools
more powerful than DTML. It discusses the idea of scripts in Zope, and focuses on Python and Perl-based Scripts. This
chapter shows you how to add industrial-strength scripting to your site.

15. Zope Services

This chapter covers Zope objects which are "services" that don't readily fit into any of the basic "content", "presentation"
or "logic" object groups.

16. Searching and Categorizing Content

This chapter shows you how to index and search objects with Zope's built-in search engine, the Catalog . It introduces
indexing concepts and discusses different patterns for indexing and searching. Finally it discusses metadata and
search results.

17. Relational Database Connectivity

This chapter describes how Zope connects to external relational databases. It also covers features which allow you to
treat relational data as though it were Zope objects. Finally, the chapter covers security and performance
considerations.

18. Virtual Hosting Services

The Zope Book (2.6 Edition)

34

This chapter explains how to set up Zope in a "virtual-hosted" environment where Zope subfolders can be served as
"top-level" hostnames. It includes examples that allow virtual hosting to be performed "natively" or using Apache's
mod_rewrite facility.

19. Sessions

This chapter describes Zope's "sessioning" services, which allow Zope developers to "keep state" between HTTP
requests.

20. Scalability and ZEO

This chapter covers issues and solutions for building and maintaining large web applications, and focuses on issues of
management and scalability. In particular, the Zope Enterprise Option (ZEO) is covered in detail. This chapter shows
you the tools and techniques you need to turn a small site into a large-scale site, servicing many simultaneous visitors.

21. Managing Zope Objects Using External Tools

This chapter explains how to use tools other than your web browser to manipulate Zope objects.

22. Extending Zope

This chapter covers extending Zope by creating your own classes of objects. It discusses ZClasses , and how
instances are built from classes. It describes how to build a ZClass and its attendant security and design issues.
Finally, it discusses creating Python base classes for ZClasses and describes the base classes that ship with Zope.

23. Maintaining Zope

This chapter covers Zope maintenance and administration tasks such as database "packing" and Product installation.

24. Appendix A: DTML Reference

Reference of DTML syntax and commands.

25. Appendix B: API Reference

Reference of Zope object APIs.

26. Appendix C: Page Template Reference

Reference of Zope Page Template syntax and commands.

27. Appendix D: Zope Resources

Reference of "resources" which can be used to further enhance your Zope learning experience.

28. Appendix E: DTML Name Lookup Rules

Describes DTML's name lookup rules.

Conventions Used in This Book

This book uses the following typographical conventions:

The Zope Book (2.6 Edition)

35

 Italic — Italics indicate variables and names and is also used to introduce new terms.

Fixed width — Fixed width text indicates objects, commands, hyperlinks, and code listings.

Contributors to This Book

Contributors to this book include Amos Latteier, Michel Pelletier, Chris McDonough, Evan Simpson, Tom Deprez, Paul
Everitt, Bakhtiar A. Hamid, Geir Baekholt, Paul Winkler, Peter Sabaini, Andrew Veitch, Kevin Carlson and the Zope
Community.

Amos and Michel wrote the entirety of the first edition of this book, and kept the online version of the book current up
until Zope 2.5.1.

Tom Deprez provided much-needed editing assistance on the first book edition.

Evan Simpson edited the chapters related to ZPT for the 2.6 edition.

Paul Everitt contributed to the first few chapters of the first edition, edited the first few chapters of the second edition for
sanity and contributed some "Maintaining Zope" content for the 2.6 edition.

Bakhtiar Hamid edited the ZEO chapter for the 2.6 edition.

Geir edited and extended the Users and Security chapter for the 2.6 edition.

Paul Winkler with help from Peter Sabaini expertly massaged the Advanced Scripting chapter into coherency for the
2.6 edition.

Peter Sabaini greatly fleshed out and extended the "Maintaining Zope" chapter for the 2.6 Edition.

Andrew Veitch cheerfully performed the thankless task of editing and extending the Relational Database Connectivity
chapter for the 2.6 edition.

Kevin Carlson masterfully edited and expanded the Advanced DTML chapter.

Chris McDonough edited the entirety of the book for the 2.6 edition, entirely rewrote a few chapters and added new
material related to object orientation, using the Zope management interface, acquisition, installation, services, virtual
hosting, sessions, and DTML name lookup rules.

Anyone who added a comment to the online BackTalk edition of the first online edition of this book contributed greatly.
Thank you!

The Zope Book (2.6 Edition)

36

Introducing Zope

Zope is a framework that allows developers of varying skill levels to build web applications . This chapter explains
Zope's purpose and audience in greater detail. It also describes what makes Zope different from similar applications.

What Is A Web Application?

It is often important that visitors to a website see content that is timely and up-to-date. A time-dependent site's content
needs to change continually. For example, if a commercial website helps its visitors sell and buy used automobiles, it is
usually required that the site run advertisements only for cars that have not yet been sold. It is also important that new
ads be posted at most a day or two after they've been placed by a seller. If either of these requirements is not met, the
website will likely not be very successful.

The layout of text and images that show up in a user's web browser when the user visits a website are often composed
using a simple language known as Hyper Text Markup Language (HTML). When a user visits a typical website, a
chunk of text that is "marked-up" with HTML is transferred between the website and the user's browser. The browser
interprets the chunk of text, showing text and images to the user. The chunk of text which is transferred is typically
referred to as a page . Many website visitors think about navigation in terms of moving "from page-to-page" within a
website. When they click on a hyperlink, their browser transports them to a new page. When they hit their browser's
Back button, it takes them to the last page they've visited.

Some websites are static . Static websites require a person with a privileged level of access (sometimes termed the
webmaster) to manually "freshen" the site's content. Freshening the content requires the person to manually visit and
update the HTML that makes up each page that needs to change. Typically, this is done by editing a set of files on the
web server (the machine that runs the website), where each file represents a single page.

Site-wide changes to the "look-and-feel" of a static website require that the webmaster visit and update each and every
file that comprises the website. Websites can typically grow to encompass thousands of files, so this can become a
non-trivial task. The webmaster responsible for our automobile advertising website has the additional responsibility of
keeping the ads themselves fresh. If each page in the website represents an ad for a particular automobile, he needs to
delete the pages representing ads which have expired and create new pages for ads which have been recently sold.
He then needs to make sure that no hyperlinks on other pages point to missing pages.

This becomes a lot of work very quickly. As you can imagine, with any more than a few pages to update every day, this
can become pretty dull. The webmaster also understandably makes mistakes (he's human, after all), and forgets to
update or remove critical pages.

Somewhere down the line smart webmasters begin to think to themselves, "Wow, this is a lot of work. It's tedious and
complicated, and I seem to be making a lot of mistakes. Computers are really good at doing tedious and complicated
tasks, and they don't make very many mistakes. I bet my webserver computer can automatically do a lot of the work I
now do manually." At this point, the webmaster is ready to be introduced to web applications .

A web application is a computer program that users invoke by using a web browser to contact a web server via the
Internet. Users and browsers are typically unaware of the difference between contacting a web server which fronts for a
statically-built website and a web server which fronts for a web application. But unlike a static website, a web
application creates its "pages" dynamically . A website that is dynamically-constructed uses an a computer program to
provide the dynamism. These kinds of dynamic capplications can be written in any number of computer languages.

In a dynamically-constructed website, the webmaster is not required to visit the site "page-by-page" in order to update
content or style. Instead, he is able to create a "common look and feel" for the set of pages that make up his website.
He is also able to instruct the webserver to generate an HTML page on the fly that includes certain unique bits of

The Zope Book (2.6 Edition)

37

content. If our auto-classified-ad webmaster chose to construct a web application to maintain his classifieds system, he
could maintain a list of "current" ads separate from the HTML layout (perhaps stored in a database of some kind). He
could then instruct his web application to query this database and generate a particular chunk of HTML that
represented an ad or an index of ads when a user visited a page in his website.

Web applications are everywhere. Common examples of web applications are those that let you search the web, like
Google ; collaborate on projects, like SourceForge ; buy items at an auction like eBay ; communicate with other people
over e-mail, like Hotmail ; or view the latest news ala CNN.com .

A framework which allows people to construct a web application is often called a web application server , or sometimes
just an application server . Zope is a web application server, as are competing products like BEA WebLogic ,
Macromedia ColdFusion and (to some extent) Vignette StoryServer . A web application server typically allows a
developer to create a web application using some common computer programming language. But it also provides
services beyond the basic capabilities of the language such as templating, a common security model, data persistence,
sessions, and other features that people find useful when constructing a typical web application.

How You Can Benefit From Using An Application Server

If you are considering writing even a moderately-sized web application, it is typically a good idea to start your project
using an application server framework unless your application requirements are extremely specialized. By starting a
web application project using an application server framework (as opposed to a "raw" computer language such as Perl,
Python, TCL, or C), you are able to utilize the services of the framework that have already been written, and you avoid
needing to write the functionality yourself "from scratch" in a "raw" language.

Many application servers allow you perform some of the below-mentioned tasks.

Present Dynamic Content — You may tailor your web site's presentation to its users and provide users with search
features. Application servers allow you to serve dynamic content. Application servers typically come with facilities for
personalization, database integration and content indexing and search.

Manage Your Web Site — A small web site is easy to manage, but a web site that serves thousands of documents,
images and files requires heavy-duty management tools. It is useful to be able to manage your site's data, business
logic and presentation from a single place. An application server can typically help manage your content and
presentation in this way.

Build a Content Management System — A fairly new breed of application, a content management system allows
nontechnical editors to create and manage content for your website. Application servers provide the tools with which
you can build a content management system.

Build an E-Commerce Application — Application servers provide a framework in which sophisticated e-commerce
applications can be created.

Securely Manage Contributor Responsibility — When you deal with more than a handful of web users, security
becomes very important. It is important to be able to safely delegate tasks to different classes of system users. For
example, folks in your engineering department may need to be able to manage their web pages and business logic,
designers may need to update site templates, and database administrators need to manage database queries.
Application servers typically provide a mechanism for access control and delegation.

Provide Network Services — You may want to produce or consume network services . A network service-enabled
web site will need to be able to accept requests from other computer programs. For example, if your website is a news
site, you may wish to share your news stories with another website; you can do this by making the news feed a network
service. Or perhaps you want to make products for sale on your site automatically searchable from a product
comparison site. Application servers are beginning to offer methods of enabling these kinds of network services.

The Zope Book (2.6 Edition)

38

Integrate Diverse Systems — Your existing content may be contained in many places: relational databases, files,
separate web sites, and so on. Application servers typically allow you to present a unified view of your existing data by
integrating diverse third-party systems.

Provide Scalability — Application servers allow your web applications to scale across as many systems as necessary
to handle the load demands of your websites.

The Zope application server allows you to perform all of these tasks.

Zope History

In 1996 Jim Fulton (the current CTO of Zope Corporation, the distributors of Zope) was drafted to teach a class on CGI
programming, despite not knowing very much about the subject. CGI or common gateway interface programming is a
commonly-used web development model that allows developers to construct dynamic websites. Jim studied all of the
existing documentation on CGI on his way to the class. On the way back from the class, Jim considered what he didn't
like about traditional CGI based programming environments. From these initial musings, the core of Zope was written
on the plane flight back from the class.

Zope Corporation (then known as Digital Creations) went on to release three open source software packages to
support web publishing, Bobo , Document Template , and BoboPOS . These package were written in a language called
Python, and respectively provided a web publishing facility, text templating, and an object database. Digital Creations
had developed a commercial application server based on their three open source components. This product was called
Principia . In Novermber of 1998, investor Hadar Pedhazur convinced Digital Creations to open source Principia. These
components have evolved into core components of Zope.

The moniker "Zope" stands for the Z Object Publishing Environment (the "Z" doesn't really mean anything in particular).
Most of Zope is written in the Python scripting language, with performance-critical pieces written in C.

Why Use Zope Instead of Another Application Server

If you're in the business of creating web applications, Zope can potentially help you create them at less cost and at a
faster rate than you could by using another competing web application server. This claim is backed up by a number of
Zope features:

 • Zope is free of cost and is distributed under an open-source license. There are many non-free commercial
application servers that are relatively expensive.

 • Zope itself is an inclusive platform. It ships with all the necessary components to begin developing an application.
You don't need to license extra software to support Zope (e.g. a relational database) in order to develop your
application. This also makes Zope very easy to install. Many other application servers have "hidden" costs by
requiring that you license expensive software or to configure complex third-party infrastructure software before
you can begin to develop your application.

 • Zope allows and encourages third-party developers to package and distribute ready-made applications. Due to
this, Zope has a wide variety of integrated services and add-on products available for immediate use. Most of
these components, like Zope itself, are free and open source. Zope's popularity has bred a large community of
application developers. Many other application servers do not have a large base of third-party support or a means
for so neatly packaging plug-ins.

 • Applications created in Zope can scale almost linearly using Zope's Zope Enterprise Objects (ZEO) clustering
solution. Using ZEO, you can deploy a Zope application across many physical computers without needing to

The Zope Book (2.6 Edition)

39

change much (if any) of your application code. Many application servers don't scale quite as transparently or as
predictably.

 • Zope allows developers to create web applications using only a web browser. The Internet Explorer, Mozilla,
Netscape, OmniWeb, Konqueror, and Opera browsers are all known to be able to be used to display and
manipulate Zope's development environment (the Zope Management Interface also known as the ZMI). Zope
also allows developers to safely delegate application development duties to other developers "through the web"
using the same interface. Very few other application servers, if any, deliver the same level of functionality.

 • Zope provides a granular and extensible security framework. You can easily integrate Zope with diverse
authentication and authorization systems such as LDAP, Windows NT, and RADIUS simultaneously, using
prebuilt modules. Many other application servers lack support for some important authentication and authorization
systems.

 • Zope allows teams of developers to collaborate effectively. Collaborative environments require tools to allow
users to work without interfering with each other, so Zope has Undo , Versions , History and other tools to help
people work safely together and recover from mistakes. Many other application servers do not provide these
kinds of features.

 • Zope runs on most popular microcomputer operating system platforms: Linux, Windows NT/2000/XP, Solaris,
FreeBSD, NetBSD, OpenBSD, and Mac OS X. Zope even runs on Windows 98/ME (recommended only for
development purposes, however). Many other application server platforms require that you run an operating
system of their licensor's choosing.

 • Zope can be extended using the interpreted Python scripting lanuage. Python is popular and easy to learn, and it
promotes rapid development. Many libraries are available for Python which can be used when creating your own
application. Many other application servers must be extended using compiled languages such as Java, which cuts
down on development speed. Many other application servers use less popular languages for which there are not
as many ready-to-use library features.

For examples of applications that have already been created using Zope, please see Zope Corporation's case studies
page online at Zope.com.

Zope Audiences and What Zope Isn't

Managing the development process of a large-scale site can be a difficult task. It often takes many people working
together to create, deploy, and manage a web application.

 • Information Architects make platform decisions and keep track of the "big picture".

 • Component Developers create software intended for reuse and distribution.

 • Site Developers integrate the software written by component developers and native application server services,
building an application in the process.

 • Site Designers create the site's look and feel.

 • Content Managers create and manage the site's content.

 • Administrators keep the software and environment running.

The Zope Book (2.6 Edition)

40

 • Consumers use the site to locate and work with useful content.

Of the parties listed above, Zope is most useful for component developers , site developers , and site designers .
These three groups of people can collaborate to produce an application using Zope's native services and third-party
Zope Products . They will typically produce applications useful to content managers and consumers under the guide of
the information architect . Administrators will deploy the application and tend to the application after it is has been
created.

Note that Zope is a web application construction framework that programmers of varying skill levels may use to create
web-based applications. It is not itself an application that is ready to use "out of the box" for any given application. For
example, Zope itself is not a weblog, a content management system, or a "e-shop-in-a-box" application.

However, freely available Products built on top of Zope offer these kinds of services. At the time of this writing, the
Zope.org website catalogs roughly 500 Products that you can browse and hopefully reuse in your own application.
There are Products for weblogging, content management, and ecommerce among these.

Zope is not a visual design tool. Tools like Macromedia Dreamweaver or Adobe GoLive allow designers to create "look
and feel". You may use these tools to manage Zope-based web sites, but Zope itself does not replace them. You can
edit content "through the web" using Zope but the limitations of current cross-platform browser technology prevents
Zope from doing as good of a job as these kinds of tools to design web presentation.

Zope's Terms of Use and License and an Introduction to The Zope Community

Zope is free of cost. You are permitted to use Zope to create and run your web applications without paying licensing or
usage fees. You may also include Zope in your own products and applications without paying royalty fees to Zope's
licensor, Zope Corporation .

Zope is distributed under an open source license, the Zope Public License or ZPL . The terms of the ZPL license
stipulate that you will be able to obtain and modify the source code for Zope.

The ZPL is different than another popular open source license, the GNU Public License . The licensing terms of the
GPL require that if you intend to redistribute a GPL-licensed application, and you modify or extend the application in a
meaningful way, that you contribute your modifications back to the licensor. This is not required for ZPL-licensed
applications, however. You may modify and restribute Zope without contributing your modifications back to Zope
Corporation as long as you follow the other terms of the license faithfully.

Note that the ZPL has been certified as OSD compliant by the Open Source Initiative and is listed as GPL compliant by
the Free Software Foundation .

A community of developers is responsible for maintaining and extending the Zope application server. Many community
members are professional consultants, developers and web masters who develop applications using Zope for their own
gain. Others are students and curious amateur site developers. Zope Corporation is a member of this community. Zope
Corporation controls the distribution of the defacto "canonical" Zope version and permits its developers as well as other
selected developers to modify this distribution's source code.

The Zope community gets together occasionally at conferences but spends most of its time discussing Zope on the
many Zope mailing lists and web sites. You can find out more about Zope-related mailing lists at Zope.org's mailing list
page .

Zope Corporation makes revenues by using Zope to create web applications for its paying customers, by training
prospective Zope developers, by selling support contracts to companies who use Zope, and by hosting Zope-powered
websites; it does not make any direct revenues from the distribution of the Zope application server itself.

The Zope Book (2.6 Edition)

41

Zope Concepts and Architecture

Fundamental Zope Concepts

The Zope framework has several fundamental underlying concepts, each of which you should understand to make the
most of your Zope experience.

Zope Is A Framework

Zope relieves the developer of most of the onerous details of Web application development such as data persistence,
data integrity and access control, allowing you to focus on the problem at hand. It allows you to utilize the services it
provides to build web applications more quickly than other languages or frameworks. Zope allows you to write web
application logic in the Python language, and provides add-on support for Perl. Zope also comes with two solutions that
allow you to "template" text, XML, and HTML: Document Template Markup Language (DTML), and Zope Page
Templates (ZPT).

Object Orientation

Unlike common file-based Web templating systems such as ASP or PHP, Zope is a highly "object-oriented" Web
development platform. Object orientation is a concept that is shared between many different programming languages,
including the Python language in which Zope is implemented. The concept of object orientation may take a little
"getting-used-to" if you're an old hand at primarily procedural languages typically used for web scripting such as Perl or
PHP, but you should be able to get a grasp on the concepts by reading the Object Orientation chapter and by
"learning-by-doing" with respect to the examples in the book.

Object Publishing

The technology that would become Zope was founded on the realization that the Web is fundamentally object-oriented.
A URL to a Web resource is really just a path to an object in a set of containers, and the HTTP protocol provides a way
to send messages to that object and receive its response.

Zope's object structure is hierarchical, which means that a typical Zope site is composed of objects which contain other
objects (which may contain other objects, ad infinitum). URLs map naturally to objects in the hierarchical Zope
environment based on their names. For example, the URL "/Marketing/index.html" could be used to access the
Document object named "index.html" located in the Folder object named "Marketing".

Zope's seminal duty is to "publish" the objects you create. The way it does this is conceptually straightforward.

1. Your web browser sends a request to the Zope server. The request specifies a URL in the form
protocol://host:port/path?querystring" , e.g.
http://www.zope.org:8080/Resources?batch_start=100 .

2. Zope separates the URL into its component "host", "port" "path" and "query string" portions (
http://www.zope.org , 8080 , /Resources and ?batch_start=100 , respectively).

3. Zope locates the object in its object database corresponding to the "path" (/Resources).

4. Zope "executes" the object using the "query string" as a source of parameters that can modify the behavior of the
object. This means that the object may behave differently depending on the values passed in the query string.

The Zope Book (2.6 Edition)

42

5. If the act of executing the object returns a value, the value is sent back to your browser. Typically a given Zope
object returns HTML, file data, or image data.

6. The data is interpreted by the browser and shown to you.

Mapping URLs to objects isn't a new idea. Web servers like Apache and Microsoft's IIS do the same thing. They
translate URLs to files and directories on a filesystem. Zope similarly maps URLs on to objects in its object database.

A Zope object's URL is based on its "path". It is composed of the ids of its containing Folders and the object's id ,
separated by slash characters. For example, if you have a Zope "Folder" object in the root folder called Bob , then its
path would be /Bob . If Bob is in a sub-folder called Uncles then its URL would be /Uncles/Bob .

There could also be other Folders in the Uncles folder called Rick , Danny and Louis . You access them through the
web similarly:

/Uncles/Rick
/Uncles/Danny
/Uncles/Louis

The URL of an object is most simply composed of its host , port , and path . So for the Zope object with the path
/Bob on the Zope server at http://localhost:8080 , the URL would be http://localhost:8080/Bob .
Visting a URL of a Zope object directly is termed calling the object through the web . This causes the object to be
evaluated and the result of the evauluation is returned to your web browser.

For a more detailed explanation of how Zope performs object publishing, see the Object Publishing chapter of the Zope
Developer's Guide .

Through-The-Web Management

To create and work with Zope objects, you use your Web browser to access the Zope management interface. All
management and application development can be done completely through the Web using only a browser. The Zope
management interface provides a familiar Windows Explorer-like view of the Zope object system. Through the
management interface a developer can create and script Zope objects or even define new kinds of objects, without
requiring access to the file system of the web server.

Objects can be dropped in anywhere in the object hierarchy. Site managers can work with their objects by clicking on
tabs that represent different "views" of an object. These views vary depending on the type of object. A "DTML Method"
Zope object, for example, has an "Edit" tab which allows you to edit the document's source, while a "Database
Connection" Zope object provides views that let you modify the connection string or caching parameters for the object.
All objects also have a "Security" view that allows you to manage access control settings for that object.

Security and Safe Delegation

One of the things that sets Zope apart from other application servers is that it was designed from the start to be tightly
coupled not only with the Web object model, but also the Web development model. Today's successful Web
applications require the participation of many people across an organization who have different areas of expertise.
Zope is specifically designed to accommodate this model, allowing site managers to safely delegate control to design
experts, database experts and content managers.

A successful Web site requires the collaboration of many people people in an organization: application developers,
SQL experts, content managers and often even the end users of the application. On a conventional Web site,
maintenance and security can quickly become problematic. How much control do you give to the content manager?
How does giving the content manager a login affect your security? What about that SQL code embedded in the ASP
files he'll be working on - code that probably exposes your database login?

The Zope Book (2.6 Edition)

43

Objects in Zope provide a much richer set of possible permissions than a conventional file-based system. Permissions
vary by object type based on the capabilities of that object. This makes it possible to implement fine-grained access
control. For example, you can set access control so that content managers can use "SQL Method" objects, but not
change them or even view their source. You can also set restrictions so that a user can only create certain kinds of
objects, for instance "Folders" and "DTML Documents" but not "SQL Methods" or other objects.

Zope provides the capability to manage users through the web via "User Folders", which are special folders that
contain user information. Several Zope add-ons are available that provide extended types of User Folders that get their
user data from external sources such as relational databases or LDAP directories. The ability to add new User Folders
can be delegated to users within a subfolder, essentially allowing you to delegate the creation and user management of
subsections of your website to semi-trusted users without worrying about those users changing the objects "above"
their folder.

Native Object Persistence and Transactions

Zope objects are stored in a high-performance transactional object database known as the Zope Object Database
(ZODB). Each Web request is treated as a separate transaction by the object database. If an error occurs in your
application during a request, any changes made during the request will be automatically rolled back. The object
database also provides multi-level undo, allowing a site manager to "undo" changes to the site with the click of a
button. The Zope framework makes all of the details of persistence and transactions totally transparent to the
application developer. Relational databases which are used with Zope can also play in Zope's transaction framework.

Acquisition

One of the most powerful aspects of Zope is "Acquisition", and the core concept is simply that:

 • Zope objects are contained inside other objects (such as Folders).

 • Objects can "acquire" attributes and behavior from their containers.

The concept of acquisition works with all Zope objects, and provides an extremely powerful way to centralize common
resources. A commonly used SQL query or snippet of HTML, for example, can be defined in one Folder and objects in
subfolders can use it automatically through acquisition. If the query needs to be changed, you can change it in one
place without worrying about all of the subobjects that use the query.

Because objects are acquired by starting at the current level in the containment hierarchy and searching upward, it is
easy to specialize areas of your site with a minimum of work. If, for example, you had a Folder named "Sports" on your
site containing sports-related content, you could create a new header and footer document in the Sports Folder that
use a sports-related theme. Content in the Sports folder and its subfolders will then use the specialized sports header
and footer found in the "Sports" folder rather than the header and footer from the top-level folder on the site.

Acquisition is explained further in the chapter entitled Acquisition .

Zope Is Extensible

Zope is highly extensible, and advanced users can create new kinds of Zope objects, either by writing new Zope
add-ons in Python or by building them completely through the Web. The Zope software provides a number of useful
built-in components to help extension authors, including a robust set of framework classes that take care of most of the
details of implementing new Zope objects.

The Zope Book (2.6 Edition)

44

A number of Zope add-on products are available that provide features like drop-in Web discussion topics, desktop data
publishing, XML tools and e-commerce integration. Many of these products have been written by the highly active
members of the Zope community, and most are also open source.

Fundamental Zope Components

Zope consists of several different components that work together to help you build web applications. Zope's
fundamental components are shown in the figure below, and explained following the figure.

Figure 2-1 Zope Architecture

ZServer — Zope comes with a built in web server that serves content to you and your users. This web server also
serves Zope content via FTP, WebDAV, and XML-RPC (a remote procedure call facility).

Web Server — Of course, you may already have an existing web server, such as Apache or Microsoft IIS and you may
not want to use Zope's. Zope works with these web servers also, and any other web server that supports the Common
Gateway Interface (CGI).

Zope Core — This is the engine which coordinates the show, driving the management interface and object database.

Object Database — When you work with Zope, you are usually working with objects that are stored in Zope's object
database.

Relational database — You don't have to store your information in Zope's object database if you don't want to. Zope
works with other relational databases such as Oracle , PostgreSQL , Sybase , MySQL and others.

File System — Zope can of course work with documents and other files stored on your server's file system.

ZClasses — Zope allows site managers to add new object types to Zope using the Zope Management Interface.
ZClasses are these kinds of objects.

Products — Zope also allows site managers to add new object types to Zope by installing "Product" files on their Zope
server's filesystem.

The Zope Book (2.6 Edition)

45

Installing and Starting Zope

By the end of this chapter you should be able to install and start Zope. It's fairly easy to install Zope on most platforms,
and it should typically take you no longer than ten minutes.

Downloading Zope

Zope Corporation makes "binaries" which are available on Zope.org for the Windows, Linux and Solaris operating
systems. These binaries are "ready-to-run" releases of the Zope application server that do not require compilation.

There are typically two types of Zope releases: a "stable" release and a "development" release. The "stable" Zope
release is always available as a binary distribution for supported platforms. The "development" Zope release may or
may not be distributed as a binary for any given platform. If you are new to Zope, you almost certainly want to use the
"stable" Zope release.

You may download Zope from the Zope.org web site. The most recent stable and development versions are always
available from the Download area of the Zope.org website.

For platforms for which there is no binary release, you must download the Zope source and compile it. Zope may be
compiled on almost any Unix-like operating system. Zope has reportedly been successfully compiled on Linux,
FreeBSD, NetBSD, OpenBSD, Mac OS X, HPUX, IRIX, DEC OFS/1, and even Cygwin (the UNIX emulation platform
for Windows). As a general rule of thumb, if Python is available for your operating system, and you have a C compiler
and associated development utilities, then you can probably compile Zope. A notable exception is Mac OS 7/8/9. Zope
does not run at all on these platforms.

Installing Zope

Zope requires different installation steps depending on your operating system platform. The sections below detail
installing the binary version of Zope on Windows on Intel platforms, Solaris on SPARC platforms, and Linux on Intel
platforms. We also detail a installation from source for platforms for which Zope Corporation does not provide a binary
distribution.

Various binary Zope packages exist that are not distributed by Zope Corporation, but instead are distributed by third
parties. Provided here is a list of URLs to these below for convenience's sake. Tthese packages are not directly
supported by Zope Corporation, although Zope Corporation encourages alternate binary distributions for unsupported
platforms by third parties.

 SPVI's Mac OS X binary distro

 Jeff Rush's Zope RPMs for Linux

 Adam Manock's Zope RPMs for Linux

 FreeBSD Zope port

 Debian Linux Zope package

Zope is also available from many Linux distributors as a "native" package. For example, RedHat often ships Zope on its
"PowerTools" CD as an RPM. Check with your Linux operating system vendor to see if there are native Zope packages
available for your platform.

The Zope Book (2.6 Edition)

46

Installing Zope for Windows With Binaries from Zope.org

The "Win32" version of Zope works under Windows 95, Windows 98, and Windows ME, Windows NT, Windows 2000,
and Windows XP. Zope for Windows comes as a self-installing .exe file. To install Zope, first, download the Win32
executable installer from the Download area on Zope.org. It is typically named something like
"Zope-2.X.X-win32-x86.exe" where the "X"'s refer to the current Zope version number.

 Important note: Do not try to use the file named "Zope-2.X.X-to-2.X.X-win32.x86.tgz" to install Zope for the first
time. This is an upgrade package which upgrades an older version of Zope to a newer one instead of an
installable Zope distribution.

Figure 2-1 Current stable Windows Zope Release

Download the current stable release installer for Windows from Zope.org using your web browser. Place the file in a
temporary directory on your hard disk or on your Desktop. Once the installer file has been downloaded, navigate to the
folder in which you downloaded the file to, and double-click on the file's icon. The installer then begins to walk you
through the installation process.

The Zope Book (2.6 Edition)

47

Figure 2-2 Beginning the installer

Click Next . You are asked to accept the Zope Public License before installing the product. After you read and accept
the license, click Next again. Since you can install more than one Zope instance on on any given machine, you are
asked to pick a unique "site name" for your Zope instance. The default name is "WebSite". It's recommended that you
change this value. "Zope" is a reasonable name, although you are of course free to pick any name you choose.

Click Next after choosing your site's name. You are then asked to choose a directory in which to install Zope. A
reasonable choice for a destination directory is "c:\Program Files\Zope". After filling in the directory name, click Next .
You will be prompted to create a new Zope user account. This is not an operating system account. It is a user account
that is only meaningful to Zope. The account that you specify is called the initial user (or "superuser") and is used to log
into Zope for the first time. It is also given Zope administrative privileges. You can change this user name and
password later if you wish. A reasonable choice for the initial user name is "admin".

The Zope Book (2.6 Edition)

48

Figure 2-3 Selecting a Site Name

Figure 2-4 Selecting a Destination Directory

The Zope Book (2.6 Edition)

49

Figure 2-5 Provide an initial username and password

Click Next after choosing the initial user name and password. The installer presents a dialog indicating that it is ready to
install files. Click Next again to begin installing the files.

Figure 2-6 Installing files

Once the file copy is finished, if you are using Windows NT, Windows 2000, or Windows XP, you will see a dialog that
indicates that you may choose to run Zope as a service. If you are just running Zope for personal use, don't bother
running it as a service. If you are running Windows 95, Windows 98, or Windows ME, you cannot run Zope as a service
(it is not offered as an option). It is recommended that if you are installing Zope for the first time that you don't choose
to run the server manually.

The Zope Book (2.6 Edition)

50

Figure 2-7 Server Options

After you click "Next", the installer informs you that the installation was successful. Click "Finish". If you decide to
uninstall Zope later you can use the Unwise.exe program that resides in the directory in which you chose to install
Zope.

Note that the Zope installer does not add a program folder entry to your "Start" menu. You will see how to start Zope in
an upcoming section.

Installing Zope on Linux and Solaris With Binaries from Zope.org

The binary installations of Zope on Linux and Solaris are very similar. The binary distribution of Zope for Linux and
Solaris comes as a .tgz file which must be uncompressed before you are able to begin the installation.

 Important note: Do not try to use the file named "Zope-2.X.X-to-2.X.X-platform.tgz" to install Zope for the first
time. This is an upgrade package which upgrades an older version of Zope to a newer one instead of an
installable Zope distribution.

This paragraph has material that only applies to Solaris users. Before attempting to install Zope on Solaris for the first
time, you need to install "GNUtar" and "gunzip". Both packages are available from the Solaris Package Archive .
GNUtar is a "tape archive" program which, unlike the standard Solaris "tar" program is able to handle long file paths.
Although Solaris comes with its own "tar" program, it is unable to handle unpacking Zope because it has a lame
filepath-length limit that is exceeded by the length of some of the paths in the install package. "gunzip" is the GNU
Lempel-Ziv encoding "unzip" program. Most, if not all, Linux versions come with GNUtar as the default "tar" program
and already have gunzip installed, so if you run Linux, don't worry about this.

To begin a Zope installation, ownload the required installation archive from the Download area on Zope.org. It is
typically named something like "Zope-2.X.X-solaris-sparc.tgz" (for Solaris) or "Zope-2.X.X-linux2-x86.tgz" (for Linux)
where the "X"'s refer to the current Zope version number.

After you download the installation archive for your platform, but before you install Zope, it is important that you decide
where you'd like to install Zope and which user will be used to run it. It is suggested that Zope be unpacked and run as

The Zope Book (2.6 Edition)

51

a "normal" user (any user except the root user). Though you may of course create a "dedicated" Zope user account,
we're going to assume you want to install it in a subdirectory of your own personal "home" directory for the purpose of
these instructions.

Download the most recent stable binary installation archive for your platform into your user's "home" directory. Below
we show a user using "wget" for this purpose, but you may download it via any web browser:

chrism@saints:~$ wget http://www.zope.org/Products/Zope/2.5.1/Zope-2.5.1-linux2-x86.tgz
--20:27:56-- http://www.zope.org:80/Products/Zope/2.5.1/Zope-2.5.1-linux2-x86.tgz
 => `Zope-2.5.1-linux2-x86.tgz.1'
Connecting to www.zope.org:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 5,979,458 [application/x-gzip]

 0K -> [0%]
 50K -> [1%]
(..and so on..)

Note that unlike most other UNIX programs, the Zope installer does not distinguish between a "build" directory and a
"install" directory. The "build" directory is the "install" directory and vice versa. This means that the place where you
unpack Zope and in which you run the installer should be the place where you want it to ultimately live. In our exampe
case below, we're choosing to both unpack and install Zope into /home/chrism/Zope-2.5.1-linux2-x86.

"cd" to your home directory and, using gunzip and GNUtar, extract the files from the .tgz archive you downloaded in the
last step:

chrism@saints:~$ gunzip -c Zope-2.5.1-linux2-x86.tgz | tar xvf -
Zope-2.5.1-linux2-x86/
Zope-2.5.1-linux2-x86/Extensions/
Zope-2.5.1-linux2-x86/Extensions/README.txt
Zope-2.5.1-linux2-x86/LICENSE.txt
Zope-2.5.1-linux2-x86/README.txt
(.. and so on..)

This will unpack Zope into a new directory named "Zope-2.X.X-osname-platformname" where the X's represent the
current Zope version numbers, "osname" represents your OS name, and "platformname" represents your hardware
platform name. "cd" to this Zope directory and run the Zope installer script. The command and output are shown below:

chrism@saints:~$ cd Zope-2.5.1-linux2-x86
chrism@saints:~/Zope-2.5.1-linux2-x86$./install
--
Compiling python modules
--
--
creating default inituser file
Note:
 The initial user name and password are 'admin'
 and 'tnLQ6imA'.

 You can change the name and password through the web
 interface or using the 'zpasswd.py' script.

chmod 0600 /home/chrism/Zope-2.5.1-linux2-x86/inituser
chmod 0711 /home/chrism/Zope-2.5.1-linux2-x86/var
--
setting dir permissions
--
creating default database
chmod 0600 /home/chrism/Zope-2.5.1-linux2-x86/var/Data.fs
--
Writing the pcgi resource file (ie cgi script), /home/chrism/Zope-2.5.1-linux2-x86/Zope.cgi
chmod 0755 /home/chrism/Zope-2.5.1-linux2-x86/Zope.cgi
--
Creating start script, start
chmod 0711 /home/chrism/Zope-2.5.1-linux2-x86/start
--

The Zope Book (2.6 Edition)

52

Creating stop script, stop
chmod 0711 /home/chrism/Zope-2.5.1-linux2-x86/stop
--

Done!
chrism@saints:~/Zope-2.5.1-linux2-x86$

Note that the installer, among other things, will create an "initial" Zope user account with an autogenerated password.
Write this username and password down temporarily. You will use this information to log in to Zope for the first time.
You can change the initial user name and password later with the zpasswd.py script (see the chapter entitled Users
and Security).

You have now successfully installed the Zope binary distribution. For more information on installing the binary
distribution of Zope in alternate configurations on UNIX, see the installation instructions in the INSTALL.txt file inside
the doc directory of the binary release package. You may additionally find out more about the installer script by running
it with the -h (help) switch:

$./install -h

Compiling and Installing Zope from Source Code

If binaries aren't available for your platform, chances are good that you will be able to compile Zope from its source
code. To do this, however, you first must:

 • ensure you have a "C" compiler on your system (GNU gcc is preferred)

 • ensure you have a recent "make" on your system (GNU make is preferred)

 • install the Python language on your system from source.

Zope is written primarily in the Python language, and Zope requires Python to be able to run at all. Though binary
versions of Zope ship with a recent Python, the source Zope distribution does not. Although we try to use the most
recent Python for Zope, often the latest Python version is more recent than the version we "officially" support for Zope.
For the most recent information on which version of Python you need to compile Zope with, see the release notes on
the Web page for each version. Zope versions 2.5 and 2.6 require a Python 2.1 version equal to or greater than 2.1.3.
Zope 2.3 and earlier versions require Python 1.5.2. No version of Zope is yet officially compatible with any version
of Python 2.2.

You can obtain instructions for downloading, compiling and installing Python from source at the Python.org web site.
Some Linux distributions ship with a preinstalled Python 2.1, but you need to be careful when attempting to use a
vendor-installed Python to compile Zope. Some of these vendor-supplied Python distributions do not ship the
necessary Python development files needed to compile Zope from source. Sometimes these development files are
included in a separate "python-devel" package that you may install and use, but sometimes they are not. We
recommend, to avoid headaches like this, that you compile and install Python from source if you wish to compile and
install Zope from source.

After downloading, compiling, and installing Python from source, download the current Zope source distribution. See
the Zope.org Downloads area for the latest Zope source release. Below we use "wget" for the purpose of downloading
the source release, although you may of course use any browser or file retrieval utility:

chrism@saints:~$ wget http://www.zope.org/Products/Zope/2.5.1/Zope-2.5.1-src.tgz
--20:49:34-- http://www.zope.org:80/Products/Zope/2.5.1/Zope-2.5.1-src.tgz
 => `Zope-2.5.1-src.tgz'
Connecting to www.zope.org:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 2,165,141 [application/x-gzip]
 0K -> [2%]

The Zope Book (2.6 Edition)

53

 50K -> [4%]
 100K -> [7%]

(..and so on..)

Then extract the resulting .tgz archive into the place where you want Zope to be installed. Zope has no "build" directory,
the "install" directory is the build directory. In the below example, we extract the .tgz directly into our home directory.
This is recommended for purposes of this example:

chrism@saints:~$ gunzip -c Zope-2.5.1-src.tgz | tar xvf -

After extracting the .tgz file, "cd" to the resulting directory and, using the Python binary you compiled beforehand,
invoke the Python script which compiles Zope. This script is cryptically named "wo_pcgi.py". "wo_pcgi" stands for
"without PCGI", an artifact of Zope's web server integration roots, the meaning of which is largely unimportant today.:

chrism@saints:~$ cd Zope-2.5.1-src
chrism@saints:~/Zope-2.5.1-src$ python2.1 wo_pcgi.py
--
Deleting '.pyc' and '.pyo' files recursively under /home/chrism/Zope-2.5.1-src...
Done.

--
Compiling python modules
--

Building extension modules
cp ./lib/python/Setup20 ./lib/python/Setup

--
Compiling extensions in lib/python
cp /home/chrism/lib/python2.1/config/Makefile.pre.in .
make -f Makefile.pre.in boot PYTHON=
rm -f *.o *~
rm -f *.a tags TAGS config.c Makefile.pre python sedscript
rm -f *.so *.sl so_locations
VERSION=` -c "import sys; print sys.version[:3]"`; \

(..and so on until...)

--
creating default inituser file
Note:
 The initial user name and password are 'admin'
 and 'w!YzlsDT'.

 You can change the name and password through the web
 interface or using the 'zpasswd.py' script.

chmod 0600 /home/chrism/Zope-2.5.1-src/inituser
--

Done!

You've now successfully installed Zope from source code. Note that the compile script, among other things, has
created an "initial" Zope user account with an autogenerated password. Write this username and password down. You
will use this information to log in to Zope for the first time. You can change the initial user name and password later with
the zpasswd.py script (see the chapter entitled Users and Security). The initial user has "administrator" privileges
within this Zope instance.

Starting Zope

Zope is managed via a web browser, and Zope contains its own web server (named "ZServer"). A successful Zope
startup implies that its web server starts, allowing you to access the Zope management interface via your web browser.
You can access Zope's management interface from the same machine on which Zope runs, or you can access it from a

The Zope Book (2.6 Edition)

54

remote machine that is connected to the same network as your Zope server.

Zope's ZServer will "listen" for HTTP (web browser, or Hypertext Transfer Protocol) requests on TCP port 8080. If your
Zope instance fails to start, make sure you don't have another application running which is already using TCP port
8080.

Zope also has the capability to listen on other TCP ports. Zope supports separate TCP ports for FTP (File Transfer
Protocol), "monitor" (internal debugging), WebDAV (Web Distributed Authoring and Versioning), and ICP (Internet
Cache Protocol) access. If you see messages which indicate that Zope is listening on ports other than the default 8080
HTTP, don't panic, it's likely normal.

Using Zope With An Existing Webserver

If you wish, you can configure your existing web server to serve Zope content. Zope interfaces with Microsoft IIS,
Apache, and other popular webservers.

The Virtual Hosting Services chapter of this book provides rudimentary setup information for configuring Zope behind
Apache. However, configuring Zope for use behind an existing webserver can be a complicated task, and there is more
than one way to get it done. In the interest of completeness, here are some additional resources which should get you
started:

 • Apache: see the excellent DevShed article entitled Using Zope With Apache .

 • IIS: see brianh's HowTo on using IIS with Zope. Also of interest may be the WEBSERVER.txt file in your Zope
installation's doc directory, and andym's Zope Behind IIS HowTo .

If you are just "getting started" with Zope, note that it is not necessary to configure Apache or IIS (or any other
webserver) to serve your Zope pages, as Zope comes with its own webserver. You typically only need to configure your
existing webserver if you want to use it to serve Zope pages in a production environment.

Starting Zope On Windows

If you installed Zope to "run manually" (as opposed to installing Zope as a "service"), use Windows Explorer to navigate
to the directory into which you installed the Zope instance (typically c:\Program Files\Zope or c:\Program
Files\WebSite). Within this directory, find a file called start.bat . Double-click the start.bat icon. A console window
will be opened. It will display process startup information.

If chose to run Zope as a "service" on Windows NT/2000/XP, you can start Zope via the standard Windows "Services"
control panel application. A Zope started as a service writes events to the standard Windows Event Log; you can keep
track of when your service starts and stops by reviewing your system's Event Log. A Zope instance which has been
installed as a "service" can also be run manually by invoking the start.bat file in the Zope installation directory as
described above.

Starting Zope on UNIX

 Important note: If you installed Zope from an RPM or a another "vendor distribution" instead of installing a
Zope Corporation-distributed binary or source release, the instructions below may be not be applicable. Under
these circumstances, please read the documentation supplied by the vendor to determine how to start your
Zope instance instead of relying on the instructions below.

To start Zope, "cd" into to the directory in which you installed Zope and invoke the shell script named " start ". Here is
an example of this invocation and its typical output:

The Zope Book (2.6 Edition)

55

chrism@saints:~$ cd Zope-2.5.1-linux2-x86
chrism@saints:~/Zope-2.5.1-linux2-x86$./start

2002-06-28T03:17:02 INFO(0) ZODB Opening database for mounting: '142168464_1025234222.179125'

2002-06-28T03:17:02 INFO(0) ZODB Mounted database '142168464_1025234222.179125' at /temp_folder

2002-06-28T03:17:17 INFO(0) Zope New disk product detected, determining if we need to fix up any ZClasses.

2002-06-28T03:17:17 INFO(0) ZServer HTTP server started at Thu Jun 27 23:17:17 2002
 Hostname: saints
 Port: 8080

2002-06-28T03:17:17 INFO(0) ZServer FTP server started at Thu Jun 27 23:17:17 2002
 Hostname: saints
 Port: 8021

2002-06-28T03:17:17 INFO(0) ZServer PCGI Server started at Thu Jun 27 23:17:17 2002
 Unix socket: /home/chrism/Zope-2.5.1-linux2-x86/var/pcgi.soc

Starting Zope As The Root User

ZServer (Zope's server) supports setuid() on POSIX systems in order to be able to listen on low ports such as 21
(FTP) and 80 (HTTP) but drop root privileges when running; on most POSIX systems only the root user can do this.
Versions of Zope prior to 2.6 had less robust versions of this support. Several problems were corrected for the 2.6
release.

The most important thing to remember about this support is that you don't have to start ZServer as root unless you
want to listen for requests on "low" ports. In fact, if you don't have this need, you are much better off just starting
ZServer as a user account dedicated to running Zope. nobody is not a good idea for this user account; see below.

If you do need to have ZServer listening on low ports, you will need to start z2.py as the root user, and also specify
what user ZServer should setuid() to. Do this by specifying the -u option followed by a username or UID, either in
the start script or on the z2.py command line. The default used to be 'nobody'; however if any other daemon on a
system that ran as nobody was compromised, this would have opened up your Zope object data to compromise.

You must also make sure the "var" directory is owned by root, and that it has the sticky bit set. This is done by the
command chmod o+t var on most systems. When the sticky bit is set on a directory, anyone can write files, but
nobody can delete others' files in order to rewrite them. This is necessary to keep others from overwriting the PID file,
tricking root into killing processes when stop is run.

Your Zope Installation

To use and manage Zope, you'll need a web browser. Zope's management interface is written entirely in HTML,
therefore any browser that understands modern HTML allows you to manage a Zope installation. Mozilla, and any 3.0+
version of Microsoft Internet Explorer or Netscape Navigator will do. Other browsers that are known to work with Zope
include Opera, Galeon, Konqueror, OmniWeb, Lynx, and W3M.

Start a web browser on the same machine on which you installed Zope and visit the URL http://localhost:8080/ . If your
Zope is properly installed and you're visiting the correct URL, you will be presented with the Zope "QuickStart" screen.

The Zope Book (2.6 Edition)

56

Figure 2-8 Zope QuickStart

If you see this screen, congratulations! You've installed Zope successfully. If you don't, see the Troubleshooting section
below.

Logging In

To do anything remotely interesting with Zope, you need to use its "management interface". Zope is completely
web-manageable. To log into the Zope management interface, use your web browser to navigate to Zope's
management URL. Assuming you have Zope installed on the same machine from which you are running your web
browser, the Zope management URL will be http://localhost:8080/manage .

Successful contact with Zope using this URL will result in an authentication dialog. In this dialog enter the "initial"
username and password you chose when you installed Zope. You will be presented with the Zope Management
Interface (ZMI).

The Zope Book (2.6 Edition)

57

Figure 2-9 The Zope management interface.

If you do not see an authentication dialog and the Zope Management interface, refer to the Troubleshooting section of
this chapter.

Controlling the Zope Process With the Control Panel

When you are using the ZMI, you can use the Zope Control Panel to control the Zope process. Find and click the
Control_Panel object in ZMI.

Figure 2-17 The Control Panel

The Control Panel displays information about your Zope, such as the Zope version you're running, the Python version
that Zope is using, the system platform, the "SOFTWARE_HOME" (your Zope directory), the "INSTANCE_HOME"
(typically the same as your zope home), your "CLIENT_HOME" directory (the "var" directory of your Zope), Zope's
process id, and how long Zope has been running for. Several buttons and links will also be shown.

If you are running Zope on UNIX or as a service on Windows, you will see a button in the Control Panel named Restart
. If you click the Restart button, Zope will shut down and then immediately start up again. It may take Zope a few
seconds to come back up and start handling requests. You needn't shut your web browser down and restart it to
resume using Zope after pressing Restart , just wait for the Control Panel display to reappear.

To shut Zope down from the ZMI, click the Shutdown button. Shutting Zope down will cause the server to stop handling
requests and exit. You will have to manually start Zope to resume using it. Shut Zope down only if you are finished
using it and you have the ability to access the server on which Zope is running, so that you can manually restart it later.
If you see a "strange" message appear in your web browser when you shut Zope down, don't panic. This is normal. A
normal shutdown presents the user with a web page that states:

An error was encountered while publishing this resource
exceptions.SystemExit
Zope has exited normally
(.. more output ..)

Controlling the Zope Process From the Command Line

The Zope Book (2.6 Edition)

58

To stop a manually-run Zope on Windows press "Ctrl-C" while the console window under which Zope is running is
selected. To stop a Zope on Windows that was run as a service, find the service with the name you assigned to your
Zope installed in the Services Control Panel application and stop the service.

To stop Zope on UNIX, press "Ctrl-C" in the terminal window from which you started Zope or use the UNIX "kill"
command against the lowest-numbered Zope process id. Zope processes under UNIX will be listed in "ps" output as
"python z2.py [options]". This process id can also be found in the "var/Z2.pid" file inside of your Zope directory.

Troubleshooting

If your browser fails to connect with anything on TCP port 8080, your Zope may be running on a nonstandard TCP port
(for example, some versions of Debian Linux ship with Zope's TCP port as 9673). To find out exactly which URL to use,
look at the logging information Zope prints as it starts up. For example:

2000-08-07T23:00:53 INFO(0) ZServer Medusa (V1.18) started at Mon Aug 7 16:00:53 2000
 Hostname: peanut
 Port:9673

2000-08-07T23:00:53 INFO(0) ZServer FTP server started at Mon Aug 7 16:00:53 2000
 Authorizer:None
 Hostname: peanut
 Port: 8021

2000-08-07T23:00:53 INFO(0) ZServer Monitor Server (V1.9) started on port 8099

The first log entry indicates that Zope's web server is listening on port 9673. This means that the management URL is
http://peanut:9673/manage .

Certain versions of Microsoft Internet Explorer 5.0.1 and 5.5 have issues with the Zope management interface which
manifest themselves as an inability to properly log in. If you have troubles logging in with IE 5.0.1 or IE 5.5, try a
different browser or upgrade to IE 6.

If you forget or lose the initial user name and password, shut Zope down and change the initial user password with the
zpasswd.py script and restart Zope. See the chapter entitled Users and Security for more information about configuring
the initial user account.

Options To The Zope start or start.bat Script

The Zope startup script named start (or start.bat on Windows) has many command-line switch options. They
are the same for UNIX and Windows (although some only work on one or the other). These command-line switches are
detailed below:

-h

 Output help text.

-z path

 The location of the Zope installation.
 The default is the location of the "z2.py" script.

-Z path

 Unix only! This option is ignored on windows.

 If this option is specified, a separate managemnt process will
 be created that restarts Zope after a shutdown (or crash).

The Zope Book (2.6 Edition)

59

 The path must point to a pid file that the process will record its
 process id in. The path may be relative, in which case it will be
 relative to the Zope location.

 To prevent use of a separate management process, provide an
 empty string: -Z=''

-t n

 The number of threads to use. The default is 4.

-i n

 Set the interpreter check interval. This integer value
 determines how often the interpreter checks for periodic things
 such as thread switches and signal handlers. The Zope default
 is 500, but you may want to experiment with other values that
 may increase performance in your particular environment.

-D

 Run in Zope debug mode. This causes the Zope process not to
 detach from the controlling terminal, and is equivalent to
 supplying the environment variable setting Z_DEBUG_MODE=1

-a ipaddress

 The IP address to listen on. If this is an empty string
 (e.g. -a ''), then all addresses on the machine are used.

-d ipaddress

 IP address of your DNS server. If this is an empty string
 (e.g. -d ''), then IP addresses will not be logged. If you have
 DNS service on your local machine then you can set this to
 127.0.0.1.

-u username or uid number

 The username to run Zope as. You may want to run Zope as
 a dedicated user. This only works under Unix. If Zope
 is started as root, it is a required parameter.

-P [ipaddress:]number

 Set the web, ftp and monitor port numbers simultaneously
 as offsets from the number. The web port number will be number+80.
 The FTP port number will be number+21. The monitor port number will
 be number+99.

 The number can be preeceeded by an ip address follwed by a colon
 to specify an address to listen on. This allows different servers
 to listen on different addresses.

 Multiple -P options can be provided to run multiple sets of servers.

-w port

 The Web server (HTTP) port. This defaults to 8080. If this
 is a dash (e.g. -w -), then HTTP is disabled.

 The number can be preeceeded by an ip address follwed by a colon
 to specify an address to listen on. This allows different servers
 to listen on different addresses.

 Multiple -w options can be provided to run multiple servers.

-W port

 The "WebDAV source" port. If this is a dash (e.g. -w -), then
 "WebDAV source" is disabled. The default is disabled. Note that
 this feature is a workaround for the lack of "source-link" support

The Zope Book (2.6 Edition)

60

 in standard WebDAV clients.

 The port can be preeceeded by an ip address follwed by a colon
 to specify an address to listen on. This allows different servers
 to listen on different addresses.

 Multiple -W options can be provided to run multiple servers.

-C
--force-http-connection-close

 If present, this option causes Zope to close all HTTP connections,
 regardless of the 'Connection:' header (or lack of one) sent by
 the client.

-f port

 The FTP port. If this is a dash (e.g. -f -), then FTP
 is disabled. The standard port for FTP services is 21. The
 default is 8021.

 The port can be preeceeded by an ip address follwed by a colon
 to specify an address to listen on. This allows different servers
 to listen on different addresses.

 Multiple -f options can be provided to run multiple servers.

-p path

 Path to the PCGI resource file. The default value is
 var/pcgi.soc, relative to the Zope location. If this is a dash
 (-p -) or the file does not exist, then PCGI is disabled.

-F path_or_port

 Either a port number (for inet sockets) or a path name (for unix
 domain sockets) for the FastCGI Server. If the flag and value are
 not specified then the FastCGI Server is disabled.

-m port

 The secure monitor server port. If this is a dash
 (-m -), then the monitor server is disabled. The monitor server
 allows interactive Python style access to a running ZServer. To
 access the server see medusa/monitor_client.py or
 medusa/monitor_client_win32.py. The monitor server password is the
 same as the Zope emergency user password set in the 'access'
 file. The default is to not start up a monitor server.

 The port can be preeceeded by an ip address follwed by a colon
 to specify an address to listen on. This allows different servers
 to listen on different addresses.

 Multiple -m options can be provided to run multiple servers.

--icp port

 The ICP port. ICP can be used to distribute load between back-end
 zope servers, if you are using an ICP-aware front-end proxy such
 as Squid.

 The port can be preeceeded by an ip address follwed by a colon
 to specify an address to listen on. This allows different servers
 to listen on different addresses.

 Multiple --icp options can be provided to run multiple servers.

-l path

 Path to the ZServer log file. If this is a relative path then the
 log file will be written to the 'var' directory. The default is
 'var/Z2.log'.

The Zope Book (2.6 Edition)

61

-r

 Run ZServer is read-only mode. ZServer won't write anything to disk.
 No log files, no pid files, nothing. This means that you can't do a
 lot of stuff like use PCGI, and zdaemon. ZServer will log hits to
 STDOUT and zLOG will log to STDERR.

-L

 Enable locale (internationalization) support. The value passed for
 this option should be the name of the locale to be used (see your
 operating system documentation for locale information specific to
 your system). If an empty string is passed for this option (-L ''),
 Zope will set the locale to the user's default setting (typically
 specified in the $LANG environment variable). If your Python
 installation does not support the locale module, the requested
 locale is not supported by your system or an empty string was
 passed but no default locale can be found, an error will be raised
 and Zope will not start.

-X

 Disable servers. This might be used to effectively disable all
 default server settings or previous server settings in the option
 list before providing new settings. For example to provide just a
 web server:

 ./start -X -w80

-M file

 Save detailed logging information to the given file.
 This log includes separate entries for:

 - The start of a request,
 - The start of processing the request in an application thread,
 - The start of response output, and
 - The end of the request.

Environment Variables that Effect Zope at Runtime

Zope behavior is also effected by the presence and value of operating system environment variables that are available
in the shell from which Zope is started.

To set an OS environment variable under UNIX in the bash shell, use the "export" command e.g. export
EVENT_LOG_FILE=/home/chrism/Zope/var/event.log . To set an OS environment variable under Windows
NT/2000, use the Control Panel -> System applet or use the DOS-mode "set" command e.g. set
EVENT_LOG_FILE=c:\chrism\Zope\var\event.log . The "set" command can also be used in Windows 98/ME.
Below are the environment variables that effect Zope runtime behavior, inlcluding descriptions of each:

Zope library paths

 PYTHONPATH

 Effects the library load path used by Python. See "The
 Python Tutorial Modules
 Chapter":http://www.python.org/doc/current/tut/node8.html
 for more information about PYTHONPATH.

 INSTANCE_HOME

 If an INSTANCE_HOME is defined and has a 'lib/python' sub
 directory, it will be added to the front of the PYTHONPATH.
 INSTANCE_HOME is usually used to separate the Zope core
 installation from application code and third-party
 modules/products.

 See also: SOFTWARE_HOME

The Zope Book (2.6 Edition)

62

 SOFTWARE_HOME

 The SOFTWARE_HOME usually keeps the directory name of the
 Zope core installation.

 See also: INSTANCE_HOME

 ZOPE_HOME

 ZOPE_HOME is the root of the Zope software, where the
 ZServer package, z2.py, and the default import directory
 may be found.

Profiling

 PROFILE_PUBLISHER

 If set, Zope is forced profile every request of the
 ZPublisher. The profiling information is written to the
 value of the PROFILE_PUBLISHER.

Access Rules and Site Roots

 SUPPRESS_ACCESSRULE

 If set, all SiteRoot behaviors are suppressed.

 SUPPRESS_SITEROOT

 If set, all access rules behaviors are suppressed.

ZEO-related

 CLIENT_HOME

 CLIENT_HOME allows ZEO clients to easily keep distinct
 pid and log files. This is currently an *experimental*
 feature.

 ZEO_CLIENT

 If you want a persistent client cache which retains
 cache contents across ClientStorage restarts, you need
 to define the environment variable, ZEO_CLIENT, to a
 unique name for the client. This is needed so that
 unique cache name files can be computed. Otherwise, the
 client cache is stored in temporary files which are
 removed when the ClientStorage shuts down.

Debugging and Logging

 EVENT_LOG_FORMAT or STUPID_LOG_FORMAT

 Set this variable if you like to customize the output
 format of Zope event logger. EVENT_LOG_FORMAT is the
 preferred envvar but STUPID_LOG_FORMAT also works.

 EVENT_LOG_FILE="path" or STUPID_LOG_FILE="path"

 The event file logger writes Zope logging information to a file.
 It is not very smart about it - it just dumps it to a file and the
 format is not very configurable - hence the name STUPID_LOG_FILE.
 EVENT_LOG_FILE is the preferred envvar but STUPID_LOG_FILE
 also works.

 See also: LOGGING.txt in top-level Zope "doc" directory.

 EVENT_LOG_SEVERITY <number> or STUPID_LOG_SEVERITY <number>

 If set, Zope logs only messages whose severity is level is
 higher than the specified one. EVENT_LOG_SEVERITY is the
 preferred envvar but STUPID_LOG_SEVERITY also works.

The Zope Book (2.6 Edition)

63

 ZSYSLOG="/dev/log"

 Setting this environment variable will cause Zope to try
 and write the event log to the named UNIX domain socket
 (usually '/dev/log'). This will only work on UNIX.

 See also: LOGGING.txt

 ZSYSLOG_FACILITY="facilityname"

 Setting this environment variable will cause Zope to use
 the syslog logger with the given facility. This
 environment variable is optional and overrides the
 default facility "user". This will only work on UNIX.

 See also: LOGGING.txt in top-level Zope "doc" directory.

 ZSYSLOG_SERVER="machine.name:port"

 Setting this environment variable tells Zope to connect
 a UDP socket to machine.name (which can be a name or IP
 address) and 'port' which must be an integer. The
 default syslogd port is '514' but Zope does not pick a
 sane default, you must specify a port. This may change,
 so check back here in future Zope releases.

 See also: LOGGING.txt in top-level Zope "doc" directory.

 ZSYSLOG_ACCESS="/dev/log"
 ZSYSLOG_ACCESS_FACILITY="facilityname"
 ZSYSLOG_ACCESS_SERVER="machine.name:port"

 Like ZSYSLOG, ZSYSLOG_FACILITY, and ZSYSLOG_SERVER, but
 controlling the sending of access information to syslog
 (rather than controlling the sending of the event log)

 Z_DEBUG_MODE "yes" or "no"
 BOBO_DEBUG_MODE "yes" or "no" (obsolete)

 Run Zope in "debug mode" if set. Same as -D option
 to 'z2.py' or 'start'.

Misc.

 Z_REALM "your realm"
 BOBO_REALM "your realm" (obsolete)

 Realm to be used when send HTTP authentication requests
 to a web client. The real string is displayed when the
 web browser pops up the username/password requester

Security related

 ZOPE_SECURITY_POLICY

 If this variable is set to "PYTHON", Zope will use the
 traditional Python based AccessControl
 implementation. By default and for performance reasons
 Zope will use the cAccessControl module.

 ZSP_OWNEROUS_SKIP

 If set, will cause the Zope Security Policy to skip
 checks relating to ownership, for servers on which
 ownership is not important.

 ZSP_AUTHENTICATED_SKIP

 If set, will cause the Zope Security Policy to skip
 checks relating to authentication, for servers which
 serve only anonymous content.
 ZOPE_DTML_REQUEST_AUTOQUOTE

The Zope Book (2.6 Edition)

64

 Set this variable to one of 'no', '0' or 'disabled' to
 disable autoquoting of implicitly retrieved REQUEST data
 that contain a '<' when used in a dtml-var
 construction. When *not* set to one of these values, all
 data implicitly taken from the REQUEST (as oposed to
 addressing REQUEST.varname directly), that contain a
 '<', will be HTML quoted when interpolated with a
 <dtml-var> or &dtml-; construct.

ZODB related

 ZOPE_DATABASE_QUOTA

 If this variable is set, it should be set to an integer
 number of bytes. Additions to the database are not
 allowed if the database size exceeds the quota.

 ZOPE_READ_ONLY

 If this variable is set, then the database is opened in
 read only mode. If this variable is set to a string
 parsable by DateTime.DateTime, then the database is
 opened read-only as of the time given. Note that
 changes made by another process after the database has
 been opened are not visible.

Session related

 ZSESSION_ADD_NOTIFY

 An optional full Zope path name of a callable object to
 be set as the "script to call on object addition" of the
 session_data transient object container created in
 temp_folder at startup.

 ZSESSION_DEL_NOTIFY

 An optional full Zope path name of a callable object to
 be set as the "script to call on object deletion" of the
 session_data transient object container created in
 temp_folder at startup.

 ZSESSION_TIMEOUT_MINS

 The number of minutes to be used as the "data object
 timeout" of the "/temp_folder/session_data" transient
 object container.

 ZSESSION_OBJECT_LIMIT

 The number of items to use as a "maximum number of
 subobjects" value of the "/temp_folder" session data
 transient object container.

WebDAV

 WEBDAV_SOURCE_PORT_CLIENTS

 Setting this variable enables the retrieval of the
 document source through the standard HTTP port instead
 of the WebDAV port. The value of this variable is a
 regular expression that is matched against the
 user-agent string of the client.

 Example::

 WEBDAV_SOURCE_PORT_CLIENTS="cadaver.*" enables retrieval
 of the document source for the Cadaver WebDAV client

Structured Text

 STX_DEFAULT_LEVEL

The Zope Book (2.6 Edition)

65

 Set this variable to change the default level for <Hx>
 elements. The default level is 3.

Esoteric

 Z_MAX_STACK_SIZE

 This variable allows you to customize the size of the
 Zope stack used by the SecurityManager (default 100).

When All Else Fails

If there's a problem with your installation that you just can't seem to solve, don't despair. You have many places to turn
for help, including the Zope maillists and the #zope IRC channel.

If you are new to open source software, please realize that, for the most part, participants in the various "free" Zope
support forums are volunteers. Though they are typically friendly and helpful, they are not obligated to answer your
questions. Therefore, it's in your own self-interest to exercise your best manners in these forums in order to get your
problem resolved quickly.

The most reliable way to get installation help is to send a message to the general Zope maillist detailing your
installation problem. For more information on the available Zope mailing lists, see the Resources section of Zope.org.
Typically someone on the "zope@zope.org" list will be willing to help you solve the problem.

For even more immediate help, you may choose to visit the #zope channel on the OpenProjects IRC (Internet Relay
Chat) network. See the OpenProjects website for more information on how to connect to the OpenProjects IRC
network.

If you are truly desperate and under a time constraint that prohibits you from utilizing "free" support channels, Zope
Corporation provides for-fee service contracts which you can use for Zope installation help. See Zope.com for more
information about Zope Corporation service contracts.

The Zope Book (2.6 Edition)

66

Object Orientation

To make best use of Zope, you will need to have a grasp of the concept of object orientation . Object orientation is a
software development pattern that is used in many programming languages (C++, Java, Python, Eiffel, Modula-2,
others) and computer systems which simulate "real-world" behavior. It stipulates that you should design an application
in terms of objects . This chapter provides a broad overview of the fundamentals of object orientation from the
perspective of a Zope developer.

Objects

In an object-oriented system (such as Zope), your application is designed around objects . Objects are self-contained
"bundles" of data and logic. It is easiest to describe them by comparing them to other programming concepts.

In a typical non-object-oriented application, you will have two things:

 • Code. For example, you may have a bit of logic in the form of a Perl script in a typical CGI-based web application
which sucks employee data from a database and displays a table to a user.

 • Data. For example, you may have employee data stored in a database such as MySQL or Oracle that your code
operates upon by reading or changing it. This data exists almost solely for the purposes of the code that operates
upon it; it has almost no value without the code.

In a typical object-oriented application, however, you will have one thing, and one thing only:

 • Objects. Objects are collections of code and data wrapped up together. For example, you may have an
"Employee" object that represents an employee. It will contain data about the employee, such as a phone
number, name, and address, much like the information that would be stored in a database like MySQL or Oracle.
However, the object will also contain "logic" (code) that can manipulate and display this data.

In a non-object-oriented application, your data is separate from your code. But in an object oriented application, both
your data and your code is stored in one or more objects, each of which represents a particular "thing". Objects can
represent just about anything. In Zope, the Control_Panel is an object, Folders which you create are objects, even the
Zope "root folder" is an object. When you use the Zope "add list" to create a new item in the Zope Management
Interface, you are creating an object. People who extend Zope by creating Products define their own types of objects
which are then entered in to the Zope "add list", allowing you to create objects from them. A product author might
define a "Form" object or a "Weblog" object. Basically, anything which can be described using a noun can be modelled
as an object.

Object-orientation as a programming methodology allows software developers to design and create programs in terms
of "real-world" things like Folders, Control_Panels, Forms, and Employees instead of designing programs based
around more "computerish" concepts like bits, streams, and integers. Instead of teaching the computer about our
problem by descending to its basic vocabulary (bits and bytes), we use an abstraction to teach the computer about the
problem in terms of a vocabulary which is more natural to humans. The core purpose of object orientation is to allow
developers to create, to the largest extent possible, a system based on abstractions of the natural language of a
computer (bits and bytes) into real-world things (Employees and Forms) that we can understand more quickly and more
readily.

This idea of abstraction also encourages programmers to break up a larger problem by addressing the problem as
smaller, more independent "sub-problems". This allows developers to define solutions in terms of these
"sub-problems". When you design an application in terms of objects, the pieces which eventually come to define the

The Zope Book (2.6 Edition)

67

solution to all the "sub-problems" of a particular "big" problem are objects.

Attributes

An object's data is defined by its attributes . For example, an attribute of an Employee object might be named
"phone_number". This attribute will likely contain a series of characters which represent the employee's phone number.
Other attributes of an Employee object might be "first_name" and "last_name", which are respectively, series of
characters which represent the employee's first name and the employee's last name. Another attribute of an employee
object might be title , which would be a series of characters representing the employee's job description.

An object typically uses attributes to store elements that describe itself. For example, "phone_number", "first_name",
"last_name" and "title" describe an employee in a particular way. It may help to think of the set of attributes belonging to
an object as a sort of "mini-database" which contains information representing the "real-world thing" that the object is
attempting to describe. The complete collection of attributes assigned to an object defines the object's state . When one
or more of an object's attributes are modified, the object is said to have changed its state .

Special kinds of web-editable object attributes in Zope are sometimes referred to as Properties .

Methods

The set of actions which an object may perform is defined by its methods . Methods are code definitions attached to an
object which typically perform an action based on the attributes belonging to the object on which the method is defined.
For example, a method of an Employee object named "getFirstName" may return the value of the object's "first_name"
attribute, while a method of an Employee object named "setFirstName" might change the value of the object's
"first_name" attribute. The "getTitle" method of an Employee object may return "Vice President" or "Janitor".

Methods are similar to functions in procedural languages like C . The key difference between a method and a function
is that a method is "bound" to (attached to) an object, so instead of operating solely on "external" data that is passed in
to it via arguments, it may also operate on the attributes of the object to which is bound.

Some objects in Zope are actually called "methods". For example, there are DTML Methods , SQL Methods , and
External Methods . This is because these objects are meant to be used in a "methodish" way. They are "bound" to their
containing Folder object by default when called, and the logic that they contain typically makes reference to their
containing Folder. Script (Python) objects in Zope act similarly through their concept of "Bindings".

Messages

In an object-oriented system, to do any useful work, an object is required to communicate with other objects in the
same system. For example, it wouldn't be particularly useful to have a single Employee object just sitting around in
"object-land" with no way to communicate with it. It would then just be as "dumb" as a regular old relational database
row, just storing some data. We want the capability to ask the object to do something useful. More precisely, we want
the capability for other objects to ask our Employee object to do something useful. For instance, if we create an object
named "EmployeeSummary", which has the responsibility for collecting the names of all of our employees for later
display, we want the EmployeeSummary object to be able to ask a set of Employee objects for their first and last
names.

When one object communicates with another, it is said to send a message to another object. Messages are sent to
objects by way of the object's methods . For example, our EmployeeSummary object may send a message to our
Employee object by way of "calling" its "getFirstName" method. Our Employee object would receive the message and
return the value of its "first_name" attribute. Messages are sent from one object to another when a "sender" object calls
a method of a "receiver" object.

The Zope Book (2.6 Edition)

68

When you access a URL that "points to" a Zope object, you are almost always sending that Zope object a message.
When you request a response from Zope by way of invoking a Zope URL with a web browser, the Zope object
publisher receives the request from your browser. It then sends a Zope object a message on your browser's behalf by
"calling a method" on the Zope object specified by the URL. The Zope object responds to the object publisher with a
return value, and the object publisher returns the value to your browser.

Classes and Instances

A class defines an object's behavior and acts as a constructor for an object. When we talk about a "kind" of object, like
an "Employee" object, we actually mean "objects constructed using the Employee class" or, more likely, just "objects of
the Employee class". Most objects are members of a class.

It is typical to find many objects in a system that are essentially similar to one another save for the values of their
attributes. For instance, you may have many Employee objects in your system, each with "first_name" and "last_name"
attributes. The only difference between these Employee objects is the values contained within their attributes. For
example, the "first_name" of one Employee object might be "Fred" while another might be "Jim". It is likely that each of
these objects should be members of the same class .

A class is to an object as a set of blueprints is to a house. Many houses can be constructed using the same set of
blueprints; likewise many objects can be constructed using the same class. Objects that share a class typically behave
identically to each other. If you visit two houses that share the same set of blueprints, you will likely notice striking
similaries: the layout will be the same, the light switches will probably be in the same place, and the fireplace will almost
certainly be in the same location. The shower curtains might be different in each house, but this is an attribute of each
particular house which doesn't change its essential similarity with the other. It is much the same with instances of a
class. If you "visit" two instance of a class, you will interact with both instances in essentially the same way: by calling
the same set of methods on each. The data kept in the instance (by way of its attributes) might be different, but these
instances behave in the same way.

The behavior of two objects constructed from the same class is similar because they both share the same methods .
Methods of an object are not typically defined by the object itself, but instead are defined by the object's class . For
instance, the Employee class defines the getFirstName method, and all objects that are members of that class
share that method definition. The set of methods that are assigned to a class define the behavior of an object.

The objects which are constructed by a class are called instances of the class or (more often) just instances . For
example, the Zope Examples folder is an instance of the Folder class. The Examples folder has an id attribute
of Examples , while another folder may have an id attribute of MyFolder , but they are both instances of the same
class, and behave identically. All of the objects that you deal with using the Zope management interface are instances
of a class. Typically, the classes from which these objects are constructed are defined in Zope Products , which are
created by Zope developers and community members.

Inheritance

Sometimes it is desirable for objects to share the same essential behavior, except for small deviations from each other.
For example, you may want a ContractedEmployee object to have all the behavior of a "normal" Employee object
except that you must keep track of a tax identification number on instances of the ContractedEmployee class that is
irrelevant for "normal" instances of the Employee class.

Inhertitance is the mechanism that allows you to share essential behavior between two objects, while customizing one
with a slightly modified set of behaviors that differ from or extend the other.

Inheritance is specified at the class level . As we learned above, classes define behavior , and if we want to change
object behavior, we almost always need to change its class.

The Zope Book (2.6 Edition)

69

If we base our "ContractedEmployee" class on the Employee class, but add a method to it named "getTaxIdNumber"
and an attribute named "tax_id_number", the ContractedEmployee class would be said to inherit from the Employee
class. In the jargon of object orientation, the ContractedEmployee class would be said to subclass from the Employee
class and the Employee class would be said to be a superclass of the ContractedEmployee class.

When a subclass inherits behavior from another class, it doesn't need to sit by and accept the method definitions of its
superclass. It can override the method definitions of its superclass. For instance, we may want to cause our
ContractedEmployee class to return a different "title" than instances of our Employee class. In our ContractedEmployee
class, we might cause the getTitle method of the Employee class to be overridden by creating a method within
ContractedEmployee which has a different implementation. For example, it may always return "Contractor" instead of a
job-specific title.

In Zope, inheritance is used extensively. For example, the Zope "Image" class inherits its behavior from the Zope "File"
class, because images are really just another kind of file, and they share many behavior requirements. But the "Image"
class adds a bit of behavior which allows it to "render itself" by printing an HTML tag instead of causing a file download.
It does this by overriding the index_html method of the File class.

Object Lifetimes

Object instances have a specific lifetime . This lifetime is controlled typically conrolled by either a programmer or a user
of the system in which the objects "live".

Instances of web-manageable objects in Zope like Files, Folders, DTML Methods, and such have a lifetime of "from
when a user creates them until he or she deletes them." You will often hear these kinds of objects described as
persistent objects. These objects are stored in Zope's object database (the ZODB).

Other object instances have different lifetimes. There are object instances in Zope which last for a
"programmer-controlled" period of time. For instance, the object that represents a web request in Zope (often called
REQUEST), has a well-defined lifetime. Its lifetime lasts from the moment that the object publisher receives the request
from a remote browser until the response is sent back to that browser. It is then destroyed automatically. Zope "session
data" objects have another well-defined lifetime. These objects last from the time that a programmer creates one on
behalf of the user via his code until such time that the system (on behalf of the programmer or site administrator)
deems it necessary to throw away the object in order to conserve space or indicate an "end" to the user's session. This
is defined by default as 20 minutes of "inactivity" by the user for whom the object was created.

Summary

Zope is an object-oriented development environment. Understanding Zope fully requires that you grasp the basic
concepts of object orientation. You should attempt to understand attributes, methods, classes, and inheritance before
setting out on a "for-production" Zope development project.

For a more lighthearted description of what object orientation is and how it relates to Zope, see Chris McDonough's
Gain Zope Enlightenment by Grokking Object Orientation . For a more comprehensive treatment on the subject of
object orientation, buy and read The Object Primer by Scott Ambler. There are also excellent object orientation tutorials
available on he Internet. See The Essence of Objects chapter of the book "The Essence of Object Oriented
Programming with Java and UML". There is an extensive Object FAQ available at Cyberdyne Object Systems.

The Zope Book (2.6 Edition)

70

Using The Zope Management Interface

Introduction

When you log in to Zope, you are presented with the Zope Management Interface (ZMI). The ZMI is a management
and development environment that allows you to control Zope, manipulate Zope objects, and develop web applications.

The Zope Management Interface represents a view into the Zope object hierarchy . Almost every link or button in the
ZMI represents an action that is taken against an object . When you build web applications with Zope, you typically
spend most of your time creating and managing objects.

Don't be frightened if you don't understand the word "object" just yet. For the purposes of this chapter, the definition of
an "object" is any discrete item that is manageable through the Zope Management Interface. In fact, for the purposes of
this chapter, you can safely mentally replace the word "object" with the word "thing" with no ill effect. If you get
confused, however, you may want to review the Object Orientation chapter for more background on objects.

How The Zope Management Interface Relates to Objects

Unlike a webserver like Apache or Microsoft IIS, Zope does not "serve up" HTML files that it finds on your server's hard
drive. The objects that Zope creates are not stored in files that have an ".html" extension on your server's hard drive.
There is no file hierarchy on your server's computer that contains all of your Zope objects.

Instead, the objects that Zope creates are stored in a database known as the ZODB, which stands for (unsurprisingly)
the "Zope Object DataBase". "Out of the box", the ZODB creates a file named "Data.fs" in which Zope stores its
objects. The Zope Management Interface is the primary way that you interact with Zope objects that are stored in this
database. Note that there are other methods of interacting with objects stored in the ZODB, including FTP and
WebDAV, which are detailed in the chapter in this book entitled Managing Zope Using External Tools , but the ZMI is
the primary management tool.

ZMI Frames

The ZMI uses three browser frames. The left frame is called the Navigator Frame , and using it you may expand and
contract a view into the Zope object hierarchy much like you would expand and contract a view of files using a file tree
widget like the one in Windows Explorer. The right frame is called the Workspace Frame , and it displays a particular
view of the object you're currently managing. The top frame is called the Status Frame , and it displays the name of the
user who you are currently logged in as as well as a select list that allows you to perform various actions. We'll look
more closely at these frames next.

The Navigator Frame

The left frame is the Navigator. In this frame you have a view into the root folder and all of its subfolders. The root
folder* is in the upper left corner of the tree. The root folder is the "topmost" container of Zope objects. Almost
everything meaningful in your Zope instance lives inside the root folder.

The Zope Book (2.6 Edition)

71

Figure 3-1 The Navigator Frame

Some of the folders in the Navigator are displayed with "plus mark" icons to their left. These icons let you expand the
folders to see the sub-folders that are inside.

When you click on an object icon or name in the Navigator, the Workspace frame will refresh with a view of that object.

The Workspace Frame

The right-hand frame of the management interface shows the object you are currently managing. When you first log
into Zope the current object is the root folder. The workspace gives you information about the current object, and lets
you manage it.

Figure 3-2 The Workspace Frame

Across the top of the screen are a number of tabs. The currently selected tab is highlighted in a lighter color. Each tab
takes you to a different view of the current object. Each view lets you perform a different management function on that
object.

The Zope Book (2.6 Edition)

72

When you first log in to Zope, you are looking at the Contents view of the root folder object.

At the top of the workspace, just below the tabs, is a description of the current object's type and URL. On the left is an
icon representing the current object's type, and to the right of that is the object's URL.

At the top of the page, Folder at / tells you that the current object is a folder and that its path is "/". Note that this
path is the object's place relative to Zope's "root" folder. The root folder's path is expressed as "/" , and since you are
looking at the root when you first log in, the path displayed at the the top of the workspace is simply "/".

Zope object paths are typically mirrored in the URLs that you use to access a Zope object. For instance, if the main
URL of your Zope site was http://mysite.example.com:8080 , then the URL of the root folder would be
http://mysite.example.com:8080/ and the URL of Folder at /myFolder would be
http://mysite.example.com:8080/myFolder .

As you explore different Zope objects, you find that the links displayed at the top of the workspace frame can be used
to navigate between objects' management views. For example, if you are managing a folder at /Zoo/Reptiles/Snakes
you can return to the folder at /Zoo by clicking on the word Zoo in the folder's URL.

The Status Frame

In the "status frame" at the top of the management interface, your current login name is displayed, along with a
pull-down box that lets you select:

Preferences — By selecting this menu item, you can set default preferences for your Zope management interface
experience. You can choose to turn off the status frame. You can also choose whether or not you want the
management interface to try to use style sheets. Additionally, you can change the default height and width of textareas
displayed in the ZMI. This information is associated with your browser via a cookie. It is not associated in any way with
your Zope user account.

Logout — Selecting this menu item will log you out of Zope. Due to the way that the HTTP "basic authentication"
protocol works, this may not work properly on all browsers. If you experience problems logging out using this facility, try
closing and reopening your browser to log out.

Quick Start Links — Selecting this menu item presents the "QuickStart" page which has links to Zope documentation
and community resources.

Figure 3-3 The Status Frame

Creating Objects

The Zope Management Interface allows you to create new objects in your Zope instance. To add a new object, select
an entry from the pull-down menu in the Workspace labeled "Select type to add...". This pull-down menu is called the
add list .

The first kind of object you'll want to add in order to "try out" Zope is a "Folder". To create a Zope Folder object,
navigate to the root folder and select Folder from the add list. At this point, you'll be taken to an add form that collects
information about the new folder, as shown in the figure below.

The Zope Book (2.6 Edition)

73

Figure 3-4 Folder add form.

Type "zoo" in the Id field, and "Zope Zoo" in the Title field. Then click the Add button.

Zope will create a new Folder object in the current folder named zoo . You can verify this by noting that there is now a
new folder named zoo inside the root folder.

Click on zoo to "enter" it. The Workspace frame will switch to the contents view of zoo (which is currently an "empty"
folder: it has no subobjects). Notice that the URL of the zoo folder is based on the folder's id . You can create more
folders inside your new folder if you wish. For example, create a folder inside the zoo folder with an id of arctic . Enter
to the zoo folder and choose Folder from the pull-down menu. Then type in "arctic" for the folder id, and "Arctic Exhibit"
for the title. Now click the Add button.

When you use Zope, you create new objects by following these steps:

1. Enter to the folder where you want to add a new object.

2. Choose the type of object you want to add from the add list.

3. Fill out the resulting add form and submit it.

4. Zope will create a new object in the folder.

Notice that every Zope object has an id that you need to specify in the add form when you create the object. The id is
how Zope names objects. Objects also use their ids as a part of their URL . The URL of any given Zope object is
typically a URL consisting of the folders in which the object lives plus its name. For example, we created a folder
named "zoo" in the root folder. Its URL consists of "http://your.server.name/zoo" (where "your.server.name" is your
server's name).

Moving and Renaming Objects

Most computer systems let you move files around in directories with cut, copy and paste. The Zope management
interface has a similar system that lets you move objects around in folders by cutting or copying them, and then pasting
them to a new location.

The Zope Book (2.6 Edition)

74

 NOTE: Zope move and rename options require that you have cookies enabled in your browser.

To experiment with copy and paste, create a new folder in the root folder with an id of bears . Then select bears by
checking the check box just to the left of the folder. Then click the Cut button. Cut selects the selected objects from the
folder and places them on Zope's "clipboard". The object will not , however, disappear from its location until it is pasted
somewhere else.

Now enter the zoo folder by clicking on it. Now, click the Paste button to paste cut object(s) into the zoo folder. You
should see the bears folder appear in its new location. You can verify that the folder has been moved by going to the
root folder and noting that bears is no longer there.

Copy works similarly to cut. When you paste copied objects, the original objects are not removed. Select the object(s)
you want to copy and click the Copy button. Then navigate to another folder and click the Paste button.

You can cut and copy folders that contain other objects and move many objects at one time with a single cut and paste.
For example, go to the root folder copy the zoo folder. Now paste it into the root folder. You will now have two folders
inside the root folder, zoo and copy_of_zoo . If you paste an object into the same folder where you copied it, Zope will
change the id of the pasted object. This is a necessary step, as you cannot have two objects with the same id in the
same folder.

To rename the copy_of_zoo folder, select the folder by checking the check box to the left of the folder. Then click the
Rename button. This will take you to the rename form.

Figure 3-5 Renaming an Object

Type in a new id "zoo2" and click OK . Zope ids can consist of letters, numbers, spaces, dashes underscores and
periods, and are case-sensitive. Here are some legal Zope ids: index.html , 42 , and Snake-Pit .

Now your root folder contains a zoo and a zoo2 folder. Each of these folders contains a bears folder. This is because
when we made a copy of the zoo folder it also copied the bears folder that it contained. Copying an object also copies
all of the objects it contains.

If you want to delete an object, select it and then click the Delete button. Unlike cut objects, deleted objects are not
placed on the clipboard and cannot be pasted. In the next section we'll see how we can retrieve deleted objects using
Undo.

The Zope Book (2.6 Edition)

75

Zope will not let you cut, delete, or rename a few particular objects in the root folder. These objects include
Control_Panel , browser_id_manager , and temp_folder . These objects are necessary for Zope's operation. It is
possible to delete other root objects, such as index_html , session_data_manager , standard_html_header ,
standard_html_footer , standard_error_message , and standard_template.pt but it is not recommended unless you
have a good reason to do so.

Transactions and Undoing Mistakes

All objects you create in Zope are stored in Zope's "object database". Unlike other web application servers, Zope
doesn't store its objects in files on a filesystem. Instead, all Zope objects are stored by default in a single special file on
the filesystem named Data.fs . This file is stored in the var directory of your Zope instance. Using an object
database rather than using file system files allows operations to Zope objects to be transactional .

A transactional operation is one in which all changes to a set of objects are committed as a single "batch". In Zope, a
single web request initiates a transaction. When the web request is finished, Zope commits the transaction unless there
was an error during the processing of the request. If there was an error, Zope refrains from committing the transaction.
Each transaction describes all of the changes that happen in the course of performing a web request.

Any action in Zope that causes a transaction can be undone, via the Undo tab. You can recover from mistakes by
undoing the transaction that represents the mistake.

Select the zoo folder that we created earlier and click Delete . The folder disappears. You can get it back by undoing
the delete action.

Click the Undo tab, as shown in the figure below.

Figure 3-6 The Undo view.

Transactions are named after the Zope action (also known as a "method") that initiated them. In this case, the initiating
action was one named "/manage_delObjects" (the action which deletes a Zope object).

Select the first transaction labeled /manage_delObjects , and click the Undo button at the bottom of the form,
instructing Zope to undo the last transaction. You can verify that the task has been completed by visiting the root folder

The Zope Book (2.6 Edition)

76

to make sure that the zoo folder has returned. You may need to refresh your browser window to see the effect if you
just use the "Back" button to revisit the root folder. To see the effect in the Navigator pane, click the "Refresh" link
within the pane.

You may undo an undo (or in other words, perform a "redo"). You can undo and redo as many times as you like. When
you perform a "redo", Zope inserts a transaction into the undo log describing the redo.

The Undo tab is available on most Zope objects. When viewing the Undo tab of a particular object, the list of undoable
transactions is filtered down to the transactions that have recently effected the current object and its subobjects.

Undo Details and Gotchas

You cannot undo a transaction that a later transaction depends upon. For example, if you paste an object into a folder
and then delete an object in the same folder you might wonder whether or not you can undo the earlier paste. Both
transactions change the same folder so you can not simply undo the earlier transaction. The solution is to undo both
transactions. You can undo more than one transaction at a time by selecting multiple transactions on the Undo tab and
then clicking Undo .

Only changes to objects stored in Zope's object database can be undone. If you have integrated data in a relational
database server such as Oracle or MySQL (as discussed in Chapter 12, "Relational Database Connectivity"), changes
to data stored there cannot be undone.

Reviewing Change History

The Undo tab will provide you with enough information to know that a change has occurred. It, however, will not tell you
much about the effect of the transaction on the objects that were changed during the transaction. "Presentation" and
"logic" objects like DTML Methods, DTML Documents, Zope Page Templates, and Script (Python) objects support
History for this purpose. If you know a transaction has effected one of these objects, you can go to that object's History
View and look at the previous states of the object, as shown in the figure below.

Figure 3-7 The History View

The History view of an object supports comparison of revisions, allowing you to track their changes over time. You may
select two revisions from an object's History and compare them to one another. To perform a comparison between two

The Zope Book (2.6 Edition)

77

object revisions, select two revisions using the checkboxes next to the transaction identifiers, and click the Compare
button.

The resulting comparison format is often called a diff . The diff format shows you the lines that have been added to the
new document (via a plus), which lines have been subtracted from the old document (via a minus), and which lines
have been replaced or changed (via an exclamation point).

Figure 3-8 Comparing Revisions Via The History View

To revert to an older object revision, click the checkbox next to the transaction identifier, then click the Copy to present
button.

Importing and Exporting Objects

You can move objects from one Zope system to another using export and import . You can export all types of Zope
objects to an export file . This file can then be imported into any other Zope system.

You can think of exporting an object as cloning a piece of your Zope system into a file that you can then move around
from machine to machine. You can take this file and graft the clone onto any other Zope server.

Suppose you have a folder for home work that you want to export from your school Zope server, and take home with
you to work on in your home Zope server. Create a folder in your root folder called "homeWork". After creating the
folder, click the checkbox next to the homeWork folder you just created. Then click the Import/Export button. You
should now be working in the Import/Export folder view, as shown in be figure below.

The Zope Book (2.6 Edition)

78

Figure 3-9 Exporting homeWork.zexp

There are two sections to this screen. The upper half is the export section and the lower half is the import section. To
export an object from this screen, type the id of the object into the first form element, Export object id. In our case Zope
already filled this field in for us, since we selected the homeWork folder on the last screen.

The next form option lets you choose between downloading the export file to your computer or leaving it on the server.
If you check Download to local machine , and click the Export button, your web browser will prompt you to download
the export file. If you check Save to file on server , then Zope will save the file on the same machine on which Zope is
running, and you must fetch the file from that location yourself. The export file will be written to Zope's var directory on
your server. By default, export files have the file extension .zexp .

In general it's handier to download the export file to your local machine. Sometimes it's more convenient to save the file
to the server instead, for example if you are on a slow link and the export file is very large, or if you are just trying to
move the exported object to another Zope instance on the same computer.

The final export form element is the XML format? checkbox. Checking this box exports the object in the eXtensible
Markup Language (XML) format. Leaving this box unchecked exports the file in Zope's binary format. XML format
exports are is much larger but are (mostly) human-readable. For now, the only tool that understands this XML format is
Zope itself, but in the future there may be other tools that can understand Zope's XML format. In general you should
leave this box unchecked unless you're curious about what the XML export format looks like and want to examine it by
hand.

While you're viewing the export form for homeWork , Ensure "download to local machine" is selected, "XML format?" is
not selected, and click the Export button. Your browser will present a file save dialog. Save the file to a temporary
location on your local computer (it will be named homeWork.zexp).

Now suppose that you've gone home and want to import the file into your home Zope server. First, you must copy the
export file into Zope's import directory on your Zope server's filesystem. Here is an example of doing so. We are
copying the homeWork.zexp file that's in a directory named /tmp on the local computer to a remote ("home") computer
running Zope using the scp facility on Linux. We copy the .zexp file into our Zope directory's "import" directory. In this
example, the Zope installation directory on the remote computer is named "/home/chrism/sandboxes/ZBExample":

chrism@saints:/tmp$ ls -al homeWork.zexp
-rw-r--r-- 1 chrism chrism 182 Jul 13 15:44 homeWork.zexp
chrism@saints:/tmp$ scp homeWork.zexp saints.homeunix.com:/home/chrism/sandboxes/ZBExample/import

The Zope Book (2.6 Edition)

79

chrism@saints.homeunix.com's password:
homeWork.zexp 100% |*****************************| 182 00:00
chrism@saints:/tmp$

In the above example, the export file was copied from the local computer's /tmp directory to the remote computer's
/home/chrism/sandboxes/ZBExample/import/homeWork.zexp file. Your local directory and your Zope's
installation directory will be different. For purposes of this example, copy the export file you downloaded to your Zope
installation's "import" directory using whatever facility you're most comfortable with (you needn't use scp).

Now, go back to your Zope's management interface. Create a Folder named import_example . Visit the
newly-created import_example folder by clicking on it in the management interface. Then click on Import/Export
button in the import_example folder and scroll to the bottom of the Workspace frame. Note that Zope gives you the
option to either Take ownership of imported objects or Retain existing ownership information . Ownership will be
discussed more in the chapter entitled "Users and Security". For now, just leave the Take ownership of imported
objects option selected and, enter the name of the export file (homeWork.zexp) in the Import file name form element
and click Import .

Figure 3-10 Importing homeWork.zexp

After you've clicked import, you will have a new object in the import_example folder named homeWork . Note that
Zope informs you of the success of the import in a status message.

The Zope Book (2.6 Edition)

80

Figure 3-11 Success Importing homeWork.zexp

There are a few caveats to importing and exporting. In order to successfully perform an import of a Zope export file,
you need to make sure that the Zope into which you're importing has the same Products installed. If an import fails, it's
likely that you don't have the same Products installed in your Zope as the Products installed in the Zope from whence
the export file came. Our example above works because we are exporting an object which is very common and which
comes with all Zopes (a Folder). Check with the distributor of the export file to see what Products are necessary for
proper import if you have problems importing a given export file.

Note that you cannot import an object into a folder that has an existing object with the same id . Therefore, when you
import an export file, you need to ensure it does not want to install an object that has the same name as an existing
object in the folder in which you wish to import it. In our example above, in order to bring your homework back to
school, you'll either need to import it into a folder that doesn't already have a homeWork folder in it, or you'll need to
delete the existing homeWork folder before importing the new one.

Using Object Properties

Properties are ways of associating information with objects in Zope. Many Zope objects, including folders, support
properties. Properties can label an object in order to identify its contents For example, many Zope content objects have
a content type property. Another use for properties is to provide meta-data for an object such as its author, title, status,
etc.

Properties can be more complex than strings; they can also be numbers, lists, or other data structures. All properties
are managed via the Properties view. Click on the Properties tab of the "root" object and you will be taken to the
properties management view, as seen in the figure below.

The Zope Book (2.6 Edition)

81

Figure 3-12 The Properties Management View

A property consists of a name, a value, and a type. A property's type defines what kind of value or values it can have.

In the figure above, you can see that the folder has a single string property: title . It has the value Zope . You may
change any predefined property by changing its value in the Value box, clicking Save Changes afterwards. You may
add additional properties to an object by entering a name, value, and type into the bottommost form on the Properties
view the.

Zope supports a number of property types. Each type is suited to a specific task. This list gives a brief overview of the
kinds of properties you can create from the management interface:

string — A string is an arbitrary length sequence of characters. Strings are the most basic and useful type of property
in Zope.

int — An int property is an integer, which can be any positive or negative number that is not a fraction. An int is
guaranteed at least 32 bits long.

long — A long is like an integer that has no range limitation.

float — A float holds a floating point, or decimal number. Monetary values, for example, often use floats.

lines — A lines property is a sequence of strings.

tokens — A tokens property is list of words separated by spaces.

text — A text property is just like a string property, except that Zope normalizes the line ending characters (different
browsers use different line ending conventions).

selection — A selection property is special, it is used to render an HTML select input widget.

multiple selection — A multiple selection property is special, it is used to render an HTML multiple select form input
widget.

The Zope Book (2.6 Edition)

82

Properties are very useful tools for tagging your Zope objects with little bits of "metadata". Properties are supported by
most Zope objects, and are often referenced by "dynamic" Zope objects such as "scripts" and "methods" (which we
have not yet discussed) for purposes of data display.

Using the Help System

Zope has a built in help system. Every management screen has a help button in the upper right-hand corner. This
button launches another browser window which exposes the Zope Help System.

To see the help system, go to the root folder and click the Help link to the top far right in the Workspace frame.

Figure 3-13 The Help System.

The help system has an organization similiar to the two primary panes of the Zope management interface, it has one
frame for navigation and one for displaying the current topic.

Whenever you click the help button from the Zope management screen, the right frame of the help system displays the
help topic for the current management screen. In this case, you see information about the Contents view of a folder.

Browsing and Searching Help

Normally you use the help system to get help on a specific topic. However, you can browse through all of the help
content if you are curious, or simply want to find out about things besides the management screen you are currently
viewing.

The help system lets you browse all of the help topics in the Contents tab of the left-hand help frame. You can expand
and collapse help topics. To view a help topic in the right frame, click on it in the left frame. By default, no topics are
expanded.

Most help pertaining to Zope itself is located in the Zope Help folder. Click on the "plus sign" next to the word Zope
Help in the Contents tab of the left frame. The frame will expand to show help topics (in an apparently random and
somewhat unhelpful order, currently) and further expandable help categories including API Reference , DTML
Reference , and ZPT Reference . These subcategories contain help on scripting Zope, which is explained further in the
chapters named Dynamic Content With DTML , Using Zope Page Templates , and Advanced Zope Scripting .

The Zope Book (2.6 Edition)

83

When you install third-party Zope components they may also include help. Each installed component has its own help
folder.

You may search for content in the help system by clicking on the Search tab in the left frame, entering one or more
search terms. For example, to find all of the help topics that mention folders, type "folder" into the search form and click
"Search". This will return a number of help topic links, hopefully most of which pertain to the word "folder".

Logging Out

You may select Logout from the Status Frame dropdown box to attempt to log out of Zope. Doing so will cause your
browser to "pop up" an authentication dialog. Due to the way most web browsers work, in some cases you actually
need to click on the "OK" button with an incorrect user name and password filled in to the authentication dialog to really
become logged out of the management interface. If you do not do so, you may find that even after selecting "Logout",
that you are still logged in. This is an intrinsinc limitation of the HTTP Basic Authentication protocol which Zope's stock
user folder employs. Alternately, you may close and reopen your browser to log out of Zope.

The Zope Book (2.6 Edition)

84

Using Basic Zope Objects

When building a web application with Zope, you construct the application out of objects . The most fundamental Zope
objects are explained in this chapter.

Basic Zope Objects

Zope ships with objects that help you perform different tasks. By design, different objects handle different parts of your
application. Some objects hold your content data, such as word processor documents, spreadsheets and images.
Some objects handle your application's logic by accepting input from a web form, or executing a script. Some objects
control the way your content is displayed, or presented to your viewer, for example, as a web page, or via email.

In general, basic Zope objects take on one of three types of roles:

Content — Zope objects such as documents, images and files hold different kinds of textual and binary data. In
addition to objects in Zope containing content, Zope can work with content stored externally, for example, in a relational
database.

Presentation — You can control the look and feel of your site with Zope objects that act as web page "templates".
Zope comes with two facilities to help you manage presentation: DTML (which also handles "logic"), and Zope Page
Templates (ZPT). The difference between DTML and ZPT is that DTML allows you to mix presentation and logic, while
ZPT does not.

Logic — Zope has facilities for scripting business logic. Zope allows you to script behavior using three facilities:
Document Template Markup Language (DTML), Python, and Perl (Perl is only available as an add-on). "Logic" is any
kind of programming that does not involve presentation, but rather involves carrying out tasks like changing objects,
sending messages, testing conditions and responding to events.

The lines between these object categories can become slightly fuzzy. For example, some aspects of DTML fit into each
of the three categories. But it's mostly for presentation so we stick it in there. Zope also has other kinds of objects that
fit into none of these categories. These are explored further in the chapter entitled Zope Services . You may also install
"third party" Zope objects to expand Zope's capabilities. These are typically called "Products". You can browse a list of
available Zope Products at Zope.org .

Content Objects: Folders, Files, and Images

Folders

You've already met one of the fundamental Zope objects: the Folder . Folders are the building blocks of Zope. The
purpose of a folder is simple: a Folder's only job in life is contain other objects.

Folders can contain any other kind of Zope object, including other folders. You can nest folders inside each other to
form a tree of folders. This kind of "folder within a folder" arrangement provides your Zope site with structure . Good
structure is very important, as Zope security and presentation is influenced by your site's folder structure. Folder
structure should be very familiar to anyone who has worked with files and folders on their computer using a file
manager program like Microsoft Windows Explorer or any one of the popular UNIX file managers like xfm , kfm , or the
Gnome file manager.

Files

The Zope Book (2.6 Edition)

85

Zope Files contain raw data, just as the files on your computer do. Software, audio, video and documents are typically
transported around the Internet and the world as files. A Zope File object is an analogue to these kinds of files. You can
use Files to hold any kind of information that Zope doesn't specifically support, such as Flash files, Java applets,
"tarballs", etc.

Files do not consider their contents to be of any special format, textual or otherwise. Files are good for holding any kind
of binary content which is just raw computer information of some kind. Files are also good for holding textual content if
the content doesn't necessarily need to be edited through the web.

Every File object has a particular content type which is a standard Internet MIME designation for types of content.
Examples of content types are "text/plain" (plain text content), "text/html" (html text content), and "application/pdf" (an
Adobe Portable Document Format file). When you upload a file into Zope, Zope tries to guess the content type from the
name of the file.

Creating and Editing Files

To create File object in your Zope instance, visit the root folder and select File from Zope's Add list. Before filling out
the "id" or "title" of the File object, click the Browse button from the resulting "Add File" screen. This should cause your
browser to display a dialog box allowing you to choose a "real" file from your local computer which will be uploaded to
Zope when the "Add" button on the "Add File" form is selected. Try choosing a file on your local computer such as a
Word file (.doc) or a Portable Document Format (.pdf) file.

Figure 4-1 Adding a PDF File Object

Zope attempts to use the filename of the file your choose to upload as the File object's id and title , thus you don't
need to supply an id or title in the "Add File" form unless you want the File object to be named differently than the
filename of the file on your local computer. After selecting a file to upload, click Add . Depending on the size of the file
you want to upload, it may take a few minutes to add the file to Zope.

After you add the File, a File object with the name of the file on your local computer will appear in the Workspace pane.
Look at its Edit view. Here you will see that Zope has guessed the content type as shown in the figure below.

The Zope Book (2.6 Edition)

86

Figure 4-2 Editing an Uploaded PDF File Object

If you add a Word document, the content type is application/msword . If you add a PDF file, the content type is
application/pdf . If Zope does not recognize the file type, it chooses the default, generic content type of
application/octet-stream . Zope doesn't always guess correctly, so the ability to change the content type of a File object
is provided in the editing interface. To change the content type of a File object, type the new content type into the
Content Type form field and click the Save Changes button.

You can specify a precondition for a file. A precondition is the name of an executable Zope object (such as a DTML
Method, a Script (Python), or an external method) which is executed before the File is viewed or downloaded. If the
precondition raises an exception (an error), the file cannot be viewed. This is a seldom-used feature of Files.

You can change the contents of an existing File object by selecting a new file from your local filesystem in the File Data
form element, clicking Upload when the file has been selected.

Editing File Contents

If your File holds only text and is smaller than 64 kilobytes, Zope will allow you to edit its contents in a textarea within
the Edit view of the management interface. A text file is one that has a content-type that starts with text/ , such as
text/html , or text/plain .

Viewing Files

You can view a file in the Workspace frame by clicking the View tab from a File's management screen.

The Zope Book (2.6 Edition)

87

Figure 4-3 Viewing an Uploaded PDF File Object

You can also view a File by visiting its Zope URL. For example, if you have a file in your Zope root folder called
Reader.pdf then you can view that file in your web browser by going to the URL http://localhost:8080/Reader.pdf .
Depending on the type of the file and your web browser's configuration, your web browser may choose to display the
file or download it.

Images

Image objects contain the data from image files such as GIF, JPEG, and PNG files. In Zope, Images are very similar to
File objects, but include extra behavior for managing graphic content.

Image objects have the same management interface as file objects. Everything in the previous section about using file
objects also applies to images. However, Image objects show you a preview of the image when you upload them.

Presentation Objects: Zope Page Templates and DTML Objects

Zope encourages you to keep your presentation and logic separate by providing different objects that are intended to
be used expressly for for "presentation". "Presentation" is defined as the task of dynamically defining layout of web
pages and other user-visible data. Presentation objects typically render HTML (and sometimes XML or WML).

Zope has two "presentation" facilities: Zope Page Templates (ZPT) and Document Template Markup Language
(DTML). ZPT and DTML are similar to one another but they have slight differences in scope and audience, which are
explained in a succeeding section.

Zope Page Templates are objects which allow you to define dynamic presentation for a web page. The HTML in your
template is made dynamic by inserting special XML namespace elements into your HTML which define the dynamic
behavior for that page.

Document Template Markup Language objects are object which also allow you to define presentation for a web page.
The HTML in your template is made dynamic by inserting special "tags" (directives surrounded by angle brackets,
typically) into your HTML with define the dynamic behavior for that page.

The Zope Book (2.6 Edition)

88

Both ZPT and DTML are "server-side" scripting languages, like SSI, PHP, embperl, or JSP. This means that DTML and
ZPT commands are executed by Zope on the server, and the result of that execution is sent to your web browser. By
contrast, client-side scripting languages like Javascript are not processed by the server, but are rather sent to and
executed by your web browser.

ZPT vs. DTML: Same Purpose, Different Audiences

There is a major problem with many languages designed for the purpose of creating dynamic HTML content: they don't
allow for "separation of presentation and logic" very well. For example, "tag-based" scripting languages like DTML, SSI,
PHP, and JSP encourage programmers to embed special tags into HTML that are, at best, mysterious to graphics
designers who "just want to make the page look good" and don't know (or want to know!) a lot about creating an
application around the HTML which they generate. Worse, these tags can sometimes cause the HTML on which the
designer has been working to become "invalid" HTML, unrecognizable by any of his or her tools.

Typically when using these kinds of technologies, an HTML designer will "mock up" a page in a tool like Macromedia
Dreamweaver or Adobe GoLive. He will then hand it off to a web programmer who will decorate the page with special
tags to insert dynamic content. However, using tag-based scripting languages, this is a "one way" function. If the
presentation ever needs to change, the programmer cannot just hand back the page that has been "decorated" with the
special tags, because these tags will often be ignored or stripped out by the designer's tools. One of several things
needs to happen at this point to enact the presentation changes: 1) the designer mocks up a new page and the
programmer re-embeds the dynamic tags "from scratch" or 2) the designer hand-edits the HTML, working around the
dynamic tags, or 3) the programmer does the presentation himself. Clearly, none of these options are desirable
situation, because neither the programmer nor the designer are doing the things that they are best at in the most
efficient way.

Zope's original dynamic presentation language was DTML. It soon became apparent that DTML was great at allowing
programmers to quickly generate dynamic web pages, but many times failed at allowing programmers to work
effectively together with nontechnical graphics designers. Thus, ZPT was born. ZPT is an "attribute-based"
presentation language that tries to allow for the "round-trippping" of templates between programmers and nontechnical
designers.

Both ZPT and DTML are fully supported in Zope, for now and in the future. Because ZPT and DTML have an
overlapping scope, many people are confused about whether to choose one or the other for a given task. A set of
"rules of thumb" are appropriate here:

 • ZPT is the "tool of choice" if you have a mixed team of programmers and nontechnical designers. Design tools
like Macromedia Dreamweaver do not "stomp on" ZPT embedded in a page template, while these tools do
"stomp on" DTML tags embedded in an HTML page. Additionally, any given ZPT page template is typically
viewable in a browser with "default" (static) content even if it has commands embedded in it, which makes it
easier for both programmers and designers to preview their work "on the fly". Dynamic DTML content, on the
other hand may not be "previewable" in any meaningful way until it is rendered.

 • Use DTML when you need to generate non-XML, non-HTML, or non-XHTML-compliant HTML text. ZPT
requires that you create pages that are XHTML and/or XML-compliant. ZPT cannot add dynamicism to CSS
style sheets, SQL statements, or other non-XML-ish text. DTML excels at it.

 • DTML may be easier for some programmers to write because it provides greater control over "conditionals" ("if
this, do this, else, do that") than does ZPT. In this respect, it more closely resembles languages such as PHP
and ASP-based scripting languages than does ZPT, so it's typically a good "starting place" for programmers
coming from these kinds of technologies.

The Zope Book (2.6 Edition)

89

 • DTML code can become "logic-heavy" because it does not enforce the "separation of presentation from logic"
as strictly as does ZPT. Embedding too much logic in presentation is almost always a bad thing, but is
particularly bad when you are working on a "mixed" team of programmers and designers. If you're a
"separation of presentation from logic" purist, you will almost certainly prefer ZPT.

Zope Page Templates

Zope Page Templates (ZPTs) are typically used to create dynamic HTML pages.

Creating A Page Template

Create a Folder called Sales in the root folder. Enter the Sales folder by clicking on it, then select Page Template from
the Add list. The add form for a page template will be displayed. Specify the id "SalesPage" and click Add . You have
successfully created a page template. Its content is standard "boilerplate" text at this point.

Editing A Page Template

The easiest way to edit a page template is by clicking on its name or icon in the Zope management interface. When
you click on either one of those items, you are taken to the Edit view of the page template which gives you a textarea
where you can edit the template. Click on the "SalesPage" template. You will see something like:

Figure 4-4 Default Page Template Content

Replace the original content that comes with the page template with the following HTML:

<html>
 <body>
 <h1>This is my first page template!</h1>
 </body>
</html>

Then click Save Changes at the bottom of the edit form.

Uploading A Page Template

The Zope Book (2.6 Edition)

90

If you'd prefer not to edit your HTML templates in a web browser, or you have some existing HTML pages that you'd
like to bring into Zope, Zope allows you to upload your existing html files and convert them to page templates.

Create a text file on your local computer named "test.html". Populate it with the following content:

<html>
 <body>
 <h1>This is my second page template!</h1>
 </body>
</html>

While visiting the Sales folder, select Page Template from the add menu, which will cause the page template add form
to be displayed. The last form element on the add form is the Browse button. Click this button. Your browser will then
pop up a file selection dialog box. Select the "test.html" file, type in an Id of "test" for the new Page Template and click
Add and Edit . After clicking Add and Edit , you will be taken back to the Edit form of your uploaded page template.

Viewing A Page Template

You can view a Page Template in the Workspace frame by clicking the Test tab from the template's management
screen. Click the Test tab of the SalesPage template, and you will see something like the following figure.

Figure 4-5 Viewing a Page Template

You can also view a Page Template by visiting its Zope URL directly.

DTML Objects: DTML Documents and DTML Methods

DTML is the "other" Zope facility for the creation of presentation in Zope. Two kinds of DTML objects are addable from
the Zope Management Interface: DTML Documents and DTML Methods . Both kinds of objects allow you to perform
security-constrained presentation logic. The code placed into DTML objects is constrained by Zope's security policy ,
which means, for the most part, that they are unable to import all but a set of restricted Python "modules", and they
cannot directly access files on your filesystem. This is actually a "feature", as it allows site administrators to safely
delegate the ability to create DTML to "untrusted" or "semi-trusted" users. For more information about Zope's security
features, see Users and Security .

The Zope Book (2.6 Edition)

91

A source of frequent confusion for DTML beginners is the question of when to use a DTML Document versus when to
use a DTML Method. On the surface, these two options seem identical. They both hold DTML and other content, they
both execute DTML code, and they both have a similar user interface and a similar API, so what's the difference?

DTML Methods are meant to hold bits of dynamic content that are to be displayed by other DTML Methods and other
kinds of Zope objects. For instance, you might create a DTML Method that rendered the content of a navigation bar or
a DTML Method that represented a "standard" header for all of your HTML pages. On the other hand, DTML
Documents are meant to hold "document-like" content that can stand on its own. DTML Documents also support
properties, while DTML Methods do not. The distinction between DTML Methods and DTML Documents is subtle, and
if Zope Corporation had it to do "all over again", DTML Documents would likely not exist. (Editor's aside: Believe me, I
almost certainly enjoy writing about the difference less than you like reading about it. ;-) There is more information on
this topic in the chapters entitled Basic DTML and Variables and Advanced DTML .

As a general rule, you should use a DTML Method to hold DTML content unless you have a really good reason for
using a DTML Document, such as a requirement that the container of your DTML content support object properties.

Creating DTML Methods

Click on the Sales folder and then select DTML Method from the add list. This process will take you to the add form for
a DTML Method. Specify the id "SalesStaff" and the title "The Jungle Sales Staff" and click Add . An entry for the new
DTML Method object will be displayed in the Contents view of the Workspace pane.

Editing DTML Methods

The easiest and quickest way to edit your newly-created DTML Method is through the management interface. To select
your method, click on its name or icon, which will bring up the form shown in the figure below.

Figure 4-6 Editing a DTML Method

This view shows a text area in which you can edit the content of your document. If you click the Save Changes button
you make effective any changes you have made in the text area. You can control the size of the text area with the
Taller , Shorter , Wider , and Narrower buttons. You can also upload a new file into the document with a the File text
box and the Upload File button.

The Zope Book (2.6 Edition)

92

Delete the default content that is automatically inside the current DTML Method. Then add the following HTML content
to the textarea:

<html>
<body>
<h2>Jungle Sales Staff</h2>

 Tarzan
 Cheetah
 Jane

</body>
</html>

Note that the example provided above doesn't do anything "dynamic", it's just some HTML. We will explore the creation
of dynamic content with DTML in a later chapter. For now, we're just getting used to using a DTML Method object via
the ZMI.

After you have completed the changes to your method, click the Change button. Zope returns with a message telling
you that your changes have taken effect.

Viewing a DTML Method

You can view a "rendered" DTML Method in the Workspace frame by clicking its View tab. Click the View tab of the
SalesStaff DTML method, and you will be presented with something like the following:

Figure 4-7 Viewing a Rendered DTML Method

You can also view a DTML Method by visiting its Zope URL directly.

Uploading an HTML File as Content for a DTML Method

Suppose you'd prefer not to edit your HTML files in a web browser, or you have some existing HTML pages that you'd
like to bring into Zope. Zope allows you to upload your existing text files and convert them to DTML Methods.

Create a text file on your local computer named "test.html". Populate it with the following content:

The Zope Book (2.6 Edition)

93

<html>
 <body>
 <h1>This is my first uploaded DTML Document!</h1>
 </body>
</html>

While visiting the Sales folder, select DTML Method from the add menu, which will cause the DTML Method add form
to be displayed. The last form element on the add form is the Browse button. Click this button. Your browser will then
pop up a file selection dialog box. Select the "test.html" file, type in an Id of "test" for the new DTML Method and click
Add and Edit . After clicking Add and Edit , you will be taken back to the Edit form of your uploaded DTML Method.

Logic Objects: Script (Python) Objects and External Methods

"Logic" objects in Zope are objects which typically perform some sort of "heavy lifting" or "number crunching" in support
of presentation objects. When they are executed, they typically do not return HTML or any other sort of structured
presentation text. Instead, they typically return values that are easy for a presentation object to format for display. For
example, a logic object may return a "list" of "strings". Then, a presentation object may "call in" to the logic object and
format the results of the call into a one-column HTML table, where the rows of the table are populated by the strings.
Instead of embedding "logic" in a presentation object, you can (and often should) elect to move the logic into a logic
object, using a presentation object only to format the result for display. In this manner, you can change or replace the
presentation object without needing to "re-code" or replace the logic.

Note that logic objects, like presentation and content objects, are also addressable directly via a URL, and may elect to
return HTML, which can be displayed in a browser meaningfully. However, the return value of a logic object can almost
always be displayed in a browser, even if the logic object does not return HTML.

There are two kinds of logic objects supported by "stock" Zope: Script (Python) objects and External Methods . An
add-on product allows you to code logic in Perl . Several community-contributed Products exist which allow you to use
Zope to manage your PHP and JSP scripts, as well, but they are not integrated as tightly as the Python- or Perl-based
logic objects. They are PHParser , PHPObject , and ZopeJSP .

The "stock" logic objects, External Methods and Script (Python) objects are written in the syntax of the Python scripting
language. Python is a general-purpose programming language. You are encouraged to read the Python Tutorial in
order to understand the syntax and semantics of the example Script (Python) objects and Exernal Methods shown
throughout this chapter and throughout this book.

One important Python feature that must be mentioned here, however: Pyhon uses whitespace in the form of
indentation to denote block structure. Where other languages, such as C, Perl, and PHP might use "curly braces" to
express a block of code, Python determines code blocks by examining the indentation of your code text. If you're used
to other programming languages, this may take some "getting-used-to" (typically consisting of a few hours of unsavory
spoken language ;-). If you have problems saving or executing Script or External Method objects, make sure to check
your Script's indentation.

Script (Python) Objects

Script (Python) objects are one kind of logic object. Note that the torturous form of their name (as opposed to "Python
Script") is unfortunate: a legal issue prevents Zope Corporation from naming them "Python Scripts", but most folks at
Zope Corporation and in the Zope community refer to them in conversation as just that.

Script (Python) objects are "security-constrained" web-editable pieces of code that are written in a subset of the Python
scripting language. Not all Python code is executable via a Script (Python) object. Script (Python) objects are
constrained by Zope's security policy , which means, for the most part, that they are unable to import all but a set of
restricted Python "modules", and they cannot directly access files on your filesystem. This is actually a "feature", as it

The Zope Book (2.6 Edition)

94

allows site administrators to safely delegate the ability to create logic in Python to "untrusted" or "semi-trusted" users.
For more information about Zope's security features, see Users and Security .

Creating A Script (Python)

Enter the Sales folder you created earlier by clicking on it, then select Script (Python) from the Add list. The add form
for the object will be displayed. Specify the id "SalesScript" and click Add . You will see an entry in the Sales folder
Content view representing the "SalesScript" Script (Python) object. Its content is standard "boilerplate" text at this point.

Editing A Script (Python)

The easiest way to edit a Script (Python) is by clicking on its name or icon in the Zope management interface. When
you click on either one of those items, you are taken to the Edit view of the Script (Python) which gives you a textarea
where you can edit the template. Click on the "SalesScript" icon. You will see something like:

Figure 4-8 Default Script Content

In the Parameter List form element, type name="Chris" .

Replace the original content that comes in the "body" (the big TEXTAREA) of the Script (Python) object with the
following text:

return 'Hello, %s from the %s script' % (name, script.id)

Then click Save Changes at the bottom of the edit form.

Testing A Script (Python)

You can "test" a Script (Python) in the Workspace frame by clicking the Test tab from the Script's management screen.
When you test a script, the output of the script will be displayed in your browser. Script testing may require that you
provide values for the script's parameters before you can view the results. Click the Test tab of the SalesScript object,
and you will see something like the following figure.

The Zope Book (2.6 Edition)

95

Figure 4-9 Testing a Script

In the Value box next to the name parameter, type your name. Then click "Run Script". You will be presented with
output in the Workspace frame not unlike:

Hello, [yourname] from the SalesScript script

If a Script does not require parameters or has defaults for its parameters (as does the example above), you may visit its
URL directly to see its output. In our case, visiting the URL of SalesScript directly in your browser will produce:

Hello, Chris from the SalesScript script

If a Script does require or accept parameters, you may also influence its execution by visiting its URL directly with a
"query string". In our case, visiting the URL http://localhost:8080/SalesScript?name=Fred will produce the
following output:

Hello, Fred from the SalesScript script

Zope maps query string argument values to their corresponding parameters automatically, as you can see by this
output.

Uploading A Script (Python)

Uploading the body of a Script (Python) is much like uploading the body of a DTML Method or Page Template. One
significant difference is that Script (Python) objects interpret text that is offset by "double-pound" (##) at the beginning
of the text as data about their parameters, title, and "bindings". For example, if you entered the following in a text editor
and uploaded it, the lines that start with "double-pound" signs would be interpreted as parameter data, and the only text
in the "body" would be the return line. It would appear exactly as our SalesScript did:

Script (Python) "SalesScript"
##bind container=container
##bind context=context
##bind namespace=
##bind script=script
##bind subpath=traverse_subpath
##parameters=name="Chris"
##title=
##
return 'Hello, %s from the %s script' % (name, script.id)

The Zope Book (2.6 Edition)

96

You may see this view of a Script (Python) object by clicking on the view or download link in the description
beneath the "body" textarea.

You may also type the "double-pound" quoted text into the "body" textarea along with the actual script lines and the
"double-pound" quoted text will be "automagically" turned into bindings and parameters for the Script.

External Methods

External Methods objects are another kind of logic object. They are very similar to Script (Python) objects. They are
scripted in the Python programming language, and they are used for the same purpose. The have a few important
differences:

 • They are not editable using the Zope Management Interface. Instead, External Methods "modules" need to be
created on the filesystem of your Zope server in a special subdirectory of your Zope directory named
Extensions .

 • Because they are not editable via the Zope Management Interface, their execution is not constrained by the
Zope "security machinery". This means that unlike Script (Python) objects, they can import and execute
essentially arbitrary Python code and access files on your Zope server's file system.

 • They do not support the concept of "bindings" (which we have not discussed much, but please just make note
for now).

External methods are often useful as an "escape hatch" when Zope's security policy prevents you from using a Script
(Python) or DTML to do a particular job that requires more access than is "safe" in through-the-web-editable scripts.
For example, a Script (Python) cannot write to files on your server's filesystem, while an External Method may.

Creating and Editing An External Method File

Minimize the browser you're using to access the Zope Management Interface. Open a "shell" console on the machine
which you're using as a Zope server. Navigate to the Zope installation folder. You will encounter a subfolder in the
Zope installation folder named Extensions . Navigate into this folder and create a text file there with the name
SalesEM.py . Within this file, save the following content:

def SalesEM(self, name="Chris"):
 id = self.id
 return 'Hello, %s from the %s external method' % (name, id)

Creating an External Method Object

Before you can use an External Method from within Zope, you need to create an External Method object in your Zope
Management Interface that "refers to" the function in the file that you just created. Reopen your browser window and
visit the Zope Management Interface. Navigate to the Sales folder and select External Method from the Add list. The
Add Form for an Exernal Method will appear. Provide an Id of SalesEM , a Title of Sales External Method ,
a Module Name of SalesEM and a Function Name of SalesEM .

Then click Add at the bottom of the add form.

Testing An External Method Object

You can "test" an External Method in the Workspace frame by clicking the Test tab from the External Method's
management screen. When you test an external method, the output of the external method will be displayed in your

The Zope Book (2.6 Edition)

97

browser. Unlike Script (Python) objects, External Methods provide no mechanism for specifying parameter values
during testing. However, like Script (Python) objects, their output is influenced by values in a query string when you visit
them directly.

Click the Test tab of the SalesEM object, and you will see something like the following figure.

Figure 4-9 Testing an External Method

If an External Method does not require parameters (or has defaults for its parameters, as in the example above), you
may visit its URL directly to see its output.

Provide alternate values via a query string to influence the execution of the External Method. For example, visiting the
SalesEM external Method via http://localhost:8080/Sales/SalesEM?name=Fred will display the following
output:

Hello, Fred from the Sales external method

Alert readers will note that the id provided by the output is not the id of the External Method (SalesEM). It is
instead the id of the "containing" folder, which is named Sales ! This is a demonstration of the fact that External
Methods (as well as Script (Python) objects are mostly meant to be used in the "context" of another object, which is
often a Folder. This is why they are named methods . Typically, you don't often want to access information about the
External Method or Script itself; all the "interesting" information is usually kept in other objects (like Folders). An
External Method or Script "knows about" its context and can display information about the context without much fuss.

SQL Methods: Another Kind of Logic Object

SQL Methods are logic objects used to store and execute database queries that you can reuse in your web
applications. We don't explain them in this chapter, because we haven't yet explained how to interface Zope with a
relational database. SQL Methods are explained in the chapter entitled Relational Database Connectivity , where an
example of creating a web application using a relational database is given.

Creating a Basic Zope Application Using Page Templates and Scripts

The Zope Book (2.6 Edition)

98

Here is a simple example of using Zope's logic and content objects to build an online web form to help your users
calculate the amount of compound interest on their debts. This kind of calculation involves the following procedure:

1. You need the following information: your current account balance (or debt) called the "principal", the annual interest
rate expressed as a decimal (like 0.095) called the "interest_rate", the number of times during the year interest in
compounded (usually monthly), called the "periods" and the number of years from now you want to calculate, called the
"years" .

2. Divide your "interest_rate" by "periods" (usually 12). We'll call this result "i".

3. Take "periods" and multiply it by "years". We'll call this result "n".

4. Raise (1 + "i") to the power "n".

5. Multiply the result by your "principal". This is the new balance (or debt).

We will use Page Template and Script objects to construct an application that will perform this task.

For this example, you will need two Page Templates with the ids interestRateForm and interestRateDisplay ,
respectively to collect the information from the user and display it. You will also need a Script (Python) with an id of
calculateCompoundingInterest that will do the actual calculation.

The first step is to create a folder in which to hold the application. In your Zope's root folder, create a folder named
"Interest". You will create all of the objects which follow within this folder.

Creating a Data Collection Form

Visit the Interest folder by clicking on it within the Zope Management Interface. Within the Interest folder, create a Page
Template with the id interestRateForm that collects "principal", "interest_rate", "periods" and "years" from your users.
Use this text as the body of your interestRateForm page template:

<html>
 <body>

 <form action="interestRateDisplay" method="POST">
 <p>Please enter the following information:</p>

 Your current balance (or debt): <input name="principal:float">

 Your annual interest rate: <input name="interest_rate:float">

 Number of periods in a year: <input name="periods:int">

 Number of years: <input name="years:int">

 <input type="submit" value=" Calculate ">

 </form>

 </body>
</html>

This form collects information and, when it is submitted, calls the interestRateDisplay template (which we have not yet
created).

Creatng A Script To Calculate Interest Rates

Now, revisit the Contents view of the Interest folder and create a Script (Python) object with the id
calculateCompoundingInterest that accepts four parameters: principal , interest_rate , periods and years
. Provide it with the following "body":

"""
Calculate compounding interest.

The Zope Book (2.6 Edition)

99

"""
i = interest_rate / periods
n = periods * years
return ((1 + i) ** n) * principal

Remember: you enter the parameter names, separated by commas, into the Parameters List field, and the body into
the body text area. Remember also that when you're creating a Script (Python) object, you're actually programming in
the Python programming language which is indentation-sensitive. Make sure each of the lines above line up along the
very left side of the text area, or you may get an error when you attempt to save it.

Creating A Page Template To Display Results

Next, go back to the Contents view of the Interest folder and create a Page Template with the id interestRateDisplay .
This Page Template is called by interestRateForm and calls calculateCompoundingInterest . It also renders and
returns the results:

<html>
 <body>
 Your total balance (or debt) including compounded interest over
 <span tal:define="years request/years;
 principal request/principal;
 interest_rate request/interest_rate;
 periods request/periods">
 2 years is:

 $
 <span tal:content="python: here.calculateCompoundingInterest(principal,
 interest_rate,
 periods,
 years)" >1.00

 </body>
</html>

Dealing With Errors

In any programming venue, you will need to deal with errors. Nobody's perfect! You may have already encountered
some as you've entered these scripts. Let's explore errors a bit by way of an example. In our case, we cannot use the
Page Template Test tab to test the interestRateDisplay without receiving an error, because it depends on the
interestRateForm to supply it with the variables "years, "principal", "interest_rate" and "periods". It is not directly
"testable". For the sake of "seeing the problem before it happens for real", click the Test tab. Zope will present an error
page with text not unlike the text below:

Zope Error

Zope has encountered an error while publishing this resource.

Error Type: KeyError
Error Value: years

This error message is telling you that your Page Template makes a reference to a variable "years" that it can't find. If
you've created a Site Error Log object in your root folder (it will be named error_log), you can view the full error by
visiting the error_log object and clicking the topmost error log entry link which will be name KeyError: years on the Log
tab. The error log entry will be displayed. It contains information about the error, including the time, the user who
received the error, the URL which caused the error to happen, the exception type, the exception value, and a
"Traceback" which typically gives you enough information to understand what happened. In our case, the part of the
traceback that is interesting to us is:

* Module Products.PageTemplates.TALES, line 217, in evaluate
 URL: /Interest/interestRateDisplay
 Line 4, Column 8

The Zope Book (2.6 Edition)

100

 Expression: standard:'request/years'

This tells us that the failure occured when the Page Template attempted to access the variable request/years . We
know why: there is no variable request/years , because that variable is only "filled in" as a result of posting via our
interestRateForm , which calls in to our interestRateDisplay Page Template, which has the effect of inserting the
variables principal , interest_rate , periods and years into request "namespace". We'll cover Page
Template namespaces in a succeeding chapter, but for now, let's move on.

Using The Application

Let's use the application you've just created. Visit the interestRateForm Page Template and click the Test tab.

Type in 20000 for balance or debt, .06 for interest rate, 4 for periods in a year, and 20 for number of years and
click Calculate . This will cause interestRateForm to submit the collect information to interestRateDisplay , which calls
the Script (Python) named calculateCompoundingInterest . The display method uses the value returned by the script in
the resulting display. You will see the following result.

Figure 4-10 Result of the Interest Application

If you see something close to this, it calls for congratulations, because you've just built your first Zope application
successfully. If you are having troubles, try to troubleshoot the application by using the tips in the section above
"Dealing With Errors." If you're stuck entirely, it's advisable that you send a message to the Zope mailing list detailing
the problem that you're having in as concise and clear a form as possible. It is likely that someone there will be able to
help you. It is polite to subscribe to the maillist itself if you want to receive replies. See the Mailing list section of
Zope.org for information about how to subscribe to the Zope (zope@zope.org) maillist.

The Zope Tutorial

Zope comes with a built-in tutorial which reinforces some of the concepts you've learned here. As an extension of this
book, we recommend that you run the tutorial to get a feel for using basic Zope objects (particularly DTML objects). To
use the tutorial properly, your browser should support JavaScript and cookies .

To launch the tutorial, navigate to the root folder and add a Zope Tutorial object by selecting Zope Tutorial from the add
list. When the add form asks for an "id" for the object, give it the id tutorial and click "Add". You will be directed to a

The Zope Book (2.6 Edition)

101

screen with a "Begin Tutorial" button. When you click the "Begin Tutorial" button, a new browser window resembling the
help system will be opened with the tutorial. If another window does not appear, either your browser does not support
JavaScript or it is configured to disallow the opening of new windows. This will prevent you from being able to use the
tutorial, so you may want to try a different browser.

If you start the tutorial and want to stop using it before you have completed all the lessons, you can later return to the
tutorial. Just go to the help system and find the lesson you'd like to continue with by visiting the help system and
navigating to the Zope Tutorial help category. There is no need to re-install the tutorial.

The Zope Book (2.6 Edition)

102

Acquisition

Acquisition is the technology that allows dynamic behavior to be shared between Zope objects via containment .

Acquisition's flavor permeates Zope. It can be used almost everywhere within Zope: in DTML, in Zope Page Templates,
in Script (Python) objects, and even in Zope URLs. Because of its ubiquity in Zope, a basic understanding of
acquisition is important.

Acquisition vs. Inheritance

The chapter entitled Object Orientation describes a concept called inheritance . Using inheritance, an object can inherit
some of the behaviors of a specific class, overriding or adding other behaviors as necessary. Behaviors of a class are
nearly always defined by its methods , although attributes can be inherited as well.

In a typical object-oriented language, there are rules to the way a subclass inherits behavior from its superclasses . For
example, in Python (a multiple-inheritance language), a class may have more than one superclass, and rules are used
to determine which of a class' superclasses is used to define behavior in any given circumstance. We'll define a few
Python classes here to demonstrate. You don't really need to know Python inside and out to understand these
examples. Just know that a class statement defines a class and a def statement inside of a class statement defines
a method. A class statement followed by one or more words inside (Parenthesis) causes that class to inherit behavior
from the classes named in the parenthesis.:

class SuperA:
 def amethod(self):
 print "I am the 'amethod' method of the SuperA class"

 def anothermethod(self):
 print "I am the 'anothermethod' method of the SuperA class"

class SuperB:
 def amethod(self):
 print "I am the 'amethod' method of the SuperB class"

 def anothermethod(self):
 print "I am the 'anothermethod' method of the SuperB class"

 def athirdmethod(self):
 print "I am the 'anothermethod' method of the SuperB class"

class Sub(SuperA, SuperB):
 def amethod(self):
 print "I am the 'amethod' method of the Sub class"

If we make an instance of the "Sub" class, and attempt to call one of its methods, there are rules in place to determine
whether the behavior of the method will be defined by the Sub class itself, its SuperA superclass, or its SuperB
superclass. The rules are fairly simple. If the Sub class has itself defined the named method, that method definition will
be used. Otherwise, the inheritance hierarchy will be searched for a method definition.

The inheritance hierarchy is defined by the class' superclass definitions. In the case of the Sub class above, it has a
simple inheritance hierarchy: it inherits first from the SuperA superclass, then it inherits from the SuperB superclass.
This means that if you call a method on an instance of the Sub class, and that method is not defined as part of the Sub
class' definition, it will first search for the method in the SuperA class and if it doesn't find it there, it will search in the
SuperB class.

Here is an example of calling methods on an instance of the above-defined Sub class using the Python interpreter:

>>> instance = Sub()

The Zope Book (2.6 Edition)

103

>>> instance.amethod()
I am the 'amethod' method of the Sub class
>>> instance.anothermethod()
I am the 'anothermethod' method of the SuperA class
>>> instance.athirdmethod()
I am the 'anothermethod' method of the SuperB class

Note that when we called the anothermethod method on the Sub instance, we got the return value of SuperA's
method definition for that method, even though both SuperA and SuperB defined that method. This is because the
inheritance hierarchy specifies that the first superclass (SuperA) is searched first.

The point of this example is that instances of objects use their inheritance hierarchy to determine their behavior. In
non-Zope applications, this is the only way that object instances know about their set of behaviors. However, in Zope,
objects make use of another facility to search for their behaviors: acquisition .

Acquisition is about Containment

The concept behind acquisition is simple:

 • Objects are situated inside other objects. These objects act as their "containers". For example, the container of a
DTML Method named "amethod" inside the DTML_Example folder is the DTML_Example folder.

 • Objects may acquire behavior from their containers.

Inheritance stipulates that an object can learn about its behavior from its superclasses via an inheritance hierarchy .
Acquisition , on the other hand, stipulates that an object can additionally learn about its behavior its through its
containment hierarchy . In Zope, an object's inheritance hierarchy is always searched for behavior before its acquisition
hierarchy. If the method or attribute is not found in the object's inheritance hierarchy, the acquisition hierarchy is
searched.

Say What?

Let's toss aside the formal explanations. Acquisition can be best explained with a simple example.

Place a DTML Method named acqusition_test in your Zope root folder. Give it the following body:

<html>
<body>
 <p>
 I am being called from within the <dtml-var id> Folder!
 </p>
</body>
</html>

Save it and then use the DTML Method "View" tab to see the result of the DTML method in your Workspace frame. You
will see something not unlike the following:

I am being called from within the Zope Folder!

The id of the Zope root folder is Zope , so this makes sense. Now create a Folder inside your Zope root folder
named AcquisitionTestFolder . We're going to invoke the acquisition_test method in the context of the
AcquisitionTestFolder folder. To do this, assuming your Zope is running on your local machine on port 8080, visit the
URL http://localhost:8080/AcquisitionTestFolder/acquisition_test . You will see something not
unlike the following:

I am being called from within the AcquisitionTestFolder Folder!

The Zope Book (2.6 Edition)

104

Note that even though an object named acquisition_test does not "live" inside the AcquisitionTestFolder folder,
Zope found the method and displayed a result anyway! Not only did Zope display a result, instead of inserting the id
of the Zope root folder, it inserted the id of the AcquisitionTestFolder folder! This is an example of acquisition in
action. The concept is simple: if a named object is not found as an attribute of the object you're searching, its
containers are searched until the object is found. In this way, acquisition can add behavior to objects. In this case, we
added a behavior to the AcqusitionTestFolder folder that it didn't have before (by way of giving it an
acquisition_test method).

Providing Services

It can be said that acquisition allows objects to acquire services by way of containment. For example, our
AcquisitionTestFolder folder acquired the services of the acquisition_test method.

Not only do objects acquire services, they also provide them. For example, adding a Mail Host object to a Folder
named AFolder provides other objects in that folder with the ability to send mail. But it also provides objects
contained in subfolders of that folder with the capability to send mail. If you create subfolders of AFolder named
AnotherFolder and AThirdFolder , you can be assured that objects placed in these folders will also be able to
send mail in exactly the same way as objects placed in AFolder .

Acquisition "goes both ways". When you create an object in Zope, it has the capability to automatically acquire
services. Additionally, it automatically provides services that other objects can acquire. This makes reuse of services
very easy since you don't have to do anything special to make services available to other objects.

Getting Deeper with Multiple Levels

If you place a method in the root folder, and create a subfolder in the root folder, you can acquires the method's
behaviors. So what happens if things get more complex? Perhaps you have a method that needs to be acquired from
withinside a couple of folders. Is it acquired from its parent, or its parent's parent, or what?

The answer is that acquisition works on the entire object hierarchy. If for example you have a DTML Method in the root
folder. Also in the root folder you have three nested Folders named "Users", "Barney" and "Songs". You may call this
URL:

/Users/Barney/Songs/HappySong

The HappySong method is found in the root folder unless one of the other folders "Users", "Barney" or "Songs"
happens to also have a method named "HappySong", in which case that method is used. The HappySong method is
searched for first directly in the "Songs" folder. If it is not found, the acquisition hierarchy is searched starting at the first
container in the hierarchy: "Barney". If it is not found in "Barney", the "Users" folder is searched. If it is not found in the
"Users" folder, the root folder is searched. This search is called searching the acquisition path or alternately searching
the containment hierarchy .

Aquisition is not limited to searching a containment hierarchy: it can also search a context hierarchy . Acquisition by
context is terribly difficult to explain, and you should avoid it if possible. However, if you want more information about
aquiring via a context and you are ready to have your brain explode, please see the presentation named Acquisition
Algebra .

Summary

Acquisition allows behavior to be distributed throughout the system. When you add a new object to Zope, you don't
need to specify all its behavior, only the part of its behavior that is unique to it. For the rest of its behavior it relies on
other objects. This means that you can change an object's behavior by changing where it is located in the object

The Zope Book (2.6 Edition)

105

hierarchy. This is a very powerful function which gives your Zope applications flexibility.

Acquisition is useful for providing objects with behavior that doesn't need to be specified by their own methods or
methods found in their inheritance hierarchies. Acquisition is particularly useful for sharing information (such as
headers and footers) between objects in different folders as well. You will see how you can make use of acquisition
within different Zope technologies in upcoming chapters.

A more exhaustive technical explanation of the underpinnings of Zope's acquisition technology is available in the Zope
Developer's Guide .

The Zope Book (2.6 Edition)

106

Basic DTML

DTML (Document Template Markup Language) is a templating facility which supports the creation of dynamic HTML
and text. It is typically used in Zope to create dynamic web pages. For example, you might use DTML to create a web
page which "fills in" rows and cells of an HTML table contained within the page from data fetched out of a database.

DTML is a tag-based presentation and scripting language. This means that tags (e.g. <dtml-var name>)
embedded in your HTML cause parts of your page to be replaced with "computed" content.

DTML is a "server-side" scripting language. This means that DTML commands are executed by Zope at the server, and
the result of that execution is sent to your web browser. By contrast, "client-side" scripting languages like JavaScript
are not processed by the server, but are rather sent to and executed by your web browser.

How DTML Relates to Similar Languages and Templating Facilities

DTML is similar in function to "HTML-embedded" scripting languages such as JSP, PHP, or mod_perl. It differs from
these facilities inasmuch as it will not allow you to create "inline" Python statements (if... then.. else..) in the way that
JSP, mod_perl or PHP will allow you to embed a block of their respective language's code into an HTML page. DTML
does allow you to embed Python expressions (a == 1) into HTML-like tags. It provides flow control and conditional logic
by way of "special" HTML tags. It is more similar to Perl's HTML::Template package than it is to mod_perl in this
way. It can also be compared to the web server facility of Server Side Includes (SSI), but with far more features and
flexibility.

When To Use DTML

If you want to make a set of dynamic web pages that share bits of content with each other, and you aren't working on a
project that calls for a tremendous amount of collaboration between programmers and tool-wielding designers, DTML
works well. Likewise, if you want to dynamically create non-HTML text (like CSS stylesheets or email messages),
DTML can help.

When Not To Use DTML

If you want code which expresses a set of complex algorithms to be maintainable (as "logic" programming should be),
you shouldn't write it in DTML. DTML is not a general purpose programming language, it instead is a special language
designed for formatting and displaying content. While it may be possible to implement complex algorithms in DTML, it is
often painful.

For example, let's suppose you want to write a web page which displays a representation of the famous Fibonacci
sequence . You would not want to write the program that actually makes the calculation of the Fibonacci numbers by
writing DTML. It could be done in DTML, but the result would be difficult to understand and maintain. However, DTML is
perfect for describing the page that the results of the Fibonnacci calculations are inserted into. You can "call out" from
DTML to Script (Python) objects as necessary and process the results of the call in DTML. For example, it is trivial in
Python (search for the word Fibonacci on this page) to implement a Fibonacci sequence generator, and trivial in DTML
to create a dynamic web page which shows these numbers in a readable format. If you find yourself creating complex
and hard-to-understand logic in DTML, it's likely time to explore the the Zope features which allow you to script "logic"
in Python, while letting DTML do the presentation "dirty work".

String processing is another area where DTML is likely not the best choice. If you want to manipulate input from a user
in a complex way, but using functions that manipulate strings, you are better off doing it in Python, which has more
more powerful string processing capabilities than DTML.

The Zope Book (2.6 Edition)

107

Zope has a technology named Zope Presentation Templates which has purpose similar to DTML. DTML and ZPT are
both facilities which allow you to create dynamic HTML. However, DTML is capable of creating dynamic text which is
not HTML, while ZPT is limited to creating text which is HTML (or XML). DTML also allows users to embed more
extensive "logic" in the form of conditionals and flow-control than does ZPT. While the source to a ZPT page is almost
always "well-formed" HTML through its lifetime, the source to DTML pages are not guaranteed to be "well-formed"
HTML, and thus don't play well in many cases with external editing tools such as Dreamweaver.

Both ZPT and DTML are fully supported technologies in Zope, and neither is "going away" any time soon. A discussion
about when to use one instead of the other is available in the chapter entitled Using Basic Zope Objects in the section
entitled "ZPT vs. DTML: Same Purpose, Different Audiences", but the choice is sometimes subjective.

The Difference Between DTML Documents and DTML Methods

You can use DTML scripting commands in two types of Zope objects, DTML Documents and DTML Methods . These
two types of DTML objects are subtly different from one another, and their differences cause many would-be DTML
programmers to become confused when deciding to use one versus the other. So what is the difference?

DTML Methods are used to carry out actions. They are presentation objects (as used in the vernacular of the Using
Basic Zope Objects chapter). If you want to render the properties or attributes of another object like a DTML Document
or a Folder, you will use a DTML Method. DTML Methods do not have their own properties.

DTML Documents are content objects (in the vernacular used in the chapter entitled Using Basic Zope Objects). If you
want to create a "stand-alone" HTML or text document, you might create a DTML Document object to hold the HTML or
text. DTML Document objects have their own properties (attributes), unlike DTML Methods.

In almost all cases, you will want to use a DTML Method object to perform DTML scripting. DTML Document objects
are an artifact of Zope's history that is somewhat unfortunate. In Zope's earlier days, a consensus came about that it
was important to have objects in Zope that could perform DTML commands but have properties of their own. At the
time, the other content objects in Zope, such as Files and Images were either nonexistent or had limitations in
functionality that made the concept of a DTML Document attractive. That attraction has waned as Zope's other built-in
content objects have become more functional. DTML Documents remain in Zope almost solely as a
backwards-compatibility measure. If you never use a DTML Document in your work with Zope, you won't miss out on
much!

Details

DTML Methods are method objects. The chapter named Object Orientation discusses the concept of a "method".
DTML Methods are methods of the folder that contains them, and thus they do not have regard for their own identity as
a Zope object when they are used. For example, if you had a folder called Folder and a DTML method in that folder
called Method:

AFolder/
 AMethod

AMethod is a method of AFolder. This means that AMethod does not have any of it's own attributes or properties.
Instead it uses those of AFolder. Suppose you put the following DTML string in AMethod:

<dtml-var id>

When you view the AMethod DTML Method, you will see the string AFolder , which is the id of AMethod's
containing Folder (AFolder). When this DTML method is viewed, it resolves the name id to the string which is the
value of AFolder's id property.

The Zope Book (2.6 Edition)

108

DTML Documents, on the other hand, are not methods. They are "aware" of their own identity as Zope objects. For
example, if you created a DTML Document in the folder AFolder called ADocument, and you put the above DTML
string into ADocument and viewed it, it would render to the string ADocument . It resolves the name id to the string
which is the value of its own id, not the id of its containing folder.

 For this chapter, unless stated otherwise, use DTML Methods to hold the example DTML text, as opposed to
DTML Documents!

DTML Tag Syntax

DTML contains two kinds of tags, singleton and block tags. Singleton tags consist of one tag enclosed by less-than
(<) and greater-than (>) symbols. The var tag is an example of a singleton tag:

<dtml-var parrot>

There's no need to close the var tag with a </dtml-var> tag because it is a singleton tag.

Block tags consist of two tags, one that opens the block and one that closes the block, and content that goes between
them:

<dtml-in mySequence>

 <!-- this is an HTML comment inside the in tag block -->

</dtml-in>

The opening tag starts the block and the closing tag ends it. The closing tag has the same name as the opening tag
with a slash preceding it. This is the same convention that HTML and XML use.

DTML Tag Names, Targets, and Attributes

All DTML tags have names . The name is simply the word which follows dtml- . For instance, the name of the DTML
tag dtml-var is var , and the name of the DTML tag dtml-in is in .

Most DTML tags have targets . The target of a DTML tag is just the word or expression that, after a space, follows the
tag name. For example, the target of the DTML tag <dtml-var standard_html_header> is
standard_hml_header . The target of the DTML tag <dtml-in foo> is foo . The target of the DTML tag
'<dtml-var "objectIds()"> is the expression "objectIds()". The target typically refers to the name of an object (or a Python
expression that resolves to an object) that you wish the tag to operate upon.

All DTML tags have attributes . An attribute provides information about how the tag is supposed to work. Some
attributes are optional. For example, the var tag inserts the value of its target. It has an optional missing attribute that
specifies a default value in case the variable can't be found:

<dtml-var wingspan missing="unknown wingspan">

If the wingspan variable is not found then unknown wingspan is inserted instead.

Some attributes don't have values. For example, you can convert an inserted variable to upper case with the upper
attribute:

<dtml-var exclamation upper>

Here we are referencing the exclamation target, modifying it with the attribute upper . Notice that the upper attribute,
unlike the missing attribute doesn't need a value.

The Zope Book (2.6 Edition)

109

See the DTML Reference appendix for more information on the syntax of different DTML tags.

Creating a "Sandbox" for the Examples in This Chapter

You should create a Folder in your Zope's root folder named "DTML_Examples" if you intend on creating objects from
examples in this chapter. Create the example objects within this "sandbox". This prevents you from littering your Zope
root folder with DTML examples.

Examples of Using DTML for Common Tasks

Below, we show how to use DTML to complete three common tasks: inserting text into a web page, displaying results
by iterating over a sequence, and processing form results.

Inserting Text into HTML with DTML

DTML commands are written as tags that begin with dtml- . You create dynamic content in DTML by mixing HTML tags
and DTML tags together. Inserting the value of a variable (a variable is also known as a "target") into HTML is the most
basic task that you can perform with DTML. Many DTML tags insert variable values, and they all do it in a similar way.
Let's look more closely at how Zope inserts variable values.

Create a folder in your sandbox with the id "Feedbags" and the title "Bob's Fancy Feedbags". While inside the
Feedbags folder, create a DTML Method with an id of "pricelist". Then change the contents of the DTML Method to the
following:

<dtml-var standard_html_header>

<h1>Price list for <dtml-var title></h1>

<p>Hemp Bag $2.50</p>
<p>Silk Bag $5.00</p>

<dtml-var standard_html_footer>

Now view the DTML Method by clicking the View tab. When you view the DTML method this way, it will be rendered ,
which means that you will not necessarily see a straight representation of the HTML that you typed in to the form.
Instead you will see the rendered version of the page, which will include the extra text provided by DTML by way of the
tags you've inserted. You should see something like the figure below::

The Zope Book (2.6 Edition)

110

Figure 9-1 Viewing the pricelist method

If you tell your browser to view the HTML source of the Workspace frame, you will see something not unlike the below:

<html><head><title>Feedbags</title></head><body bgcolor="#FFFFFF">

<h1>Price list for </h1>

<p>Hemp Bag $2.50</p>
<p>Silk Bag $5.00</p>

<p>
 <img src="http://localhost:8080/p_/ZopeButton"
 width="115" height="50" border="0" alt="Powered by Zope" />

</p>
</body>
</html>

That's certainly not what you typed in, is it?

DTML makes the reuse of content and layout possible. In the example above, we've made use of the
standard_html_header DTML Method and the standard_html_footer DTML Method, both of which live in the
root folder, to insert HTML text into our page. These DTML methods (and any other DTML method) can be used by
other DTML methods to insert text into our rendered output.

We've seen that DTML inserts an HTML header, an HTML footer, and a title into the web page. But how does the "var"
tag find the values that it inserts in place of "standard_html_header", "title" and "standard_html_footer"?

DTML name lookup is somewhat "magical", because you don't need to explicitly tell DTML where to find a variable.
Instead, it tries to guess what you mean by following a preordained set of search rules. DTML gets the values for
variable names by searching an environment which includes the current object, the containment path, and request
variables like values submitted by a form and cookies. The DTML Name Lookup Rules represent the namespaces
searched and their relative precedence. As an example, let's follow the pricelist DTML code step-by-step. In our
pricelist method, we've asked DTML to look up three names: "standard_html_header", "title", and
"standard_html_footer". It searches for these variables in the order that they are mentioned in the page.

DTML looks first for "standard_html_header". It looks in the "current object" first, which is its container, the Feedbags
folder. The Feedbags folder doesn't have any methods or properties or sub-objects by that name. Next Zope tries to

The Zope Book (2.6 Edition)

111

acquire the object from its containers. It examines the Feedbags folder's container (your sandbox folder, likely named
"DTML_Examples"), which also doesn't turn up anything. It continues searching through any intermediate containters,
which also don't have a method or property named "standard_html_header" unless you've put one there. It keeps going
until it gets to the root folder. The root folder does have a sub-object named "standard_html_header", which comes as
a default object in every Zope. The standard_html_header object is a DTML Method. So Zope calls the
standard_html_header method in the root folder and inserts the results into the page. Note that once DTML finds a
property or variable, if it is callable (as in the case of a DTML Method, an External Method, a SQL Method, or a Script
(Python) object), it is called and the results of the call are inserted into the page.

Next DTML looks for the name "title". Here, the search is a shorter. On its first try, DTML finds the Feedbags folder's
title property and inserts it. The title property is not a method or a script, so DTML doesn't need to call it. It just
renders it into the output.

Finally DTML looks for the name standard_html_footer . It has to search all the way up to the root folder to find it, just
like it looked for standard_html_header . It calls the standard_html_footer in the root and inserts the text result.

The resulting page is fully assembled (rendered) at this point, and is sent to your browser.

Understanding how DTML looks up variables is important. We will explore the DTML name lookup mechanism further
in the chapter entitled Advanced DTML . It is also documented in Appendix E .

Formatting and Displaying Sequences

It is common that people want to use DTML to format and display sequences . A sequence is just a list of items, like
"Fred, Joe, Jim". Often, you want to create an HTML table or a bulleted list that contains elements in a sequence. Let's
use DTML to call out to an object which returns a sequence and render its result.

Create a Script (Python) object in your sandbox folder named "actors". Give the script the following body and save it:

Script (Python) "actors"
##bind container=container
##bind context=context
##bind namespace=
##bind script=script
##bind subpath=traverse_subpath
##parameters=
##title=
##
return ['Jack Lemmon', 'Ed Harris','Al Pacino', 'Kevin Spacey', 'Alan Arkin']

Make sure that all of the lines of this script line up along the left-hand side of the textarea to avoid receiving an error
when you attempt to save the script, since Python is sensitive to indentation. This Script (Python) object returns a
Python data structure which is a list of strings . A list is a kind of sequence , which means that DTML can iterate over it
using the dtml-in tag. Now create a DTML Method named "showActors" in your sandbox, give it this body, and save it:

<html>
<body>
<h1>Actors in the movie Glengarry Glen Ross</h1>
<table border="1">
 <th>Name</th>
<dtml-in actors>
 <tr>
 <td><dtml-var sequence-item></td>
 </tr>
</dtml-in>
</table>
</body>
</html>

The Zope Book (2.6 Edition)

112

The DTML in tag iterates over the results of the actors script and inserts a table row into a table for each of the actors
mentioned in the script. Note that inside the table cell, we use a special name sequence-item . sequence-item is a
special name that is meaningful within a dtml-in tag. It refers to the "current item" (in this case, the actor name string)
during processing. The HTML source of the Workspace frame when you click the View tab on the showActors
method will look something like:

<html>
<body>
<h1>Actors in the movie Glengarry Glen Ross</h1>
<table border="1">
 <th>Name</th>
 <tr>
 <td>Jack Lemmon</td>

 </tr>
 <tr>
 <td>Ed Harris</td>
 </tr>
 <tr>
 <td>Al Pacino</td>
 </tr>
 <tr>

 <td>Kevin Spacey</td>
 </tr>
 <tr>
 <td>Alan Arkin</td>
 </tr>
 </table>
</body>
</html>

Note that you didn't have to specifically tell DTML that you are querying a Script (Python) object. You just tell it the
name of the object to call (in this case actors), and it does the work of figuring out how to call the object and pass it
appropriate arguments. If you replace the actors Script with some other kind of object that does exactly the same
thing, like another DTML Method, you won't have to change your showActors DTML Method. It will "just work".

Processing Input from Forms

You can use DTML to perform actions based on the information contained in the submission of an HTML form.

Create a DTML Method named "infoForm" with the following body:

<dtml-var standard_html_header>

<p>Please send me information on your aardvark adoption
program.</p>

<form action="infoAction">
name: <input type="text" name="user_name">

email: <input type="text" name="email_addr">

<input type="submit" name="submit" value=" Submit ">
</form>

<dtml-var standard_html_footer>

This is a web form that asks the user for information, specifically his user name and email address. Note that you refer
to the name "infoAction" as the action of the HTML form. This really has nothing to do with DTML, it's an attribute of the
HTML form tag. But the name specified in the form action tag can name another Zope object which will receive and
process the results of the form when it is submitted.

Create a DTML Method named infoAction in the same folder as the infoForm method. This is the target of the
infoForm form action. This method will display a bland "thanks" message which includes the name and email

The Zope Book (2.6 Edition)

113

information that was gathered from the web form. Provide the infoAction method with the following body and save it:

<dtml-var standard_html_header>

<h1>Thanks <dtml-var user_name></h1>

<p>We received your request for information and will send you
email at <dtml-var email_addr> describing our aardvark adoption
program as soon as it receives final governmental approval.
</p>

<dtml-var standard_html_footer>

Navigate back to the infoForm method and use the View tab to execute it. Fill out the form and click the Submit
button. If all goes well you should see a thank you message that includes your name and email address, much like the
figure below::

Figure 9-2 Result of submitting the infoForm method

The Zope object named REQUEST contains information about the current web request. This object is in the DTML
name lookup path. The infoAction method found the form information from the web request that happened when
you clicked the submit button on the rendering of infoForm . DTML looks for variables in the current web request, so
you can just refer to the form variable names in the target method by name. In our case, we were able to display the
values of the form elements user_name and email_addr in the infoAction method just by referring to them by name
in their respective dtml-var tags. DTML used its lookup rules to search for the variable names. It found the names in the
"REQUEST.form" namespace and displayed them. If it had found an object with either name email_addr or user_name
earlier in the lookup (if perhaps there was a Zope object in your acquisition path named user_name) it would have
found this object first and rendered its results. But, mostly by chance, it didn't, and found the name in REQUEST
instead.

Let's examine the contents of the Zope REQUEST object in order to shed more light on the situation. Create a new
DTML Method object named show_request in your sandbox folder. Give it the the following body:

<dtml-var REQUEST>

The show_request method will render a human-readable representation of Zope's REQUEST object when you click
submit on the infoForm rendering. Visit the infoForm method, and change it to the following:

<dtml-var standard_html_header>

The Zope Book (2.6 Edition)

114

<p>Please send me information on your aardvark adoption
program.</p>

<form action="show_request">
name: <input type="text" name="user_name">

email: <input type="text" name="email_addr">

<input type="submit" name="submit" value=" Submit ">
</form>

<dtml-var standard_html_footer>

We changed the form action of the infoForm method to show_request . Now click the View tab of the new
infoForm method. Fill in some information in the form elements, and click Submit . You will see something like the
following:

form
 submit ' Submit '
 email_addr 'chrism@zope.com'
 user_name 'Chris'

cookies
 tree-s 'eJzTiFZ3hANPW/VYHU0ALlYElA'

lazy items
 SESSION <bound method SessionDataManager.getSessionData of <SessionDataManager instance at 897d020>

other
 AUTHENTICATION_PATH ''
 user_name 'Chris'
 PUBLISHED <DTMLMethod instance at 8a62670>
 submit ' Submit '
 SERVER_URL 'http://localsaints:8084'
 email_addr 'chrism@zope.com'
 tree-s 'eJzTiFZ3hANPW/VYHU0ALlYElA'
 URL 'http://localsaints:8084/DTML_Example/show_request'
 AUTHENTICATED_USER admin
 TraversalRequestNameStack []
 URL0 http://localsaints:8084/DTML_Example/show_request
 URL1 http://localsaints:8084/DTML_Example
 URL2 http://localsaints:8084
 BASE0 http://localsaints:8084
 BASE1 http://localsaints:8084
 BASE2 http://localsaints:8084/DTML_Example
 BASE3 http://localsaints:8084/DTML_Example/show_request

environ
 SCRIPT_NAME ''
 HTTP_ACCEPT_ENCODING 'gzip, deflate, compress;q=0.9'
 SERVER_PORT '8084'
 PATH_TRANSLATED '/DTML_Example/show_request'
 HTTP_ACCEPT 'text/xml...'
 GATEWAY_INTERFACE 'CGI/1.1'
 HTTP_COOKIE 'tree-s="eJzTiFZ3hANPW/VYHU0ALlYElA"'
 HTTP_ACCEPT_LANGUAGE 'en-us, en;q=0.50'
 REMOTE_ADDR '192.168.1.3'
 SERVER_NAME 'saints'
 HTTP_USER_AGENT 'Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.1a+) Gecko/20020629'
 HTTP_ACCEPT_CHARSET 'ISO-8859-1, utf-8;q=0.66, *;q=0.66'
 CONNECTION_TYPE 'keep-alive'
 channel.creation_time 1027876407
 QUERY_STRING 'user_name=Chris&email_addr=chrism%40zope.com&submit=+Submit+'
 SERVER_PROTOCOL 'HTTP/1.1'
 HTTP_KEEP_ALIVE '300'
 HTTP_HOST 'localsaints:8084'
 REQUEST_METHOD 'GET'
 PATH_INFO '/DTML_Example/show_request'
 SERVER_SOFTWARE 'Zope/(unreleased version, python 2.1.3, linux2) ZServer/1.1b1'
 HTTP_REFERER 'http://localsaints:8084/DTML_Example/infoForm'

The Zope Book (2.6 Edition)

115

You have instructed the show_request method to render the contents of the web request initiated by the infoForm
method. Note that each section (form, cookies, lazy items, other, and environ) represents a namespace inside the
REQUEST. DTML searches all of these namespaces for the names you refer to in your infoForm form. Note that
email_addr and user_name are in the "form" namespace of the REQUEST. There is lots of information in the rendering
of the REQUEST, but for us, this is the most pertinent. For more information on the REQUEST object, visit the Zope
Help system, and choose Zope Help -> API Reference -> Request.

Dealing With Errors

Let's perform an experiment. What happens if you try to view the infoAction method you created in the last section
directly, as opposed to getting to it by submitting the infoForm method? Click on the infoAction method and then
click the View tab. You will see results not unlike those in the figure below.

Figure 9-3 DTML error resulting from a failed variable lookup.

Zope couldn't find the user_name variable since it was not in the current object, its containers or the web request. This
is an error that you're likely to see frequently as you learn Zope. Don't fear, it just means that you've tried to insert a
variable that Zope can't find. You can examine the error by visiting the error_log object in your root folder. In this case,
we know why the error occurred, so visiting the error in the error_log isn't really necessary. In this example, you need to
either insert a variable that Zope can find, or use the missing attribute on the var tag as described above:

<h1>Thanks <dtml-var user_name missing="Anonymous User"></h1>

Understanding where DTML looks for variables will help you figure out how to fix this kind of problem. In this case, you
have viewed a method that needs to be called from an HTML form like infoForm in order to provide variables to be
inserted in the output.

Dynamically Acquiring Content

Zope looks for DTML variables in the current object's containers (its parent folders) if it can't find the variable first in the
current object. This behavior allows your objects to find and use content and behavior defined in their parents. Zope
uses the term acquisition to refer to this dynamic use of content and behavior.

The Zope Book (2.6 Edition)

116

An example of acquisition that you've already seen is how web pages use standard headers and footers. To acquire
the standard header just ask Zope to insert it with the var tag:

<dtml-var standard_html_header>

It doesn't matter where the standard_html_method object or property is located. Zope will search upwards in the
object database until it finds the standard_html_header that is defined in the root folder.

You can take advantage of how Zope looks up variables to customize your header in different parts of your site. Just
create a new standard_html_header in a folder and it will override global header for all web pages in your folder
and below it.

Create a new folder in your "sandbox" folder with an id of "Green". Enter the Green folder and create a DTML Method
with an id of "welcome". Edit the welcome DTML Method to have these contents:

<dtml-var standard_html_header>

<p>Welcome</p>

<dtml-var standard_html_footer>

Now view the welcome method. It should look like a simple web page with the word welcome , as shown in the figure
below.

Figure 9-4 Welcome method.

Now let's customize the header for the Green folder. Create a DTML Method in the Green folder with an id of
"standard_html_header". Give it the following body:

<html>
<head>
 <style type="text/css">
 body {color: #00FF00;}
 p {font-family: sans-serif;}
 </style>
</head>
<body>

The Zope Book (2.6 Edition)

117

Notice that this is not a complete web page. For example, it does not have an ending </html> tag. This is just a
fragment of HTML that will be used as a header, meant to be included into other pages. This header uses CSS
(Cascading Style Sheets) to make some changes to the look and feel of web pages.

Now revisit the welcome method and click its View tab again. You will see something like the figure below::

Figure 9-5 Welcome method with custom header.

The rendering now looks quite different. This is because it is now using the new header we introduced in the Green
folder. This header will be used by all web pages in the Green folder and its sub-folders.

You can continue this process of overriding default content by creating another folder inside the Green folder and
creating a standard_html_header DTML Method there. Now web pages in the sub-folder will use their local header
rather than the Green folder's header. You can of course also create a standard_html_footer , providing it with
local content as well.

Using this pattern you can quickly change the look and feel of different parts of your web site. If you later decide that an
area of the site needs a different header, just create one. You don't have to change the DTML in any of the web pages;
they'll automatically find the closest header and use it.

Using Python Expressions from DTML

So far we've looked at simple DTML tags. Here's an example:

<dtml-var getHippo>

This will insert the value of the variable named getHippo , whatever that may be. DTML will automatically take care of
the details, like finding the object which represents the variable and calling it if necessary. We call this basic tag syntax
name syntax to differentiate it from expression syntax.

When you use DTML name syntax, DTML tries to do the right thing to insert the results of the object looked up by the
variable name, no matter what that object may be. In general this means that if the variable is another DTML Method or
DTML Document, it will be called with appropriate arguments. However, if the variable is not another DTML Method or
DTML Document, and it requires parameters, you need to explicitly pass the arguments along using an expression.

The Zope Book (2.6 Edition)

118

Expressions used in DTML allow you to be more explicit about how to find and call variables. Expressions are tag
attributes that contain small snippets of code in the Python programming language. These are typically referred to as
Python expressions .

A Python expression is essentially any bit of code that is not a Python statement . For example, the Python statement
a = 1 assigns "1" to the "a" variable. You cannot use this statement in DTML expressions. Likewise, you cannot use
the statement print "x" in DTML. It is not an expression. Essentially, an expression must be a combination of
values, variables, and Python operators . To find out more about Python's expression syntax, see the Python Tutorial at
the Python.org web site. For more information specifically about the differences between Python expressions and
statements, see the Variables, expressions, and statements chapter of How To Think Like a Computer Scientist Using
Python .

An expression always results in a return value. For example, the Python expression "a == 5" returns the integer 1 if "a"
is equal to the integer 5 or the integer 0 if "a" is not equal to the integer 5. The return value of an expression is used by
DTML as the target of the DTML command.

The primary difference in DTML between using expressions as targets and names as targets is that DTML does some
magic after it locates a named targets that it does not do after it finds an expression targets. For example, after finding
object with the name standard_html_header in the root folder via the name-syntax DTML command <dtml-var
standard_html_header> , DTML calls the standard_html_header object, inserting the results into the page.
However, when you use an expression-syntax DTML command, like <dtml-var
expr="standard_html_header"> , DTML will not call the standard_html_header object. Instead it will return a
representation of the object as a string. In order to call the standard_html_header object in an expression-syntax
DTML tag, you need to do it explicitly by passing along arguments. When you delve into the realm of DTML expression
syntax, DTML "magic" goes away, and you need to become aware of the arguments accepted by the target (if any) and
pass them along.

Let's create a Script (Python) object named getHippo that must be called in DTML with expression syntax, because it
takes a non-optional argument that named DTML syntax cannot provide.

Create a Script (Python) in your sandbox folder named getHippo . Provide it with the following body:

Script (Python) "getHippo"
##bind container=container
##bind context=context
##bind namespace=
##bind script=script
##bind subpath=traverse_subpath
##parameters=trap
##title=
##
return 'The hippo was captured with a %s.' % trap

Note that this Script (Python) object takes a single parameter named "trap". It is not an optional parameter, so we need
to pass a value in to this script for it to do anything useful.

Now let's make a DTML method to call getHippo . Instead of letting DTML find and call getHippo , we can use an
expression to explicitly pass arguments. Create a DTML method named showHippo and give it the following body:

<dtml-var expr="getHippo('large net')">

Here we've used a Python expression to explicitly call the getHippo method with the string argument, large net .
View the showHippo DTML Method. It will return a result not unlike the following:

The hippo was captured with a large net.

To see why we need to use expression syntax to call this script, let's modify the showHippo method to use DTML
name syntax:

The Zope Book (2.6 Edition)

119

<dtml-var getHippo>

View the method. You will receive an error not unlike the following:

Error Type: TypeError
Error Value: getHippo() takes exactly 1 argument (0 given)

The getHippo method requires that you pass in an argument, trap , that cannot be provided using DTML name
syntax. Thus, you receive an error when you try to view the showHippo method.

Expressions make DTML pretty powerful. For example, using Python expressions, you can easily test conditions:

<dtml-if expr="foo < bar">
 Foo is less than bar.
</dtml-if>

Without expressions, this very simple task would have to be broken out into a separate method and would add a lot of
overhead for something this trivial.

Before you get carried away with expressions, take care. Expressions can make your DTML hard to understand. Code
that is hard to understand is more likely to contain errors and is harder to maintain. Expressions can also lead to mixing
logic in your presentation. If you find yourself staring blankly at an expression for more than five seconds, stop. Rewrite
the DTML without the expression and use a Script to do your logic. Just because you can do complex things with
DTML doesn't mean you should.

DTML Expression Gotchas

Using Python expressions can be tricky. One common mistake is to confuse expressions with basic tag syntax. For
example:

<dtml-var objectValues>

and:

<dtml-var expr="objectValues">

These two examples if you are to put them in a DTML Method will end up giving you two completely different results.
The first example of the DTML var tag will automatically call the object which is represented by objectValues .

In an expression, you have complete control over the variable rendering. In the case of our example, objectValues is a
method implemented in Python which returns the values of the objects in the current folder. It has no required
arguments. So:

<dtml-var objectValues>

will call the method. However,

<dtml-var expr="objectValues">

... will not call the method, it will just try to insert it. The result will be not a list of objects but a string such as <Python
Method object at 8681298> . If you ever see results like this, there is a good chance that you're returning a
method, rather than calling it.

To call a Python method which requires no arguments from an expression, you must use standard Python calling
syntax by using parenthesis:

<dtml-var expr="objectValues()">

The Zope Book (2.6 Edition)

120

The lesson is that if you use Python expressions you must know what kind of variable you are inserting and must use
the proper Python syntax to appropriately render the variable.

Before we leave the subject of variable expressions we should mention that there is a deprecated form of the
expression syntax. You can leave out the "expr=" part on a variable expression tag. But please don't do this. It is far too
easy to confuse:

<dtml-var aName>

with:

<dtml-var "aName">

and get two completely different results. These "shortcuts" were built into DTML long ago, but we do not encourage you
to use them now unless you are prepared to accept the confusion and debugging problems that come from this subtle
difference in syntax.

Common DTML Tags

Below, we discuss the most common DTML tags: the var tag, the if tag, the else tag, the elif tag, and the in tag,
providing examples for the usage of each.

The Var Tag

The var tag inserts variables into DTML Methods and Documents. We've already seen many examples of how the var
tag can be used to insert strings into web pages.

As you've seen, the var tag looks up variables first in the current object, then in its containers and finally in the web
request.

The var tag can also use Python expressions to provide more control in locating and calling variables.

Var Tag Attributes

You can control the behavior of the var tag using its attributes. The var tag has many attributes that help you in
common formatting situations. The attributes are summarized in Appendix A. Here's a sampling of var tag attributes.

html_quote — This attribute causes the inserted values to be HTML quoted. This means that '<', '> and &' are
escaped. Note that as of Zope 2.6, all string values which are retrieved from the REQUEST namespace are
HTML-quoted by default. This helps to prevent "cross-site scripting" security holes present in earlier Zope versions,
where a user could insert some clever JavaScript into a page in order to possibly make you divulge information to him
which could be private. For more information, see the CERT advisory on the topic.

missing — The missing attribute allows you to specify a default value to use in case Zope can't find the variable. For
example:

<dtml-var bananas missing="We have no bananas">

fmt — The fmt attribute allows you to control the format of the var tags output. There are many possible formats which
are detailed in Appendix A .

One use of the fmt attribute is to format monetary values. For example, create a float property in your root folder called
adult_rate . This property will represent the cost for one adult to visit the Zoo. Give this property the value 2.2 .

The Zope Book (2.6 Edition)

121

You can display this cost in a DTML Document or Method like so:

One Adult pass: <dtml-var adult_rate fmt=dollars-and-cents>

This will correctly print "$2.20". It will round more precise decimal numbers to the nearest penny.

Var Tag Entity Syntax

Zope provides a shortcut DTML syntax just for the simple var tag. Because the var tag is a singleton, it can be
represented with an HTML entity like syntax:

&dtml-cockatiel;

This is equivalent to:

<dtml-var name="cockatiel" html_quote>

Entity-syntax-based DTML tags always "html quote" their renderings. The main reason to use the entity syntax is to
avoid putting DTML tags inside HTML tags. For example, instead of writing:

<input type="text" value="<dtml-var name="defaultValue" html_quote>">

You can use the entity syntax to make things more readable for you and your text editor:

<input type="text" value="&dtml-defaultValue;">

The var tag entity syntax is very limited. You can't use Python expressions within entity-based DTML syntax and many
DTML attributes won't work with it. See Appendix A for more information on var tag entity syntax.

The If Tag

One of DTML's important benefits is to let you customize your web pages. Often customization means testing
conditions and responding appropriately. This if tag lets you evaluate a condition and carry out different actions based
on the result.

What is a condition? A condition is either a true or false value. In general all objects are considered true unless they are
0, None, an empty sequence or an empty string.

Here's an example condition:

objectValues — True if the variable objectValues exists and is true. That is to say, when found and rendered
objectValues is not 0, None, an empty sequence, or an empty string.

As with the var tag, you can use both name syntax and expression syntax. Here are some conditions expressed as
DTML expressions.

expr="1" — Always true.

expr="rhino" — True if the rhino variable is true.

expr="x < 5" — True if x is less than 5.

expr="objectValues(File)" — True if calling the objectValues method with an argument of File returns a true value.
This method is explained in more detail in this chapter.

The Zope Book (2.6 Edition)

122

The if tag is a block tag. The block inside the if tag is executed if the condition is true.

Here's how you might use a variable expression with the if tag to test a condition:

<p>How many monkeys are there?</p>

<dtml-if expr="monkeys > monkey_limit">
 <p>There are too many monkeys!</p>
</dtml-if>

In the above example, if the Python expression monkeys > monkey_limit is true then you will see the first and the
second paragraphs of HTML. If the condition is false, you will only see the first.

If tags be nested to any depth, for example, you could have:

<p>Are there too many blue monkeys?</p>

<dtml-if "monkeys.color == 'blue'">
 <dtml-if expr="monkeys > monkey_limit">
 <p>There are too many blue monkeys!</p>
 </dtml-if>
</dtml-if>

Nested if tags work by evaluating the first condition, and if that condition is true, then evaluating the second. In general,
DTML if tags work very much like Python if statements..

Name and Expression Syntax Differences

The name syntax checks for the existence of a name, as well as its value. For example:

<dtml-if monkey_house>
 <p>There is a monkey house, Mom!</p>
</dtml-if>

If the monkey_house variable does not exist, then this condition is false. If there is a monkey_house variable but it is
false, then this condition is also false. The condition is only true is there is a monkey_house variable and it is not 0,
None, an empty sequence or an empty string.

The Python expression syntax does not check for variable existence. This is because the expression must be valid
Python. For example:

<dtml-if expr="monkey_house">
 <p>There is a monkey house, Mom!</p>
</dtml-if>

This will work as expected as long as monkey_house exists. If the monkey_house variable does not exist, Zope will
raise a KeyError exception when it tries to find the variable.

Else and Elif Tags

The if tag only lets you take an action if a condition is true. You may also want to take a different action if the condition
is false. This can be done with the DTML else tag. The if block can also contain an else singleton tag. For example:

<dtml-if expr="monkeys > monkey_limit">
 <p>There are too many monkeys!</p>
<dtml-else>
 <p>The monkeys are happy!</p>
</dtml-if>

The Zope Book (2.6 Edition)

123

The else tag splits the if tag block into two blocks, the first is executed if the condition is true, the second is executed if
the condition is not true.

A if tag block can also contain a elif singleton tag. The elif tag specifies another condition just like an addition if tag.
This lets you specify multiple conditions in one block:

<dtml-if expr="monkeys > monkey_limit">
 <p>There are too many monkeys!</p>
<dtml-elif expr="monkeys < minimum_monkeys">
 <p>There aren't enough monkeys!</p>
<dtml-else>
 <p>There are just enough monkeys.</p>
</dtml-if>

An if tag block can contain any number of elif tags but only one else tag. The else tag must always come after the elif
tags. Elif tags can test for condition using either the name or expression syntax.

Using Cookies with the If Tag

Let's look at a more meaty if tag example. Often when you have visitors to your site you want to give them a cookie to
identify them with some kind of special value. Cookies are used frequently all over the Internet, and when they are
used properly they are quite useful.

Suppose we want to differentiate new visitors from folks who have already been to our site. When a user visits the site
we can set a cookie. Then we can test for the cookie when displaying pages. If the user has already been to the site
they will have the cookie. If they don't have the cookie yet, it means that they're new.

Suppose we're running a special. First time zoo visitors get in for half price. Here's a DTML fragment that tests for a
cookie using the hasVisitedZoo variable and displays the price according to whether a user is new or a repeat visitor:

<dtml-if hasVisitedZoo>
 <p>Zoo admission <dtml-var adult_rate fmt="dollars-and-cents">.</p>
<dtml-else>
 Zoo admission for first time visitors
 <dtml-var expr="adult_rate/2" fmt="dollars-and-cents"></p>
</dtml-if>

This fragment tests for the hasVisitedZoo variable. If the user has visited the zoo before it displays the normal price for
admission. If the visitor is here for the first time they get in for half-price.

Just for completeness sake, here's an implementation of the hasVisitedZoo method as a Python-based Script that has
no parameters.:

Script(Python) "hasVisitedZoo"
##
"""
Returns true if the user has previously visited
the Zoo. Uses cookies to keep track of zoo visits.
"""
request = context.REQUEST
response = request.RESPONSE
if request.has_key('zooVisitCookie'):
 return 1
else:
 response.setCookie('zooVisitCookie', '1')
 return 0

In the chapter entitled Advanced Zope Scripting , we'll look more closely at how to script business logic with Python.
For now it is sufficient to see that the method looks for a cookie and returns a true or false value depending on whether
the cookie is found or not. Notice how Python uses if and else statements just like DTML uses if and else tags. DTML's
if and else tags are based on Python's. In fact Python also has an elif statement, just like DTML.

The Zope Book (2.6 Edition)

124

The In Tag

The DTML in tag iterates over a sequence of objects, carrying out one block of execution for each item in the
sequence. In programming, this is often called iteration , or looping .

The in tag is a block tag like the if tag. The content of the in tag block is executed once for every iteration in the in tag
loop. For example:

<dtml-in todo_list>
 <p><dtml-var description></p>
</dtml-in>

This example loops over a list of objects named todo_list . For each item, it inserts an HTML paragraph with a
description of the to do item.

Iteration is very useful in many web tasks. Consider a site that display houses for sale. Users will search your site for
houses that match certain criteria. You will want to format all of those results in a consistent way on the page,
therefore, you will need to iterate over each result one at a time and render a similar block of HTML for each result.

In a way, the contents of an in tag block is a kind of template that is applied once for each item in a sequence.

Iterating over Folder Contents

Here's an example of how to iterate over the contents of a folder. This DTML will loop over all the files in a folder and
display a link to each one. This example shows you how to display all the "File" objects in a folder, so in order to run
this example you will need to upload some files into Zope as explained in the chapter entitled Basic Zope Objects .
Create a DTML Method with the following body:

<dtml-var standard_html_header>

<dtml-in expr="objectValues('File')">
 <dtml-var title_or_id>
</dtml-in>

<dtml-var standard_html_footer>

This code displayed the following file listing, as shown in the figure below.

The Zope Book (2.6 Edition)

125

Figure 9-6 Iterating over a list of files.

Let's look at this DTML example step by step. First, the var tag is used to insert your common header into the method.
Next, to indicate that you want the browser to draw an HTML bulleted list, you have the ul HTML tag.

Then there is the in tag. The tag has an expression that is calling the Zope API method called objectValues . This
method returns a sequence of objects in the current folder that match a given criteria. In this case, the objects must be
files. This method call will return a list of files in the current folder.

The in tag will loop over every item in this sequence. If there are four file objects in the current folder, then the in tag will
execute the code in its block four times; once for each object in the sequence.

During each iteration, the in tag looks for variables in the current object, first. In the chapter entitled Variables and
Advanced DTML we'll look more closely at how DTML looks up variables.

For example, this in tag iterates over a collection of File objects and uses the var tag to look up variables in each file:

<dtml-in expr="objectValues('File')">
 <dtml-var title_or_id>
</dtml-in>

The first var tag is an entity and the second is a normal DTML var tag. When the in tag loops over the first object its
absolute_url and title_or_id variables will be inserted in the first bulleted list item:

 FirstFile

During the second iteration the second object's absolute_url and title_or_id variables are inserted in the output:

 FirstFile
 SecondFile

This process will continue until the in tag has iterated over every file in the current folder. After the in tag you finally
close your HTML bulleted list with a closing ul HTML tag and the standard_html_footer is inserted.

In Tag Special Variables

The Zope Book (2.6 Edition)

126

The in tag provides you with some useful information that lets you customize your HTML while you are iterating over a
sequence. For example, you can make your file library easier to read by putting it in an HTML table and making every
other table row an alternating color, like this, as shown in the figure below.

Figure 9-7 File listing with alternating row colors.

The in tag makes this easy. Change your file library method a bit to look like this:

<dtml-var standard_html_header>

<table>
<dtml-in expr="objectValues('File')">
 <dtml-if sequence-even>
 <tr bgcolor="grey">
 <dtml-else>
 <tr>
 </dtml-if>
 <td>
 <dtml-var title_or_id>
 </td></tr>
</dtml-in>
</table>

<dtml-var standard_html_footer>

Here an if tag is used to test for a special variable called sequence-even . The in tag sets this variable to a true or
false value each time through the loop. If the current iteration number is even, then the value is true, if the iteration
number is odd, it is false.

The result of this test is that a tr tag with either a gray background or no background is inserted for every other object in
the sequence. As you might expect, there is a sequence-odd that always has the opposite value of
sequence-even .

There are many special variables that the in tag defines for you. Here are the most common and useful:

sequence-item — This special variable is the current item in the iteration.

In the case of the file library example, each time through the loop the current file of the iteration is assigned to
sequence-item. It is often useful to have a reference to the current object in the iteration.

The Zope Book (2.6 Edition)

127

sequence-index — the current number, starting from 0, of iterations completed so far. If this number is even,
sequence-even is true and sequence-odd is false.

sequence-number — The current number, starting from 1, of iterations completed so far. This can be thought of as the
cardinal position (first, second, third, etc.) of the current object in the loop. If this number is even, sequence-even is
false and sequence-odd is true.

sequence-start — This variable is true for the very first iteration.

sequence-end — This variable is true for the very last iteration.

These special variables are detailed more thoroughly in Appendix A .

Summary

DTML is a powerful tool for creating dynamic content. It allows you to perform fairly complex calculations. In the chapter
entitled Variables and Advanced DTML , you'll find out about many more DTML tags, and more powerful ways to use
the tags you already have seen. Despite its power, you should resist the temptation to use DTML for complex scripting.
In the chapter entitled Advanced Zope Scripting you'll find out about how to use Python for scripting business logic.

The Zope Book (2.6 Edition)

128

Using Zope Page Templates

Page Templates are a web page generation tool. They help programmers and designers collaborate in producing
dynamic web pages for Zope web applications. Designers can use them to maintain pages without having to abandon
their tools, while preserving the work required to embed those pages in an application. In this chapter, you'll learn the
basics features of Page Templates, including how you can use them in your web site to create dynamic web pages
easily. In the chapter entitled Advanced Page Templates , you'll learn about advanced Page Template features.

The goal of Page Templates is to allow designers and programmers to work together easily. A designer can use a
WYSIWYG HTML editor to create a template, then a programmer can edit it to make it part of an application. If
required, the designer can load the template back into his editor and make further changes to its structure and
appearance. By taking reasonable steps to preserve the changes made by the programmer, the designer will not
disrupt the application.

Page Templates aim at this goal by adopting three principles:

1. Play nicely with editing tools.

2. What you see is very similar to what you get.

3. Keep code out of templates, except for structural logic.

A Page Template is like a model of the pages that it will generate. In particular, it is a valid HTML page.

Zope Page Templates versus DTML

Zope already has DTML, so you may wonder why we need another template language. First of all, DTML is not aimed
at HTML designers. Once an HTML page has been "dynamicized" by inserting DTML into it, the resulting page typically
becomes invalid HTML, making it difficult to work with outside Zope. Secondly, DTML suffers from a failure to separate
presentation, logic, and content (data). This decreases the scalability of content management and website
development efforts that use these systems. Finally, DTML's namespace model adds too much "magic" to object
lookup, without allowing enough control.

DTML can do things that Page Templates can't, such as dynamically generate email messages (Page Templates can
only generate HTML and XML), so DTML is not a "dead end". However, it is probable that Page Templates will be used
for almost all HTML/XML presentation by Zope Corporation and many members of the Zope community.

How Page Templates Work

Page Templates use the Template Attribute Language (TAL). TAL consists of special tag attributes. For example, a
dynamic page title might look like this:

<title tal:content="here/title">Page Title</title>

The tal:content attribute is a TAL statement. Since it has an XML namespace (the tal: part) most editing tools
will not complain that they don't understand it, and will not remove it. It will not change the structure or appearance of
the template when loaded into a WYSIWYG editor or a web browser. The name content indicates that it will set the
text contained by the title tag, and the value "here/title" is an expression providing the text to insert into the tag.

All TAL statements consist of tag attributes whose name starts with tal: and all TAL statements have values
associated with them. The value of a TAL statement is shown inside quotes. See Appendix C, "Zope Page Templates

The Zope Book (2.6 Edition)

129

Reference", for more information on TAL.

To the HTML designer using a WYSIWYG tool, the dynamic title example is perfectly valid HTML, and shows up in their
editor looking like a title should look like. In other words, Page Templates play nicely with editing tools.

This example also demonstrates the principle that "What you see is very similar to what you get". When you view the
template in an editor, the title text will act as a placeholder for the dynamic title text. The template provides an example
of how generated documents will look.

When this template is saved in Zope and viewed by a user, Zope turns the dummy content into dynamic content,
replacing "Page Title" with whatever "here/title" resolves to. In this case, "here/title" resolves to the title of the object to
which the template is applied. This substitution is done dynamically, when the template is viewed.

There are template statements for replacing entire tags, their contents, or just some of their attributes. You can repeat
a tag several times or omit it entirely. You can join parts of several templates together, and specify simple error
handling. All of these capabilities are used to generate document structures. Despite these capabilities, you can't
create subroutines or classes, perform complex flow control, or easily express complex algorithms using a Page
Template. For these tasks, you should use Python-based Scripts or application components.

The Page Template language is deliberately not as powerful and general-purpose as it could be. It is meant to be used
inside of a framework (such as Zope) in which other objects handle business logic and tasks unrelated to page layout.

For instance, template language would be useful for rendering an invoice page, generating one row for each line item,
and inserting the description, quantity, price, and so on into the text for each row. It would not be used to create the
invoice record in a database or to interact with a credit card processing facility.

Creating a Page Template

If you design pages, you will probably use FTP or WebDAV instead of the Zope Management Interface (ZMI) to edit
Page Templates. See the later section in this chapter named "Remote Editing With FTP and WebDAV" for information
on editing Page Templates remotely. For the small examples in this chapter, it is easier to use the ZMI.

Use your web browser to log into the Zope Management Interface as a manager. Create a Folder to work in named
"template_test" in the root of your Zope. Visit this folder and choose "Page Template" from Zope's add list (do NOT
choose DTML Method or DTML Document, the following examples only work inside a Page Template). Type
"simple_page" in the add form's Id field, then push the "Add and Edit" button.

You should now see the main editing page for the new Page Template. The title is blank, the content-type is
text/html , and the default template text is in the editing area.

Now let's create a simple dynamic page. Type the words "a Simple Page" in the Title field. Then, edit the template text
to look like this:

<html>
 <body>
 <p>
 This is <b tal:replace="template/title">the Title.
 </p>
 </body>
</html>

Now push the Save Changes button. Zope should show a message confirming that your changes have been saved.

If an HTML comment starting with Page Template Diagnostics is added to the template text, then check to make
sure you typed the example correctly and save it again. This comment is an error message telling you that something is

The Zope Book (2.6 Edition)

130

wrong. You don't need to erase the error comment; once the error is corrected it will go away.

Click on the Test tab. You should see a page with, "This is a Simple Page." at the top. Notice that the text is plain;
nothing is in bold. This is because the tal:replace statement replaces the entire tag.

Back up, then click on the Browse HTML source link under the content-type field. This will show you the unrendered
source of the template. You should see, "This is the Title ." The bold text acts as a placeholder for the dynamic title
text. Back up again, so that you are ready to edit the example further.

The Content-Type field allows you to specify the content type of your page. Generally you'll use a content type of
text/html HTML or text/xml for XML.

If you set the content-type to text/html then Zope parses your template using HTML compatiblity mode which
allows HTML's "loose" markup. In this mode, it's possible to enter "non-well-formed" HTML into a Page Template.
However, if you set your content-type to something other than text/html then Zope assumes that your template is
well formed XML. Zope also requires an explicit TAL and METAL XML namespace declarations in order to emit XML.
For example, if you wish to emit XHTML, you might put your namespace declarations on the html tag:

<html xmlns:tal="http://xml.zope.org/namespaces/tal"
 xmlns:metal="http://xml.zope.org/namespaces/metal">

For our purposes, we want to emit "loose" HTML, so we leave the Content-Type form field as text/html and we do
not use any XML namespace declarations.

The Expand macros with editing control is explained in the chapter entitled Advanced Page Templates .

Simple Expressions

The expression, "template/title" in your simple Page Template is a path expression . This the most common type of
expression. There are several other types of expressions defined by the TAL Expression Syntax (TALES) specification.
For more information on TALES see the Zope Page Templates Reference Appendix .

The "template/title" path expression fetches the title property of the template. Here are some other common path
expressions:

 • 'request/URL': The URL of the current web request.

 • 'user/getUserName': The authenticated user's login name.

 • 'container/objectIds': A list of Ids of the objects in the same Folder as the template.

Every path starts with a variable name. If the variable contains the value you want, you stop there. Otherwise, you add
a slash (/) and the name of a sub-object or property. You may need to work your way through several sub-objects to
get to the value you're looking for.

Zope defines a small set of built-in variables such as request and user , which are described in the chapter entitled
Advanced Page Templates . You will also learn how to define your own variables in that chapter.

Inserting Text

In your "simple_page" template, you used the tal:replace statement on a bold tag. When you tested it, Zope
replaced the entire tag with the title of the template. When you browsed the source, you saw the template text in bold.
We used a bold tag in order to highlight the difference.

The Zope Book (2.6 Edition)

131

In order to place dynamic text inside of other text, you typically use tal:replace on a span tag rather than on a
bold tag. For example, add the following lines to your example:

The URL is http://www.example.com.

The span tag is structural, not visual, so this looks like "The URL is http://www.example.com." when you view the
source in an editor or browser. When you view the rendered version, however, it may look something like:

The URL is http://localhost:8080/template_test/simple_page.

If you want to insert text into a tag but leave the tag itself alone, you use the tal:content statement. To set the title
of your example page to the template's title property, add the following lines between the html and the body tags:

<head>
 <title tal:content="template/title">The Title</title>
</head>

If you open the "Test" tab in a new browser window, the window's title will be "a Simple Page". If you view the source of
the page you'll see something like this:

<html>
 <head>
 <title>a Simple Page</title>
 </head>
...

Zope inserted the title of your template into the title tag.

Repeating Structures

Now let's add some context to your simple_page template, in the form of a list of the objects that are in the same
Folder as the template. You will make a table that has a numbered row for each object, and columns for the id,
meta-type, and title. Add these lines to the bottom of your example template:

<table border="1" width="100%">
 <tr>
 <th>Number</th>
 <th>Id</th>
 <th>Meta-Type</th>
 <th>Title</th>
 </tr>
 <tr tal:repeat="item container/objectValues">
 <td tal:content="repeat/item/number">#</td>
 <td tal:content="item/getId">Id</td>
 <td tal:content="item/meta_type">Meta-Type</td>
 <td tal:content="item/title">Title</td>
 </tr>
</table>

The tal:repeat statement on the table row means "repeat this row for each item in my container's list of object
values". The repeat statement puts the objects from the list into the item variable one at a time (this is called the
repeat variable), and makes a copy of the row using that variable. The value of "item/getId" in each row is the Id of the
object for that row, and likewise with "item/meta_type" and "item/title".

You can use any name you like for the repeat variable ("item" is only an example), as long as it starts with a letter and
contains only letters, numbers, and underscores (_). The repeat variable is only defined in the repeat tag. If you try to
use it above or below the tr tag you will get an error.

The Zope Book (2.6 Edition)

132

You can also use the repeat variable name to get information about the current repetition. By placing it after the built-in
variable repeat in a path, you can access the repetition count from zero (index), from one (number), from "A" (
Letter), and in several other ways. So, the expression repeat/item/number is 1 in the first row, 2 in the second
row, and so on.

Since a tal:repeat loop can be placed inside of another, more than one can be active at the same time. This is why
you must write repeat/item/number instead of just repeat/number . You must specify which loop you're
interested in by including the loop name.

Now view the page and notice how it lists all the objects in the same folder as the template. Try adding or deleting
objects from the folder and notice how the page reflects these changes.

Conditional Elements

Using Page Templates you can dynamically query your environment and selectively insert text depending on
conditions. For example, you could display special information in response to a cookie:

<p tal:condition="request/cookies/verbose | nothing">
 Here's the extra information you requested.
</p>

This paragraph will be included in the output only if there is a verbose cookie set. The expression,
request/cookies/verbose | nothing is true only when there is a cookie named verbose set. You'll learn
more about this kind of expression in the chapter entitled Advanced Page Templates .

Using the tal:condition statement you can check all kinds of conditions. A tal:condition statement leaves
the tag and its contents in place if its expression has a true value, but removes them if the value is false. Zope
considers the number zero, a blank string, an empty list, and the built-in variable nothing to be false values. Nearly
every other value is true, including non-zero numbers, and strings with anything in them (even spaces!).

Another common use of conditions is to test a sequence to see if it is empty before looping over it. For example in the
last section you saw how to draw a table by iterating over a collection of objects. Here's how to add a check to the page
so that if the list of objects is empty no table is drawn. Add this to the end of your simple_page Page Template:

<table tal:condition="container/objectValues"
 border="1" width="100%">
 <tr>
 <th>Number</th>
 <th>Id</th>
 <th>Meta-Type</th>
 <th>Title</th>
 </tr>
 <tr tal:repeat="item container/objectValues">
 <td tal:content="repeat/item/number">#</td>
 <td tal:content="item/getId">Id</td>
 <td tal:content="item/meta_type">Meta-Type</td>
 <td tal:content="item/title">Title</td>
 </tr>
</table>

Go and add three Folders named "1", "2", and "3" to the "template_test" folder in which your simple_page template
lives. Revisit the simple_page template and view the rendered output via the Test tab. You will see a table that looks
much like the below:

Number Id Meta-Type Title
1 simple_page Page Template
2 1 Folder
3 2 Folder
4 3 Folder

The Zope Book (2.6 Edition)

133

Note that if the expressions, container/objectValues is false (for instance if there are no objectValues), the
entire table is omitted.

Changing Attributes

Most, if not all, of the objects listed by your template have an icon property that contains the path to the icon for that
kind of object. In order to show this icon in the meta-type column, you will need to insert this path into the src attribute
of an img tag. Edit the table cell in the meta-type column of the above example to look like this:

<td><img src="/misc_/OFSP/Folder_icon.gif"
 tal:attributes="src item/icon">
 Meta-Type
</td>

The tal:attributes statement replaces the src attribute of the img tag with the value of item/icon . The
src="/misc_/OFSP/Folder_icon.gif" attribute in the template acts as a placeholder.

Notice that we've replaced the tal:content attribute on the table cell with a tal:replace statement on a span tag.
This change allows you to have both an image and text in the table cell.

Creating a File Library with Page Templates

Here's an example of using Page Templates with Zope to create a simple file library with one template, a little bit of
Python code, and some files.

First, create a "temporary" mock up of a file library page using an HTML "WYSIWYG" ("What You See Is What You
Get") editor. Macromedia Dreamweaver, Adobe GoLive, and Netscape Composer are examples of WYSIWYG tools.
While you are creating the mockup, just save it to a file on your hard disk.

This mock-up doesn't need to "overdo it", it just shows some dummy information. Here's a mock-up of a file library that
contains one file:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>File Library</title>
 <style type="text/css">
 <!--
 .header {
 font-weight: bold;
 font-family: helvetica;
 background: #DDDDDD;
 }
 h1 {
 font-family: helvetica;
 }
 .filename {
 font-family: courier
 }
 -->
 </style>
 <meta name="GENERATOR" content="amaya 5.1">
</head>

<body>
<h1>File Library</h1>

<p>Click on a file below to download it.</p>

<table border="1" cellpadding="5" cellspacing="0">
 <tbody>

The Zope Book (2.6 Edition)

134

 <tr>
 <td class="header">Name</td>
 <td class="header">Type</td>
 <td class="header">Size</td>
 <td class="header">Last Modified</td>
 </tr>
 <tr>
 <td>Sample.tgz</td>
 <td>application/x-gzip-compressed</td>
 <td>22 K</td>
 <td>2001/09/17</td>
 </tr>
 </tbody>
</table>
</body>
</html>

Now, log into your Zope's management interface with your browser and create a folder called FileLib . In this folder,
create a Page Template called index_html by selecting Page Template from the add menu, specifying the Id
index_html in the form, and clicking Add . For information on creating a new Page Template via an external tool (as
opposed to creating one in the ZMI and editing it afterwards with an external tool), see PUT_factory in the chapter
entitled Using External Tools .

Now, with your HTML editor, using FTP, WebDAV (via the DAV "source port"), or HTTP PUT , save the above HTML to
the URL of the index_html Page Template. For example, you may save to the URL
http://localhost:8080/FileLib/index_html . Different editors have different mechanisms that you can use
to do this. See the chapter entitled 'Using External Tools With Zope':ExternalTools.stx for more information on using
WebDAV, FTP and HTTP PUT to communicate with Zope.

**NOTE: If you're trying to save to Zope via an editor like Netscape Composer or Amaya via HTTP PUT (as opposed to
FTP or DAV), but you're having problems, try saving the file to
http://localhost:8080/FileLib/index_html/source.html instead of the URL specified above. Appending
/source.html to the Zope object name is a "hack" which Page Templates support to get around the fact that HTTP
PUT attemtpts to render the page before doing the PUT, but we actually just want to save the unrendered source. If
you're creating an XML file, the "magic" hackaround name is /source.xml instead of /source.html .**

Now that you've saved the template, you can go back to Zope and click on index_html and then click on its Test tab
to view the template. It looks just like it the mock-up, so everything is going well.

Now let's tweak the above HTML and add some dynamic magic. First, we want the title of the template to be dynamic.
In Zope, you'll notice that the Page Template has a title form field that you can fill in. Instead of being static HTML, we
want Zope to dynamically insert the Page Templates title into the rendered version of the template. Here's how:

<head>
 ...
 <title tal:content="template/title">File Library</title>
 ...

<body>
<h1 tal:content="template/title">File Library</h1>
...

Now go to Zope and change the title of the index_html page template to "My File Library". After saving that change,
click the Test tab. As you can see, the Page Template dynamically inserted the "My File Library" title of the template
object in the output of the template.

Notice the new content tag attribute. This attribute says to "replace the content of this tag (the text between the h1
tags) with the variable 'template/title'". In this case, template/title is the title of the index_html Page Template.

The next bit of magic is to build a dynamic file list that shows you all the File objects in the FileLib folder.

The Zope Book (2.6 Edition)

135

To start, you need to write just one line of Python. Go to the FileLib folder and create a Script (Python) in that
folder. Give the script the id files and click Add and Edit . Edit the script to contain the following Python code:

Script (Python) "files"

return container.objectValues(['File'])

This will return a list of any File objects in the FileLib folder. Now, edit your index_html Page Template and add
some more tal attributes to your mock-up:

...
<tr tal:repeat="item container/files">
 <td><a href="Sample.tgz" class="filename"
 tal:attributes="href item/getId"
 tal:content="item/getId">Sample.tgz</td>
 <td tal:content="item/getContentType">application/x-gzip-compressed</td>
 <td tal:content="item/getSize">22 K</td>
 <td tal:content="item/bobobase_modification_time">2001/09/17</td>
</tr>
...

The interesting part is the tal:repeat attribute on the tr HTML tag. This attribute tells the template to iterate over
the values returned by "container/files", which is the Python script you created in the current folder (the "container"),
which returns a list of Zope objects. The repeat tag causes Zope to create a new table row with columns representing a
bit of metadata about each of those objects. During each iteration, the current file object being iterated over is assigned
the name item .

The cells of each row all have tal:content attributes that describe the data that should go in each cell. During each
iteration through the table row loop, the id, the content type, the size, and modification time replace the dummy data in
the rows. Also notice how the anchor link dynamically points to the current file using tal:attributes to rewrite the
href attribute.

This data comes from the item object by calling Zope API methods on what we know is a file object. The methods
item/getId , item/getContentType , item/getSize , item/bobobase_modification_time are all
standard API functions that are documented in Zope's online help system as well as in the various appendices to this
book.

Go to Zope and test this script by first uploading some Files into the FileLib folder. This is done by selecting File
from the add menu and clicking on the upload form button on the next screen. After uploading your file, you can just
click Add . If you do not specify an id, then the filename of the file you are uploading will be used.

After uploading some files, go to the index_html Page Template and click the Test tab. Now, you can see the Page
Template has rendered a very simple file library with just a few HTML tag attribute changes.

There are a few cosmetic problems with the file library as it stands. The size and date displays of the default content
are very pretty, but the values returned from Zope don't match the format of the dummy content. Instead, they are "raw"
numbers. You would like the size of the files to be displayed in K or MB rather than bytes. Here's a Python-based script
that you can use for this:

Script (Python) "file_size"
##
"""
Return a string describing the size of a file.
"""
bytes=context.getSize()
k=bytes/1024.0
mb=bytes/1048576.0
if mb > 1:
 return "%.2f MB" % mb
if k > 1:

The Zope Book (2.6 Edition)

136

 return "%d K" % k
return "%d bytes" % bytes

Create this script with the Id file_size in your FileLib folder. It calculates a file's size in kilobytes and megabytes
and returns an appropriate string describing the size of the file. Now you can use the script in place of the
item/getSize expression:

...
<td tal:content="item/file_size">22 K</td>
...

Replacing this bit of TAL in your file_size template causes Zope to call the 'file_size" script on each object,
returning the file's size. When the script runs during the loop, the "context" of the script is "item", which is a File object.
This is an example of Zope's aquisition in action, as the file_size script is actually a sibling of the items in the
folder, although it can be used as a method of the items in the folder. The expression item/file_size translates to
"find a method of the object item named file_size . If the object named file_size has no "real" method named
file_size , use acquisition to find a file_size method." Zope finds the Script (Python) file_size script and use it
as a method of the item object.

You can also fix the date formatting problems with a little Python. Create a script named file_date in your
FileLib folder:

Script (Python) "file_date"
##
"""
Return modification date as string YYYY/MM/DD
"""
date=context.bobobase_modification_time()
return "%s/%s/%s" % (date.year(), date.month(), date.day())

Now replace the item/bobobase_modification_time expression with a reference to this script:

...
<td tal:content="item/file_date">2001/9/17</td>
...

Congratulations, you've successfully taken a mock-up and turned it into a dynamic Page Template. This example
illustrates how Page Templates work well as the "presentation layer" to your applications. The Page Templates present
the application logic (the Python-based scripts) and the application logic works with the data in your site (the files).

Remote Editing with FTP and WebDAV

You can edit Page Templates remotely with FTP and WebDAV, as well as HTTP PUT publishing. Using these
methods, you can use Page Templates without leaving advanced WYSIWYG editors such as Macromedia
Dreamweaver.

The previous section showed you how to edit a page remotely using Amaya, which uses HTTP PUT to upload pages.
You can do the same thing with FTP and WebDAV using the same steps.

1. Create a Page Template in the Zope Management interface. You can name it with whatever file extension you wish.
Many folks prefer .html , while others prefer .zpt . Note, some names such as index_html have special
meanings to Zope.

2. Edit your file with your editor and then save it. When you save it you should use the same URL you used to retrieve
it.

3. Optionally reload your page after you edit it, to check for error comments. See the next section for more details on
debugging.

The Zope Book (2.6 Edition)

137

You can create new Page Templates without using the Zope Management Interface. See the PUT_factory section of
the chapter entitled Using External Tools for more information.

Debugging and Testing

Zope helps you find and correct problems in your Page Templates. Zope notices problem at two different times: when
you're editing a Page Template, and when you're viewing a Page Template. Zope catches different types of problems
when you're editing than when you're viewing a Page Template.

You may have already seen the trouble-shooting comments that Zope inserts into your Page Templates when it runs
into problems. These comments tell you about problems that Zope finds while you're editing your templates. The sorts
of problems that Zope finds when you're editing are mostly errors in your tal statements. For example:

<!-- Page Template Diagnostics
 Compilation failed
 TAL.TALDefs.TALError: bad TAL attribute: 'contents', at line 10, column 1
-->

This diagnostic message lets you know that you mistakenly used tal:contents rather than tal:content on line
10 of your template. Other diagnostic messages will tell you about problems with your template expressions and
macros.

When you're using the Zope management interface to edit Page Templates it's easy to spot these diagnostic
messages, because they are shown in the "Errors" header of the management interface page when you save the Page
Template. However, if you're using WebDAV or FTP it's easy to miss these messages. For example, if you save a
template to Zope with FTP, you won't get an FTP error telling you about the problem. In fact, you'll have to reload the
template from Zope to see the diagnostic message. When using FTP and WebDAV it's a good idea to reload templates
after you edit them to make sure that they don't contain diagnostic messages.

If you don't notice the diagnostic message and try to render a template with problems you'll see a message like this:

Error Type: PTRuntimeError
Error Value: Page Template hello.html has errors.

That's your signal to reload the template and check out the diagnostic message.

In addition to diagnostic messages when editing, you'll occasionally get regular Zope errors when viewing a Page
Template. These problems are usually due to problems in your template expressions. For example, you might get an
error if an expression can't locate a variable:

Error Type: Undefined
Error Value: "unicorn" not found in "here/unicorn"

This error message tells you that it cannot find the unicorn variable which is referenced in the expression,
here/unicorn . To help you figure out what went wrong, Zope includes information about the environment in the
traceback. This information will be available in your error_log (in your Zope root folder). The traceback will include
information about the environment:

...
'here': <Application instance at 01736F78>,
'modules': <Products.PageTemplates.ZRPythonExpr._SecureModuleImporter instance at 016E77FC>,
'nothing': None,
'options': {'args': ()},
'request': ...
'root': <Application instance at 01736F78>,
'template': <ZopePageTemplate instance at 01732978>,
'traverse_subpath': [],
'user': amos})

The Zope Book (2.6 Edition)

138

...

This information is a bit cryptic, but with a little detective work it can help you figure out what went wrong. In this case, it
tells us that the here variable is an "Application instance". This means that it is the top-level Zope folder (notice how
root variable is the same "Application instance"). Perhaps the problem is that you wanted to apply the template to a
folder that had a unicorn property, but the folder to which you uploaded the template hasn't such a property.

XML Templates

Another example of the flexibility of Page Templates is that they can dynamically render XML as well as HTML. For
example, in a chapter within this book entitled Creating Basic Zope Applications , you create the following XML:

<guestbook>
 <entry>
 <comments>My comments</comments>
 </entry>
 <entry>
 <comments>I like your web page</comments>
 </entry>
 <entry>
 <comments>Please no blink tags</comments>
 </entry>
</guestbook>

This XML is created by looping over all the DTML Documents in a folder and inserting their source into comment
elements. In this section, we'll show you how to use Page Templates to generate this same XML.

Create a new Page Template called "entries.xml" in your guest book folder with the following contents:

<guestbook xmlns:tal="http://xml.zope.org/namespaces/tal">
 <entry tal:repeat="entry python:here.objectValues('DTML Document')">
 <comments tal:content="entry/document_src">Comment goes here...</comments>
 </entry>
</guestbook>

Make sure you set the content type to text/xml . Now, click Save Changes and click the Test tab. If you're using
Netscape, it will prompt you to download an XML document, if you are using MSIE 5 or higher, you will be able to view
the XML document in the browser.

Notice how the tal:repeat statement loops over all the DTML Documents. The tal:content statement inserts
the source of each document into the comments element. The xmlns:tal attribute is an XML namespace
declaration. It tells Zope that names that start with tal are Page Template commands. See Appendix C, "Zope Page
Templates Reference" for more information about TAL and TALES XML namespaces.

Creating XML with Page Templates is almost exactly like creating HTML. The most important difference is that you
must use "explicit" XML namespace declarations in the template text itself. Another difference is that you should set the
content type to text/xml or whatever the content-type for your XML should be. The final difference is that you can
browse the source of an XML template by going to source.xml rather than source.html .

Using Templates with Content

In general Zope supports content, presentation, and logic components. Page Templates are presentation components
and they can be used to display content components.

Zope 2.5 ships with several content components: ZSQL Methods, Files, and Images. DTML Documents and methods
are not really pure content components since they can hold content and execute DTML code. You can use Files for
textual content since you can edit the contents of Files if the file is less than 64K and contains text. However, the File
object is fairly basic and may not provide all of the features or metadata that you need.

The Zope Book (2.6 Edition)

139

Zope's Content Management Framework (CMF) solves this problem by providing an assortment of rich content
components. The CMF is Zope's content management add on. It introduces all kinds of enhancements including
work-flow, skins, and content objects. The CMF makes a lot of use of Page Templates. A later release of Zope will
probably include technologies from and inspired by the CMF.

The Zope Book (2.6 Edition)

140

Creating Basic Zope Applications

XXX - this chapter is not done. I got to just before "Factoring Out Stylesheets" and quit for now. The material prior to
that needs to be expanded and cleaned up as well. The examples also need to be converted to page templates.
-chrism

In this chapter you'll learn more about building basic web applications in Zope using Folders, Scripts, and Methods.
Another way of terming this is that you'll learn more about creating applications in Zope "instance space".

Building "Instance-Space" Applications

In Zope, there are a few ways to develop a web application. The simplest and fastest way, and the one we've been
concentrating on thus far in this book, is to build an application in instance space . To understand the term "instance
space", we need to once again put on our "object orientation hats".

When you create Zope objects by selecting them from the Zope "Add" list, you are creating instances of a class defined
by someone else (see the Object Orientation chapter if you need to brush up on these terms). For example, when you
add a Script (Python) object to your Zope database, you are creating an instance of the Script (Python) class. The
Script (Python) class was written by a Zope Corporation engineer. When you select "Script (Python)" from the Add list,
and you fill in the form to give an id and title and whatnot, and click the submit button on the form, Zope creates an
instance of that class in the Folder of your choosing. Instances such as these are inserted into your Zope database and
they live there until you delete them.

In the Zope application server, most object instances serve to perform presentation duties, logic duties, or content
duties. You can "glue" these instances together to create basic Zope applications. Since these objects are really
instances of a class, the term "instance space" is commonly used to describe the Zope root folder and all of its
subfolders. "Building an application in instance space" is defined as the act of creating Zope object instances in this
space and modifying them to act a certain way when they are executed.

Instance-space applications are typically created from common Zope objects. Script (Python) objects, Folders, DTML
Methods, Page Templates, and other Zope services can be glued together to build simple applications.

Instance-Space Applications vs. Products

In contrast to building applications in instance space, you may also build applications in Zope by builing them as
Products . Building an application as a Product differs from creating applications in instance space inasmuch as the act
of creating a Product typically allows you to extend Zope with new "addable" objects that appear in Zope's "Add" list.
Building a Product also typically allows you to more easily distribute an application to other people, and allows you to
build objects that may more closely resemble your "problem space". We explore one way to create Products in the
chapter entitled Extending Zope . Building a Product is typically more complicated than building an "instance-space"
application, so we get started here by describing how to build instance-space applications. When you find that it
becomes difficult to maintain, extend, or distribute an instance-space application you've written, it's probably time to
reconsider rewriting it as a Product.

Using A Folder as A Container For Your Intstance-Space Application

Folders provide containers for your applications. A natural way to build a simple Zope application is to create a Folder
in your Zope root folder to hold objects related to the application. For example, you may have an Invoices folder to hold
an invoice application. You could create "logic" objects inside that folder named addInvoice and editInvoice to allow you
to add and edit the invoices. The actual invoices themselves could be DTML Documents or File objects, which could

The Zope Book (2.6 Edition)

141

also live in the Invoices folder. Your Invoices folder thus becomes a small application.

URLs are used to work with instance-space Zope applications. As you've seen, you can display a Zope object by
visiting its URL in your browser, and in object-orientation terms, when you visit an object in a folder, you are "calling a
method in the context of the folder". So for example, the URL http://localhost:8080/Invoices/addInvoice
calls the addInvoice method of the Invoices folder. This URL would perhaps take you to a screen that allows you
to add an invoice. Likewise, the URL http://localhost:8080/Invoices/editInvoice?invoice_number=42
might call the editInvoice method of the Invoices folder, passing it the argument invoice_number with a
value of 42. The resulting HTML might allow you to edit invoice number 42.

Using Objects as Methods Of Folders Via URLs

The invoices example demonstrates a powerful Zope feature. You can execute a Zope object in the context of a folder
by visiting a URL that consists of the folder's URL followed by the id of a Zope object. For example, in the URL
http://localhost:8080/Invoices/addInvoice , the name Invoices refers to a folder. In object-orientation
terms, the "final" object in the URL (addInvoice) is then used as a "method". The object you call which is used as a
method may be a Script (Python) object, a DTML Method, a Page Template, or just about any other kind of Zope
object.

This facility is used throughout Zope and is a very general design pattern. In fact you are not restricted to using a folder
as the context of a method via a URL. You may call objects as methods in the context of many kinds of Zope objects
using the same URL technique.

Using Acquisition In Instance-Space Applications

The Zope facility named Acquisition proves useful when creating instance-space applications. Acquisition allows you to
share behavior between different parts of the same application. A folder is said to acquire an object by searching for
the object in its containers if it cannot find the object by name in itself.

For example, suppose you want to call a method named viewFolder on one of your folders. Perhaps you have many
different viewFolder objects which can be used as methods, each of which represents a particular view of a folder.
Zope "figures out" which one you want by first looking in the folder which is named by the "rightmost" portion of the
URL. For example, if you invoke the URL http://localhost:8080/Invoices/July/viewFolder , and the
"Invoices" and "July" objects are folders, the invoices object will be searched for a viewFolder object first. If Zope
can't find the object there it looks for an object named viewFolder in the folder's containing folder (July). If the
object can't be found there, it goes up another level. This process continues until Zope finds the object or gets to the
root folder. If Zope can't find the object in the root it gives up and raises an exception.

The Special Folder Object index_html

If there is an object in a Zope folder named index_html , the return value of this object will be used as the default view
of the folder when the folder's URL is called. This is analogous to how an index.html file provides a default view for a
directory in Apache and other web servers. Instead of explicitly including the name index_html in your URL to show
default content for a folder, you can omit it. For example, if you create an index_html object in your Invoices folder and
view the folder by clicking the View tab or by visiting the URL http://localhost:8080/Invoices/ , Zope will call
the index_html object in the Invoices folder and display its results. You can also use the more explicit URL
http://localhost:8080/Invoices/index_html , and it will display the same content.

A folder can also acquire an index_html object from its parent folders. You can use this behavior to create a default
view for a set of folders. To do so, create an index_html object in a folder which contains another set of folders. This
default view will be used for all the folders in the set. This behavior is already evident in Zope. If you create a set of
empty Folders in the Zope root folder, you will notice that when you view any of the Folders via a URL, the content of

The Zope Book (2.6 Edition)

142

the "root" folder's index_html method is displayed. The index_html in the root folder is acquired. Furthermore, if you
create more empty folders inside the folders you've just created in the root folder, a visit to these folders' URLs will also
show the root folder's index_html . This is acquisition at work. NOTE: We are using the index_html method as an
example here, but this will work with any Zope object which acts as a method, it needs not be named "index_html".

If you want a different default view of a given folder, just create a custom index_html object in that particular folder. This
allows you to override the default view of a particular folder on a case-by-case basis, while allowing other folders
defined at the same level to acquire a common default view.

The index_html object may be a DTML Method, a Page Template, a Script (Python) object, or any other Zope object
that is URL-accessible and which returns browser-renderable content. The content is typically HTML, but Zope doesn't
care. You can spit out XML or text or whatever you like.

Building the Zope Zoo Website

In this section, we'll create a simple web site in instance space for the "Zope Zoo". As the Zoo webmaster, it is your job
to make the web site easy to use and manage. Here are some things you'll need:

 • Zoo users must easily move around the site, just as if they were walking through a real Zoo.

 • All of your shared web layout tools, like a Cascading Style Sheet (CSS), must be in one easy to manage location.

 • You must provide a simple file library of various documents that describe the animals.

 • You need a site map so that users can quickly get an idea of the layout of the entire Zoo.

 • A Guest book must be created so that Zoo visitors can give you feedback and comments about your site.

 • A what's new section must be added to the guest book so that you can see any recent comments that have been
added.

Navigating the Zoo

In order for your navigation system to work, you will need to create some basic site structure. We need to create some
folders in your Zope system that represent the structure of your site. Let's use a zoo structure made out of Folders, as
shown in the figure below.

The Zope Book (2.6 Edition)

143

Figure 5-1 Zoo folder structure.

You should create a top-level folder named ZopeZoo . Within the ZopeZoo folder, you should create three subfolders,
Reptiles , Mammals and Fish . Within the Mammals folder, you should create a folder named Whales . Within the
Reptiles folder, you should create two folders, Lizards and Snakes .

To navigate your site, users will visit the default view of the ZopeZoo folder (the "front page") and click on one of the top
level folders to enter that particular part of the Zoo. They should also be able to use a very similar interface to keep
going deeper into the site. For instance, if the user wishes to visit the "Mammals" section, the view of the Mammals
section should have a similar interface to that of the Zoo itself. Also, the user should be able to back out of a section
and go up to the parent section.

To provide navigation facilities, in the ZopeZoo folder, create a DTML Method named navigation :

<dtml-in expr="objectValues('Folder')">
 <dtml-var title_or_id>
</dtml-in>

When the method you just created is executed, it displays a list of links. Each link targets the default view of a
subfolder. The list of subfolders displayed depends on the context in which the method is executed. For example, if the
method is executed in the context of the "Mammals" folder, it will display a link to the default view of the Whales folder.
If the method is executed in the context of the "ZopeZoo" folder, it will display links to the default views of the
"Mammals", "Fish", and "Reptiles" folders. It's important to notice that this method can be used to display the contents
of any folder, so we can use it for most of our "default" folder views. Furthermore, since we've placed this method in the
ZopeZoo folder, each of the zoo subfolders will acquire and use it.

Now, you need to incorporate the navigation method into the site. Let's create two DTML methods. One will be used as
a standard "header" for all pages within the site, the other a standard "footer". Do this by first creating a DTML Method
named standard_html_header in the ZopeZoo folder. We will include the navigation links in the display of this method
by referencing the navigation method via 'dtml-var':

<html>
<head><title><dtml-var title></title></head>
<body>
<dtml-var navigation>

The Zope Book (2.6 Edition)

144

Now create a DTML Method named standard_html_footer in your ZopeZoo folder and provide it with this content:

</body>
</html>

We need to add a front page to the Zoo site and then we can view the site and verify that the navigation works
correctly.

Adding a Front Page to the Zoo

In order to display our navigation and standard header and footer, we need a front page that serves as the welcome
screen for Zoo visitors. In order to do so, create a DTML Method in the ZopeZoo folder named index_html with the
following content:

<dtml-var standard_html_header>

 <h1>Welcome to the Zope Zoo</h1>

 <p>Here you will find all kinds of cool animals. You are in
 the <dtml-var getId> section.</p>

<dtml-var standard_html_footer>

Take a look at how your site appears by clicking on the View tab of the ZopeZoo folder. The results of doing so are
shown in the figure below.

Figure 5-2 Zope Zoo front page.

Here you start to see how things come together. At the top of your main page you see a list of links to the various
subsections. These links are created by the navigation method that is included by the standard_html_header method.

You can use the navigation links to travel through the various sections of the Zoo. Use this navigation interface to find
the reptiles section.

Zope builds this page to display a folder by looking for the default folder view method , index_html . It walks up the zoo
site folder by folder until it finds the index_html method in the ZopeZoo folder. It then calls this method on the Reptiles
folder. The index_html method calls the standard_html_header method which in turn calls the navigation method.

The Zope Book (2.6 Edition)

145

Finally, the index_html method displays a welcome message and calls the standard_html_footer .

What if you want the reptile page to display something besides the welcome message? You can replace the index_html
method in the reptile section with a more appropriate display method and still take advantage of the zoo header and
footer including navigation.

In the Reptile folder create a DTML Method named index_html . Give it some content more appropriate to reptiles:

<dtml-var standard_html_header>

<h1>The Reptile House</h1>

<p>Welcome to the Reptile House.</p>

<p>We are open from 6pm to midnight Monday through Friday.</p>

<dtml-var standard_html_footer>

Now take a look at the reptile page by going to the Reptile folder and clicking the View tab.

Since the index_html method in the Reptile folder includes the standard headers and footers, the reptile page still
includes your navigation system.

Click on the Snakes link on the reptile page to see what the Snakes section looks like. The snakes page looks like the
Reptiles page because the Snakes folder acquires its index_html display method from the Reptiles folder instead of
from the ZopeZoo folder.

Improving Navigation

The navigation system for the zoo works pretty well, but it has one big problem. Once you go deeper into the site you
need to use your browser's back button to go back. There are no navigation links to allow you to navigate up the folder
hierarchy. Let's add a navigation link to allow you to go up the hierarchy. Change the navigation method in the
ZopeZoo folder:

Return to parent

<dtml-in expr="objectValues('Folder')">
 <dtml-var title_or_id>

</dtml-in>

Now view the ZopeZoo folder to see how this new link works, as shown in the figure below.

The Zope Book (2.6 Edition)

146

Figure 5-3 Improved zoo navigation controls.

As you can see, the Return to parent link allows you to go back up from a section of the site to its parent. However,
some problems remain; when you are at the top level of the site you still get a Return to parent link which leads
nowhere. Let's fix this by changing the navigation method to hide the parent link when you're in the ZopeZoo folder:

<dtml-if expr="id != 'ZopeZoo'">
 Return to parent

</dtml-if>

<dtml-in expr="objectValues('Folder')">
 <dtml-var title_or_id>

</dtml-in>

Now the method tests to see if the current context object is named ZopeZoo and declines to display the "Return to
parent" link if so. View the ZopeZoo folder to see the result.

There are still some things that could be improved about the navigation system. For example, it's pretty hard to tell
what section of the Zoo you're in. You've changed the reptile section, but the rest of the site all looks pretty much the
same with the exception of having different navigation links. It would be nice to have each page tell you what part of the
Zoo you're in.

Let's change the navigation method once again to display where you are in the Zoo:

<dtml-if expr="id != 'ZopeZoo'">
 <h2><dtml-var title_or_id> Section</h2>
 Return to parent

</dtml-if>

<dtml-in expr="objectValues('Folder')">
 <dtml-var title_or_id>

</dtml-in>

Now view the ZopeZoo folder again and navigate into the Reptiles section. Notice that within the Reptiles section, you
see a header which says "Reptiles Section", as shown in the figure below.

The Zope Book (2.6 Edition)

147

Figure 5-4 Zoo page with section information.

Factoring out Style Sheets

Zoo pages are built by collections of methods that operate on folders. For example, the header method calls the
navigation method to display navigation links on all pages. In addition to factoring out shared behavior such as
navigation controls, you can use different Zope objects to factor out shared content.

Suppose you'd like to use CSS (Cascading Style Sheets) to tailor the look and feel of the zoo site. One way to do this
would be to include the CSS tags in the standard_html_header method. This way every page of the site would have the
CSS information. This is a good way to reuse content, however, this is not a flexible solution since you may want a
different look and feel in different parts of your site. Suppose you want the background of the snakes page to be green,
while the rest of the site should have a white background. You'd have to override the standard_html_header in the
Snakes folder and make it exactly the same as the normal header with the exception of the style information. This is an
inflexible solution since you can't vary the CSS information without changing the entire header.

You can create a more flexible way to define CSS information by factoring it out into a separate object that the header
will insert. Create a DTML Document in the ZopeZoo folder named style_sheet . Change the contents of the document
to include some style information:

<style type="text/css">
h1{
 font-size: 24pt;
 font-family: sans-serif;
}
p{
 color: #220000;
}
body{
 background: #FFFFDD;
}
</style>

This is a CSS style sheet that defines how to display h1 , p and body HTML tags. Now let's include this content into our
web site by inserting it into the standard_html_header method:

<html>
<head>
<dtml-var style_sheet>

The Zope Book (2.6 Edition)

148

</head>
<body>
<dtml-var navigation>

Anonymous User - June 16, 2002 6:47 pm:
 The title is missing from the standard_html_header for no obvious reason.
 It was there in the initial code for standard_html_header, so it should be present here as well, IMHO.

Now, when you look at documents on your site, all of their paragraphs will be dark red, and the headers will be in a
sans-serif font.

To change the style information in a part of the zoo site, just create a new style_sheet document and drop it into a
folder. All the pages in that folder and its sub-folders will use the new style sheet.

Creating a File Library

File libraries are common on web sites since many sites distribute files of some sort. The old fashioned way to create a
file library is to upload your files, then create a web page that contains links to those files. With Zope you can
dynamically create links to files. When you upload, change or delete files, the file library's links can change
automatically.

Create a folder in the ZopeZoo folder called Files . This folder contains all of the file you want to distribute to your web
visitors.

In the Files folder create some empty file objects with names like DogGrooming or HomeScienceExperiments , just to
give you some sample data to work with. Add some descriptive titles to these files.

DTML can help you save time maintaining this library. Create an index_html DTML Method in the Files folder to list all
the files in the library:

<dtml-var standard_html_header>

<h1>File Library</h1>

<dtml-in expr="objectValues('File')">
 <dtml-var title_or_id>
</dtml-in>

<dtml-var standard_html_footer>

Now view the Files folder. You should see a list of links to the files in the Files folder as shown in Figure 5-5 .

The Zope Book (2.6 Edition)

149

Figure 5-5 File library contents page.

If you add another file, Zope will dynamically adjust the file library page. You may also want to try changing the titles of
the files, uploading new files, or deleting some of the files.

The file library as it stands is functional but Spartan. The library doesn't let you know when a file was created, and it
doesn't let you sort the files in any way. Let's make the library a little fancier.

Most Zope objects have a bobobase_modification_time method that returns the time the object was last modified. We
can use this method in the file library's index_html method:

<dtml-var standard_html_header>

<h1>File Library</h1>

<table>
 <tr>
 <th>File</th>
 <th>Last Modified</th>
 </tr>

<dtml-in expr="objectValues('File')">
 <tr>
 <td><dtml-var title_or_id></td>
 <td><dtml-var bobobase_modification_time fmt="aCommon"></td>
 </tr>
</dtml-in>

</table>

<dtml-var standard_html_footer>

The new file library method uses an HTML table to display the files and their modification times.

Finally let's add the ability to sort this list by file name or by modification date. Change the index_html method again:

<dtml-var standard_html_header>

<h1>File Library</h1>

<table>

The Zope Book (2.6 Edition)

150

 <tr>
 <th>File</th>
 <th>Last Modified</th>
 </tr>

<dtml-if expr="_.has_key('sort') and sort=='date'">
 <dtml-in expr="objectValues('File')"
 sort="bobobase_modification_time" reverse>
 <tr>
 <td><dtml-var title_or_id></td>
 <td><dtml-var bobobase_modification_time fmt="aCommon"><td>
 </tr>
 </dtml-in>
<dtml-else>
 <dtml-in expr="objectValues('File')" sort="id">
 <tr>
 <td><dtml-var title_or_id></td>
 <td><dtml-var bobobase_modification_time fmt="aCommon"><td>
 </tr>
 </dtml-in>
</dtml-if>

</table>

<dtml-var standard_html_footer>

Now view the file library and click on the File and Last Modified links to sort the files. This method works with two
sorting loops. One uses the in tag to sort on an object's id . The other does a reverse sort on an object's
bobobase_modification_time method. The index_html method decides which loop to use by looking for the sort
variable. If there is a sort variable and if it has a value of date then the files are sorted by modification time. Otherwise
the files are sorted by id.

Building a Guest Book

A guest book is a common and useful web application that allows visitors to your site to leave messages. Figure Figure
5-6 shows what the guest book you're going to write looks like.

Figure 5-6 Zoo guest book.

Start by creating a folder called GuestBook in the root folder. Give this folder the title The Zope Zoo Guest Book .
The GuestBook folder will hold the guest book entries and methods to view and add entries. The folder will hold

The Zope Book (2.6 Edition)

151

everything the guest book needs. After the guest book is done you will be able to copy and paste it elsewhere in your
site to create new guest books.

You can use Zope to create a guest book several ways, but for this example, you'll use one of the simplest. The
GuestBook folder will hold a bunch of Files, one file for each guest book entry. When a new entry is added to the guest
book, a new file is created in the GuestBook folder. To delete an unwanted entry, just go into the GuestBook folder and
delete the unwanted file using the management interface.

Let's create a method that displays all of the entries. Call this method index_html so that it is the default view of the
GuestBook folder:

<dtml-var standard_html_header>

<h2><dtml-var title_or_id></h2>

<!-- Provide a link to add a new entry, this link goes to the
addEntryForm method -->

<p>
 Sign the guest book
</p>

<!-- Iterate over each File in the folder starting with
the newest documents first. -->

<dtml-in expr="objectValues('File')"
 sort="bobobase_modification_time" reverse>

<!-- Display the date, author and contents of each file -->

 <p>
 On <dtml-var bobobase_modification_time fmt="aCommon">,
 <dtml-var guest_name html_quote null="Anonymous"> said:

 <dtml-var sequence-item html_quote newline_to_br>

 <!-- Make sure we use html_quote so the users can't sneak any
 HTML onto our page -->

</p>

</dtml-in>

<dtml-var standard_html_footer>

This method loops over all the files in the folder and displays each one. Notice that this method assumes that each file
will have a guest_name property. If that property doesn't exist or is empty, then Zope will use Anonymous as the guest
name. When you create a entry file you'll have to make sure to set this property.

Next, let's create a form that your site visitors will use to add new guest book entries. In the index_html method above
we already created a link to this form. In your GuestBook folder create a new DTML Method named addEntryForm :

<dtml-var standard_html_header>

<p>Type in your name and your comments and we'll add it to the
guest book.</p>

<form action="addEntryAction" method="POST">
<p> Your name:
 <input type="text" name="guest_name" value="Anonymous">
</p>
<p> Your comments:

 <textarea name="comments" rows="10" cols="60"></textarea>
</p>

<p>

The Zope Book (2.6 Edition)

152

 <input type="submit" value="Send Comments">
</p>
</form>

<dtml-var standard_html_footer>

Now when you click on the Sign Guest Book link on the guest book page you'll see a form allowing you to type in your
comments. This form collects the user's name and comments and submits this information to a method named
addEntryAction .

Now create an addEntryAction DTML Method in the GuestBook folder to handle the form. This form will create a new
entry document and return a confirmation message:

<dtml-var standard_html_header>

<dtml-call expr="addEntry(guest_name, comments)">

<h1>Thanks for signing our guest book!</h1>

<p><a href="<dtml-var URL1>">Return
to the guest book.</p>

<dtml-var standard_html_footer>

Anonymous User - May 9, 2002 4:48 pm:
 URL1? Not working for me!?
Anonymous User - June 3, 2002 2:24 am:
 I've tried to send some comments to the guestbook, files of comments have been created but those comments
 didn't list out like the above pic.
Anonymous User - June 13, 2002 5:01 am:
 is it possible to send the form data straight to the form and then return to the guestbook page with the
 validated entry?

This method creates a new entry by calling the addEntry method and returns a message letting the user know that their
entry has been added.

The last remaining piece of the puzzle is to write the script that will create a file and sets its contents and properties.
We'll do this in Python since it is much clearer than doing it in DTML. Create a Python-based Script in the GuestBook
folder called addEntry with parameters guest_name and comments :

Script (Python) "addEntry"
##parameters=guest_name, comments
##
"""
Create a guest book entry.
"""
create a unique file id
id='entry_%d' % len(context.objectIds())

create the file
context.manage_addProduct['OFSP'].manage_addFile(id,
 title="", file=comments)

add a guest_name string property
doc=getattr(context, id)
doc.manage_addProperty('guest_name', guest_name, 'string')

Anonymous User - May 22, 2002 11:06 am:
 Where does the ['OFSP'] come from?
 After digging around and doing a few searches, I found it's a core part of
 Zope, but no explainations.
Anonymous User - June 12, 2002 12:38 pm:
 I get an error that states:
 Error Type: TypeError
 Error Value: addEntry() takes no arguments (2 given)�
 What did I do wrong?
Anonymous User - June 15, 2002 9:54 am:

The Zope Book (2.6 Edition)

153

 You forgot to include the parameters for the Python script in the Parameters field when pasting the script
 into a new Python Script object. You need to explicitly state what parameter your python 'function' takes
 when creating the script.

This script uses Zope API calls to create a File and to create a property on it. This script performs the same sort of
actions in a script that you could do manually; it creates a file, edits it and sets a property.

The guest book is now almost finished. To use the simple guest book, just visit http://localhost:8080/GuestBook/ .

One final thing is needed to make the guest book complete. More than likely your security policy will not allow
anonymous site visitors to create files. However the guest book application should be able to be used by anonymous
visitors. In Chapter 7, User and Security, we'll explore this scenario more fully. The solution is to grant special
permission to the addEntry method to allow it to do its work of creating a file. You can do this by setting the Proxy role
of the script to Manager . This means that when the script runs it will work as though it was run by a manager
regardless of who is actually running the method. To change the proxy roles go to the Proxy view of the addEntry
script, as shown in Figure 5-7 .

Figure 5-7 Setting proxy roles for the addEntry script.

Now select Manager from the list of proxy roles and click Change .

Congratulations, you've just completed a functional web application. The guest book is complete and can be copied to
different sites if you want.

Extending the Guest Book to Generate XML

All Zope objects can create XML. It's fairly easy to create XML with DTML. XML is just a way of describing information.
The power of XML is that it lets you easily exchange information across the network. Here's a simple way that you
could represent your guest book in XML:

<guestbook>
 <entry>
 <comments>My comments</comments>
 </entry>
 <entry>
 <comments>I like your web page</comments>
 </entry>

The Zope Book (2.6 Edition)

154

 <entry>
 <comments>Please no blink tags</comments>
 </entry>
</guestbook>

This XML document may not be that complex but it's easy to generate. Create a DTML Method named "entries.xml" in
your guest book folder with the following contents:

<guestbook>
 <dtml-in expr="objectValues('DTML Document')">
 <entry>
 <comments><dtml-var document_src html_quote></comments>
 </entry>
 </dtml-in>
</guestbook>

Anonymous User - May 4, 2002 1:12 am:
 The guestbook entries are not 'DTML Document' type objects, but 'File' type objects in the above examples.
 Thus, I think the following codes are more suitable.
 <?xml version="1.0" encoding="EUC-KR" ?>�
 <guestbook>
 <dtml-in expr="objectValues('File')">
 <entry>
 <author><dtml-var guest_name null="Anonymous"></author>
 <comments><dtml-var sequence-item html_quote></comments>
 </entry>
 </dtml-in>
 </guestbook>

As you can see, DTML is equally adept at creating XML as it is at creating HTML. Simply embed DTML tags among
XML tags and you're set. The only tricky thing that you may wish to do is to set the content-type of the response to
text/xml , which can be done with this DTML code:

<dtml-call expr="RESPONSE.setHeader('content-type', 'text/xml')">

The whole point of generating XML is producing data in a format that can be understood by other systems. Therefore
you will probably want to create XML in an existing format understood by the systems you want to communicate with. In
the case of the guest book a reasonable format may be the RSS (Rich Site Summary) XML format. RSS is a format
developed by Netscape for its my.netscape.com site, which has since gained popularity among other web logs and
news sites. The Zope.org web site uses DTML to build a dynamic RSS document.

Congratulations! You've XML-enabled your guest book in just a couple minutes. Pat yourself on the back. If you want
extra credit, research RSS enough to figure out how to change entries.xml to generate RSS.

The Next Step

This chapter shows how simple web applications can be made. Zope has many more features in addition to these, but
these simple examples should get you started on create well managed, complex web sites.

In the next chapter, we'll see how the Zope security system lets Zope work with many different users at the same time
and allows them to collaborate together on the same projects.

The Zope Book (2.6 Edition)

155

Users and Security

Introduction to Zope Security

Zope is a multi-user system. However, instead of relying upon the user accounts provided by the operating system
under which it runs, Zope maintains one or more of its own user databases. It is not necessary to create a user account
on the operating system under which Zope runs in order to grant someone a user account which they may use to
access your Zope application or manage Zope via its management interface.

It is important to note that Zope users do not have any of the privileges of a "normal" user on your computer's operating
system. For instance, they do not possess the privilege to change arbitrary files on your computer's filesystem.
Typically, a Zope user may influence the content of databases that are connected to Zope may execute scripts (or
other "logic" objects) based on Zope's security-restricted execution environment. It is also possible to allow users to
create their own scripts and content "through the web" by giving them access to the Zope Management Interface.
However, you can restrict the capability of a user or a class of users to whatever suits your goals. The important
concept to absorb is that Zope's security is entirely divorced from the operating system upon which it runs.

In Zope, users have only the capabilities granted to them by a Zope security policy . As the administrator of a Zope
system, you have the power to change your Zope system's security policies to whatever suits your business
requirements.

Furthermore, using security policies you can provide the capability to "safely" delegate capabilities to users defined
within different parts of a Zope site. "Safe delegation" is one of the important and differentiating features of Zope. It is
possible to grant users the capability in a Zope site to administer users and create scripts and content via the Zope
Management Interface. This is called "safe" delegation because it is relatively "safe" to grant users these kinds of
capabilities within a particular portion of a Zope site, as it does not compromise operating system security nor Zope
security in other portions of the site. Caveats to safe delegation pertain to denial of service and resource exhaustion (it
is not possible to control a user's resource consumption with any true measure of success within Zope), but it is
possible to delegate these capabilities to "semi-trusted" users in order to decentralize control of a web site, allowing it
to grow faster and require less oversight from a central source.

In this chapter we will look more closely at administering users, building roles, mapping roles to permissions, and
creating a security policy for your Zope site.

Review: Logging In and Logging Out of the Zope Management Interface

As we first saw in the chapter entitled Installing Zope , you may log into the Zope Management Interface by visiting a
"management" URL in your web browser, entering a username and password when prompted. We also pointed out in
Using the Zope Management Interface that due to the way many web browsers work, you often must perform an extra
step when an authentication dialog is raised or you must quit your browser to log out of Zope. Review these chapters
for more information about the basics of logging in and out of the Zope Management Interface.

Zope's "Stock" Security Setup

"Out of the box", a vanilla Zope site has two different classes of users: Managers and Anonymous users. You have
already seen via the Installing Zope chapter how you can log into the Zope management interface with the "initial" user
called "admin". The initial "admin" user is a user with the Manager role, which allows him to perform almost any duty
that can be performed within a Zope instance.

The Zope Book (2.6 Edition)

156

By default, in the "stock" Zope setup, Managers have the rights to alter Zope content and logic objects and view the
management interface, while the Anonymous users are only permitted to view rendered content. This may be sufficient
for many simple websites and applications, especially "public-facing" sites which have no requirement for users to "log
in" or compose their own content.

Identification and Authentication

When a user accesses a protected resource (for example, by attempting to view a "protected" DTML Method) Zope will
ask the user to log in by presenting some sort of authentication dialog. Once the dialog has been "filled out" and
submitted, Zope will look for the user account represented by this set of credentials.

Zope identifies a user by examining the username and password provided during the entry into the authentication
dialog. If Zope finds a user within one of its user databases with the username provided, the user is identified.

Once a user has been identified, authentication may or may not happen. Authentication succeeds if the password
provided by the user in the dialog matches the password registered for that user in the database.

Zope will only attempt to identify and authenticate a user if he attempts to perform an action against Zope which an
anonymous user has not been permitted the capability to perform; if a user never attempts to access a protected
resource, Zope will continue to treat the user as an anonymous user.

Zope prompts a user for authentication if the user attempts to access a "protected" resource without an adequate set of
credentials, as determined by the resource's security policy. For example, if a user attempts to access a method of an
object which has a restrictive security policy (like all of Zope's management interface methods) the user will be
prompted for authentication if he is not logged in. You've seen this behavior already if you've ever attempted to log in to
Zope and have been asked for a username and password to access the ZMI. The ZMI is an example of a Zope
application. Zope's security machinery performs security checks on behalf of the ZMI; it "pops up" an authentication
dialog requesting that the user enter a username and password.

Different things can happen with respect to being prompted for authentication credentials in response to a request for a
protected resource depending on the current state of a login session. If the user has not not yet logged in, Zope will
prompt the user for a username and password. If the user is logged in but the account under which he is logged in
does not have sufficient privilege to perform the action he has requested, Zope will prompt him for a different username
and password. If he is logged in and the account under which he has logged in does have sufficient privileges to
perform the requested action, the action will be performed. If a user cannot be authenticated because he provides a
nonexistent username or an incorrect password to an existing authentication dialog, Zope re-prompts the user for
authentication information as necessary until the user either "gets it right" or gives up.

In general, there is no need for a user to log in to Zope if he only wishes to use public resources. For example, to view
the parts of your Zope website that are publically available, a user should not need to log in.

Authorization, Roles, and Permissions

Once a user has been authenticated, Zope determines whether or not he has access to the resource which is being
protected. This process is called authorization . Remember that the only reason that Zope asked for credentials is
because the user was attempting to view a resource which was not viewable by an anonymous user. The "resource
which is being protected" referred to above is the object which the user requested to perform an action against, which
caused the authentication process to begin.

The process of authorization involves two intermediary layers between the user and the protected resource: roles and
permissions .

The Zope Book (2.6 Edition)

157

Users have roles which describe "what they can do" such as "Author", "Manager", and "Editor". These roles are
controlled by the Zope system administrator. Users may have more than one role, and may have a different set of roles
in different contexts. Zope objects have permissions which describe "what can be done with them" such as "View",
"Delete objects", and "Manage properties". These permissions are defined either within Zope itself or by Zope Products
, each of which may define its own set of permissions.

A context in Zope is a "place" within the Zope object hierarchy. In relation to security, a context is an object that has a
location within the Zope Object Database. For example, a description of a context could be expressed as "the
Examples Folder object within the Zope root object". Another example of a context might be "a DTML Method object
named show_css within the Zope root folder". In essence, a context can be thought of as an object's "location" within
the Zope Object Database, described by its "path". Each object that exists in the Zope Object Database which has a
web-manageable interface can be associated with its own security policy. Objects can also "acquire" security policies
from containing objects in order to ease the burden of creating a security policy. In fact, most Zope objects acquire their
security policies from their containers because it makes a given security policy easier to maintain. Only when there are
exceptions to the "master" security policy in a context are individual objects associated with a differing policy.

In essence, security policies map roles to permissions in a context ; in other words they say "who" can do "what", and
"where". For example, the security policy for a Folder (the context) may associate the "Manager" role (the roles) with
the "Delete objects" permission (the permissions). Thus, this security policy allows managers to delete objects in this
folder. If objects created within this folder do not override their parents' security policy, they acquire this policy. So, for
example, if a DTML Method is created within this folder, it may also be deleted by users with the Manager role.
Subobjects within subfolders of the original folder have the same policy unless they override it themselves, ad infinitum.

Managing Users

In the chapter entitled Installing Zope , you were provided with an "initial" account named admin , which possesses
the Manager role, allowing you to manage the objects in your Zope instance. To allow other people to log into Zope,
and to further understand Zope security, you should create user accounts under which different users may
authenticate.

Creating Users in User Folders

A Zope User object defines a user account. A Zope User has a name, a password, one or more roles , and various
other properties. Roles are granted to a user in order to make it easier to control the scope of what he or she may do
within a Zope site.

To create user accounts in Zope, you create users within User Folders . A user folder contains user objects that define
Zope user accounts. User Folder objects always have a Zope "id" of acl_users . More than one user folder can exist
within a Zope instance, but more than one user folder may not exist within the same Zope Folder.

To create a new account, visit the root Zope folder. Click on the object named acl_users . Click the Add button to
create a new user.

The Zope Book (2.6 Edition)

158

Figure 11-1 Adding a user to a user folder.

The form shown above lets you define the user. Type a username in the Name field (for example, "bob"). The
username can contain letters, spaces, and numbers. The username is case sensitive. Choose a password for your new
user and enter it in the Password and (Confirm) fields. In the next section, we will provide information about allowing a
user to change his or her own password.

The Domains field lets you restrict Internet domains from which the user can log in. This allows you to add another
safety control to your account. For example if you always want your a user to log in from work you could enter your
work's Internet domain name, for example "myjob.com", in the Domains field. You can specify multiple domains
separated by spaces to allow the user to log in from multiple domains. For example if you decide that your coworker
should be able to manage Zope from their home account too, you could set the domains to "myjob.com myhome.net".
You can also use IP numbers with asterisks to indicate wildcard names instead of domain names to specify domains.
For example, "209.67.167.*" will match all IP addresses that start with "209.67.167".

The Roles multiple select list indicates which roles the user should have. The Zope default roles include Manager and
Owner . In general users who need to perform management tasks using the Zope Management Interface should be
given the Manager role. The Owner role is not appropriate to grant in most cases because a user normally only has the
Owner role in the context of a specific object. Granting the Owner role to a user in the User Folder management
interface grants that user ownership of all objects within the folder in which the user folder is placed as well as all
subfolders and subobjects of that folder. It is unfortunate that the Owner role is present in the list of roles to choose
from in the User Folder management interface, as it is confusing, little-used, and only now exists to service backwards
compatibility. In most cases it can be ignored completely.

You may define your own roles such as Editor and Reviewer . In the section later in this chapter named "Defining
Roles", we will create a new set of roles. For now, we will work with the "stock" Zope roles.

To create the new user click the Add button. You should see a new user object in the user folder.

Zope User accounts defined in the "stock" user folder implementation do not support additional properties like email
addresses and phone numbers. For support of properties like these, you will have to use external User products like
the CMF Membership Component (in the CMF) or exUserFolder .

Users can not be copied and pasted between User Folders. The facility does not exist to perform this.

The Zope Book (2.6 Edition)

159

Editing Users

You can edit existing users by clicking on their name within the User Folder management interface screen. Performing
this action causes a form to be displayed which is very similar to the form you used to create a user. In fact, you may
control most of the same settings that we detailed in the "Adding Users" section from within this form. It is possible to
visit this management screen and change a user's password, his roles, and his domain settings. In the "stock" user
folder implementation, you cannot change a user's name, however, so you will need to delete and recreate a user if
you need to change his name.

It is not possible for someone to find out a user's password by using the management interface. Another manager may
have access to change another user's password, but he may not find out what the current password is from within the
management interface. If a user's password is lost, it is lost forever.

Like all Zope management functions, editing users is protected by the security policy. Users can only change their
password if they have the Manage Users permission in the context of their own user folder, which managers have by
default. It is often desirable to allow users to change their own passwords. One problem is that by giving a user the
Manage Users permission, they are also able to edit other user accounts and add/delete users. This may or may not be
what you want.

To grant the capability for users to change their own passwords without being able to influence other users' information,
set up a script with Proxy Roles to do the work for you. See msx's mini-how-to for more information, or create a script to
do so after reading the section within this chapter entitled "Proxy Roles".

In general, user folders work like normal Zope folders; you can create, edit and delete contained objects. However,
user folders are not as capable as normal folders. You cannot cut and paste users in a user folder, and you can't create
anything besides a user in a user folder.

To delete an existing user from a user folder, select the user and click the Delete button.

Defining a User's Location

Zope can contain multiple user folders at different locations in the object database hierarchy. A Zope user cannot
access protected resources above the user folder in which their account is defined. The location of a user's account
information determines the scope of the user's access.

If an account is defined in a user folder within the root folder, the user may access protected objects defined within the
root folder. This is probably where the account you are using right now is defined. You can however, create user
folders within any Zope folder. If a user folder is defined in a subfolder, the user may only access protected resources
within that subfolder and within subfolders of that subfolder, and so on.

Consider the case of a user folder at /BeautySchool/Hair/acl_users . Suppose the user Ralph Scissorhands is defined
in this user folder. Ralph cannot access protected Zope resources above the folder at /BeautySchool/Hair . Effectively
Ralph's view of protected resources in the Zope site is limited to things in the BeautySchool/Hair folder and below.
Regardless of the roles assigned to Ralph, he cannot access protected resources "above" his location. If Ralph was
defined as having the Manager role, he would be able to go directly to /BeautySchool/Hair/manage to manage his
resources, but could not access /BeautySchool/manage at all.

To access the Zope Management Interface as Manager user who is not defined in the "root" user folder, use the URL
to the folder which contains his user folder plus manage . For example, if Ralph Scissorhands above has the Manager
role as defined within a user folder in the BeautySchool/Hair folder, he would be able to access the Zope Management
Interface by visiting http://zopeserver/BeautySchool/Hair/manage .

The Zope Book (2.6 Edition)

160

Of course, any user may access any resource which is not protected, so a user's creation location is not at all relevant
with respect to unprotected resources. The user's location only matters when he attempts to use objects in a way that
requires authentication and authorization, such as the objects which compose the Zope Management Interface.

It is straightforward to delegate responsibilities to site managers using this technique. One of the most common Zope
management patterns is to place related objects in a folder together and then create a user folder in that folder to
define people who are responsible for those objects. By doing so, you "safely" delegate the responsibility for these
objects to these users.

For example, suppose people in your organization wear uniforms. You are creating an intranet that provides
information about your organization, including information about uniforms. You might create a uniforms folder
somewhere in the intranet Zope site. In that folder you could put objects such as pictures of uniforms and descriptions
for how to wear and clean them. Then you could create a user folder in the uniforms folder and create an account for
the head tailor. When a new style of uniform comes out the tailor doesn't have to ask the web master to update the site,
he or she can update their own section of the site without bothering anyone else. Additionally, the head tailor cannot
log into any folder above the uniforms folder, which means the head tailor cannot manage any objects other than
those in the uniforms folder.

Delegation is a very common pattern in Zope applications. By delegating different areas of your Zope site to different
users, you can take the burden of site administration off of a small group of managers and spread that burden around
to different specific groups of users.

Working with Alternative User Folders

It may be that you don't want to manage your user account through the web using Zope's "stock" user folder
implementation. Perhaps you already have a user database, or perhaps you want to use other tools to maintain your
account information. Zope allows you to use alternate sources of data as user information repositories. You can find an
ever-growing list of alternate user folders at the Zope web site Products area . Here is a sampling of some of the more
popular alternative user folders available.

 Extensible User Folder — exUserFolder allows for authentication from a choice of sources and separate storage of
user properties. It has been designed to be usable out of the box, and requires very little work to set up. There are
authentication sources for Postgresql, RADIUS and SMB and others as well as normal ZODB storage.

 etcUserFolder — This user folder authenticates using standard Unix /etc/password style files.

 LDAP User Folder — This user folder allows you to authenticate from an LDAP server.

 NTUserFolder — This user folder authenticates from NT user accounts. It only works if you are running Zope under
Windows NT or Windows 2000.

 MySQLUserFolder — This user folder authenticates from data within a MySQL database.

Some user folders provide alternate login and logout controls in the form of web pages, rather than relying on Basic
HTTP Authentication controls. Despite this variety, all user folders use the same general log in procedure of prompting
you for credentials when you access a protected resource.

While most users are managed with user folders of one kind or another, Zope has a few special user accounts that are
not managed with user folder.

Special User Accounts

The Zope Book (2.6 Edition)

161

Zope provides three special user accounts which are not defined with user folders, the anonymous user , the
emergency user , and the initial manager . The anonymous user is used frequently, while the emergency user and
initial manager accounts are rarely used but are important to know about.

Zope Anonymous User

Zope has a built-in user account for "guests" who possess no credentials. This is the Anonymous user. If you don't
have a user account on Zope, you'll be considered to be the Anonymous user.

The Anonymous user additionally possesses the Anonymous role . The "stock" Zope security policy restricts users
which possess the Anonymous role from accessing nonpublic resources. You can tailor this policy, but most of the
time you'll find the default anonymous security settings adequate.

As we mentioned earlier in the chapter, you must try to access a protected resource in order for Zope to attempt
authentication. Even if you've got a user account on the system, Zope will consider you the Anonymous user until you
been prompted for login and you've successfully logged in.

Zope Emergency User

Zope has a special user account for emergency use known as the emergency user . We discussed the emergency user
briefly in Chapter 2, "Using Zope". The emergency user is not restricted by normal security settings. However, the
emergency user cannot create any new objects with the exception of new user objects.

The emergency user is typically only useful for two things: fixing broken permissions, and creating and changing user
accounts.

You may use the emergency user account to create or change other user accounts. Typically, you use the emergency
user account to define accounts with the Manager role or change the password of an existing account which already
possesses the Manager role. This is useful in case you lose your management user password or username. Typically,
after you create or change an existing a manager account you will log out as the emergency user and log back in as
the manager.

Another reason to use the emergency user account is to "fix" broken permissions. If you lock yourself out of Zope by
removing permissions you need to manage Zope, you can use the emergency user account to repair the permissions.
In this case log in as the emergency user and make sure that your manager account has the View management
screens and Change permissions permissions with respect to the object you're attempting to view. Then log out
and log back with your manager account and you should have enough access to fix anything else that is broken.

The emergency user cannot create new "content", "logic" or "presentation" objects. A common error message seen by
users attempting to use the emergency user account in trying to create a new object is shown below.

The Zope Book (2.6 Edition)

162

Figure 11-2 Error caused by trying to create a new object when logged in as the emergency user.

The error above lets you know that the emergency user cannot create new objects. This is "by design", and the
reasoning behind this policy may become clearer later in the chapter when we cover ownership.

Creating an Emergency User

Unlike normal user accounts that are defined through the Zope Management Interface, the emergency user account is
defined through a file in the filesystem. You can change the emergency user account by editing or generating the file
named access in the Zope home directory (the main Zope directory). Zope comes with a command line utility in the
Zope home directory named zpasswd.py to manage the emergency user account. On UNIX, run zpasswd.py by
passing it the access file path as its only argument:

$ cd (... where your ZOPE_HOME is...)
$ python zpasswd.py access

Username: superuser
Password:
Verify password:

Please choose a format from:

SHA - SHA-1 hashed password
CRYPT - UNIX-style crypt password
CLEARTEXT - no protection.

Encoding: SHA
Domain restrictions:

Due to pathing differences, Windows users usually need to enter this into a command prompt to invoke zpasswd:

> cd (... where your ZOPE_HOME is ...)
> cd bin
> python ..\zpasswd.py ..\access

The zpasswd.py script steps you through the process of creating an emergency user account. Note that when you
type in your password it is not echoed to the screen. You can also run zpasswd.py with no arguments to get a list of
command line options. When setting up or changing the emergency user's details, you need to restart the Zope

The Zope Book (2.6 Edition)

163

process for your changes to come into effect.

Zope Initial Manager

The initial manager account is created by the Zope installer so you can log into Zope the first time. When you first
install Zope you should see a message like this:

creating default inituser file
Note:
 The initial user name and password are 'admin'
 and 'IVX3kAwU'.

 You can change the name and password through the web
 interface or using the 'zpasswd.py' script.

This lets you know the initial manager's name and password. You can use this information to log in to Zope for the first
time as a manager.

Initial users are defined in a similar way to the emergency user; they are defined in a file on the filesystem named
inituser . On UNIX, the zpasswd.py program can be used to edit or generate this file the same way it is used to
edit or generate the emergency user access file:

$ cd (... were your ZOPE_HOME is ...)
$ python zpasswd.py inituser

Username: bob
Password:
Verify password:

Please choose a format from:

SHA - SHA-1 hashed password
CRYPT - UNIX-style crypt password
CLEARTEXT - no protection.

Encoding: SHA
Domain restrictions:

This will create an inituser file which contains a user named "bob" and will set its password. The password is not
echoed back to you when you type it in. The effect of creating an inituser file depends on the state of the existing
Zope database.

When Zope starts up, if there are no users in the root user folder (such as when you start Zope with a "fresh" ZODB
database), and an inituser file exists, the user defined within inituser will be created within the root user folder.
If any users already exist within the root user folder, the existence of the inituser file has no effect. Normally, initial
users are created by the Zope installer for you, and you shouldn't have to worry about changing them. Only in cases
where you start a new Zope database (for example, if you delete the var/Data.fs file) should you need to worry
about creating an inituser file. Note that if Zope is being used in an INSTANCE_HOME setup, the created "inituser"
file must be copied to the INSTANCE_HOME directory. Most Zope setups are not INSTANCE_HOME setups (unless
you've explicitly made it so), so you typically don't need to worry about this. The inituser feature is a convenience
and is rarely used in practice except by the installer.

Protecting Against Password Snooping

The HTTP Basic Authentication protocol that Zope uses as part of its "stock" user folder implementation passes login
information "over the wire" in an easily decryptable way. It is employed, however, because it has the widest browser
support of any available authentication mechanism.

The Zope Book (2.6 Edition)

164

If you're worried about someone "snooping" your username/password combinations, or you wish to manage your Zope
site ultra-securely, you should manage your Zope site via an SSL (Secured Sockets Layer) connection. The easiest
way to do this is to use Apache or another webserver which comes with SSL support and put it "in front" of Zope. Some
(minimalistic) information about setting up Zope behind an SSL server is available at Unfo's member page on Zope.org
, on Zopelabs.com . The chapter of this book entitled Virtual Hosting also provides some background that may be
helpful to set up an SSL server in front of Zope.

Managing Custom Security Policies

Zope security policies control authorization; they define who can do what and where they can do it. Security policies
describe how roles are associated with permissions in the context of a particular object. Roles label classes of users,
and permissions protect objects. Thus, security policies define which classes of users (roles) can take what kinds of
actions (permissions) in a given part of the site.

Rather than stating which specific user can take which specific action on which specific object, Zope allows you to
define which kinds of users can take which kinds of action in which areas of the site. This sort of generalization makes
your security policies simple and more powerful. Of course, you can make exceptions to your policy for specific users,
actions, and objects.

Working with Roles

Zope users have roles that define what kinds of actions they can take. Roles define classes of users such as Manager ,
Anonymous , and Authenticated .

Roles are similar to UNIX groups in that they abstract groups of users. And like UNIX groups, each Zope user can have
one or more roles.

Roles make it easier for administrators to manage security. Instead of forcing an administrator to specifically define the
actions allowed by each user in a context, the administrator can define different security policies for different user roles
in a context. Since roles are classes of users, he needn't associate the policy directly with a user. Instead, he may
associate the policy with one of the user's roles.

Zope comes with four built-in roles:

Manager — This role is used for users who perform standard Zope management functions such as creating and edit
Zope folders and documents.

Anonymous — The Zope Anonymous user has this role. This role should be authorized to view public resources. In
general this role should not be allowed to change Zope objects.

Owner — This role is assigned automatically to users in the context of objects they create. We'll cover ownership later
in this chapter.

Authenticated — This role is assigned automatically to users whom have provided valid authentication credentials.
This role means that Zope "knows" who a particular user is. When Users are logged in they are considered to also
have the Authenticated role, regardless of other roles.

For basic Zope sites you can typically "get by" with only having Manager and Anonymous roles. For more complex
sites you may want to create your own roles to classify your users into different categories.

Defining Global Roles

The Zope Book (2.6 Edition)

165

A "global" role is one that shows up in the "roles" column of the Security tab of your Zope objects. To create a new
"global" role go to the Security tab of your root Zope object (or any other folderish Zope object) and scroll down to
the bottom of the screen. Type the name of the new role in the User defined role field, and click Add Role . Role names
should be short one or two word descriptions of a type of user such as "Author", "Site Architect", or "Designer". You
should pick role names that are relevant to your application.

You can verify that your role was created, noticing that there is now a role column for your new role at the top of the
screen. You can delete a role by selecting the role from the select list at the bottom of the security screen and clicking
the Delete Role button. You can only delete your own custom roles, you cannot delete any of the "stock" roles that
come with Zope.

You should notice that roles can be used at the level at which they are defined and "below" in the object hierarchy. For
example, if you create a role in the Examples folder that exists in the Zope root folder, that role cannot be used
outside of the Examples folder and any of its subfolders and subobjects. If you want to create a role that is
appropriate for your entire site, create it in the root folder.

In general, roles should be applicable for large sections of your site. If you find yourself creating roles to limit access to
parts of your site, chances are there are better ways to accomplish the same thing. For example you could simply
change the security settings for existing roles on the folder you want to protect, or you could define users deeper in the
object hierarchy to limit their access.

Understanding Local Roles

Local roles are an advanced feature of Zope security. Specific users can be granted extra roles when working within
the context of a certain object by using a local role. If an object has local roles associated with a user then that user
gets those additional roles while working with that object, without needing to reauthenticate.

For example, if a user creates an object using the Zope Management Interface, they are always given the additional
local role of Owner in the context of that object. A user might not have the ability to edit DTML Methods in general if he
does not possess a set of global roles which allow him to do so, but for DTML Methods he owns, the user may edit the
DTML Method by virtue of possessing the Owner local role.

Local roles are a fairly advanced security control. Zope's automatic control of the Owner local role is likely the only
place you'll encounter local roles unless you create an application which makes use of them. The main reason you
might want to manually control local roles is to give a specific user special access to an object. In general you should
avoid setting security for specific users if possible. It is easier to manage security settings that control groups of users
instead of individuals.

Understanding Permissions

A permissions defines a single action which can be taken upon a Zope object. Just as roles abstract users, permissions
abstract objects. For example, many Zope objects, including DTML Methods and DTML Documents, can be viewed.
This action is protected by the View permission. Permissions are defined by Zope Product developers and the Zope
"core" itself. Products are responsible for creating a set of permissions which are relevant to the types of objects they
expose.

Some permissions are only relevant for one type of object, for example, the Change DTML Methods permission only
protects DTML Methods. Other permissions protect many types of objects, such as the FTP access and WebDAV
access permissions which control whether objects are available via FTP and WebDAV.

You can find out what permissions are available on a given object by going to the Security management tab.

The Zope Book (2.6 Edition)

166

The default Zope permissions are described in appendix A of the Zope Developer's Guide

Figure 11-3 Security settings for a mail host object.

As you can see in the figure above, a mail host has a limited palette of permissions available. Contrast this to the many
permissions that you see when setting security on a folder.

Defining Security Policies

Security policies are where roles meet permissions. Security policies define "who" can do "what" in a given part of the
site.

You can set a security policy on almost any Zope object. To set a security policy on an object, go the object's Security
tab. For example, click on the security tab of the root folder.

Figure 11-4 Security policy for the root folder.

The Zope Book (2.6 Edition)

167

In the figure above, the center of the screen displays a grid of check boxes. The vertical columns of the grid represent
roles, and the horizontal rows of the grid represent permissions. Checking the box at the intersection of a permission
and a role grants users with that role the ability to take actions protected by that permission in the context of the object
being managed. In this case, the context is the root folder.

Many Zope Products add custom security permissions to your site when you install them. This can make the
permissions list grow quite large, and unwieldy. Product authors should take care to re-use suitable existing
permissions if possible, but many times it's not possible, so the permission list grows with each new Product that is
installed.

You'll notice by virtue of visiting the Security tab of the root folder that Zope comes with a default security policy that
allows users which possess the Manager role to perform most tasks, and that allows anonymous users to perform
only a few restricted tasks. The simplest (and most effective) way to tailor this policy to suit your needs is to change the
security settings in the root folder.

For example, you can make your site almost completely "private" by disallowing anonymous users the ability to view
objects. To do this deny all anonymous users View access by unchecking the View Permission where it intersects the
Anonymous role. You can make your entire site private by making this security policy change in the root folder. If you
want to make one part of your site private, you could make this change in the folder you want to make private.

This example points out a very important point about security policies: they control security for a given part of the site
only. The only global security policy is the one on the root folder.

Security Policy Acquisition

How do different security policies interact? We've seen that you can create security policies on different objects, but
what determines which policies control which objects? The answer is that objects use their own policy if they have one,
additionally they acquire their parents' security policies through a process called acquisition . We explored acquisition in
the Acquisition chapter. Zope security makes extensive use of acquisition.

Acquisition is a mechanism in Zope for sharing information among objects contained in a folder and its subfolders. The
Zope security system uses acquisition to share security policies so that access can be controlled from high-level
folders.

You can control security policy acquisition from the Security tab. Notice that there is a column of check boxes to the left
of the screen labeled Acquire permission settings . Every check box in this column is checked by default. This means
that security policy will acquire its parent's setting for each permission to role setting in addition to any settings
specified on this screen. Keep in mind that for the root folder (which has no parent to acquire from) this left most check
box column does not exist.

Suppose you want to make a folder private. As we saw before this merely requires denying the Anonymous role the
View permission in the context of this object. But even though the "View" permission's box may be unchecked the
folder might not be private. Why is this? The answer is that the Acquire permission settings option is checked for the
View permission. This means that the current settings are augmented by the security policies of this folder's parents.
Somewhere above this folder the Anonymous role must be assigned to the View permission. You can verify this by
examining the security policies of this folder's parents. To make the folder private we must uncheck the Acquire
permission settings option. This will ensure that only the settings explicitly in this security policy are in effect.

Each checked checkbox gives a role permission to do an action or a set of actions. With Acquire permission
settings checked, these permissions are added to the actions allowed in the parent folder. If Acquire
permission settings is unchecked on the other hand, checkboxes must be explicitly set, and the security setting
of the parent folder will have no influence.

The Zope Book (2.6 Edition)

168

In general, you should always acquire security settings unless you have a specific reason to not do so. This will make
managing your security settings much easier as much of the work can be done from the root folder.

Security Usage Patterns

The basic concepts of Zope security are simple: roles and permissions are mapped to one another to create security
policies. Users are granted roles (either global roles or local roles). User actions are restricted by the roles they
possess in the context of an object. These simple tools can be put together in many different ways. This can make
managing security complex. Let's look at some basic patterns for managing security that provide good examples of
how to create an effective and easy to manage security architecture.

Security Rules of Thumb

Here are a few simple guidelines for Zope security management. The security patterns that follow offer more specific
recipes, but these guidelines give you some guidance when you face uncharted territory.

1. Define users at their highest level of control, but no higher.

2. Group objects that should be managed by the same people together in folders.

3. Keep it simple.

Rules one and two are closely related. Both are part of a more general rule for Zope site architecture. In general you
should refactor your site to locate related resources and users near each other. Granted, it's almost never possible to
force resources and users into a strict hierarchy. However, a well considered arrangement of resources and users into
folders and sub-folders helps tremendously.

Regardless of your site architecture, try to keep things simple. The more you complicate your security settings the
harder time you'll have understanding it, managing it and making sure that it's effective. For example, limit the number
of new roles you create, and try to use security policy acquisition to limit the number of places you have to explicitly
define security settings. If you find that your security policies, users, and roles are growing into a complex thicket, you
should rethink what you're doing; there's probably a simpler way.

Global and Local Policies

The most basic Zope security pattern is to define a global security policy on the root folder and acquire this policy
everywhere. Then as needed you can add additional policies deeper in the object hierarchy to augment the global
policy. Try to limit the number of places that you override the global policy. If you find that you have to make changes in
a number of places, consider consolidating the objects in those separate locations into the same folder so that you can
make the security settings in one place.

You should choose to acquire permission settings in your sub-policies unless your sub-policy is more restrictive than
the global policy. In this case you should uncheck this option for the permission that you want to restrict.

This simple pattern will take care of much of your security needs. Its advantages are that it is easy to manage and easy
to understand. These are extremely important characteristics for any security architecture.

Delegating Control to Local Managers

The pattern of delegation is very central to Zope. Zope encourages you to collect like resources in folders together and
then to create user accounts in these folders to manage their contents.

The Zope Book (2.6 Edition)

169

Lets say you want to delegate the management of the Sales folder in your Zope site over to the new sales web
manager, Steve. First, you don't want Steve changing any objects which live outside the Sales folder, so you don't need
to add him to the acl_users folder in the root folder. Instead, you would create a new user folder in the Sales folder.

Now you can add Steve to the user folder in Sales and give him the Role Manager . Steve can now log directly into the
Sales folder to manage his area of control by pointing his browser to http://www.zopezoo.org/Sales/manage .

Figure 11-5 Managing the Sales folder.

Notice in the figure above that the navigation tree on the left shows that Sales is the root folder. The local manager
defined in this folder will never have the ability to log into any folders above Sales , so it is shown as the top folder.

This pattern is very powerful since it can be applied recursively. For example, Steve can create a sub-folder for
multi-level marketing sales. Then he can create a user folder in the multi-level marketing sales folder to delegate
control of this folder to the multi-level marketing sales manager. And so on. This allows you to create web sites
managed by thousands of people without centralized control. Higher level managers need not concern themselves too
much with what their underlings do. If they choose they can pay close attention, but they can safely ignore the details
since they know that their delegates cannot make any changes outside their area of control, and they know that their
security settings will be acquired.

Different Levels of Access with Roles

The local manager pattern is powerful and scalable, but it takes a rather coarse view of security. Either you have
access or you don't. Sometimes you need to have more fine grained control. Many times you will have resources that
need to be used by more than one type of person. Roles provides you with a solution to this problem. Roles allow you
to define classes of users and set security policies for them.

Before creating new roles make sure that you really need them. Suppose that you have a web site that publishes
articles. The public reads articles and managers edit and publish articles, but there is a third class of user who can
author articles, but not publish or edit them.

One solution would be to create an authors folder where author accounts are created and given the Manager role. This
folder would be private so it could only be viewed by managers. Articles could be written in this folder and then

The Zope Book (2.6 Edition)

170

managers could move the articles out of this folder to publish them. This is a reasonable solution, but it requires that
authors work only in one part of the site and it requires extra work by managers to move articles out of the authors
folder. Also, consider that problems that result when an author wants to update an article that has been moved out of
the authors folder.

A better solution is to add an Author role. Adding a role helps us because it allows access controls not based on
location. So in our example, by adding an author role we make it possible for articles to be written, edited, and
published anywhere in the site. We can set a global security policy that gives authors the ability to create and write
articles, but doesn't grant them permissions to publish or edit articles.

Roles allow you to control access based on who a user is, not just where they are defined.

Controlling Access to Locations with Roles

Roles can help you overcome a problem with the local manager pattern. The problem is that the local manager pattern
requires a strict hierarchy of control. There is no provision to allow two different groups of people to access the same
resources without one group being the manager of the other group. Put another way, there is no way for users defined
in one part of the site to manage resources in another part of the site.

Let's take an example to illustrate the second limitation of the local manager pattern. Suppose you run a large site for a
pharmaceutical company. You have two classes of users, scientists and salespeople. In general the scientists and the
salespeople manage different web resources. However, suppose that there are some things that both types of people
need to manage, such as advertisements that have to contain complex scientific warnings. If we define our scientists in
the Science folder and the salespeople in the Sales folder, where should we put the AdsWithComplexWarnings folder?
Unless the Science folder is inside the Sales folder or vice versa there is no place that we can put the
AdsWithComplexWarnings folder so that both scientists and salespeople can manage it. It is not a good political or
practical solution to have the salespeople manage the scientists or vice versa; what can be done?

The solution is to use roles. You should create two roles at a level above both the Science and Sales folders, say
Scientist , and SalesPerson . Then instead of defining the scientists and salespeople in their own folders define them
higher in the object hierarchy so that they have access to the AdsWithComplexWarnings folder.

When you create users at this higher level, you should not give them the Manager role, but instead give them Scientist
or SalesPerson as appropriate. Then you should set the security policies using the checkboxes in the Security panel.
On the Science folder the Scientist role should have the equivalent of Manager control. On the Sales folder, the
Salesperson role should have the same permissions as Manager . Finally on the AdsWithComplexWarnings folder you
should give both Scientist and Salesperson roles adequate permissions. This way roles are used not to provide
different levels of access, but to provide access to different locations based on who you are.

Another common situation when you might want to employ this pattern is when you cannot define your managers
locally. For example, you may be using an alternate user folder that requires all users to be defined in the root folder. In
this case you would want to make extensive use of roles to limit access to different locations based on roles.

This wraps up our discussion of security patterns. By now you should have a reasonable grasp of how to use user
folders, roles, and security policies, to shape a reasonable security architecture for your application. Next we'll cover
two advanced security issues, how to perform security checks, and securing executable content.

Performing Security Checks

Most of the time when developing a Zope application, you needn't perform any "manual" security checks. The term for
this type of security which does not require manual effort on the part of the application developer is "declarative". Zope
security is typically declarative. If a user attempts to perform a secured operation, Zope will prompt them to log in. If the

The Zope Book (2.6 Edition)

171

user doesn't have adequate permissions to access a protected resource, Zope will deny them access.

However, sometimes you may wish to manually perform security checks. The main reason to do this is to limit the
choices you offer a user to those for which they are authorized. This doesn't prevent a sneaky user from trying to
access secured actions, but it does reduce user frustration, by not giving to user the option to try something that will not
work.

The most common security query asks whether the current user has a given permission. We use Zope's
checkPermission API to do this. For example, suppose your application allows some users to upload files. This
action may be protected by the "Add Documents, Images, and Files" standard Zope permission. You can test to see if
the current user has this permission in DTML:

<dtml-if expr="_.SecurityCheckPermission(
 'Add Documents, Images, and Files', this())">

 <form action="upload">
 ...
 </form>

</dtml-if>

The SecurityCheckPermission function takes two arguments, a permission name, and an object. In DTML we pass
this() as the object which is a reference to the "current" object.

For Page Templates the syntax is a bit different, but the behavior is the same:

<form action="upload"
 tal:condition="python: modules['AccessControl'].getSecurityManager().checkPermission('Add Documents, Images, and Files', here)">
...
</form>

A Python Script can be employed to perform the same task on behalf of a Page Template. In the below example, we
move the security check out of the Page Template and into a Python Script named check_security , which we call
from the Page Template. Here is the Page template:

<form action="upload"
 tal:condition="python: here.check_security('Add Documents, Images and Files', here)">

Here is the check_security Python Script which is referenced within the Page Template:

Script (Python) "check_security"
##bind container=container
##bind context=context
##bind namespace=
##bind script=script
##bind subpath=traverse_subpath
##parameters=permission, object
##title=Checks security on behalf of a caller

from AccessControl import getSecurityManager
sec_mgr = getSecurityManager()
return sec_mgr.checkPermission(permission, object)

You can see that permission checking may take place manually in any of Zope's logic objects. Other functions exist in
the Zope API for manually performing security checks, but checkPermission is arguably the most useful.

By passing the current object to checkPermission , we make sure that local roles are taken into account when
testing whether the current user has a given permission.

You can find out about the current user by accessing the user object. The current user is a Zope object like any other
and you can perform actions on it using methods defined in the API documentation.

The Zope Book (2.6 Edition)

172

Suppose you wish to display the current user name on a web page to personalize the page. You can do this easily in
DTML:

<dtml-var expr="_.SecurityGetUser().getUserName()">

You can retrieve the currently logged in user with the SecurityGetUser DTML function or the shortcut user in Page
Templates. This DTML fragment tests the current user by calling the getUserName method on the current user object.
If the user is not logged in, you will get the name of the anonymous user, which is Anonymous User .

You can do the same thing in a Page Template like this:

<p tal:content="user/getUserName">username</p>

The Zope security API for Scripts is explained in the Appendix B: API Reference . The Zope security API for DTML is
explained in Appendix A: DTML Reference . The Zope security API for Page Templates is explained in Appendix C:
Zope Page Templates Reference . An even better reference to these functions exists in the Zope help system,
available by clicking on Help from any Zope Management Interface page.

Advanced Security Issues: Ownership and Executable Content

You've now covered all the basics of Zope security. What remains are the advanced concepts of ownership and
executable content . Zope uses ownership to associate objects with users who create them, and executable content
refers to objects such as Scripts, DTML Methods and Documents, which execute user code.

For small sites with trusted users you can safely ignore these advanced issues. However for large sites where you
allow untrusted users to create and manage Zope objects, it's important to understand ownership and securing
executable content.

The Problem: Trojan Horse Attacks

The basic scenario that motivates both ownership and executable content controls is a Trojan horse attack. A Trojan
horse is an attack on a system that operates by tricking a user into taking a potentially harmful action. A typical Trojan
horse masquerades as a benign program that causes harm when you unwittingly run it.

All computer systems are vulnerable to this style of attack. For web-based platforms, all that is required is to trick an
authorized, but unsuspecting user to visit a URL that performs a harmful action that the attacker himself is not
authorized to perform.

This kind of attack is very hard to protect against. You can trick someone into clicking a link fairly easily, or you can use
more advanced techniques such as Javascript to cause a user to visit a malicious URL.

Zope offers some protection from this kind of Trojan horse. Zope helps protect your site from server-side Trojan attacks
by limiting the power of web resources based on who authored them. If an untrusted user authors a web page, then the
power of the web pages to do harm to unsuspecting visitors will be limited. For example, suppose an untrusted user
creates a DTML document or Python script that deletes all the pages in your site. If anyone attempt to view the page, it
will fail since the owner of the object does not have adequate permissions. If a manager views the page, it will also fail,
even though the manager does have adequate permissions to perform the dangerous action.

Zope uses ownership information and executable content controls to provide this limited protection.

Managing Ownership

The Zope Book (2.6 Edition)

173

When a user creates a Zope object, the user owns that object. An object that has no owner is referred to as unowned.
Ownership information is stored in the object itself. This is similar to how UNIX keeps track of the owner of a file.

You find out how an object is owned by viewing the Ownership management tab, as shown in the figure below.

Figure 11-6 Managing ownership settings.

This screen tells you if the object is owned and if so by whom. If the object is owned by someone else, and you have
the Take ownership permission, you can take over the ownership of an object. You also have the option of taking
ownership of all sub-objects by checking the Take ownership of all sub-objects box. Taking ownership is mostly useful
if the owner account has been deleted, or if objects have been turned over to you for continued management.

As we mentioned earlier in the chapter, ownership affects security policies because users will have the local role Owner
on objects they own. However, ownership also affects security because it controls the role's executable content.

Note that due to the way Zope "grew up" that the list of users granted the Owner local role in the context of the object is
not related to its actual "owner". The concepts of the owner "role" and executable content ownership are distinct. Just
because someone has the Owner local role in the context of an executable object does not mean that he is the owner
of the object.

Roles of Executable Content

DTML Documents, DTML Methods, SQL Methods, Python-based Scripts, and Perl-based Scripts are said to be
executable since their content is generated dynamically. Their content is also editable through the web.

When you view an executable object by visiting its URL or calling it from DTML or a script, Zope runs the object's
executable content. The objects actions are restricted by the roles of its owner and your roles. In other words an
executable object can only perform actions that both the owner and the viewer are authorized for. This keeps an
unprivileged user from writing a harmful script and then tricking a powerful user into executing the script. You can't fool
someone else into performing an action that you are not authorized to perform yourself. This is how Zope uses
ownership to protect against server-side Trojan horse attacks.

It is important to note that an "unowned" object is typically no longer executable. If you experience problems running an
executable object, make sure that its ownership settings are correct.

The Zope Book (2.6 Edition)

174

Proxy Roles

Sometimes Zope's system of limiting access to executable objects isn't exactly what you want. Sometimes you may
wish to clamp down security on an executable object despite its ownership as a form of extra security. Other times you
may want to provide an executable object with extra access to allow an unprivileged viewer to perform protected
actions. Proxy roles provide you with a way to tailor the roles of an executable object.

Suppose you want to create a mail form that allows anonymous users to send email to the webmaster of your site.
Sending email is protected by the Use mailhost services permission. Anonymous users don't normally have this
permission and for good reason. You don't want just anyone to be able to anonymously send email with your Zope
server.

The problem with this arrangement is that your DTML Method that sends email will fail for anonymous users. How can
you get around this problem? The answer is to set the proxy roles on the DTML Method that sends email so that when
it executes it has the "Manager" role. Visit the Proxy management tab on your DTML Method, as shown in the figure
below.

Figure 11-7 Proxy role management.

Select Manager and click the Change button. This will set the proxy roles of the mail sending method to Manager .
Note you must have the Manager role yourself to set it as a proxy role. Now when anyone, anonymous or not runs your
mail sending method, it will execute with the Manager role, and thus will have authorization to send email.

Proxy roles define a fixed amount of permissions for executable content. Thus you can also use them to restrict
security. For example, if you set the proxy roles of a script to Anonymous role, then the script will never execute as
having any other roles besides Anonymous despite the roles of the owner and viewer.

Use Proxy roles with care, since they can be used to skirt the default security restrictions.

Summary

Security consists of two processes, authentication and authorization. User folders control authentication, and security
policies control authorization. Zope security is intimately tied with the concept of location; users have location, security
policies have location, even roles can have location. Creating an effective security architecture requires attention to

The Zope Book (2.6 Edition)

175

location. When in doubt refer to the security usage patterns discussed in this chapter.

The Zope Book (2.6 Edition)

176

Advanced DTML

DTML is the kind of language that appears to "do what you mean." That is good when it does what you actually want it
to do, but when it does something you don't want to do, well, it's no fun at all. This chapter tells you how to make DTML
do what you really mean. When you're done reading this chapter you will be able to write DTML that will accomplish a
number of complex tasks including:

 • Inspect and Modify the REQUEST object

 • Modify the current namespace

 • Call other scripts from within DTML

 • Send email with or without MIME attachments

 • Handle exceptions within DTML

A few of caveats before getting started:

 • It's a good idea to know something about Python before diving into advanced DTML or any other advanced area of
Zope.

 • Understand the Zope acquisition model and how it works.

 • If you are writing very complex functionality in DTML, consider using a Python Script. This will ease maintenance,
not to mention readability.

 • Understand the difference between a DTML Document and a DTML Method before embarking on building a huge
site. See the explanation included in this chapter.

It's no lie that DTML has a reputation for complexity. While it is true that DTML is really simple if all you want to do is
simple layout, using DTML for more advanced tasks requires an understanding of where DTML variables come from.

Here's a very tricky error that almost all newbies encounter. Imagine you have a DTML Document called zooName .
This document contains an HTML form like the following:

<dtml-var standard_html_header>

 <dtml-if zooName>

 <p><dtml-var zooName></p>

 <dtml-else>

 <form action="<dtml-var URL>" method="GET">
 <input name="zooName">
 <input type="submit" value="What is zooName?">
 </form>

 </dtml-if>

<dtml-var standard_html_footer>

This looks simple enough, the idea is, this is an HTML page that calls itself. This is because the HTML action is the
URL variable, which will become the URL of the DTML Document.

The Zope Book (2.6 Edition)

177

If there is a zooName variable, then the page will print it, if there isn't, it shows a form that asks for it. When you click
submit, the data you enter will make the "if" evaluate to true, and this code should print what was entered in the form.

But unfortunately, this is one of those instances where DTML will not do what you mean, because the name of the
DTML Document that contains this DTML is also named zooName , and it doesn't use the variable out of the request, it
uses itself, which causes it to call itself and call itself, ad infinitum, until you get an "excessive recursion" error. So
instead of doing what you really meant, you got an error. This is what confuses beginners. In the next couple of
sections, we'll show you how to fix this example to do what you mean.

How Variables are Looked up

There are actually two ways to fix the DTML error in the zooName document. The first is that you can rename the
document to something like zopeNameFormOrReply and always remember this special exception and never do it;
never knowing why it happens. The second is to understand how names are looked up, and to be explicit about where
you want the name to come from in the namespace .

The DTML namespace is a collection of objects arranged in a stack . A stack is a list of objects that can be manipulated
by pushing and popping objects on to and off of the stack.

When a DTML Document or DTML Method is executed, Zope creates a DTML namespace to resolve DTML variable
names. It's important to understand the workings of the DTML namespace so that you can accurately predict how Zope
will locate variables. Some of the trickiest problems you will run into with DTML can be resolved by understanding the
DTML namespace.

When Zope looks for names in the DTML namespace stack it first looks at the topmost object in the stack. If the name
can't be found there, then the next item down is introspected. Zope will work its way down the stack, checking each
object in turn until it finds the name that it is looking for.

If Zope gets all the way down to the bottom of the stack and can't find what it is looking for, then an error is generated.
For example, try looking for the non-existent name, unicorn :

<dtml-var unicorn>

As long as there is no variable named unicorn viewing this DTML will return an error, as shown in the figure below.

The Zope Book (2.6 Edition)

178

Figure 7-1 DTML error message indicating that it cannot find a variable.

But the DTML stack is not all there is to names because DTML doesn't start with an empty stack, before you even
begin executing DTML in Zope there are already a number of objects pushed on the namespace stack.

DTML Namespaces

DTML namespaces are built dynamically for every request in Zope. When you call a DTML Method or DTML Document
through the web, the DTML namespace starts with the same first two stack elements; the client object and the request,
as shown in the figure below.

Figure 7-2 Initial DTML namespace stack.

The client object is the first object on the top of the DTML namespace stack when entering a transaction (note:
commands exist to push additional parameters onto the namespace stack during a thread of execution). What the
client object is depends on whether you are executing a DTML Method or a DTML Document. In our example above,
this means that the client object is named zooName . Which is why it breaks. The form input that we really wanted
comes from the web request, but the client is looked at first.

The request namespace is always on the bottom of the DTML namespace stack, and is therefore the last namespace
to be looked in for names. This means that we must be explicit in our example about which namespace we want. We
can do this with the DTML with tag:

<dtml-var standard_html_header>

 <dtml-with REQUEST only>
 <dtml-if zooName>
 <p><dtml-var zooName></p>
 <dtml-else>
 <form action="<dtml-var URL>" method="GET">
 <input name="zooName">
 <input type="submit" value="What is zooName?">
 </form>
 </dtml-if>
 </dtml-with>

<dtml-var standard_html_footer>

Here, the with tag says to look in the REQUEST namespace, and only the REQUEST namespace, for the name
"zooName".

The Zope Book (2.6 Edition)

179

DTML Client Object

The client object in DTML depends on whether or not you are executing a DTML Method or a DTML Document. In the
case of a Document, the client object is always the document itself, or in other words, a DTML Document is its own
client object.

A DTML Method however can have different kinds of client objects depending on how it is called. For example, if you
had a DTML Method that displayed all of the contents of a folder then the client object would be the folder that is being
displayed. This client object can change depending on which folder the method in question is displaying. For example,
consider the following DTML Method named list in the root folder:

<dtml-var standard_html_header>

<dtml-in objectValues>
 <dtml-var title_or_id>
</dtml-in>

<dtml-var standard_html_footer>

Now, what this method displays depends upon how it is used. If you apply this method to the Reptiles folder with the
URL http://localhost:8080/Reptiles/list , then you will get something that looks like the figure below.

Figure 7-3 Applying the list method to the Reptiles folder.

But if you were to apply the method to the Birds folder with the URL http://localhost:8080/Birds/list then you would get
something different, only two items in the list, Parrot and Raptors .

Same DTML Method, different results. In the first example, the client object of the list method was the Reptiles folder.
In the second example, the client object was the Birds folder. When Zope looked up the objectValues variable, in the
first case it called the objectValues method of the Reptiles folder, in the second case it called the objectValues method
of the Birds folder.

In other words, the client object is where variables such as methods, and properties are looked up first.

The Zope Book (2.6 Edition)

180

As you saw in "Dynamic Content with DTML", if Zope cannot find a variable in the client object, it searches through the
object's containers. Zope uses acquisition to automatically inherit variables from the client object's containers. So when
Zope walks up the object hierarchy looking for variables it always starts at the client object, and works its way up from
there.

DTML Method vs. DTML Document

One of the most potentially confusing choices to make for Zope newbies is the choice between a DTML Method and a
DTML Document. Unfortunately, many Zope newbies develop entire sites using one type of object only to discover that
they should have used the other type. In general, keep the following items in mind when deciding upon which type to
use:

 • Does the object require properties of it's own? If so, use a DTML Document since DTML Methods have no
inherent properties.

 • Does the object need to be called as a "page"? If so, consider using a DTML Document since it will be
easier to control such items as page title by using properties.

 • Does the object need transparency to it's context? If so, you should probably use a DTML Method since
these objects act as though they are directly attached to their calling, or containing object.

DTML Request Object

The request object is the bottom object on the DTML namespace stack. The request contains all of the information
specific to the current web request.

Just as the client object uses acquisition to look in a number of places for variables, so too the request looks up
variables in a number of places. When the request looks for a variable it consults these sources in order:

1. The CGI environment. The Common Gateway Interface , or CGI interface defines a standard set of environment
variables to be used by dynamic web scripts. These variables are provided by Zope in the REQUEST namespace.

2. Form data. If the current request is a form action, then any form input data that was submitted with the request can
be found in the REQUEST object.

3. Cookies. If the client of the current request has any cookies these can be found in the current REQUEST object.

4. Additional variables. The REQUEST namespace provides you with lots of other useful information, such as the URL
of the current object and all of its parents.

The request namespace is very useful in Zope since it is the primary way that clients (in this case, web browsers)
communicate with Zope by providing form data, cookies and other information about themselves. For more information
about the request object, see Appendix B.

A very simple and enlightening example is to simply render the REQUEST object in a DTML Document or Method:

<dtml-var standard_html_header>

<dtml-var REQUEST>

<dtml-var standard_html_footer>

Try this yourself, you should get something that looks like the figure below.

The Zope Book (2.6 Edition)

181

Figure 7-4 Displaying the request.

Since the request comes after the client object, if there are names that exist in both the request and the client object,
DTML will always find them first in the client object. This can be a problem. Next, let's look at some ways to get around
this problem by controlling more directly how DTML looks up variables.

Rendering Variables

When you insert a variable using the var tag, Zope first looks up the variable using the DTML namespace, it then
renders it and inserts the results. Rendering means turning an object or value into a string suitable for inserting into the
output. Zope renders simple variables by using Python's standard method for coercing objects to strings. For complex
objects such as DTML Methods and SQL Methods, Zope will call the object instead of just trying to turn it into a string.
This allows you to insert DTML Methods into other DTML Methods.

In general Zope renders variables in the way you would expect. It's only when you start doing more advanced tricks
that you become aware of the rendering process. Later in this chapter we'll look at some examples of how to control
rendering using the getitem DTML utility function.

Modifying the DTML Namespace

Now that you know the DTML namespace is a stack, you may be wondering how, or even why, new objects get pushed
onto it.

Some DTML tags modify the DTML namespace while they are executing. A tag may push some object onto the
namespace stack during the course of execution. These tags include the in tag, the with tag, and the let tag.

In Tag Namespace Modifications

When the in tag iterates over a sequence it pushes the current item in the sequence onto the top of the namespace
stack:

<dtml-var getId> <!-- This is the id of the client object -->

<dtml-in objectValues>
 <dtml-var getId> <!-- this is the id of the current item in the

The Zope Book (2.6 Edition)

182

 objectValues sequence -->
</dtml-in>

You've seen this many times throughout the examples in this book. While the in tag is iterating over a sequence, each
item is pushed onto the namespace stack for the duration of the contents of the in tag block. When the block is finished
executing, the current item in the sequence is popped off the DTML namespace stack and the next item in the
sequence is pushed on.

Additional Notes

To be more accurate, the in tag pushes a number of items onto the namespace stack. These include sequence
variables, grouping variables, and batch variables in addition to the object itself. Some of those variables are:

 • sequence-item: The current item within the iteration.

 • sequence-start: True if the current item is the first item in the sequence.

 • sequence-end: True if the current item is the last item in the sequence.

 • sequence-length: The length of the sequence.

 • previous-sequence: True on the first iteration if the current batch is not the first one. Batch size is set with the
size attribute.

 • next-sequence: True on the last iteration if the current batch is not the last batch.

There are many more variables available when using the in tag. See Appendix A for more detail.

The With Tag

The with tag pushes an object that you specify onto the namespace stack for the duration of the with block. This allows
you to specify where variables should be looked up first. When the with block closes, the object is popped off the
namespace stack.

Consider a folder that contains a bunch of methods and properties that you are interested in. You could access those
names with Python expressions like this:

<dtml-var standard_html_header>

<dtml-var expr="Reptiles.getReptileInfo()">
<dtml-var expr="Reptiles.reptileHouseMaintainer">

<dtml-in expr="Reptiles.getReptiles()">
 <dtml-var species>
</dtml-in>

<dtml-var standard_html_footer>

Notice that a lot of complexity is added to the code just to get things out of the Reptiles folder. Using the with tag you
can make this example much easier to read:

<dtml-var standard_html_header>

<dtml-with Reptiles>

 <dtml-var getReptileInfo>
 <dtml-var reptileHouseMaintainer>

The Zope Book (2.6 Edition)

183

 <dtml-in getReptiles>
 <dtml-var species>
 </dtml-in>

</dtml-with>

<dtml-var standard_html_footer>

Another reason you might want to use the with tag is to put the request, or some part of the request on top of the
namespace stack. For example suppose you have a form that includes an input named id . If you try to process this
form by looking up the id variable like so:

<dtml-var id>

You will not get your form's id variable, but the client object's id. One solution is to push the web request's form on to
the top of the DTML namespace stack using the with tag:

<dtml-with expr="REQUEST.form">
 <dtml-var id>
</dtml-with>

This will ensure that you get the form's id first. See Appendix B for complete API documentation of the request object.

If you submit your form without supplying a value for the id input, the form on top of the namespace stack will do you no
good, since the form doesn't contain an id variable. You'll still get the client object's id since DTML will search the client
object after failing to find the id variable in the form. The with tag has an attribute that lets you trim the DTML
namespace to only include the object you pushed onto the namespace stack:

<dtml-with expr="REQUEST.form" only>
 <dtml-if id>
 <dtml-var id>
 <dtml-else>
 <p>The form didn't contain an "id" variable.</p>
 </dtml-if>
</dtml-with>

Using the only attribute allows you to be sure about where your variables are being looked up.

The Let Tag

The let tag lets you push a new namespace onto the namespace stack. This namespace is defined by the tag attributes
to the let tag:

<dtml-let person="'Bob'" relation="'uncle'">
 <p><dtml-var person>'s your <dtml-var relation>.</p>
</dtml-let>

This would display:

<p>Bob's your uncle.</p>

The let tag accomplishes much of the same goals as the with tag. The main advantage of the let tag is that you can use
it to define multiple variables to be used in a block. The let tag creates one or more new name-value pairs and pushes
a namespace object containing those variables and their values on to the top of the DTML namespace stack. In
general the with tag is more useful to push existing objects onto the namespace stack, while the let tag is better suited
for defining new variables for a block.

When you find yourself writing complex DTML that requires things like new variables, there's a good chance that you
could do the same thing better with Python or Perl. Advanced scripting is covered in the chapter entitled Advanced
Zope Scripting .

The Zope Book (2.6 Edition)

184

The DTML namespace is a complex place, and this complexity evolved over a lot of time. Although it helps to
understand where names come from, it is much more helpful to always be specific about where you are looking for a
name. The with and let tags let you alter the namespace in order to obtain references to the objects you need.

DTML Namespace Utility Functions

Like all things in Zope, the DTML namespace is an object, and it can be accessed directly in DTML with the _
(underscore) object. The _ namespace is often referred to as "the under namespace".

The under namespace provides you with many useful methods for certain programming tasks. Let's look at a few of
them.

Say you wanted to print your name three times. This can be done with the in tag, but how do you explicitly tell the in tag
to loop three times? Just pass it a sequence with three items:

<dtml-var standard_html_header>

<dtml-in expr="_.range(3)">
 <dtml-var sequence-item>: My name is Bob.
</dtml-in>

<dtml-var standard_html_footer>

The _.range(3) Python expression will return a sequence of the first three integers, 0, 1, and 2. The range function
is a standard Python built-in and many of Python's built-in functions can be accessed through the _ namespace,
including:

'range([start,], stop, [step])' -- Returns a list of integers
from 'start' to 'stop' counting 'step' integers at a
time. 'start' defaults to 0 and 'step' defaults to 1. For example:

 '_.range(3,10,2)' -- gives '[3,5,7,9]'.

'_.len(sequence)' -- 'len' returns the size of *sequence* as an integer.

Many of these names come from the Python language, which contains a set of special functions called built-ins .
The Python philosophy is to have a small number of built-in names. The Zope philosophy can be thought of as having a
large, complex array of built-in names.

The under namespace can also be used to explicitly control variable look up. There is a very common usage of this
syntax. As mentioned above the in tag defines a number of special variables, like sequence-item and sequence-key
that you can use inside a loop to help you display and control it. What if you wanted to use one of these variables
inside a Python expression?:

<dtml-var standard_html_header>

<h1>The squares of the first three integers:</h1>

<dtml-in expr="_.range(3)">
 The square of <dtml-var sequence-item> is:
 <dtml-var expr="sequence-item * sequence-item">

</dtml-in>

<dtml-var standard_html_footer>

Try this, does it work? No! Why not? The problem lies in this var tag:

<dtml-var expr="sequence-item * sequence-item">

The Zope Book (2.6 Edition)

185

Remember, everything inside a Python expression attribute must be a valid Python expression . In DTML,
sequence-item is the name of a variable, but in Python this means "The object sequence minus the object item ". This
is not what you want.

What you really want is to look up the variable sequence-item . One way to solve this problem is to use the in tag prefix
attribute. For example:

<dtml-var standard_html_header>

<h1>The squares of the first three integers:</h1>

<dtml-in prefix="loop" expr="_.range(3)">
 The square of <dtml-var loop_item> is:
 <dtml-var expr="loop_item * loop_item">

</dtml-in>

<dtml-var standard_html_footer>

The prefix attribute causes in tag variables to be renamed using the specified prefix and underscores, rather than using
"sequence" and dashes. So in this example, "sequence-item" becomes "loop_item". See Appendix A for more
information on the prefix attribute.

Another way to look up the variable sequence-item in a DTML expression is to use the getitem utility function to
explicitly look up a variable:

The square of <dtml-var sequence-item> is:
<dtml-var expr="_.getitem('sequence-item') *
 _.getitem('sequence-item')">

The getitem function takes the name to look up as its first argument. Now, the DTML Method will correctly display the
square of the first three integers. The getitem method takes an optional second argument which specifies whether or
not to render the variable. Recall that rendering a DTML variable means turning it into a string. By default the getitem
function does not render a variable.

Here's how to insert a rendered variable named myDoc :

<dtml-var expr="_.getitem('myDoc', 1)">

This example is in some ways rather pointless, since it's the functional equivalent to:

<dtml-var myDoc>

However, suppose you had a form in which a user got to select which document they wanted to see from a list of
choices. Suppose the form had an input named selectedDoc which contained the name of the document. You could
then display the rendered document like so:

<dtml-var expr="_.getitem(selectedDoc, 1)">

Notice in the above example that selectedDoc is not in quotes. We don't want to insert the text selectedDoc we want to
insert the value of the variable named selectedDoc . For example, the value of selectedDoc might be chapterOne .
Using this method, you can look up an item using a dynamic value instead of static text.

If you are a python programmer and you begin using the more complex aspects of DTML, consider doing a lot of your
work in Python scripts that you call from DTML. This is explained more in the chapter entitled Advanced Zope Scripting
. Using Python sidesteps many of the issues in DTML.

DTML Security

The Zope Book (2.6 Edition)

186

Zope can be used by many different kinds of users. For example, the Zope site, Zope.org , has over 11,000 community
members at the time of this writing. Each member can log into Zope, add objects and news items, and manage their
own personal area.

Because DTML is a scripting language, it is very flexible about working with objects and their properties. If there were
no security system that constrained DTML then a user could potentially create malicious or privacy-invading DTML
code.

DTML is restricted by standard Zope security settings. So if you don't have permission to access an object by going to
its URL you also don't have permission to access it via DTML. You can't use DTML to trick the Zope security system.

For example, suppose you have a DTML Document named Diary which is private. Anonymous users can't access your
diary via the web. If an anonymous user views DTML that tries to access your diary they will be denied:

<dtml-var Diary>

DTML verifies that the current user is authorized to access all DTML variables. If the user does not have authorization,
then the security system will raise an Unauthorized error and the user will be asked to present more privileged
authentication credentials.

In the chapter entitled Users and Security , you read about security rules for executable content. There are ways to
tailor the roles of a DTML Document or Method to allow it to access restricted variables regardless of the viewer's roles.

Safe Scripting Limits

DTML will not let you gobble up memory or execute infinite loops and recursions. Because the restrictions on looping
and memory use are relatively tight, DTML is not the right language for complex, expensive programming logic. For
example, you cannot create huge lists with the _.range utility function. You also have no way to access the filesystem
directly in DTML.

Keep in mind however that these safety limits are simple and can be outsmarted by a determined user. It's generally
not a good idea to let anyone you don't trust write DTML code on your site.

Advanced DTML Tags

In the rest of this chapter we'll look at the many advanced DTML tags. These tags are summarized in Appendix A.
DTML has a set of built-in tags, as documented in this book, which can be counted on to be present in all Zope
installations and perform the most common kinds of things. However, it is also possible to add new tags to a Zope
installation. Instructions for doing this are provided at the Zope.org web site, along with an interesting set of contributed
DTML tags.

This section covers what could be referred to as Zope miscellaneous tags. These tags don't really fit into any broad
categories except for one group of tags, the exception handling DTML tags which are discussed at the end of this
chapter.

The Call Tag

The var tag can call methods, but it also inserts the return value. Using the call tag you can call methods without
inserting their return value into the output. This is useful if you are more interested in the effect of calling a method
rather than its return value.

The Zope Book (2.6 Edition)

187

For example, when you want to change the value of a property, animalName , you are more interested in the effect of
calling the manage_changeProperties method than the return value the method gives you. Here's an example:

<dtml-if expr="REQUEST.has_key('animalName')">
 <dtml-call expr="manage_changeProperties(animalName=REQUEST['animalName'])">
 <h1>The property 'animalName' has changed</h1>
<dtml-else>
 <h1>No properties were changed</h1>
</dtml-if>

In this example, the page will change a property depending on whether a certain name exists. The result of the
manage_changeProperties method is not important and does not need to be shown to the user.

Another common usage of the call tag is calling methods that affect client behavior, like the RESPONSE.redirect
method. In this example, you make the client redirect to a different page, to change the page that gets redirected,
change the value for the "target" variable defined in the let tag:

<dtml-var standard_html_header>

<dtml-let target="'http://example.com/new_location.html'">

 <h1>This page has moved, you will now be redirected to the
 correct location. If your browser does not redirect, click <a
 href="<dtml-var target>"><dtml-var target>.</h1>

 <dtml-call expr="RESPONSE.redirect(target)">

</dtml-let>

<dtml-var standard_html_footer>

In short, the call tag works exactly like the var tag with the exception that it doesn't insert the results of calling the
variable.

Another possibility for use of the call tag would be to call a ZSQL Method or or preprocess the REQUEST. Two
examples of calling a ZSQL method:

<dtml-call "insertLogEntry(REQUEST)">

or:

<dtml-call "insertLogEntry(logInfo=REQUEST.get('URL0'), severity=1)">

To call a python script that might do any number of things, including preprocessing the REQUEST:

<dtml-call "preprocess(REQUEST)">

The Comment Tag

DTML can be documented with comments using the comment tag:

<dtml-var standard_html_header>

<dtml-comment>

 This is a DTML comment and will be removed from the DTML code
 before it is returned to the client. This is useful for
 documenting DTML code. Unlike HTML comments, DTML comments
 are NEVER sent to the client.

</dtml-comment>

<!--

 This is an HTML comment, this is NOT DTML and will be treated

The Zope Book (2.6 Edition)

188

 as HTML and like any other HTML code will get sent to the
 client. Although it is customary for an HTML browser to hide
 these comments from the end user, they still get sent to the
 client and can be easily seen by 'Viewing the Source' of a
 document.

-->

<dtml-var standard_html_footer>

The comment block is removed from DTML output.

In addition to documenting DTML you can use the comment tag to temporarily comment out other DTML tags. Later
you can remove the comment tags to re-enable the DTML.

The Tree Tag

The tree tag lets you easily build dynamic trees in HTML to display hierarchical data. A tree is a graphical
representation of data that starts with a "root" object that has objects underneath it often referred to as "branches".
Branches can have their own branches, just like a real tree. This concept should be familiar to anyone who has used a
file manager program like Microsoft Windows Explorer to navigate a file system. And, in fact, the left hand "navigation"
view of the Zope management interface is created using the tree tag.

For example here's a tree that represents a collection of folders and sub-folders.

Figure 7-5 HTML tree generated by the tree tag.

Here's the DTML that generated this tree display:

<dtml-var standard_html_header>

<dtml-tree>

 <dtml-var getId>

</dtml-tree>

<dtml-var standard_html_footer>

The Zope Book (2.6 Edition)

189

The tree tag queries objects to find their sub-objects and takes care of displaying the results as a tree. The tree tag
block works as a template to display nodes of the tree.

Now, since the basic protocol of the web, HTTP, is stateless, you need to somehow remember what state the tree is in
every time you look at a page. To do this, Zope stores the state of the tree in a cookie . Because this tree state is
stored in a cookie, only one tree can appear on a web page at a time, otherwise they will confusingly use the same
cookie.

You can tailor the behavior of the tree tag quite a bit with tree tag attributes and special variables. Here is a sampling of
tree tag attributes.

branches — The name of the method used to find sub-objects. This defaults to tpValues , which is a method defined
by a number of standard Zope objects.

leaves — The name of a method used to display objects that do not have sub-object branches.

nowrap — Either 0 or 1. If 0, then branch text will wrap to fit in available space, otherwise, text may be truncated. The
default value is 0.

sort — Sort branches before text insertion is performed. The attribute value is the name of the attribute that items
should be sorted on.

assume_children — Either 0 or 1. If 1, then all objects are assumed to have sub-objects, and will therefore always
have a plus sign in front of them when they are collapsed. Only when an item is expanded will sub-objects be looked
for. This could be a good option when the retrieval of sub-objects is a costly process. The defalt value is 0.

single — Either 0 or 1. If 1, then only one branch of the tree can be expanded. Any expanded branches will collapse
when a new branch is expanded. The default value is 0.

skip_unauthorized — Either 0 or 1. If 1, then no errors will be raised trying to display sub-objects for which the user
does not have sufficient access. The protected sub-objects are not displayed. The default value is 0.

Suppose you want to use the tree tag to create a dynamic site map. You don't want every page to show up in the site
map. Let's say that you put a property on folders and documents that you want to show up in the site map.

Let's first define a Script with the id of publicObjects that returns public objects:

Script (Python) "publicObjects"
##
"""
Returns sub-folders and DTML documents that have a
true 'siteMap' property.
"""
results=[]
for object in context.objectValues(['Folder', 'DTML Document']):
 if object.hasProperty('siteMap') and object.siteMap:
 results.append(object)
return results

Now we can create a DTML Method that uses the tree tag and our Scripts to draw a site map:

<dtml-var standard_html_header>

<h1>Site Map</h1>

<p>Expand All |
 Collapse All
</p>
<dtml-tree branches="publicObjects" skip_unauthorized="1">

The Zope Book (2.6 Edition)

190

 <dtml-var title_or_id>
</dtml-tree>

<dtml-var standard_html_footer>

This DTML Method draws a link to all public resources and displays them in a tree. Here's what the resulting site map
looks like.

Figure 7-6 Dynamic site map using the tree tag.

For a summary of the tree tag arguments and special variables see Appendix A.

The Return Tag

In general DTML creates textual output. You can however, make DTML return other values besides text. Using the
return tag you can make a DTML Method return an arbitrary value just like a Python or Perl-based Script.

Here's an example:

<p>This text is ignored.</p>

<dtml-return expr="42">

This DTML Method returns the number 42.

Another upshot of using the return tag is that DTML execution will stop after the return tag.

If you find yourself using the return tag, you almost certainly should be using a Script instead. The return tag was
developed before Scripts, and is largely useless now that you can easily write scripts in Python and Perl.

The Sendmail Tag

The sendmail tag formats and sends a mail messages. You can use the sendmail tag to connect to an existing Mail
Host, or you can manually specify your SMTP host.

Here's an example of how to send an email message with the sendmail tag:

The Zope Book (2.6 Edition)

191

<dtml-sendmail>
To: <dtml-var recipient>
From: <dtml-var sender>
Subject: Make Money Fast!!!!

Take advantage of our exciting offer now! Using our exclusive method
you can build unimaginable wealth very quickly. Act now!
</dtml-sendmail>

Notice that there is an extra blank line separating the mail headers from the body of the message.

A common use of the sendmail tag is to send an email message generated by a feedback form. The sendmail tag can
contain any DTML tags you wish, so it's easy to tailor your message with form data.

The Mime Tag

The mime tag allows you to format data using MIME (Multipurpose Internet Mail Extensions). MIME is an Internet
standard for encoding data in email message. Using the mime tag you can use Zope to send emails with attachments.

Suppose you'd like to upload your resume to Zope and then have Zope email this file to a list of potential employers.

Here's the upload form:

<dtml-var standard_html_header>

<p>Send you resume to potential employers</p>

<form method=post action="sendresume" ENCTYPE="multipart/form-data">
<p>Resume file: <input type="file" name="resume_file"></p>
<p>Send to:</p>
<p>
<input type="checkbox" name="send_to:list" value="jobs@yahoo.com">
 Yahoo

<input type="checkbox" name="send_to:list" value="jobs@microsoft.com">
 Microsoft

<input type="checkbox" name="send_to:list" value="jobs@mcdonalds.com">
 McDonalds</p>

<input type=submit value="Send Resume">
</form>

<dtml-var standard_html_footer>

Note: The text :list added to the name of the input fields directs Zope to treat the received information as a list type. For
example if the first two checkboxes were selected in the above upload form, the REQUEST variable send_to would
have the value [jobs@yahoo.com, jobs@microsoft.com]

Create another DTML Method called sendresume to process the form and send the resume file:

<dtml-var standard_html_header>

<dtml-if send_to>

 <dtml-in send_to>

 <dtml-sendmail smtphost="my.mailserver.com">
 To: <dtml-var sequence-item>
 Subject: Resume
 <dtml-mime type=text/plain encode=7bit>

 Hi, please take a look at my resume.

 <dtml-boundary type=application/octet-stream disposition=attachment

The Zope Book (2.6 Edition)

192

 encode=base64><dtml-var expr="resume_file.read()"></dtml-mime>
 </dtml-sendmail>

 </dtml-in>

 <p>Your resume was sent.</p>

<dtml-else>

 <p>You didn't select any recipients.</p>

</dtml-if>

<dtml-var standard_html_footer>

This method iterates over the sendto variable and sends one email for each item.

Notice that there is no blank line between the To: header and the starting mime tag. If a blank line is inserted between
them then the message will not be interpreted as a multipart message by the receiving mail reader.

Also notice that there is no newline between the boundary tag and the var tag, or the end of the var tag and the closing
mime tag. This is important, if you break the tags up with newlines then they will be encoded and included in the MIME
part, which is probably not what you're after.

As per the MIME spec, mime tags may be nested within mime tags arbitrarily.

The Unless Tag

The unless tag executes a block of code unless the given condition is true. The unless tag is the opposite of the if tag.
The DTML code:

<dtml-if expr="not butter">
 I can't believe it's not butter.
</dtml-if>

is equivalent to:

<dtml-unless expr="butter">
 I can't believe it's not butter.
</dtml-unless>

What is the purpose of the unless tag? It is simply a convenience tag. The unless tag is more limited than the if tag,
since it cannot contain an else or elif tag.

Like the if tag, calling the unless tag by name does existence checking, so:

<dtml-unless the_easter_bunny>
 The Easter Bunny does not exist or is not true.
</dtml-unless>

Checks for the existence of the_easter_bunny as well as its truth. While this example only checks for the truth of
the_easter_bunny :

<dtml-unless expr="the_easter_bunny">
 The Easter Bunny is not true.
</dtml-unless>

This example will raise an exception if the_easter_bunny does not exist.

Anything that can be done by the unless tag can be done by the if tag. Thus, its use is totally optional and a matter of
style.

The Zope Book (2.6 Edition)

193

Batch Processing With The In Tag

Often you want to present a large list of information but only show it to the user one screen at a time. For example, if a
user queried your database and got 120 results, you will probably only want to show them to the user a small batch,
say 10 or 20 results per page. Breaking up large lists into parts is called batching . Batching has a number of benefits.

 • The user only needs to download a reasonably sized document rather than a potentially huge document. This
makes pages load faster since they are smaller.

 • Because smaller batches of results are being used, often less memory is consumed by Zope.

 • Next and Previous navigation interfaces makes scanning large batches relatively easy.

The in tag provides several variables to facilitate batch processing. Let's look at a complete example that shows how to
display 100 items in batches of 10 at a time:

<dtml-var standard_html_header>

 <dtml-in expr="_.range(100)" size=10 start=query_start>

 <dtml-if sequence-start>

 <dtml-if previous-sequence>
 <a href="<dtml-var URL><dtml-var sequence-query
 >query_start=<dtml-var previous-sequence-start-number>">
 (Previous <dtml-var previous-sequence-size> results)

 </dtml-if>

 <h1>These words are displayed at the top of a batch:</h1>

 </dtml-if>

 Iteration number: <dtml-var sequence-item>

 <dtml-if sequence-end>

 <h4>These words are displayed at the bottom of a batch.</h4>

 <dtml-if next-sequence>
 <a href="<dtml-var URL><dtml-var sequence-query
 >query_start=<dtml-var
 next-sequence-start-number>">
 (Next <dtml-var next-sequence-size> results)

 </dtml-if>

 </dtml-if>

 </dtml-in>

<dtml-var standard_html_footer>

Let's take a look at the DTML to get an idea of what's going on. First we have an in tag that iterates over 100 numbers
that are generated by the range utility function. The size attribute tells the in tag to display only 10 items at a time. The
start attribute tells the in tag which item number to display first.

Inside the in tag there are two main if tags. The first one tests special variable sequence-start . This variable is
only true on the first pass through the in block. So the contents of this if tag will only be executed once at the beginning
of the loop. The second if tag tests for the special variable sequence-end . This variable is only true on the last pass

The Zope Book (2.6 Edition)

194

through the in tag. So the second if block will only be executed once at the end. The paragraph between the if tags is
executed each time through the loop.

Inside each if tag there is another if tag that check for the special variables previous-sequence and
next-sequence . The variables are true when the current batch has previous or further batches respectively. In other
words previous-sequence is true for all batches except the first, and next-sequence is true for all batches
except the last. So the DTML tests to see if there are additional batches available, and if so it draws navigation links.

The batch navigation consists of links back to the document with a query_start variable set which indicates where the in
tag should start when displaying the batch. To better get a feel for how this works, click the previous and next links a
few times and watch how the URLs for the navigation links change.

Finally some statistics about the previous and next batches are displayed using the next-sequence-size and
previous-sequence-size special variables. All of this ends up generating the following HTML code:

<html><head><title>Zope</title></head><body bgcolor="#FFFFFF">

 <h1>These words are displayed at the top of a batch:</h1>

 Iteration number: 0
 Iteration number: 1
 Iteration number: 2
 Iteration number: 3
 Iteration number: 4
 Iteration number: 5
 Iteration number: 6
 Iteration number: 7
 Iteration number: 8
 Iteration number: 9

 <h4>These words are displayed at the bottom of a batch.</h4>

 (Next 10 results)

</body></html>

Another example utilizes the commonly accepted navigation scheme of presenting the the user page numbers from
which to select:

<dtml-in "_.range(1,101) "size=10 start=start>
 <dtml-if sequence-start>
 <p>Pages:
 <dtml-call "REQUEST.set('actual_page',1)">
 <dtml-in previous-batches mapping>
 <a href="<dtml-var URL><dtml-var sequence-query>start=<dtml-var "_['batch-start-index']+1">">
 <dtml-var sequence-number>
 <dtml-call "REQUEST.set('actual_page',_['sequence-number']+1)">
 </dtml-in>
 <dtml-var "_['actual_page']">
 </dtml-if>
 <dtml-if sequence-end>
 <dtml-in next-batches mapping>
 <a href="<dtml-var URL><dtml-var sequence-query>start=<dtml-var "_['batch-start-index']+1">">
 <dtml-var "_['sequence-number']+_['actual_page']">
 </dtml-in>
 </dtml-if>
 </dtml-in>

 <dtml-in "_.range(1,101) "size=10 start=start>

<dtml-var sequence-item>
 </dtml-in>

The Zope Book (2.6 Edition)

195

This quick and easy method to display pages is a nice navigational tool for larger batches. It does present the
drawback of having to utilize an additional dtml-in tag to iterate through the actual items, however.

Batch processing can be complex. A good way to work with batches is to use the Searchable Interface object to create
a batching search report for you. You can then modify the DTML to fit your needs. This is explained more in the chapter
entitled Searching and Categorizing Content .

Exception Handling Tags

Zope has extensive exception handling facilities. You can get access to these facilities with the raise and try tags. For
more information on exceptions and how they are raised and handled see a book on Python or you can read the online
Python Tutorial .

The Raise Tag

You can raise exceptions with the raise tag. One reason to raise exceptions is to signal an error. For example you
could check for a problem with the if tag, and in case there was something wrong you could report the error with the
raise tag.

The raise tag has a type attribute for specifying an error type. The error type is a short descriptive name for the error. In
addition, there are some standard error types, like Unauthorized and Redirect that are returned as HTTP errors.
Unauthorized errors cause a log-in prompt to be displayed on the user's browser. You can raise HTTP errors to make
Zope send an HTTP error. For example:

<dtml-raise type="404">Not Found</dtml-raise>

This raises an HTTP 404 (Not Found) error. Zope responds by sending the HTTP 404 error back to the client's
browser.

The raise tag is a block tag. The block enclosed by the raise tag is rendered to create an error message. If the
rendered text contains any HTML markup, then Zope will display the text as an error message on the browser,
otherwise a generic error message is displayed.

Here is a raise tag example:

<dtml-if expr="balance >= debit_amount">

 <dtml-call expr="debitAccount(account, debit_amount)">

 <p><dtml-var debit_amount> has been deducted from your
 account <dtml-var account>.</p>

<dtml-else>

 <dtml-raise type="Insufficient funds">

 <p>There is not enough money in account <dtml-account>
 to cover the requested debit amount.</p>

 </dtml-raise>

</dtml-if>

There is an important side effect to raising an exception, exceptions cause the current transaction to be rolled back.
This means any changes made by a web request are ignored. So in addition to reporting errors, exceptions allow you
to back out changes if a problem crops up.

The Try Tag

The Zope Book (2.6 Edition)

196

If an exception is raised either manually with the raise tag, or as the result of some error that Zope encounters, you can
catch it with the try tag.

Exceptions are unexpected errors that Zope encounters during the execution of a DTML document or method. Once an
exception is detected, the normal execution of the DTML stops. Consider the following example:

Cost per unit: <dtml-var
 expr="_.float(total_cost/total_units)"
 fmt=dollars-and-cents>

This DTML works fine if total_units is not zero. However, if total_units is zero, a ZeroDivisionError exception is raised
indicating an illegal operation. So rather than rendering the DTML, an error message will be returned.

You can use the try tag to handle these kind of problems. With the try tag you can anticipate and handle errors
yourself, rather than getting a Zope error message whenever an exception occurs.

The try tag has two functions. First, if an exception is raised, the try tag gains control of execution and handles the
exception appropriately, and thus avoids returning a Zope error message. Second, the try tag allows the rendering of
any subsequent DTML to continue.

Within the try tag are one or more except tags that identify and handle different exceptions. When an exception is
raised, each except tag is checked in turn to see if it matches the exception's type. The first except tag to match
handles the exception. If no exceptions are given in an except tag, then the except tag will match all exceptions.

Here's how to use the try tag to avoid errors that could occur in the last example:

<dtml-try>

 Cost per unit: <dtml-var
 expr="_.float(total_cost/total_units)"
 fmt="dollars-and-cents">

<dtml-except ZeroDivisionError>

 Cost per unit: N/A

</dtml-try>

If a ZeroDivisionError is raised, control goes to the except tag, and "Cost per unit: N/A" is rendered. Once the except
tag block finishes, execution of DTML continues after the try block.

DTML's except tags work with Python's class-based exceptions. In addition to matching exceptions by name, the
except tag will match any subclass of the named exception. For example, if ArithmeticError is named in a except tag,
the tag can handle all ArithmeticError subclasses including, ZeroDivisionError . See a Python reference such as the
online Python Library Reference for a list of Python exceptions and their subclasses. An except tag can catch multiple
exceptions by listing them all in the same tag.

Inside the body of an except tag you can access information about the handled exception through several special
variables.

 error_type — The type of the handled exception.

 error_value — The value of the handled exception.

 error_tb — The traceback of the handled exception.

The Zope Book (2.6 Edition)

197

You can use these variables to provide error messages to users or to take different actions such as sending email to
the webmaster or logging errors depending on the type of error.

The Try Tag Optional Else Block

The try tag has an optional else block that is rendered if an exception didn't occur. Here's an example of how to use the
else tag within the try tag:

<dtml-try>

 <dtml-call feedAlligators>

<dtml-except NotEnoughFood WrongKindOfFood>

 <p>Make sure you have enough alligator food first.</p>

<dtml-except NotHungry>

 <p>The alligators aren't hungry yet.</p>

<dtml-except>

 <p>There was some problem trying to feed the alligators.<p>
 <p>Error type: <dtml-var error_type></p>
 <p>Error value: <dtml-var error_value></p>

<dtml-else>

 <p>The alligator were successfully fed.</p>

</dtml-try>

The first except block to match the type of error raised is rendered. If an except block has no name, then it matches all
raised errors. The optional else block is rendered when no exception occurs in the try block. Exceptions in the else
block are not handled by the preceding except blocks.

The Try Tag Optional Finally Block

You can also use the try tag in a slightly different way. Instead of handling exceptions, the try tag can be used not to
trap exceptions, but to clean up after them.

The finally tag inside the try tag specifies a cleanup block to be rendered even when an exception occurs.

The finally block is only useful if you need to clean up something that will not be cleaned up by the transaction abort
code. The finally block will always be called, whether there is an exception or not and whether a return tag is used or
not. If you use a return tag in the try block, any output of the finally block is discarded. Here's an example of how you
might use the finally tag:

<dtml-call acquireLock>
<dtml-try>
 <dtml-call useLockedResource>
<dtml-finally>
 <!-- this always gets done even if an exception is raised -->
 <dtml-call releaseLock>
</dtml-try>

In this example you first acquire a lock on a resource, then try to perform some action on the locked resource. If an
exception is raised, you don't handle it, but you make sure to release the lock before passing control off to an exception
handler. If all goes well and no exception is raised, you still release the lock at the end of the try block by executing the
finally block.

The Zope Book (2.6 Edition)

198

The try/finally form of the try tag is seldom used in Zope. This kind of complex programming control is often better done
in Python or Perl.

Other useful examples

In this section are several useful examples of dtml code. While many of these are most often better done in Python
scripts, there are occasions when knowing how to accomplish this in dtml is worthwhile.

Forwarding a REQUEST

We have seen how to redirect the user's browser to another page with the help of the call directive. However, there are
times when a redirection is not necessary and a simple forwarding of a REQUEST from one dtml-method to another
would suffice. In this example, the dtml-method shown obtains a variable named type from the REQUEST object. A
lookup table is reference to obtain the name of the dtml-method to which the REQUEST should be forwarded. The
code below accomplishes this:

<dtml-let lookup="{'a' : 'form15', 'b' : 'form75', 'c' : 'form88'}">
 <dtml-return "_[lookup[REQUEST.get('type')]]">
</dtml-let>

This code looks up the name of the desired dtml-method in the lookup table (contained in the let statement) and in turn,
looks up the name of this dtml-method in the current namespace. As long as the dtml-method exists, control will be
passed to the method directly. This example could be made more complete with the addition of exception handling
which was discussed above.

Sorting with the <dtml-in> tag

There are many times when sorting a result set is necessary. The dtml-in tag has some very interesting sort capabilities
for both static and dynamic sorting. In the example below, a ZSQL method is called that returns results from a log table.
The columns returned are logTime, logType, and userName. The dtml-method or document that contains this code will
generate links back to itself to re-sort the query based upon certain search criteria:

<dtml-comment>

The sorting is accomplished by looking up a sort type
variable in the REQUEST that is comprised of two parts. All
but the last character indicate the name of the column on
which to sort. The last character of the sort type indicates
whether the sort should be ascending or descending.

</dtml-comment>

<table>
 <tr>
 <td>Time <a href="<dtml-var URL>?st=logTimea">A <a href="<dtml-var URL>?st=logTimed">D</td>
 <td>Type <a href="<dtml-var URL>?st=logTypea">A <a href="<dtml-var URL>?st=logTyped">D</td>
 <td>User <a href="<dtml-var URL>?st=userNamea">A <a href="<dtml-var URL>?st=userNamed">D</td>
 </tr>

 <dtml-comment>The line below sets the default sort</dtml-comment>
 <dtml-if "REQUEST.get('st')==None"><dtml-call "REQUEST.set('st', 'logTimed')"></dtml-if>
 <dtml-in getLogData sort_expr="REQUEST.get('st')[0:-1]" reverse_expr="REQUEST.get('st')[-1]=='d'">
 <tr>
 <td><dtml-var logTime></td>
 <td><dtml-var logType></td>
 <td><dtml-var userName></td>
 </tr>
 </dtml-in>
</table>

The Zope Book (2.6 Edition)

199

Calling a DTML object from a Python Script

Although calling a DTML method from a Python script isn't really an advanced DTML technique, it deals with DTML, so
it's being included here. To call a DTML Method or DTML Document from a Python script, the following code is used:

dtmlMethodName = 'index_html'
return context[dtmlMethodName](container, container.REQUEST)

It's as simple as that. Often this is very useful if you wish to forward a request and significant processing is needed to
determine which dtml object is the target.

Explicit Lookups

Occasionally it is useful to "turn off" acquisition when looking up an attribute. In this example, you have a folder which
contains sub-folders. Each sub-folder contains Images. The top-level folder, each subfolder, and each image contain a
property named desc .

If you were to query the Image for its desc property it would return the desc property of it's parent folder if the Image did
not have the property. This could cause confusion as the Image would appear to have the desc property when it really
belonged to the parent folder. In most cases, this behavior is desired. However, in this case, the user would like to see
which images have the desc property and which don't. This is accomplished by utilizing aq_explicit in the call to the
object in question.

Given the following structure:

Folder
 |
 |- Folder1 (desc='Folder one')
 |- Folder2 (desc='Folder two')
 |- Image1 (desc='Photo one')
 |- Image2
 |- Image3 (desc='Photo three')

when the second image is asked for its desc property it will return Folder two based on acquisition rules:

<dtml-var "Image2.desc">

However, utilizing aq_explicit will cause Zope to look only in the desired location for the property:

 <dtml-var "Image2.aq_explicit.desc">

This will, of course, raise an exception when the *desc*
property does not exist. A safer way to do this is::

 <dtml-if "_.hasattr(Image2.aq_explicit, 'desc')">
 <dtml-var "Image2.aq_explicit.desc">
 <dtml-else>
 No desc property.
 </dtml-if>

As you can see, this can be very useful.

Conclusion

DTML provides some very powerful functionality for designing web applications. In this chapter, we looked at the more
advanced DTML tags and some of their options. A more complete reference can be found in Appendix A.

The next chapter teaches you how to become a Page Template wizard. While DTML is a powerful tool, Page
Templates provide a more elegant solution to HTML generation.

The Zope Book (2.6 Edition)

200

Advanced Page Templates

In the chapter entitled Using Zope Page Templates you learned the basics features of Page Templates. In this chapter
you'll learn about advanced techniques including new types of expressions and macros.

Advanced TAL

In this section we'll go over all TAL statements and their various options in depth. This material is covered more
concisely in Appendix C, Zope Page Templates Reference .

In this chapter, the terms tag and element are used in the sense laid out by the XHTML spec . "<p>" is a tag ,
while the entire block "<p>stuff</p>" from opening tag through the closing tag is an element .

Advanced Content Insertion

You've already seen how tal:content and tal:replace work in the chapter entitled Using Zope Page Templates
. In this section you'll learn some advanced tricks for inserting content.

Inserting Structure

Normally, the tal:replace and tal:content statements convert HTML tags and entities in the text that they
insert into an "escaped" form that appears in the resulting document as plain text rather than HTML markup. For
instance, the '< character is "escaped" to &lt;'. If you want to insert text as part of the HTML structure of
your document, avoiding this conversion , you need to precede the expression with the structure keyword.

This feature is useful when you are inserting a fragment of HTML or XML that is stored in a property or generated by
another Zope object. For instance, you may have news items that contain simple HTML markup such as bold and italic
text when they are rendered, and you want to preserve this when inserting them into a "Top News" page. In this case,
you might write:

<p tal:repeat="newsItem here/topNews"
 tal:content="structure newsItem">
 A news item with<code>HTML</code> markup.
</p>

This will insert the news items' HTML into a series of paragraphs. The built-in variable here refers to the folder in
which the template is rendered; See the "Expressions" section further below in this chapter for more information on
here . In this case, we use here as the starting point for finding the Zope object topNews , which is presumably a
list of news items or a Script which fetches such a list.

The structure keyword prevents the text of each newsItem value from being escaped. It doesn't matter whether the
text actually contains any HTML markup, since structure really means "leave this text alone". This behavior is not
the default because most of the text that you insert into a template will not contain HTML, but may contain characters
that would interfere with the structure of your page.

Dummy Elements

You can include page elements that are visible in the template but not in generated text by using the built-in variable
nothing , like this:

<tr tal:replace="nothing">
 <td>10213</td><td>Example Item</td><td>$15.34</td>

The Zope Book (2.6 Edition)

201

</tr>

This can be useful for filling out parts of the page that will be populated with dynamic content. For instance, a table that
usually has ten rows will only have one row in the template. By adding nine dummy rows, the template's layout will look
more like the final result.

It's not always necessary to use the tal:replace="nothing" trick to get dummy content into your Page Template.
For example, you've already seen that anything inside a tal:content or tal:replace element is normally
removed when the template is rendered. In these cases you don't have do anything special to make sure that dummy
content is removed.

Default Content

You can leave the contents of an element along by using the default expression with tal:content or
tal:replace . For example:

<p tal:content="default">Spam</p>

This renders to:

<p>Spam</p>

Most often you will want to selectively include default content, rather than always including it. For example:

<p tal:content="python:here.getFood() or default">Spam</p>

Note: Python expressions are explained later in the chapter. If the getFood method returns a true value than its result
will be inserted into the paragraph, otherwise it's Spam for dinner.

Advanced Repetition

You've already seen most of what you can do with the tal:repeat statement in the chapter entitled Using Zope
Page Templates . This section covers a few advanced features of the tal:repeat statement.

Repeat Variables

One topic that bears more explanation are repeat variables. Repeat variables provide information about the current
repetition. The following attributes are available on repeat variables:

 • index - repetition number, starting from zero.

 • number - repetition number, starting from one.

 • even - true for even-indexed repetitions (0, 2, 4, ...).

 • odd - true for odd-indexed repetitions (1, 3, 5, ...).

 • start - true for the starting repetition (index 0).

 • end - true for the ending, or final, repetition.

 • length - length of the sequence, which will be the total number of repetitions.

The Zope Book (2.6 Edition)

202

 • letter - count reps with lower-case letters: "a" - "z", "aa" - "az", "ba" - "bz", ..., "za" - "zz", "aaa" - "aaz", and so
forth.

 • Letter - upper-case version of letter .

You can access the contents of a repeat variable using path expressions or Python expressions. In path expressions,
you write a three-part path consisting of the name repeat , the statement variable's name, and the name of the
information you want, for example, repeat/item/start . In Python expressions, you use normal dictionary notation
to get the repeat variable, then attribute access to get the information, for example, 'python:repeat['item'].start'. The
reason that you can't simply write repeat/start is that tal:repeat statements can be nested, so you need to be
able to specify which one you want information about.

Repetition Tips

Here are a couple practical tips that you may find useful. Sometimes you'd like to repeat part of your template, but there
is no naturally enclosing element. In this case, you must add an enclosing element, but you want to prevent it from
appearing in the rendered page. You can do this with the tal:omit-tag statement:

<div tal:repeat="section here/getSections"
 tal:omit-tag="">
 <h4 tal:content="section/title">Title</h4>
 <p tal:content="section/text">quotation</p>
</div>

This is not just a matter of saving a few characters in the rendered output. Including the div tags in the output could
affect the page layout, especially if it has stylesheets. We use the tal omit-tag statement to disinclude the div tag
(and its pair closing tag) while leaving its contents unmolested. The tal:omit-tag statement is described in more
detail later in this chapter.

While it's been mentioned before, it's worth saying again: you can nest tal:repeat statements inside each other.
Each tal:repeat statement must have a different repeat variable name. Here's an example that shows a math
times-table:

<table border="1">
 <tr tal:repeat="x python:range(1, 13)">
 <td tal:repeat="y python:range(1, 13)"
 tal:content="python:'%d x %d = %d' % (x, y, x*y)">
 X x Y = Z
 </td>
 </tr>
</table>

This example uses Python expressions, which are covered later in this chapter.

If you've done much work with the dtml-in DTML repetition statement, you will have encountered batching. Batching
is the process of chopping up a large list into smaller lists. You typically use it to display a small number of items from a
large list on a web page. Think of how a search engine batches its search results. The tal:repeat statement does
not support batching, but Zope comes with a batching utility. See the section, "Batching" later in this chapter.

Another useful feature that isn't supplied by tal:repeat is sorting. If you want to sort a list you can either write your
own sorting script (which is quite easy in Python) or you can use the sequence.sort utility function. Here's an
example of how to sort a list of objects by title, and then by modification date:

<table tal:define="objects here/objectValues;
 sort_on python:(('title', 'nocase', 'asc'),
 ('bobobase_modification_time', 'cmp', 'desc'));
 sorted_objects python:sequence.sort(objects, sort_on)">
 <tr tal:repeat="item sorted_objects">
 <td tal:content="item/title">title</td>

The Zope Book (2.6 Edition)

203

 <td tal:content="item/bobobase_modification_time">
 modification date</td>
 </tr>
</table>

This example tries to make things clearer by defining the sort arguments outside the sort function. The
sequence.sort function takes a sequence and a description of how to sort it. In this example the description of how
to sort the sequence is defined in the sort_on variable. See Appendix B, API Reference for more information on the
powerful sequence.sort function.

Advanced Attribute Control

You've already met the tal:attributes statement. You can use it to dynamically replace tag attributes, for
example, the href attribute on an a element. You can replace more than one attribute on a tag by separating
attributes with semicolons:

<a href="link"
 tal:attributes="href here/getLink;
 class here/getClass">link

You can also define attributes with XML namespaces. For example:

<Description
 dc:Creator="creator name"
 tal:attributes="dc:Creator here/owner/getUserName">
 Description</Description>

Simply put the XML namespace prefix before the attribute name and you can create attributes with XML namespaces.

Defining Variables

You can define your own variable using the tal:define attribute. There are several reasons that you might want to
do this. One reason is to avoid having to write long expressions repeatedly in a template. Another is to avoid having to
call expensive methods repeatedly. You can define a variable once within an element on a tag and then use it many
times within elements which are enclosed by this tag. For example, here's a list that defines a variable and later tests it
and repeats over it:

<ul tal:define="items container/objectIds"
 tal:condition="items">
 <li tal:repeat="item items">
 <p tal:content="item">id</p>

The tal:define statement creates the variable items , which you can use anywhere in the ul element. Notice
also how you can have two TAL statements on the same ul tag. See the section "Interactions Between TAL
Statements" later in this chapter for more information about using more than one statement on a tag. In this case the
first statement assigns the variable items and the second uses items in a condition to see whether it is false (in this
case, an empty sequence) or true. If the items variable is false, then the ul element is not shown.

Now, suppose that instead of simply removing the list when there are no items, you want to show a message. To do
this, place the following before the list:

<h4 tal:condition="not:container/objectIds">There
Are No Items</h4>

The expression, not:container/objectIds is true when container/objectIds is false, and vice versa. See
the section, "Not Expressions" later in this chapter for more information.

The Zope Book (2.6 Edition)

204

You can't use your items variable here, because it isn't defined yet. If you move the definition of items to the h4
element, then you can't use it in the ul element any more, because it becomes a local variable of the h4 element.
You could place the definition on some element that enclosed both the h4 and the ul , but there is a simpler solution.
By placing the keyword global in front of the variable name, you can make the definition last from the span tag to
the bottom of the template:

<h4 tal:condition="not:items">There Are No Items</h4>

You can define more than one variable using tal:define by separating them with semicolons. For example:

<p tal:define="ids container/objectIds;
 title container/title">

You can define as many variables as you wish. Each variable can have its own global or local scope. You can also
refer to earlier defined variables in later definitions. For example:

<p tal:define="title template/title;
 global untitled not:title;
 tlen python:len(title);">

In this case, both title and tlen are local to the paragraph, but untitled is global. With judicious use of
tal:define you can improve the efficiency and readability of your templates.

Omitting Tags

You can remove tags with the tal:omit-tag statement. You will seldom need to use this TAL statement, but
occasionally it's useful. The omit-tag attribute removes opening and closing tags, but does not affect the contents of the
element. For example:

<b tal:omit-tag=""><i>this</i> stays

Renders to:

<i>this</i> stays

At this level of usage, tal:omit-tag operates almost like tal:replace="default" . However, tal:omit-tag
can also be used with a true/false expression, in which case it only removes the tags if the expression is true. For
example:

Friends:
 <b tal:omit-tag="not:friend/best"
 tal:content="friend/name">Fred

This will produce a list of friends, with our "best" friend's name in bold.

Error Handling

If an error occurs in your page template, you can catch that error and show a useful error message to your user. For
example, suppose your template defines a variable using form data:

...
<span tal:define="global prefs request/form/prefs"
 tal:omit-tag="" />
...

If Zope encounters a problem, like not being able to find the prefs variable in the form data, the entire page will
break; you'll get an error page instead. Happily, you can avoid this kind of thing with limited error handling using the
tal:on-error statement:

The Zope Book (2.6 Edition)

205

...
<span tal:define="global prefs here/scriptToGetPreferences"
 tal:omit-tag=""
 tal:on-error="string:An error occurred">
...

When an error is raised while rendering a template, Zope looks for a tal:on-error statement to handle the error. It
first looks in the current element, then on its enclosing element, and so on until it reaches the top-level element. When
it finds an error handler, it replaces the contents of that element with the error handling expression. In this case, the
span element will contain an error message.

Typically you'll define an error handler on an element that encloses a logical page element, for example a table. If an
error crops up drawing the table, then the error handler can simply omit the table from the page, or else replace it with
an error message of some sort.

For more flexible error handling you can call a script. For example:

<div tal:on-error="structure here/handleError">
...
</div>

Any error that occurs inside the div will call the handleError script. Note that the structure option allows the
script to return HTML. Your error handling script can examine the error and take various actions depending on the
error. Your script gets access to the error through the error variable in the namespace. For example:

Script (Python) "handleError"
##bind namespace=_
##
error=_['error']
if error.type==ZeroDivisionError:
 return "<p>Can't divide by zero.</p>"
else
 return """<p>An error occurred.</p>
 <p>Error type: %s</p>
 <p>Error value: %s</p>""" % (error.type,
 error.value)

Your error handling script can take all kinds of actions, for example, it might log the error by sending email.

The tal:on-error statement is not meant for general purpose exception handling. For example, you shouldn't
validate form input with it. You should use a script for that, since scripts allow you to do powerful exception handling.
The tal:on-error statement is for dealing with unusual problems that can occur when rendering templates.

Interactions Between TAL Statements

When there is only one TAL statement per element, the order in which they are executed is simple. Starting with the
root element, each element's statements are executed, then each of its child elements are visited, in order, and their
statements are executed, and so on.

However, it's possible to have more than one TAL statement on the same element. Any combination of statements may
appear on the same element, except that the tal:content and tal:replace statements may not appear
together.

When an element has multiple statements, they are executed in this order:

1. define

2. condition

The Zope Book (2.6 Edition)

206

3. repeat

4. content or replace

5. attributes

6. omit-tag

Since the tal:on-error statement is only invoked when an error occurs, it does not appear in the list.

The reasoning behind this ordering goes like this: you often want to set up variables for use in other statements, so
define comes first. The very next thing to do is decide whether this element will be included at all, so condition is next;
since the condition may depend on variables you just set, it comes after define. It is valuable to be able to replace
various parts of an element with different values on each iteration of a repeat, so repeat comes before content, replace
and attributes. Content and replace can't both be used on the same element so they occur at the same place. Omit-tag
comes last since no other statements are likely to depend on it and since it should come after define and repeat.

Here's an example element that includes several TAL statements:

<p tal:define="x /root/a/long/path/x | nothing"
 tal:condition="x"
 tal:content="x/txt"
 tal:attributes="class x/class">Ex Text</p>

Notice how the tal:define statement is executed first, and the other statements rely on its results.

There are three limits you should be aware of when combining TAL statements on elements:

1. Only one of each kind of statement can be used on a single tag. Since HTML does not allow multiple attributes with
the same name. For example, you can't have two tal:define on the same tag.

2. Both of tal:content and tal:replace cannot be used on the same tag, since their functions conflict.

3. The order in which you write TAL attributes on a tag does not affect the order in which they execute. No matter how
you arrange them, the TAL statements on a tag always execute in the fixed order described earlier.

If you want to override the ordering of TAL statements, you must do so by enclosing the element in another element
and placing some of the statements on this new element. For example suppose you want to loop over a series of items
but skip some. Here's an attempt to write a template that loops over the numbers zero to nine and skips three:

<!-- broken template -->

 <li tal:repeat="n python:range(10)"
 tal:condition="python:n != 3"
 tal:content="n">
 1

This template doesn't work due to TAL statement execution order. Despite the order in which they are written, the
condition is always tested before the repeat is executed. This results in a situation in which the n variable is not
defined until after it is tested, which ultimately causes an error when you attempt to test or otherwise view the template.
Here's a way around this problem:

 <div tal:repeat="n python:range(10)"
 tal:omit-tag="">
 <li tal:condition="python:n != 3"

The Zope Book (2.6 Edition)

207

 tal:content="n">
 1

 </div>

This template solves the problem by defining the n variable on an enclosing div element. Notice that the div tag will
not appear in the output due to its tal:omit-tag statement.

Although span and div are natural choices for this in HTML, there is, in general, no equivalent natural element in
XML. In this case, you can use TAL's namespace in a new way: while TAL does not define any tags, it doesn't prohibit
any either. You can make up any tag name you like within the TAL namespace, and use it to make an element, like so:

<tal:series define="items here/getItems">
 <tal:items repeat="item items">
 <tal:parts repeat="part item">
 <part tal:content="part">Part</part>
 </tal:parts>
 </tal:items>
 <noparts tal:condition="not:items" />
</tal:series>

The tal:series , tal:items , and tal:parts tags in this example should be acceptable to tools that handle
XML namespaces properly, and to many HTML tools. This method has two additional advantages over a div . First,
TAL tags are omitted just like TAL attributes, so no tal:omit-tag is necessary. Second, TAL attributes in these tags
don't require their own tal: prefix, since they inherit the namespace of the tag. The METAL namespace can be used
in exactly the same fashion.

Form Processing

You can process forms in DTML using a common pattern called the "form/action pair". A form/action pair consists of
two DTML methods or documents: one that contains a form that collects input from the user, and one that contains an
action that is taken on that input and returns the user a response. The form calls the action. See the chapter entitled
Dynamic Content with DTML for more information on the form/action pattern.

Zope Page Templates don't work particularly well with the form/action pattern since it assumes that input processing
and response presentation are handled by the same object (the action). Instead of the form/action pattern you should
use form/action/response pattern with Page Templates. The form and response should be Page Templates and the
action should be a script. The form template gathers the input and calls the action script. The action script should
process the input and return a response template. This pattern is more flexible than the form/action pattern since it
allows the script to return any of a number of different response objects.

For example here's a part of a form template:

...
<form action="action">
 <input type="text" name="name">
 <input type="text" name="age:int">
 <input type="submit">
</form>
...

This form could be processed by this script:

Script (Python) "action"
##parameters=name, age
##
container.addPerson(name, age)
return container.responseTemplate()

The Zope Book (2.6 Edition)

208

This script calls a method to process the input and then returns another template, the response. You can render a
Page Template from Python by calling it. The response template typically contains an acknowledgment that the form
has been correctly processed.

The action script can do all kinds of things. It can validate input, handle errors, send email, or whatever it needs to do to
"get the job done". Here's a sketch of how to validate input with a script:

Script (Python) "action"
##
if not context.validateData(request):
 # if there's a problem return the form page template
 # along with an error message
 return context.formTemplate(error_message='Invalid data')

otherwise return the thanks page
return context.responseTemplate()

This script validates the form input and returns the form template with an error message if there's a problem. The
Script's context variable is equivalent to here in TALES. You can pass Page Templates extra information with
keyword arguments. The keyword arguments are available to the template via the options built-in variable. So the
form template in this example might include a section like this:

Error: <b tal:content="options/error_message">
 Error message goes here.

This example shows how you can display an error message that is passed to the template via keyword arguments.
Notice the use of | nothing to handle the case where no error_message argument has been passed to the
template.

Depending on your application you may choose to redirect the user to a response Page Template instead of returning it
directly. This results in twice as much network activity, but might be useful because it changes the URL displayed in the
user's browser to the URL of the Page Template, rather than that of the action script.

If you need to set up a quick-and-dirty form, you can always create a version of the form-action pair using Page
Templates alone. You should only do this when you don't care about error handling and when the response will always
be the same, no matter what the user submits. Since Page Templates don't have an equivalent of dtml-call , you
can use one of any number of hacks to call an input processing method without inserting its results. For example:

<span tal:define="unused here/processInputs"
 tal:omit-tag=""/>

This sample calls the processInputs method and assigns the result to the unused variable.

Expressions

You've already encountered Page Template expressions. Expressions provide values to template statements. For
example, in the TAL statement <td tal:content="request/form/age">Age</td> , the expression of the
statement is request/form/age . request/form/age is an example of a path expression . Path expressions
describe objects by giving them paths such as request/form/age , or user/getUserName . Expressions only
work in the context of a TAL statement; they do not work in "normal" HTML inserted in your page templates. In this
section you'll learn about all the different types of expressions, and variables.

Built-in Page Template Variables

The Zope Book (2.6 Edition)

209

Variables are names that you can use in expressions. You have already seen some examples of the built-in variables
such as template , user , repeat , and request . Here is the complete list of the other built-in variables and
their uses. Note that these variables are different than the built-in variables that you would use in a Script (Python),
they are only effective for Page Templates::

nothing — A false value, similar to a blank string, that you can use in tal:replace or tal:content to erase an
element or its contents. If you set an attribute to nothing , the attribute is removed from the tag (or not inserted). A
blank string, on the other hand, would insert the tag with an empty value, as in alt="" .

default — A special value that doesn't change anything when used in tal:replace , tal:content , or
tal:attributes . It leaves the template text in place.

options — The keyword arguments, if any, that were passed to the template. When a template is rendered from the
web, no options are present. Options are only available when a template is called from Python or by similarly complex
means. For example, when the template t is called by the Python expression t(foo=1) , the path options/foo
equals 1 .

attrs — A dictionary of attributes of the current tag in the template. The keys are the attributes names, and the
values are the original values of the attributes in the template. This variable is rarely needed.

root — The root Zope object. Use this to get Zope objects from fixed locations, no matter where your template is
placed or called.

here — The object on which the template is being called. This is often the same as the container , but can be different
if you are using acquisition. Use this to get Zope objects that you expect to find in different places depending on how
the template is called. The here variable is analogous to the context variable in Python-based scripts.

container — The container (usually a Folder) in which the template is kept. Use this to get Zope objects from
locations relative to the template's permanent home. The container and here variables refer to the same object
when a template is called from its normal location. However, when a template is applied to another object (for example,
a ZSQL Method) the container and here will not refer to the same object.

modules — The collection of Python modules available to templates. See the section on writing Python expressions.

You'll find examples of how to use these variables throughout this chapter.

String Expressions

String expressions allow you to easily mix path expressions with text. All of the text after the leading string: is taken
and searched for path expressions. Each path expression must be preceded by a dollar sign ($). Here are some
examples:

"string:Just text. There's no path here."
"string:copyright $year by Fred Flintstone."

If the path expression has more than one part (if it contains a slash), or needs to be separated from the text that follows
it, it must be surrounded by braces ({}). For example:

"string:Three ${vegetable}s, please."
"string:Your name is ${user/getUserName}!"

Notice how in the example above, you need to surround the vegetable path with braces so that Zope doesn't
mistake it for vegetables .

The Zope Book (2.6 Edition)

210

Since the text is inside of an attribute value, you can only include a double quote by using the entity syntax " .
Since dollar signs are used to signal path expressions, a literal dollar sign must be written as two dollar signs ($$).
For example:

"string:Please pay $$$dollars_owed"
"string:She said, "Hello world.""

Some complex string formatting operations (such as search and replace or changing capitalization) can't easily be
done with string expressions. For these cases, you should use Python expressions or Scripts.

Path Expressions

Path expressions refer to objects with a path that resembles a URL path. A path describes a traversal from object to
object. All paths begin with a known object (such as a built-in variable, a repeat variable, or a user defined variable)
and depart from there to the desired object. Here are some example paths expressions:

template/title
container/files/objectValues
user/getUserName
container/master.html/macros/header
request/form/address
root/standard_look_and_feel.html

With path expressions you can traverse from an object to its sub-objects including properties and methods. You can
also use acquisition in path expressions. See the section entitled "Calling Scripts from the Web" in the chapter entitled
Advanced Zope Scripting for more information on acquisition and path traversal.

Zope restricts object traversal in path expressions in the same way that it restricts object access via URLs. You must
have adequate permissions to access an object in order to refer to it with a path expression. See the chapter entitled
Users and Security for more information about object access controls.

Alternate Paths

The path template/title is guaranteed to exist every time the template is used, although it may be a blank string.
Some paths, such as request/form/x , may not exist during some renderings of the template. This normally causes
an error when Zope evaluates the path expression.

When a path doesn't exist, you may have a fall-back path or value that you would like to use instead. For instance, if
request/form/x doesn't exist, you might want to use here/x instead. You can do this by listing the paths in order
of preference, separated by vertical bar characters (|):

<h4 tal:content="request/form/x | here/x">Header</h4>

Two variables that are very useful as the last path in a list of alternates are nothing and default . For example,
default tells tal:content to leave the dummy content. Different TAL statements interpret default and
nothing differently. See Appendix C, "Zope Page Templates Reference" for more information.

You can also use a non-path expression as the final part in an alternate-path expression. For example:

<p tal:content="request/form/age|python:18">age</p>

In this example, if the request/form/age path doesn't exist, then the value is the number 18. This form allows you
to specify default values to use which can't be expressed as paths. Note, you can only use a non-path expression as
the last alternative.

You can also test the existence of a path directly with the exists expression type prefix. See the section "Exists
Expressions" below for more information on exists expressions.

The Zope Book (2.6 Edition)

211

Not Expressions

Not expressions let you negate the value of other expressions. For example:

<p tal:condition="not:here/objectIds">
 There are no contained objects.
</p>

Not expressions return true when the expression they are applied to is false, and vice versa. In Zope, zero, empty
strings, empty sequences, nothing, and None are considered false, while everything else is true. Non-existent paths
are neither true nor false, and applying a not: to such a path will fail.

There isn't much reason to use not expressions with Python expressions since you can use the Python not keyword
instead.

Nocall Expressions

An ordinary path expression tries to render the object that it fetches. This means that if the object is a function, Script,
Method, or some other kind of executable thing, then the expression will evaluate to the result of calling the object. This
is usually what you want, but not always. For example, if you want to put a DTML Document into a variable so that you
can refer to its properties, you can't use a normal path expression because it will render the Document into a string.

If you put the nocall: expression type prefix in front of a path, it prevents the rendering and simply gives you the
object. For example:

<span tal:define="doc nocall:here/aDoc"
 tal:content="string:${doc/getId}: ${doc/title}">
Id: Title

This expression type is also valuable when you want to define a variable to hold a function or class from a module, for
use in a Python expression.

Nocall expressions can also be used on functions, rather than objects:

<p tal:define="join nocall:modules/string/join">

This expression defines the join variable as a function (string.join), rather than the result of calling a function.

Exists Expressions

An exists expression is true if its path exists, and otherwise is false. For example here's one way to display an error
message only if it is passed in the request:

<h4 tal:define="err request/form/errmsg | nothing"
 tal:condition="err"
 tal:content="err">Error!</h4>

You can do the same thing more easily with an exists expression:

<h4 tal:condition="exists:request/form/errmsg"
 tal:content="request/form/errmsg">Error!</h4>

You can combine exists expressions with not expressions, for example:

<p tal:condition="not:exists:request/form/number">Please enter
a number between 0 and 5</p>

The Zope Book (2.6 Edition)

212

Note that in this example you can't use the expression, "not:request/form/number", since that expression will be true if
the number variable exists and is zero.

Python Expressions

The Python programming language is a simple and expressive one. If you have never encountered it before, you
should read one of the excellent tutorials or introductions available at the Python website .

A Page Template Python expression can contain anything that the Python language considers an expression. You
can't use statements such as if and while . In addition, Zope imposes some security restrictions to keep you from
accessing protected information, changing secured data, and creating problems such as infinite loops. See the chapter
entitled Advanced Zope Scripting for more information on Python security restrictions.

Comparisons

One place where Python expressions are practically necessary is in tal:condition statements. You usually want to
compare two strings or numbers, and there is no support in TAL to do this without Python expressions. In Python
expressions, you can use the comparison operators < (less than), > (greater than), '== (equal to), and !=' (not
equal to). You can also use the boolean operators and , not , and or . For example:

<p tal:repeat="widget widgets">

 Gear #1:
 Name

</p>

This example loops over a collection of objects, printing information about widgets which are of type gear .

Sometimes you want to choose different values inside a single statement based on one or more conditions. You can do
this with the test function, like this:

You <span tal:define="name user/getUserName"
 tal:replace="python:test(name=='Anonymous User',
 'need to log in', default)">
 are logged in as
 Name

If the user is Anonymous , then the span element is replaced with the text need to log in . Otherwise, the
default content is used, which is in this case are logged in as

The test function works like an if/then/else statement. See Appendix A, DTML Reference for more information on the
test function. Here's another example of how you can use the test function:

<tr tal:define="oddrow repeat/item/odd"
 tal:attributes="class python:test(oddrow, 'oddclass',
 'evenclass')">

This assigns oddclass and evenclass class attributes to alternate rows of the table, allowing them to be styled
differently in HTML output, for example.

Without the test function you'd have to write two tr elements with different conditions, one for even rows, and the
other for odd rows.

Using other Expression Types

The Zope Book (2.6 Edition)

213

You can use other expression types inside of a Python expression. Each expression type has a corresponding function
with the same name, including: path() , string() , exists() , and nocall() . This allows you to write
expressions such as:

"python:path('here/%s/thing' % foldername)"
"python:path(string('here/$foldername/thing'))"
"python:path('request/form/x') or default"

The final example has a slightly different meaning than the path expression, "request/form/x | default", since it will use
the default text if "request/form/x" doesn't exists or if it is false.

Getting at Zope Objects

Much of the power of Zope involves tying together specialized objects. Your Page Templates can use Scripts, SQL
Methods, Catalogs, and custom content objects. In order to use these objects you have to know how to get access to
them within Page Templates.

Object properties are usually attributes, so you can get a template's title with the expression "template.title". Most Zope
objects support acquisition, which allows you to get attributes from "parent" objects. This means that the Python
expression "here.Control_Panel" will acquire the Control Panel object from the root Folder. Object methods are
attributes, as in "here.objectIds" and "request.set". Objects contained in a Folder can be accessed as attributes of the
Folder, but since they often have Ids that are not valid Python identifiers, you can't use the normal notation. For
example, you cannot access the penguin.gif object with the following Python expression:

"python:here.penguin.gif"

Instead, you must write:

"python:getattr(here, 'penguin.gif')"

since Python doesn't support attribute names with periods.

Some objects, such as request , modules , and Zope Folders support Python item access, for example:

request['URL']
modules['math']
here['thing']

When you use item access on a Folder, it doesn't try to acquire the name, so it will only succeed if there is actually an
object with that Id contained in the Folder.

As shown in previous chapters, path expressions allow you to ignore details of how you get from one object to the next.
Zope tries attribute access, then item access. You can write:

"here/images/penguin.gif"

instead of:

"python:getattr(here.images, 'penguin.gif')"

and:

"request/form/x"

instead of:

"python:request.form['x']"

The Zope Book (2.6 Edition)

214

The trade-off is that path expressions don't allow you to specify those details. For instance, if you have a form variable
named "get", you must write:

"python:request.form['get']"

since this path expression:

"request/form/get"

will evaluate to the "get" method of the form dictionary.

If you prefer you can use path expressions inside Python expressions using the path() function, as described above.

Using Scripts

Script objects are often used to encapsulate business logic and complex data manipulation. Any time that you find
yourself writing lots of TAL statements with complicated expressions in them, you should consider whether you could
do the work better in a Script. If you have trouble understanding your template statements and expressions, then it's
better to simplify your Page Template and use Scripts for the complex stuff.

Each Script has a list of parameters that it expects to be given when it is called. If this list is empty, then you can use
the Script by writing a path expression. Otherwise, you will need to use a Python expression in order to supply the
argument, like this:

"python:here.myscript(1, 2)"
"python:here.myscript('arg', foo=request.form['x'])"

If you want to return more than one item of data from a Script to a Page Template, it is a good idea to return it in a
dictionary. That way, you can define a variable to hold all the data, and use path expressions to refer to each item. For
example, suppose the getPerson script returns a dictionary with name and age keys:

<span tal:define="person here/getPerson"
 tal:replace="string:${person/name} is ${person/age}">
Name is 30 years old.

Of course, it's fine to return Zope objects and Python lists as well.

Calling DTML

Unlike Scripts, DTML Methods and Documents don't have an explicit parameter list. Instead, they expect to be passed
a client, a mapping, and keyword arguments. They use these parameters to construct a namespace. See the chapter
entitled Variables and Advanced DTML for more information on explicitly calling DTML.

When Zope publishes a DTML object through the web, it passes the context of the object as the client, and the
REQUEST as the mapping. When one DTML object calls another, it passes its own namespace as the mapping, and
no client.

If you use a path expression to render a DTML object, it will pass a namespace with request , here , and the
template's variables already on it. This means that the DTML object will be able to use the same names as if it were
being published in the same context as the template, plus the variable names defined in the template. For example,
here is a template that uses a DTML Method to generate JavaScript:

<head tal:define="items here/getItems.sql">
 <title tal:content="template/title">Title</title>
 <script tal:content="structure here/jsItems"></script>
</head>
...etc...

The Zope Book (2.6 Edition)

215

...and here is the DTML Method 'jsItems':

<dtml-let prefix="template.id">
<dtml-in items>
&dtml-prefix;_&dtml-name; = &dtml-value; ;
</dtml-in>
</dtml-let>

The DTML uses the template's id , and the items variable that it defined just before the call.

Python Modules

The Python language comes with a large number of modules, which provide a wide variety of capabilities to Python
programs. Each module is a collection of Python functions, data, and classes related to a single purpose, such as
mathematical calculations or regular expressions.

Several modules, including "math" and "string", are available in Python expressions by default. For example, you can
get the value of pi from the math module by writing "python:math.pi". To access it from a path expression, however, you
need to use the modules variable, "modules/math/pi".

The "string" module is hidden in Python expressions by the "string" expression type function, so you need to access it
through the modules variable. You can do this directly in an expression in which you use it, or define a global variable
for it, like this:

tal:define="global mstring modules/string"
tal:replace="python:mstring.join(slist, ':')"

In practice you'll rarely need to do this since you can use string methods most of the time rather than having to rely on
functions in the string module.

Modules can be grouped into packages, which are simply a way of organizing and naming related modules. For
instance, Zope's Python-based Scripts are provided by a collection of modules in the "PythonScripts" subpackage of
the Zope "Products" package. In particular, the "standard" module in this package provides a number of useful
formatting functions that are standard in the DTML "var" tag. The full name of this module is
"Products.PythonScripts.standard", so you could get access to it using either of the following statements:

tal:define="global pps modules/Products/PythonScripts/standard"
tal:define="global pps python:modules['Products.PythonScripts.standard']"

Many Python modules cannot be accessed from Page Templates, DTML, or Scripts unless you add Zope security
assertions to them. See the Zope Developer's Guide's security chapter for more information on making more Python
modules available to your templates and scripts by using "ModuleSecurityInfo".

Macros

So far, you've seen how page templates can be used to add dynamic behavior to individual web pages. Another feature
of page templates is the ability to reuse look and feel elements across many pages, much as you can with DTML (e.g.
by inserting standard_html_header and standard_html_footer into your DTML), but in a slightly different
way.

For example, with Page Templates, you can have a site that has a standard look and feel. No matter what the "content"
of a page, it will have a standard header, side-bar, footer, and/or other page elements. This is a very common
requirement for web sites.

You can reuse presentation elements across pages with macros . Macros define a section of a page that can be
reused in other pages. A macro can be an entire page, or just a chunk of a page such as a header or footer. After you

The Zope Book (2.6 Edition)

216

define one or more macros in one Page Template, you can use them in other Page Templates.

Using Macros

You can define macros with tag attributes similar to TAL statements. Macro tag attributes are called Macro Expansion
Tag Attribute Language (METAL) statements. Here's an example macro definition:

<p metal:define-macro="copyright">
 Copyright 2001, Foo, Bar, and Associates Inc.
</p>

This metal:define-macro statement defines a macro named "copyright". The macro consists of the p element
(including all contained elements).

Macros defined in a Page Template are stored in the template's macros attribute. You can use macros from other
page template by referring to them through the macros attribute of the Page Template in which they are defined. For
example, suppose the copyright macro is in a Page Template called "master_page". Here's how to use
copyright macro from another Page Template:

<hr>
<b metal:use-macro="container/master_page/macros/copyright">
 Macro goes here

In this Page template, the b element will be completely replaced by the macro when Zope renders the page:

<hr>
<p>
 Copyright 2001, Foo, Bar, and Associates Inc.
</p>

If you change the macro (for example, if the copyright holder changes) then all Page Templates that use the macro will
automatically reflect the change.

Notice how the macro is identified by a path expression using the metal:use-macro statement. The
metal:use-macro statement replaces the statement element with the named macro.

Macro Details

The metal:define-macro and metal:use-macro statements are pretty simple. However there are a few
subtleties to using them which are worth mentioning.

A macro's name must be unique within the Page Template in which it is defined. You can define more than one macro
in a template, but they all need to have different names.

Normally you'll refer to a macro in a metal:use-macro statement with a path expression. However, you can use any
expression type you wish so long as it returns a macro. For example:

<p metal:use-macro="python:here.getMacro()">
 Replaced with a dynamically determined macro,
 which is located by the getMacro script.
</p>

In this case the path expression returns a macro defined dynamically by the getMacro script. Using Python
expressions to locate macros lets you dynamically vary which macro your template uses.

You can use the default variable with the metal:use-macro statement:

<p metal:use-macro="default">

The Zope Book (2.6 Edition)

217

 This content remains - no macro is used
</p>

The result is the same as using default with tal:content and tal:replace . The "default" content in the tag
doesn't change when it is rendered. This can be handy if you need to conditionally use a macro or fall back on the
default content if it doesn't exist.

If you try to use the nothing variable with metal:use-macro you will get an error, since nothing is not a macro.
If you want to use nothing to conditionally include a macro, you should instead enclose the metal:use-macro
statement with a tal:condition statement.

Zope handles macros first when rendering your templates. Then Zope evaluates TAL expressions. For example,
consider this macro:

<p metal:define-macro="title"
 tal:content="template/title">
 template's title
</p>

When you use this macro it will insert the title of the template in which the macro is used, not the title of the template in
which the macro is defined. In other words, when you use a macro, it's like copying the text of a macro into your
template and then rendering your template.

If you check the Expand macros when editing option on the Page Template Edit view, then any macros that you use
will be expanded in your template's source. When you're editing in the ZMI, rather than using a WYSIWYG editing tool,
it's more convenient not to expand macros when editing. This is the default for newly created templates. When using
WYSIWYG tools, however, it is often desirable to have the macros expanded so you are editing a complete page. In
this case, check the Expand macros.. checkbox before editing the page.

Using Slots

Macros are much more useful if you can override parts of them when you use them. You can do this by defining slots in
the macro that you can fill in when you use the template. For example, consider a side bar macro:

<div metal:define-macro="sidebar">
 Links

 Home
 Products
 Support
 Contact Us

</div>

This macro is fine, but suppose you'd like to include some additional information in the sidebar on some pages. One
way to accomplish this is with slots:

<div metal:define-macro="sidebar">
 Links

 Home
 Products
 Support
 Contact Us

</div>

When you use this macro you can choose to fill the slot like so:

<p metal:use-macro="container/master.html/macros/sidebar">

The Zope Book (2.6 Edition)

218

 <b metal:fill-slot="additional_info">
 Make sure to check out our specials.

</p>

When you render this template the side bar will include the extra information that you provided in the slot:

<div>
 Links

 Home
 Products
 Support
 Contact Us

 Make sure to check out our specials.

</div>

Notice how the span element that defines the slot is replaced with the b element that fills the slot.

Customizing Default Presentation

A common use of slot is to provide default presentation which you can customize. In the slot example in the last
section, the slot definition was just an empty span element. However, you can provide default presentation in a slot
definition. For example, consider this revised sidebar macro:

<div metal:define-macro="sidebar">
 <div metal:define-slot="links">
 Links

 Home
 Products
 Support
 Contact Us

 </div>

</div>

Now the sidebar is fully customizable. You can fill the links slot to redefine the sidebar links. However, if you choose
not to fill the links slot then you'll get the default links, which appear inside the slot.

You can even take this technique further by defining slots inside of slots. This allows you to override default
presentation with a fine degree of precision. Here's a sidebar macro that defines slots within slots:

<div metal:define-macro="sidebar">
 <div metal:define-slot="links">
 Links

 Home
 Products
 Support
 Contact Us

 </div>

</div>

If you wish to customize the sidebar links you can either fill the links slot to completely override the links, or you can
fill the additional_links slot to insert some extra links after the default links. You can nest slots as deeply as you
wish.

The Zope Book (2.6 Edition)

219

Combining METAL and TAL

You can use both METAL and TAL statements on the same elements. For example:

<ul metal:define-macro="links"
 tal:repeat="link here/getLinks">

 <a href="link url"
 tal:attributes="href link/url"
 tal:content="link/name">link name

In this case, getLinks is an (imaginary) Script that assembles a list of link objects, possibly using a Catalog query.

Since METAL statements are evaluated before TAL statements, there are no conflicts. This example is also interesting
since it customizes a macro without using slots. The macro calls the getLinks Script to determine the links. You can
thus customize your site's links by redefining the getLinks Script at different locations within your site.

It's not always easy to figure out the best way to customize look and feel in different parts of your site. In general you
should use slots to override presentation elements, and you should use Scripts to provide content dynamically. In the
case of the links example, it's arguable whether links are content or presentation. Scripts probably provide a more
flexible solution, especially if your site includes link content objects.

Whole Page Macros

Rather than using macros for chunks of presentation shared between pages, you can use macros to define entire
pages. Slots make this possible. Here's an example macro that defines an entire page:

<html metal:define-macro="page">
 <head>
 <title tal:content="here/title">The title</title>
 </head>

 <body>
 <h1 metal:define-slot="headline"
 tal:content="here/title">title</h1>

 <p metal:define-slot="body">
 This is the body.
 </p>

 <p>Copyright 2001 Fluffy Enterprises</p>

 </body>
</html>

This macro defines a page with three slots, headline , body , and footer . Notice how the headline slot
includes a TAL statement to dynamically determine the headline content.

You can then use this macro in templates for different types of content, or different parts of your site. For example
here's how a template for news items might use this macro:

<html metal:use-macro="container/master.html/macros/page">

 <h1 metal:fill-slot="headline">
 Press Release:
 Headline
 </h1>

 <p metal:fill-slot="body"

The Zope Book (2.6 Edition)

220

 tal:content="here/getBody">
 News item body goes here
 </p>

</html>

This template redefines the headline slot to include the words, "Press Release" and call the getHeadline method
on the current object. It also redefines the body slot to call the getBody method on the current object.

The powerful thing about this approach is that you can now change the page macro and the press release template
will be automatically updated. For example you could put the body of the page in a table and add a sidebar on the left
and the press release template would automatically use these new presentation elements.

This is a much more flexible solution to control page look and feel then the DTML standard_html_header and
standard_html_footer solution. In fact, Zope comes with a stock page template in the root folder named
standard_template.pt that includes a whole page macro with a head and body slot. Here's how you might use
this macro in a template:

<html metal:use-macro="here/standard_template.pt/macros/page">
 <div metal:fill-slot="body">
 <h1 tal:content="here/title">Title</h1>
 <p tal:content="here/getBody">Body text goes here</p>
 </div>
</html>

Using the standard_template.pt macro is very similar to using other whole page macros. The only subtlety worth
pointing out is the path used to locate the macro. In this example the path begins with here . This means that Zope
will search for the standard_template.pt object using acquisition starting at the object that the template is applied
to. This allows you to customize the look and feel of templates by creating custom standard_template.pt objects
in various locations. This is exactly the same trick that you can use to customize look and feel by overriding
standard_html_header and standard_html_footer in site locations. However, with
standard_template.pt you have more choices. You can choose to start the path to the macro with root or with
container , as well as with here . If the path begins with root then you will always get the standard template
which is located in the root folder. If the path begins with container then Zope will search for a standard template
using acquisition starting in the folder where the template is defined. This allows you to customize look and feel of
templates, but does not allow you to customize the look and feel of different objects based on their location in the site.

Caching Templates

While rendering Page Templates normally is quite fast, sometimes it's not fast enough. For frequently accessed pages,
or pages that take a long time to render, you may want to trade some dynamic behavior for speed. Caching lets you do
this. For more information on caching see the "Cache Manager" section of the chapter entitled Basic Objects .

You can cache Page Templates using a cache manager in the same way that you cache other objects. To cache a
Page Template, you must associate it with a cache manager. You can either do this by going to the Cache view of your
Page Template and selecting the cache manager (there must be one in the acquisition path of the template for the
Cache view to appear), or by going to the Associate view of your cache manager and locating your Page Template.

Here's an example of how to cache a Page Template. First create a Python-based script name long.py with these
contents:

Script (Python) "long.py"
##
for i in range(500):
 for j in range(500):
 for k in range(5):
 pass
return 'Done'

The Zope Book (2.6 Edition)

221

The purpose of this script is to take up a noticeable amount of execution time. Now create a Page Template that uses
this script, for example:

<html>
 <body>
 <p tal:content="here/long.py">results</p>
 </body>
</html>

Now view this page. Notice how it takes a while to render. Now let's radically improve its rendering time with caching.
Create a Ram Cache Manager if you don't already have one. Make sure to create it within the same folder as your
Page Template, or in a higher level. Now visit the Cache view of your Page Template. Choose the Ram Cache
Manager you just created and click Save Changes . Click the Cache Settings link to see how your Ram Cache
Manager is configured. By default, your cache stores objects for one hour (3600 seconds). You may want to adjust this
number depending on your application. Now return to your Page Template and view it again. It should take a while for it
to render. Now reload the page, and watch it render immediately. You can reload the page again and again, and it will
always render immediately since the page is now cached.

If you change your Page Template, then it will be removed from the cache. So the next time you view it, it will take a
while to render. But after that it will render quickly since it will be cached again.

Caching is a simple but very powerful technique for improving performance. You don't have to be a wizard to use
caching, and it can provide great speed-ups. It's well worth your time to use caching for performance-critical
applications.

For more information on caching in the context of Zope, see the chapter entitled Zope Services .

Page Template Utilities

Zope Page Templates are powerful but simple. Unlike DTML, Page Templates don't give you a lot of convenience
features for things like batching, drawing trees, sorting, etc. The creators of Page Templates wanted to keep them
simple. However, you may miss some of the built-in features that DTML provides. To address these needs, Zope
comes with utilities designed to enhance Page Templates.

Batching Large Sets of Information

When a user queries a database and gets hundreds of results, it's often better to show them several pages with only
twenty results per page, rather than putting all the results on one page. Breaking up large lists into smaller lists is called
batching .

Unlike DTML, which provides batching built into the language, Page Templates support batching by using a special
Batch object that comes from the ZTUtils utility module. See Appendix B, API Reference , for more information on
the ZTUtils Python module.

Here's a simple example, showing how to create a Batch object:

<ul tal:define="lots python:range(100);
 batch python:modules['ZTUtils'].Batch(lots,
 size=10,
 start=0)">
 <li tal:repeat="num batch"
 tal:content="num">0

This example renders a list with 10 items (in this case, the numbers 0 through 9). The Batch object chops a long list
up into groups or batches. In this case it broke a one hundred item list up into batches of ten items.

The Zope Book (2.6 Edition)

222

You can display a different batch of ten items by passing a different start number:

<ul tal:define="lots python:range(100);
 batch python:modules['ZTUtils'].Batch(lots,
 size=10,
 start=13)">

This batch starts with the fourteenth item and ends with the twenty third item. In other words, it displays the numbers 13
through 22. It's important to notice that the batch start argument is the index of the first item. Indexes count from
zero, rather than from one. So index 13 points to the fourteenth item in the sequence. Python uses indexes to refer to
list items.

Normally when you use batches you'll want to include navigation elements on the page to allow users to go from batch
to batch. Here's a full-blow batching example that shows how to navigate between batches:

<html>
 <head>
 <title tal:content="template/title">The title</title>
 </head>
 <body tal:define="employees here/getEmployees;
 start python:int(path('request/start | nothing') or 0);
 batch python:modules['ZTUtils'].Batch(employees,
 size=3,
 start=start);
 previous python:batch.previous;
 next python:batch.next">

 <p>
 <a tal:condition="previous"
 tal:attributes="href string:${request/URL0}?start:int=${previous/first}"
 href="previous_url">previous
 <a tal:condition="next"
 tal:attributes="href string:${request/URL0}?start:int=${next/first}"
 href="next_url">next
 </p>

 <ul tal:repeat="employee batch" >

 Bob Jones
 makes $100,000
 a year.

 </body>
</html>

Define a Script (Python) with the name getEmployees in the same folder with the following body (no parameters are
necessary):

return [{'name': 'Chris McDonough', 'salary':'5'},
 {'name': 'Guido van Rossum', 'salary': '10'},
 {'name': 'Casey Duncan', 'salary':'20' },
 {'name': 'Andrew Sawyers', 'salary':'30' },
 {'name': 'Evan Simpson', 'salary':'35' },
 {'name': 'Stephanie Hand', 'salary':'40' },]

This example iterates over batches of results from the getEmployees method. It draws a previous and a next link as
necessary to allow you to page through all the results a batch at a time. The batch size in this case is 3.

Take a look at the tal:define statement on the body element. It defines a bunch of batching variables. The
employees variable is a list of employee objects returned by the getEmployees Script. It is not very big now, but it
could grow fairly large (especially if it were a call into a SQL Method of real employees). The second variable, start ,
is either set to the value of request/start or to zero if there is no start variable in the request. The start

The Zope Book (2.6 Edition)

223

variable keeps track of where you are in the list of employees. The batch variable is a batch of ten items from the lists
of employees. The batch starts at the location specified by the start variable. The previous and next variables
refer to the previous and next batches (if any). Since all these variables are defined on the body element, they are
available to all elements inside the body.

Next let's look at the navigation links. They create hyper links to browse previous and next batches. The
tal:condition statement first tests to see if there is a previous and next batch. If there is a previous or next batch,
then the link is rendered, otherwise there is no link. The tal:attributes statement creates a link to the previous
and next batches. The link is simply the URL or the current page (request/URL0) along with a query string
indicating the start index of the batch. For example, if the current batch starts with index 10, then the previous batch will
start with an index of 0. The first variable of a batch gives its starting index, so in this case, previous.start
would be 0.

It's not important to fully understand the workings of this example. Simply copy it, or use a batching example created by
the Z Search Interface . Later when you want to do more complex batching you can experiment by changing the
example code. Don't forget to consult Appendix B, API Reference for more information on the ZTUtils module and
Batch objects.

Miscellaneous Utilities

Zope provides a couple Python modules which may come in handy when using Page Templates. The string , math
, and random modules can be used in Python expressions for string formatting, math function, and pseudo-random
number generation. These same modules are available from DTML and Python-based scripts.

The Products.PythonScripts.standard module is designed to provide utilities to Python-based scripts, but it's
also useful for Page Templates. It includes various string and number formatting functions.

As mentioned earlier in the chapter, the sequence module provides a handy sort function.

Finally the AccessControl module includes a function and a class which you'll need if you want to test access and to
get the authenticated user.

See Appendix B, API Reference for more information on these utilities.

Conclusion

This chapter covers some useful and some obscure nooks and crannies of Page Templates, and after reading it you
may feel a little overwhelmed. Don't worry, you don't need to know everything in this chapter to effectively use Page
Templates. You should understand the different path types and macros, but you can come back to the rest of the
material when you need it. The advanced features that you've learned about in this chapter are there for you if and
when you need them.

The Zope Book (2.6 Edition)

224

Advanced Zope Scripting

Zope manages your presentation, logic and data with objects. So far, you've seen how Zope can manage presentation
with DTML and Page Templates, and data with files and images. This chapter shows you how to add Script objects
which allow you to write scripts in Python and Perl through your web browser.

What is logic and how does it differ from presentation? Logic provides those actions which change objects, send
messages, test conditions and respond to events, whereas presentation formats and displays information and reports.
Typically you will use DTML or Page Templates to handle presentation, and Zope scripting with Python and Perl to
handle logic.

Zope Scripts

Zope Script objects are objects that encapsulate a small chunk of code written in a programming language. Script
objects first appeared in Zope 2.3, and are now the preferred way to write programming logic in Zope. Currently, Zope
comes with Python-based Scripts , which are written in the Python language. There is a third-party extension to Zope,
available as a separate download , which allows you to write Perl-based Scripts in the Perl language.

So far in this book you have heavily used DTML Methods, DTML Documents, and Page Templates (ZPT) to create
simple web applications in Zope. DTML and ZPT allow you to perform simple scripting operations such as string
manipulation. For the most part, however, DTML and ZPT should be used for presentation. DTML Methods are
explained in the chapter entitled Basic DTML , and the chapter entitled Advanced DTML . ZPT is explained in the
chapter entitled Using Zope Page Templates , and the chapter entitled Advanced Page Templates. .

Here is an overview of Zope's scripts:

Python-based Scripts — You can use Python, a general purpose scripting language, to control Zope objects and
perform other tasks. These Scripts give you general purpose programming facilities within Zope.

External Methods — These are also written in Python, but the code is stored on the filesystem. External Methods
allow you to do many things that are restricted from Python-based Scripts for security reasons.

Perl-based Scripts — You can use Perl, a powerful text processing language, to script Zope objects and access Perl
libraries. These scripts offer benefits similar to those of Python-based Scripts, but may be more appealing for folks who
know Perl but not Python, or who want to use Perl libraries for which there are no Python equivalents. Currently you
must download and install third-party extensions before you can use Perl scripts in Zope.

You can add these scripts to your Zope application just like any other object. Details about each type of script are
provided below, in the sections "Using Python-based Scripts," "Using External Methods," and "Using Perl-based
Scripts" respectively.

Calling Scripts

Any Zope script may be called "from the web" (for example, from a browser or another web-aware tool). In addition, any
type of script may be called by any other type of object; you can call a Python-based Script from a DTML Method, or a
built-in method from a Perl-based Script. In fact scripts can call scripts which call other scripts, and so on. As you saw
in the chapter entitled Basic DTML , you can replace a script with a script implemented in another language
transparently. For example, if you're using Perl to perform a task, but later decide that it would be better done in
Python, you can usually replace the script with a Python-based Script with the same id.

The Zope Book (2.6 Edition)

225

Context

When you call a script, you usually want to single out some object that is central to the script's task, either because that
object provides information that the script needs, or because the script will modify that object. In object-oriented terms,
we want to call the script as a method of this particular object. But in conventional object-oriented programming, each
object can perform the methods that are defined in (or inherited by) its class. How is it that one Zope script can be used
as a method of potentially many objects, without the script being defined in the classes that define these objects?

Recall that in the chapter entitled Acquisition , we learned that Zope can find objects in different places by acquiring
them from parent containers. Acquisition allows us to treat a script as a method that can be called in the context of any
suitable object, just by constructing an appropriate URL. The object on which we call a script gives it a context in which
to execute. It is simpler to just say that you are calling the script on the object. Or, to put it another way, the context is
the environment in which the Script executes , from which the script may get information that it needs to do its job.

Another way to understand the context of a script is to think of the script as a function in a procedural programming
language, and its context as an implicit argument to that function.

There are two general ways to call a script and provide it with a context: by visiting a URL, and by calling the script from
another script or template.

Calling Scripts From the Web

You can call a script directly with a web browser by visiting its URL. You can call a single script on different objects by
using different URLS. This works because Zope can determine the script's context by URL. This is a powerful feature
that enables you to apply logic to objects like documents or folders without having to embed the actual code within the
object.

To call a script on an object from the web, simply visit the URL of the object, followed by the name of the script. This
places the script in the context of your object. For example, suppose you have a collection of objects and scripts as
shown in the figure below.

Figure 14-1 A collection of objects and scripts

The Zope Book (2.6 Edition)

226

To call the feed script on the hippo object you would visit the URL Zoo/LargeAnimals/hippo/feed . To call the feed script
on the kangarooMouse object you can visit the URL Zoo/SmallAnimals/kangarooMouse/feed . These URLs place the
feed script in the context of the hippo and kangarooMouse objects, respectively.

Zope uses a URL as a map to find which object and which script you want to call.

URL Traversal and Acquisition

Zope breaks apart the URL and compares it to the object hierarchy, working backwards until it finds a match for each
part. This process is called URL traversal . For example, when you give Zope the URL Zoo/LargeAnimals/hippo/feed , it
starts at the root folder and looks for an object named Zoo . It then moves to the Zoo folder and looks for an object
named LargeAnimals . It moves to the LargeAnimals folder and looks for an object named hippo . It moves to the hippo
object and looks for an object named feed . The feed script cannot be found in the hippo object and is located in the
Zoo folder by using acquisition. Zope always starts looking for an object in the last object it traversed, in this case hippo
. Since hippo does not contain anything, Zope backs up to hippo's immediate container, LargeAnimals . The feed script
is not there, so Zope backs up to LargeAnimals' container, Zoo , where feed is finally found.

Now Zope has reached the end of the URL and has matched objects to every name in the URL. Zope recognizes that
the last object found, feed , is callable, and calls it in the context of the second to last object found - the hippo object.
This is how the feed script is called on the hippo object.

Likewise you can call the wash method on the hippo by visiting the URL Zoo/LargeAnimals/hippo/wash . In this case
Zope acquires the wash method from the LargeAnimals folder.

Passing Arguments with an HTTP Query String

You can pass arguments to a URL, too. Just append them as standard query strings:

http://my-zope-site:8080/Zoo/LargeAnimals/hippo/wash?soap=lye

Calling Scripts from Other Objects

You can call scripts from other objects, whether they are DTML objects, Page Templates, or Scripts (Python or Perl).
The semantics of each language differ slightly, but the same rules of acquisition apply. You do not necessarily have to
know what language is used in the script you are calling; you only need to pass it any parameters that it requires, if
any.

Calling Scripts from DTML

As you saw in the chapter entitled Advanced DTML , you can call Zope scripts from DTML with the call tag. For
example:

<dtml-call updateInfo>

DTML will call the updateInfo script, whether it is implemented in Perl, Python, or any other language. You can also call
other DTML objects and SQL Methods the same way.

If the updateInfo script requires parameters, either your script must have a name for the DTML namespace binding
(see Binding Variables in the section "Using Python-based Scripts" below), so that the parameters will be looked up in
the DTML namespace, or you must pass the parameters in an expression. For example::

<dtml-call expr="updateInfo(color='brown', pattern='spotted')">

The Zope Book (2.6 Edition)

227

You can also pass in any variables that are valid in the current DTML namespace. For example, if newColor and
newPattern are defined using dtml-let , you could pass the variables as parameters like this:

<dtml-call expr="updateInfo(color=newColor, pattern=newPattern)">

You can also pass variables that are defined automatically by dtml tags such as dtml-in . For example:

<dtml-in all_animals prefix="seq">
 <dtml-call expr="feed(animal=seq_item)">
</dtml-in>

This assumes that feed is a script and has a parameter called animal . The standard names used during DTML loops
(sequence-item, sequence-key, et al.) are a bit cumbersome to spell out in a Python expr , because "sequence-item"
would be interpreted as sequence minus item . To avoid this problem, we use the prefix attribute of the dtml-in tag,
which uses the specified value ("seq") and an underscore ("_") instead of the customary "sequence-" string.

Calling scripts from Python and Perl

Calling scripts from other Python or Perl scripts works the same as calling scripts from DTML, except that you must
always pass script parameters when you call a script from Python or Perl. For example, here is how you might call the
updateInfo script from Python:

new_color='brown'
context.updateInfo(color=new_color,
 pattern="spotted")

Note the use of the context variable to tell Zope to find updateInfo by acquisition.

From Perl you could do the same thing using standard Perl semantics for calling scripts:

$new_color = 'brown';
$self->updateInfo(color => $new_color,
 pattern => "spotted");

Here we see that self is the way we refer to the current context in a Perl-based script.

Zope locates the scripts you call by using acquisition the same way it does when calling scripts from the web. Returning
to our hippo feeding example of the last section, let's see how to vaccinate a hippo from Python and Perl. The figure
below shows a slightly updated object hierarchy that contains two scripts, vaccinateHippo.py and vaccinateHippo.pl .

The Zope Book (2.6 Edition)

228

Figure 14-2 A collection of objects and scripts

Suppose vaccinateHippo.py is a Python script. Here is how you can call the vaccinate script on the hippo obect from
the vaccinateHippo.py script:

context.Vet.LargeAnimals.hippo.vaccinate()

In other words, you simply access the object by using the same acquisition path as you would use if you called it from
the web. The result is the same as if you visited the URL Zoo/Vet/LargeAnimals/hippo/vaccinate . Note that in this
Python example, we do not bother to specify Zoo before Vet . We can leave Zoo out because all of the objects
involved, including the script, are in the Zoo folder, so it is implicitly part of the acquisition chain.

Likewise, in the Perl version, vaccinateHippo.pl , you could say:

$self->Vet->LargeAnimals->hippo->vaccinate();

Calling Scripts from Page Templates

Calling scripts from Page Templates is much like calling them by URL or from Python. Just use standard TALES path
expressions as described in the chapter entitled Using Zope Page Templates. For example:

<div tal:replace="here/hippo/feed" />

The inserted value will be HTML-quoted. You can disable quoting by using the structure keyword, as described in the
chapter entitled Advanced Page Templates.

Page Templates do not really provide an equivalent to DTML's call tag. To call a script without inserting a value in the
page, you can use define and ignore the variable assigned:

<div tal:define="dummy here/hippo/feed" />

In a page template, here refers to the current context. It behaves much like the context variable in a Python-based
Script. In other words, hippo and feed will both be looked up by acquisition.

If the script you call requires arguments, you must use a TALES python expression in your template, like so:

<div tal:replace="python:here.hippo.feed(food='spam')" />

The Zope Book (2.6 Edition)

229

Just as in Path Expressions, the here variable refers to the acquisition context the Page Template is called in.

The python expression above is exactly like a line of code you might write in a Script (Python). The only difference is
the name of the variable used to get the acquisition context. Don't be misled by the different terminology: context is
context, whatever you call it. Unfortunately, the different names used in ZPT and Python Scripts evolved independently.
(Note that as of this writing, the ZPT variable here is planned to become context in a future version of Zope, probably
Zope 3.)

For further reading on using Scripts in Page Templates, refer to the chapter entitled Advanced Page Templates .

Calling Scripts: Summary and Comparison

Let's recap the ways to call a hypothetical updateInfo script on a foo object, with argument passing: from your web
browser, from Python, from Perl, from DTML, and from Page Templates.

by URL:

http://my-zope-server.com:8080/foo/updateInfo?amount=lots

from a Python script:

context.foo.updateInfo(amount="lots")

from a Perl script:

$self->foo->updateInfo(amount="lots");

from a Page Template:

from a Page Template, with arguments:

from DTML:

<dtml-with foo >
 <dtml-var updateInfo>
</dtml-with>

from DTML, with arguments:

<dtml-with foo>
 <dtml-var expr="updateInfo(amount='lots')">
</dtml-with>

another DTML variant:

<dtml-var expr="_['foo'].updateInfo()">

Regardless of the language used, this is a very common idiom to find an object, be it a script or any other kind of
object: you ask the context for it, and if it exists in this context or can be acquired from it, it will be used.

Zope will throw a KeyError exception if the script you are calling cannot be acquired. If you are not certain that a given
script exists in the current context, or if you want to compute the script name at run-time, you can use this Python
idiom:

updateInfo = getattr(context, "updateInfo", None)
if updateInfo is not None:
 updateInfo(color="brown", pattern="spotted")

The Zope Book (2.6 Edition)

230

else:
 # complain about missing script

The getattr function is a Python built-in. The first argument specifies an object, the second an attribute name. The
getattr function will return the named attribute, or the third argument if the attribute cannot be found. So in the next
statement we just have to test whether the updateInfo variable is None, and if not, we know we can call it.

Using Python-based Scripts

Earlier in this chapter you saw some examples of scripts. Now let us take a look at scripts in more detail.

The Python Language

Python is a high-level, object oriented scripting language. Most of Zope is written in Python. Many folks like Python
because of its clarity, simplicity, and ability to scale to large projects.

There are many resources available for learning Python. The python.org web site has lots of Python documentation
including a tutorial by Python's creator, Guido van Rossum.

Python comes with a rich set of modules and packages. You can find out more about the Python standard library at the
python.org web site.

Another highly respected source for reference material is Python Essential Reference by David Beazley, published by
New Riders.

Creating Python-based Scripts

To create a Python-based Script choose Script (Python) from the Product add list. Name the script hello , and click the
Add and Edit button. You should now see the Edit view of your script.

This screen allows you to control the parameters and body of your script. You can enter your script's parameters in the
parameter list field. Type the body of your script in the text area at the bottom of the screen.

Enter name="World" into the parameter list field, and type:

return "Hello %s." % name

... in the body of the script. Our script is now equivalent to the following function definition in standard Python syntax:

def hello(name="World"):
 return "Hello %s." % name

The result should appear something like the below image:

The Zope Book (2.6 Edition)

231

Figure 14-3 Script editing view

You can now test the script by going to the Test tab as shown in the figure below.

Figure 14-4 Testing a Script

Leave the name field blank and click the Run Script button. Zope should return "Hello World." Now go back and try
entering your name in the Value field and click the Run Script button. Zope should now say hello to you.

Since scripts are called on Zope objects, you can get access to Zope objects via the context variable, as described
above in the section "Calling Scripts". For example, this script returns the number of objects contained by a given Zope
object:

Script (Python) "numberOfObjects"

The Zope Book (2.6 Edition)

232

##
return len(context.objectIds())

The script calls context.objectIds() , a method in the Zope API, to get a list of the contained objects. objectIds is
a method of Folders, so the context object should be a Folder-like object. The script then calls len() to find the number
of items in that list. When you call this script on a given Zope object, the context variable is bound to the context object.
So if you called this script by visiting the URL FolderA/FolderB/numberOfObjects , the context parameter would refer to
the FolderB object.

When writing your logic in Python you'll typically want to query Zope objects, call other scripts and return reports. For
example, suppose you want to implement a simple workflow system in which various Zope objects are tagged with
properties that indicate their status. You might want to produce reports that summarize which objects are in which
state. You can use Python to query objects and test their properties. For example, here is a script named
objectsForStatus with one parameter, status :

Script (Python) "objectsForStatus"
##parameters=status
##
"""
Returns all sub-objects that have a given status
property.
"""
results=[]
for object in context.objectValues():
 if object.getProperty('status') == status:
 results.append(object)
return results

This script loops through an object's sub-objects and returns all the sub-objects that have a status property with a given
value. The lines at the top starting with a double hash (##) are generated by Zope when editing a script via FTP. You
can specify parameters and other things here (this is covered in more detail in the next section, Binding Variables).

You could then use this script from DTML to email reports. For example:

<dtml-sendmail>
To: <dtml-var ResponsiblePerson>
Subject: Pending Objects

These objects are pending and need attention.

<dtml-in expr="objectsForStatus('Pending')">
<dtml-var title_or_id> (<dtml-var absolute_url>)
</dtml-in>
</dtml-sendmail>

This example shows how you can use DTML (or Page Templates) for presentation or report formatting, while Python
handles the logic. This is a very important pattern that you will witness and use repeatedly in Zope.

Binding Variables

A set of special variables is created whenever a Python-based Script is called. These variables, defined on the script's
Bindings view in the Zope Management Interface, are used by your script to access other Zope objects and scripts.
They are not available in other Zope objects such as Perl scripts or DTML Documents, though there is a similar set of
variables available in ZPT.

By default, the names of these binding variables are set to reasonable values and you should not need to change
them. They are explained here so that you know how each special variable works, and how you can use these
variables in your scripts.

The Zope Book (2.6 Edition)

233

Context — The Context binding defaults to the name context . This variable refers to the object that the script is called
on.

Container — The Container binding defaults to the name container . This variable refers in which the script is defined.

Script — The Script binding defaults to the name script . This variable refers to the script object itself.

Namespace — The Namespace binding is left blank by default. If your script is called from a DTML Method, and you
have chosen a name for this binding, then the named variable contains the DTML namespace explained in the chapter
entitled Advanced DTML . Furthermore, if this binding is set, the script will search for its parameters in the DTML
namespace when called from DTML without explicitly passing any arguments.

Subpath — The Subpath binding defaults to the name traverse_subpath . This is an advanced variable that you will
not need for any of the examples in this book. If your script is traversed, meaning that other path elements follow it in a
URL, then those path elements are placed in a list, from left to right, in this variable.

If you edit your scripts via FTP, you will notice that these bindings are listed in comments at the top of your script files.
For example:

Script (Python) "example"
##bind container=container
##bind context=context
##bind namespace=
##bind script=script
##bind subpath=traverse_subpath
##parameters=name, age
##title=
##
return "Hello %s you are %d years old." % (name, age)

You can change your script's bindings by changing these comments and then uploading your script. Note the
implication that these comments are not merely comments: they carry semantic significance.

What are all these bindings good for, anyway? They can be used to control where Zope looks for the objects you need.
We have been explaining the idea of context throughout this chapter; not surprisingly, in a Python-based Script, you
can access its context through the context binding. Returning to our Zoo example, our feed script might contain a line
like this:

animal_id = context.getId()

In this example, we get the value "hippo," because hippo is the context and its id is "hippo". But we can call getId() on
other variables, since nearly all Zope objects support this method. For example:

folder_id = container.getId()
script_id = script.getId()

These values depend on the id of the script and the container it lives in. Calling the script in a different context will have
no effect on these variables. Acquisition still applies when using container , but Zope will only try to acquire from the
script's containers, not from the calling context.

Accessing the HTTP Request

What if we need to get user input, e.g. values from a form? We can find the REQUEST object, which represents a Zope
web request, in the context. For example, if we visited our feed script via the URL
Zoo/LargeAnimals/hippo/feed?food_type=spam, we could access the food_type variable as
context.REQUEST.food_type . This same technique works with variables passed from forms.

The Zope Book (2.6 Edition)

234

Another way to get the REQUEST is to pass it as a parameter to the script. If REQUEST is one of the script's
parameters, Zope will automatically pass the HTTP request and assign it to this parameter. We could then access the
food_type variable as REQUEST.food_type.

String Processing in Python

One common use for scripts is to do string processing. Python has a number of standard modules for string processing.
You cannot do regular expression processing within Python-based Scripts because of security restrictions. If you really
need regular expressions, you can easily use them from External Methods, described in a subsequent section of this
chapter. However, in a Script (Python), you do have access to the string module. You have access to the string module
from DTML as well, but it is much easier to use from Python. Python 2.X also provides "string methods" which can
perform most of the same duties as the string module.

Suppose you want to change all the occurrences of a given word in a DTML Document. Here is a script, replaceWord ,
that accepts two arguments, word and replacement . This will change all the occurrences of a given word in a DTML
Document:

Script (Python) "replaceWord"
##parameters=word, replacement
##
"""
Replaces all the occurrences of a word with a
replacement word in the source text of a DTML
Document. Call this script on a DTML Document to use
it.

Note: you will need permission to edit a document in order
to call this script on the document.
This script assumes that the context is a DTML document,
which provides the document_src() and manage_edit() methods
described in Appendix B (API Reference).
"""
import string
text=context.document_src()
text=string.replace(text, word, replacement)
context.manage_edit(text, context.title)

You can perform the same job by using the Python string method 'replace':

Script (Python) "replaceWord"
##parameters=word, replacement
##
text=context.document_src()
text=text.replace(word, replacement)
context.manage_edit(text, context.title)

You can call this script from the web on a DTML Document to change the source of the document. For example, the
URL Swamp/replaceWord?word=Alligator&replacement=Crocodile would call the replaceWord script on
the document named Swamp and would replace all occurrences of the word Alligator with Crocodile .

You could also call this script from a DTML method, from a Page Template, or even from another Script, as described
in this chapter under the heading "Calling Scripts from other Objects."

See the Python documentation for more information about manipulating strings from Python.

One thing that you might be tempted to do with scripts is to use Python to search for objects that contain a given word
in their text or as a property. You can do this, but Zope has a much better facility for this kind of work, the Catalog . See
the chapter entitled Searching and Categorizing Content for more information on searching with Catalogs.

Doing Math

The Zope Book (2.6 Edition)

235

Another common use of scripts is to perform mathematical calculations which would be unwieldy from DTML or ZPT.
The math and random modules give you access from Python to many math functions. These modules are standard
Python services as described on the Python.org web site.

 math — Mathematical functions such as sin and cos .

 random — Pseudo random number generation functions.

One interesting function of the random module is the choice function that returns a random selection from a sequence
of objects. Here is an example of how to use this function in a script called randomImage :

Script (Python) "randomImage"
##
"""
When called on a Folder that contains Image objects this
script returns a random image.
"""
import random
return random.choice(context.objectValues('Image'))

Suppose you had a Folder named Images that contained a number of images. You could display a random image from
the folder in DTML like so:

<dtml-with Images>
 <dtml-var randomImage>
</dtml-with>

This DTML calls the randomImage script on the Images folder. The result is an HTML IMG tag that references a
random image in the Images Folder.

A ZPT equivalent to the above DTML script is:

Print Statement Support

Python-based Scripts have a special facility to help you print information. Normally printed data is sent to standard
output and is displayed on the console. This is not practical for a server application like Zope since most of the time you
do not have access to the server's console. Scripts allow you to use print anyway and to retrieve what you printed with
the special variable printed . For example:

Script (Python) "printExample"
##
for word in ('Zope', 'on', 'a', 'rope'):
 print word
return printed

This script will return:

Zope
on
a
rope

The reason that there is a line break in between each word is that Python adds a new line after every string that is
printed.

You might want to use the print statement to perform simple debugging in your scripts. For more complex output control
you probably should manage things yourself by accumulating data, modifying it and returning it manually rather than

The Zope Book (2.6 Edition)

236

relying on the print statement. And for control of presentation, you should return the script output to a Page Template or
DTML page which then displays the return value appropriately.

Built-in Functions

Python-based Scripts give you a slightly different menu of built-ins than you find in normal Python. Most of the changes
are designed to keep you from performing unsafe actions. For example, the open function is not available, which keeps
you from being able to access the filesystem. To partially make up for some missing built-ins a few extra functions are
available.

The following restricted built-ins work the same as standard Python built-ins: None , abs , apply , callable , chr , cmp ,
complex , delattr , divmod , filter , float , getattr , hash , hex , int , isinstance , issubclass , list , len , long , map , max ,
min , oct , ord , repr , round , setattr , str , tuple . For more information on what these built-ins do, see the online Python
Documentation .

The range and pow functions are available and work the same way they do in standard Python; however, they are
limited to keep them from generating very large numbers and sequences. This limitation helps protect against denial of
service attacks as described previously.

In addition, these DTML utility functions are available: DateTime , and test . See Appendix A, DTML Reference for
more information on these functions.

Finally to make up for the lack of a type function, there is a same_type function that compares the type of two or more
objects, returning true if they are of the same type. So instead of saying:

if type(foo) == type([]):
 return "foo is a list"

... to check if foo is a list, you would instead use the same_type function to check this:

if same_type(foo, []):
 return "foo is a list"

Now let's take a look at External Methods which provide more power and fewer restrictions than Python-based Scripts.

Using External Methods

Sometimes the security constraints imposed by scripts, DTML and ZPT get in your way. For example, you might want
to read files from disk, or access the network, or use some advanced libraries for things like regular expressions or
image processing. In these cases you can use External Methods . We encountered External Methods briefly in the
chapter entitled Using Basic Zope Objects . Now we will explore them in more detail.

To create and edit External Methods you need access to the filesystem. This makes editing these scripts more
cumbersome since you can't edit them right in your web browser. However, requiring access to the server's filesystem
provides an important security control. If a user has access to a server's filesystem they already have the ability to
harm Zope. So by requiring that unrestricted scripts be edited on the filesystem, Zope ensures that only people who are
already trusted have access.

External Method code is created and edited in files on the Zope server in the Extensions directory. This directory is
located in the top-level Zope directory. Alternately you can create and edit your External Methods in an Extensions
directory inside an installed Zope product directory, or in your INSTANCE_HOME directory if you have one. See the
chapter entitled Installing and Starting Zope for more about INSTANCE_HOME.

The Zope Book (2.6 Edition)

237

Let's take an example. Create a file named Example.py in the Zope Extensions directory on your server. In the file,
enter the following code:

def hello(name="World"):
 return "Hello %s." % name

You've created a Python function in a Python module. But you have not yet created an External Method from it. To do
so, we must add an External Method object in Zope.

To add an External Method, choose External Method from the product add list. You will be taken to a form where you
must provide an id. Type "hello" into the Id field, type "hello" in the Function name field, and type "Example" in the
Module name field. Then click the Add button. You should now see a new External Method object in your folder. Click
on it. You should be taken to the Properties view of your new External Method as shown in the figure below.

Figure 14-5 External Method Properties view

Note that if you wish to create several related External Methods, you do not need to create multiple modules on the
filesystem. You can define any number of functions in one module, and add an External Method to Zope for each
function. For each of these External Methods, the module name would be the same, but function name would vary.

Now test your new script by going to the Test view. You should see a greeting. You can pass different names to the
script by specifying them in the URL. For example, hello?name=Spanish+Inquisition .

This example is exactly the same as the "hello world" example that you saw for Python-based scripts. In fact, for simple
string processing tasks like this, scripts offer a better solution since they are easier to work with.

The main reasons to use an External Method are to access the filesystem or network, or to use Python packages that
are not available to restricted scripts.

For example, a Script (Python) cannot access environment variables on the host system. One could access them using
an External Method, like so:

def instance_home():
 import os
 return os.environ.get('INSTANCE_HOME')

The Zope Book (2.6 Edition)

238

Regular expressions are another useful tool that are restricted from Scripts. Let's look at an example. Assume we want
to get the body of an HTML Page (everything between the body and /body tags):

import re
pattern = r"<\s*body.*?>(.*?)</body>"
regexp = re.compile(pattern, re.IGNORECASE + re.DOTALL)

def extract_body(htmlstring):
 """
 If htmlstring is a complete HTML page, return the string
 between (the first) <body> ... </body> tags
 """
 matched = regexp.search(htmlpage)
 if matched is None: return "No match found"
 body = matched.group(1)
 return body

Note that we import the re module and define the regular expression at the module level, instead of in the function
itself; the extract_body() function will find it anyway. Thus, the regular expression is compiled once, when Zope
first loads the External Method, rather than every time this External Method is called. This is a common optimization
tactic.

Now put this code in a module called my_extensions.py . Add an External Method with an id of
'body_external_m'; specify my_extensions for the Module Name to use and, extract_body for Function
Name .

You could call this for example in a Script (Python) called store_html like this:

Script (Python) "store_html"
##

code to get 'htmlpage' goes here...
htmlpage = "some string, perhaps from an uploaded file"
now extract the body
body = context.body_external_m(htmlpage)
now do something with 'body' ...

... assuming that body_external_m can be acquired by store_html. This is obviously not a complete example; you
would want to get a real HTML page instead of a hardcoded one, and you would do something sensible with the value
returned by your External Method.

Here is an example External Method that uses the Python Imaging Library (PIL) to create a thumbnail version of an
existing Image object in a Folder. Enter the following code in a file named Thumbnail.py in the Extensions directory:

def makeThumbnail(self, original_id, size=200):
 """
 Makes a thumbnail image given an image Id when called on a Zope
 folder.

 The thumbnail is a Zope image object that is a small JPG
 representation of the original image. The thumbnail has an
 'original_id' property set to the id of the full size image
 object.
 """

 import PIL
 from StringIO import StringIO
 import os.path
 # none of the above imports would be allowed in Script (Python)!

 # Note that PIL.Image objects expect to get and save data
 # from the filesystem; so do Zope Images. We can get around
 # this and do everything in memory by using StringIO.
 # Get the original image data in memory.

The Zope Book (2.6 Edition)

239

 original_image=getattr(self, original_id)
 original_file=StringIO(str(original_image.data))

 # create the thumbnail data in a new PIL Image.
 image=PIL.Image.open(original_file)
 image=image.convert('RGB')
 image.thumbnail((size,size))

 # get the thumbnail data in memory.
 thumbnail_file=StringIO()
 image.save(thumbnail_file, "JPEG")
 thumbnail_file.seek(0)

 # create an id for the thumbnail
 path, ext=os.path.splitext(original_id)
 thumbnail_id=path + '.thumb.jpg'

 # if there's an old thumbnail, delete it
 if thumbnail_id in self.objectIds():
 self.manage_delObjects([thumbnail_id])

 # create the Zope image object for the new thumbnail
 self.manage_addProduct['OFSP'].manage_addImage(thumbnail_id,
 thumbnail_file,
 'thumbnail image')

 # now find the new zope object so we can modify
 # its properties.
 thumbnail_image=getattr(self, thumbnail_id)
 thumbnail_image.manage_addProperty('original_id', original_id, 'string')

Notice that the first parameter to the above function is called self . This parameter is optional. If self is the first
parameter to an External Method function definition, it will be assigned the value of the calling context (in this case, a
folder). It can be used much like the context we have seen in Scripts (Python).

You must have PIL installed for this example to work. Installing PIL is beyond the scope of this book, but note that it is
important to choose a version of PIL that is compatible with the version of Python that is used by your version of Zope.
See the PythonWorks website for more information on PIL.

To continue our example, create an External Method named makeThumbnail that uses the makeThumbnail function in
the Thumbnail module.

Now you have a method that will create a thumbnail image. You can call it on a Folder with a URL like
ImageFolder/makeThumbnail?original_id=Horse.gif This would create a thumbnail image named Horse.thumb.jpg .

You can use a script to loop through all the images in a folder and create thumbnail images for them. Create a Script
(Python) named makeThumbnails :

Script (Python) "makeThumbnails"
##
for image_id in context.objectIds('Image'):
 context.makeThumbnail(image_id)

This will loop through all the images in a folder and create a thumbnail for each one.

Now call this script on a folder with images in it. It will create a thumbnail image for each contained image. Try calling
the makeThumbnails script on the folder again and you'll notice it created thumbnails of your thumbnails. This is no
good. You need to change the makeThumbnails script to recognize existing thumbnail images and not make
thumbnails of them. Since all thumbnail images have an original_id property you can check for that property as a way
of distinguishing between thumbnails and normal images:

Script (Python) "makeThumbnails"
##
for image in context.objectValues('Image'):

The Zope Book (2.6 Edition)

240

 if not image.hasProperty('original_id'):
 context.makeThumbnail(image.getId())

Delete all the thumbnail images in your folder and try calling your updated makeThumbnails script on the folder. It
seems to work correctly now.

Now with a little DTML you can glue your script and External Method together. Create a DTML Method called
displayThumbnails :

<dtml-var standard_html_header>

<dtml-if updateThumbnails>
 <dtml-call makeThumbnails>
</dtml-if>

<h2>Thumbnails</h2>

<table><tr valign="top">

<dtml-in expr="objectValues('Image')">
 <dtml-if original_id>
 <td>
 <dtml-var sequence-item>

 <dtml-var original_id>
 </td>
 </dtml-if>
</dtml-in>

</tr></table>

<form>
<input type="submit" name="updateThumbnails" value="Update Thumbnails">
</form>

<dtml-var standard_html_footer>

When you call this DTML Method on a folder it will loop through all the images in the folder and display all the
thumbnail images and link them to the originals as shown in the figure below.

Figure 14-6 Displaying thumbnail images

The Zope Book (2.6 Edition)

241

This DTML Method also includes a form that allows you to update the thumbnail images. If you add, delete or change
the images in your folder you can use this form to update your thumbnails.

This example shows a good way to use scripts, External Methods and DTML together. Python takes care of the logic
while the DTML handles presentation. Your External Methods handle external packages such as PIL while your scripts
do simple processing of Zope objects. Note that you could just as easily use a Page Template instead of DTML.

Processing XML with External Methods

You can use External Methods to do nearly anything. One interesting thing that you can do is to communicate using
XML. You can generate and process XML with External Methods.

Zope already understands some kinds of XML messages such as XML-RPC and WebDAV. As you create web
applications that communicate with other systems you may want to have the ability to receive XML messages. You can
receive XML a number of ways: you can read XML files from the file system or over the network, or you can define
scripts that take XML arguments which can be called by remote systems.

Once you have received an XML message you must process the XML to find out what it means and how to act on it.
Let's take a quick look at how you might parse XML manually using Python. Suppose you want to connect your web
application to a Jabber chat server. You might want to allow users to message you and receive dynamic responses
based on the status of your web application. For example suppose you want to allow users to check the status of
animals using instant messaging. Your application should respond to XML instant messages like this:

<message to="cage_monitor@zopezoo.org" from="user@host.com">
 <body>monkey food status</body>
</message>

You could scan the body of the message for commands, call a script and return responses like this:

<message to="user@host.com" from="cage_monitor@zopezoo.org">
 <body>Monkeys were last fed at 3:15</body>
</message>

Here is a sketch of how you could implement this XML messaging facility in your web application using an External
Method:

Uses Python 2.x standard xml processing packages. See
http://www.python.org/doc/current/lib/module-xml.sax.html for
information about Python's SAX (Simple API for XML) support If
you are using Python 1.5.2 you can get the PyXML package. See
http://pyxml.sourceforge.net for more information about PyXML.

from xml.sax import parseString
from xml.sax.handler import ContentHandler

class MessageHandler(ContentHandler):
 """
 SAX message handler class

 Extracts a message's to, from, and body
 """

 inbody=0
 body=""

 def startElement(self, name, attrs):
 if name=="message":
 self.recipient=attrs['to']
 self.sender=attrs['from']
 elif name=="body":
 self.inbody=1
 def endElement(self, name):

The Zope Book (2.6 Edition)

242

 if name=="body":
 self.inbody=0

 def characters(self, content):
 if self.inbody:
 self.body=self.body + content

def receiveMessage(self, message):
 """
 Called by a Jabber server
 """
 handler=MessageHandler()
 parseString(message, handler)

 # call a script that returns a response string
 # given a message body string
 response_body=self.getResponse(handler.body)

 # create a response XML message
 response_message="""
 <message to="%s" from="%s">
 <body>%s</body>
 </message>""" % (handler.sender, handler.recipient, response_body)

 # return it to the server
 return response_message

The receiveMessage External Method uses Python's SAX (Simple API for XML) package to parse the XML message.
The MessageHandler class receives callbacks as Python parses the message. The handler saves information its
interested in. The External Method uses the handler class by creating an instance of it, and passing it to the
parseString function. It then figures out a response message by calling getResponse with the message body. The
getResponse script (which is not shown here) presumably scans the body for commands, queries the web applications
state and returns some response. The receiveMessage method then creates an XML message using response and the
sender information and returns it.

The remote server would use this External Method by calling the receiveMessage method using the standard HTTP
POST command. Voila, you've implemented a custom XML chat server that runs over HTTP.

External Method Gotchas

While you are essentially unrestricted in what you can do in an External Method, there are still some things that are
hard to do.

While your Python code can do as it pleases if you want to work with the Zope framework you need to respect its rules.
While programming with the Zope framework is too advanced a topic to cover here, there are a few things that you
should be aware of.

Problems can occur if you hand instances of your own classes to Zope and expect them to work like Zope objects. For
example, you cannot define a class in your External Method and assign an instance of this class as an attribute of a
Zope object. This causes problems with Zope's persistence machinery. You also cannot easily hand instances of your
own classes over to DTML or scripts. The issue here is that your instances won't have Zope security information. You
can define and use your own classes and instances to your heart's delight, just don't expect Zope to use them directly.
Limit yourself to returning simple Python structures like strings, dictionaries and lists or Zope objects.

If you need to create new kinds of persistent objects, it's time to learn about writing Zope Products. Writing a Product is
beyond the scope of this book. You can learn more by reading the Zope Developers' Guide

Using Perl-based Scripts

The Zope Book (2.6 Edition)

243

Perl-based Scripts allow you to script Zope in Perl. If you love Perl and don't want to learn Python to use Zope, these
scripts are for you. Using Perl-based Scripts you can use all your favorite Perl modules and treat Zope like a collection
of Perl objects.

The Perl Language

Perl is a high-level scripting language like Python. From a broad perspective, Perl and Python are very similar
languages, they have similar primitive data constructs and employ similar programming constructs.

Perl is a popular language for Internet scripting. In the early days of CGI scripting, Perl and CGI were practically
synonymous. Perl continues to be the dominant Internet scripting language.

Perl has a very rich collection of modules for tackling almost any computing task. CPAN (Comprehensive Perl Archive
Network) is the authoritative guide to Perl resources.

A facility to create Perl-based Zope scripts is available for download from ActiveState . Zope does not support
Perl-based scripts in the default Zope installation. Perl-based scripts require you to have Perl installed, and a few other
packages, and how to install these things is beyond the scope of this book. See the documentation that comes with
Perl-based scripts from the above URL. There is also more information provided by Andy McKay available on Zope.org
.

Creating Perl-based Scripts

Perl-based Scripts are quite similar to Python-based Scripts. Both have access to Zope objects and are called in similar
ways. Here's the Perl hello world program:

my $name=shift;
return "Hello $name.";

Let's take a look at a more complex example script by Monty Taylor. It uses the LWP::UserAgent package to retrieve
the URL of the daily Dilbert comic from the network. Create a Perl-based Script named get_dilbert_url with this code:

use LWP::UserAgent;

my $ua = LWP::UserAgent->new;

retrieve the Dilbert page
my $request = HTTP::Request->new('GET','http://www.dilbert.com');
my $response = $ua->request($request);

look for the image URL in the HTML
my $content = $response->content;
$content =~ m,(/comics/dilbert/archive/images/[^"]*),s;

return the URL
return $content

You can display the daily Dilbert comic by calling this script from DTML by calling the script inside an HTML IMG tag:

However there is a problem with this code. Each time you display the cartoon, Zope has to make a network connection.
This is inefficient and wasteful. You'd do much better to only figure out the Dilbert URL once a day.

Here's a script cached_dilbert_url that improves the situation by keeping track of when it last fetched the Dilbert URL
with a dilbert_url_date property:

my $context=shift;
my $date=$context->getProperty('dilbert_url_date');

The Zope Book (2.6 Edition)

244

if ($date==null or $now-$date > 1){
 my $url=$context->get_dilbert_url();
 $context->manage_changeProperties(
 dilbert_url => $url
 dilbert_url_time => $now
);
}
return $context->getProperty('dilbert_url');

This script uses two properties, dilbert_url and dilbert_url_date . If the URL gets too old, a new one is fetched. You can
use this script from DTML just like the original script:

You can use Perl and DTML together to control your logic and your presentation.

Perl-based Script Security

Like DTML and Python-based Scripts, Perl-based Scripts constrain you in the Zope security system from doing
anything that you are not allowed to do. Script security is similar in both languages, but there are some Perl specific
constraints.

First, the security system does not allow you to eval an expression in Perl. For example, consider this script:

my $context = shift;
my $input = shift;

eval $input

This code takes an argument and evaluates it in Perl. This means you could call this script from, say an HTML form,
and evaluate the contents of one of the form elements. This is not allowed since the form element could contain
malicious code.

Perl-based Scripts also cannot assign new variables to any object other than local variables that you declare with my .

Advanced Acquisition

In the chapter entitled Acquisition , we introduced acquisition by containment, which we have been using throughout
this chapter. In acquisition by containment, Zope looks for an object by going back up the containment heirarchy until it
finds an object with the right id. In Chapter 7 we also mentioned context acquisition , and warned that it is a tricky
subject capable of causing your brain to explode. If you are ready for exploding brains, read on.

Recall our Zoo example introduced earlier in this chapter.

The Zope Book (2.6 Edition)

245

Figure 14-7 Zope Zoo Example hierarchy

We have seen how Zope uses URL traversal and acquisition to find objects in higher containers. More complex
arrangements are possible. Suppose you want to call the vaccinate script on the hippo object. What URL can you use?
If you visit the URL Zoo/LargeAnimals/hippo/vaccinate Zope will not be able to find the vaccinate script since it isn't in
any of the hippo object's containers.

The solution is to give the path to the script as part of the URL. Zope allows you to combine two or more URLs into one
in order to provide more acquisition context! By using acquisition, Zope will find the script as it backtracks along the
URL. The URL to vaccinate the hippo is Zoo/Vet/LargeAnimals/hippo/vaccinate . Likewise, if you want to call the
vaccinate script on the kargarooMouse object you should use the URL
Zoo/Vet/SmallAnimals/kargarooMouse/vaccinate .

Let's follow along as Zope traverses the URL Zoo/Vet/LargeAnimals/hippo/vaccinate . Zope starts in the root folder and
looks for an object named Zoo . It moves to the Zoo folder and looks for an object named Vet . It moves to the Vet
folder and looks for an object named LargeAnimals . The Vet folder does not contain an object with that name, but it
can acquire the LargeAnimals folder from its container, Zoo folder. So it moves to the LargeAnimals folder and looks for
an object named hippo . It then moves to the hippo object and looks for an object named vaccinate . Since the hippo
object does not contain a vaccinate object and neither do any of its containers, Zope backtracks along the URL path
trying to find a vaccinate object. First it backs up to the LargeAnimals folder where vaccinate still cannot be found. Then
it backs up to the Vet folder. Here it finds a vaccinate script in the Vet folder. Since Zope has now come to the end of
the URL, it calls the vaccinate script in the context of the hippo object.

Note that we could also have organized the URL a bit differently. Zoo/LargeAnimals/Vet/hippo/vaccinate would also
work. The difference is the order in which the context elements are searched. In this example, we only need to get
vaccinate from Vet , so all that matters is that Vet appears in the URL after Zoo and before hippo .

When Zope looks for a sub-object during URL traversal, it first looks for the sub-object in the current object. If it cannot
find it in the current object it looks in the current object's containers. If it still cannot find the sub-object, it backs up
along the URL path and searches again. It continues this process until it either finds the object or raises an error if it
cannot be found. If several context folders are used in the URL, they will be searched in order from left to right .

Context acquisition can be a very useful mechanism, and it allows you to be quite expressive when you compose
URLs. The path you tell Zope to take on its way to an object will determine how it uses acquisition to look up the

The Zope Book (2.6 Edition)

246

object's scripts.

Note that not all scripts will behave differently depending on the traversed URL. For example, you might want your
script to acquire names only from its parent containers and not from the URL context. To do so, simply use the
container variable instead of the context variable in the script, as described above in the section "Using Python-based
Scripts."

Context Acquisition Gotchas

Containment before context

It is important to realize that context acquisition supplements container acquisition. It does not override container
acquisition.

One at a time

Another point that often confuses new users is that each element of a path "sticks" for the duration of the traversal,
once it is found. Think of it this way: objects are looked up one at a time, and once an object is found, it will not be
looked up again. For example, imagine this folder structure:

Figure 14-8 Acquisition example folder structure

Now suppose that the about_penguins page contains a link to Images/penguins.png . Shouldn't this work? Won't
/Images/penguins.png succeed when /Content/Images/penguins.png fails? The answer is no. We always traverse from
left to right, one item at a time. First we find Content , then Images within it; penguins.png appears in neither of those,
and we haved searched all parent containers of every element in the URL, so there is nothing more to search in this
URL. Zope stops there and raises an error. Zope never looks in /Images because it has already found /Content/Images
.

Readability

The Zope Book (2.6 Edition)

247

Context acquisition can make code more difficult to understand. A person reading your script can no longer simply look
backwards up one containment heirarchy to see where an acquired object might be; many more places might be
searched, all over the zope tree folder. And the order in which objects are searched, though it is consistent, can be
confusing.

Fragility

Over-use of context acquisition can also lead to fragility. In object-oriented terms, context acquisition can lead to a site
with low cohesion and tight coupling. This is generally regarded as a bad thing. More specifically, there are many
simple actions by which an unwitting developer could break scripts that rely on context acquisition. These are more
likely to occur than with container acquisition, because potentially every part of your site affects every other part, even
in parallel folder branches.

For example, if you write a script that calls another script by a long and torturous path, you are assuming that the folder
tree is not going to change. A maintenance decision to reorganize the folder heirarchy could require an audit of scripts
in every part of the site to determine whether the reorganization will break anything.

Recall our Zoo example. There are several ways in which a zope maintainer could break the feed() script:

Inserting another object with the name of the method — This is a normal technique for customizing behavior in
Zope, but context acquisition makes it more likely to happen by accident. Suppose that giraffe vaccination is controlled
by a regularly scheduled script that calls Zoo/Vet/LargeAnimals/giraffe/feed . Suppose a content administrator doesn't
know about this script and adds a DTML page called vaccinate in the giraffe folder, containing information about
vaccinating giraffes. This new vaccinate object will be acquired before Zoo/Vet/vaccinate . Hopefully you will notice the
problem before your giraffes get sick.

Calling an inappropriate path — if you visit Zoo/LargeAnimals/hippo/buildings/visitor_reception/feed , will the
reception area be filled with hippo food? One would hope not. This might even be possible for someone who has no
permissions on the reception object. Such URLs are actually not difficult to construct. For example, using relative URLs
in standard_html_header can lead to some quite long combinations of paths.

Thanks to Toby Dickenson for pointing out these fragility issues on the zope-dev mailing list.

Calling DTML from Scripts

Often, you would want to call a DTML Method or DTML Document from a Script. For instance, a common pattern is to
call a Script from an HTML form. The Script would process user input, and return an output page with feedback
messages - telling the user her request executed correctly or signalling an error as appropriate.

Scripts are good at logic and general computational tasks, but ill suited for generating HTML. Therefore it makes sense
to delegate the user feedback output to a DTML Method and call it from the Script.

Assume we have got an DTML Method a_dtml_method . We would call it from Script with:

grab the method and the REQUEST from the context
dtml_method = context.a_dtml_method
REQUEST = context.REQUEST

call the dtml method, for parameters see below
s = dtml_method(client=context, REQUEST=REQUEST, foo='bar')

s now holds the rendered html
return s

The Zope Book (2.6 Edition)

248

Note that DTML Methods and Documents take optional client and REQUEST parameters. If a client is passed to a
DTML Method, the method tries to resolve names by looking them up as attributes of the client object. By passing our
context as a client, the method will look up names in that context. Also, we can pass it a REQUEST object and
additional keyword arguments. The DTML Method will first try to look up variables in the keyword arguments, then the
namespace, and finally in the REQUEST object. See the chapter "Advanced DTML", subchapter "DTML Namespaces,"
for details on namespaces, and Appendix B, API Reference for further information on DTML Methods / Documents.

Calling ZPT from Scripts

For the same reasons as outlined in the section "Calling DTML from Scripts" above, one might want to call Page
Templates from Scripts. Assume we have this Page Template:

Hello
World

Calling it from a script could be done with the following Script fragment:

pt = context.hello_world_pt
s = pt(name="John Doe")
return s

The name parameter to the Page Template ends up in the options/name path expression. Of course, you can pass
more than simple values to Page Templates this way. For instance, suppose we wanted to construct a list of objects
and pass that to a Page Template for display. The list of objects could be constructed in an External Method. Place a
file my_extensions.py in the Extensions directory, and for example add:

class Giraffe:
 __allow_access_to_unprotected_subobjects__ = 1

 def __init__(self, name, neck_length=None):
 self.name = name
 self.n_length=neck_length

 def neck_length(self):
 n = self.n_length
 if not n: return "unspecified"
 if type(n) == type(0.0):
 return "%s meters" % n
 return n

def giraffes(self):
 # make a list of giraffes
 glist = []
 for name, neck in (('Guido', 1.2), ('Jim', 'long'), ('Barry', None)):
 g = Giraffe(name, neck_length=neck)
 glist.append(g)
 # display the lot of them
 pt = self.display_giraffes
 return pt(giraffes=glist)

Add an External Method giraffes , module my_extensions , function giraffes . Also, add a Page Template
display_giraffes containing the following snippet:

<table border="1">
 <tr>
 <th>Name</th>
 <th>Neck length</th>
 </tr>
 <tr tal:repeat="giraffe options/giraffes">
 <td tal:content="giraffe/name">name</td>
 <td tal:content="giraffe/neck_length">neck_length</td>
 </tr>
</table>

The Zope Book (2.6 Edition)

249

If you go to Test tab of the giraffes External Method, you should see a table similar to the one in the figure below.

Figure 14-9 Giraffe table

In the my_extensions module (file my_extensions.py) we define a class Giraffes . The
__allow_access_to_unprotected_subobjects__ = 1 statement tells Zope that it is okay to grant access on
giraffes to everyone - use only when you actually want this!

Then, in the giraffes function, we create some giraffe objects using hardcoded values, and hand the list of giraffes
to a Page Template, which iterates through the list to display their data in a table.

Again, we use the options Page Template variable to access the list members, and access data and method
attributes of the giraffe objects using path expressions like giraffe/name . The neck_length method gets called
automatically in this process. You would want to use python expression syntax instead if you need to pass parameters
to the giraffe objects methods, eg. use something like python:giraffe.neck_length() . See the chapters on
"Zope Page Templates" and "Advanced Page Templates" for more details on path and python expressions.

Passing Parameters to Scripts

All scripts can be passed parameters. A parameter gives a script more information about what to do. When you call a
script from the web, Zope will try to find the script's parameters in the web request and pass them to your script. For
example, if you have a script with parameters dolphin and REQUEST Zope will look for dolphin in the web request, and
will pass the request itself as the REQUEST parameter. In practical terms this means that it is easy to do form
processing in your script. For example, here is a form:

<form action="form_action">
Name of Hippo <input type="text" name="name">

Age of Hippo <input type="text" name="age">

<input type="submit">
</form>

You can easily process this form with a script named form_action that includes name and age in its parameter list:

Script (Python) "form_action"
##parameters=name, age
##
"Process form"
age=int(age)
message= 'This hippo is called %s and is %d years old' % (name, age)
if age < 18:
 message += '\n %s is not old enough to drive!' % name
return message

The Zope Book (2.6 Edition)

250

There is no need to process the form manually to extract values from it. Form elements are passed as strings, or lists of
strings in the case of checkboxes and multiple-select input.

In addition to form variables, you can specify any request variables as script parameters. For example, to get access to
the request and response objects just include REQUEST and RESPONSE in your list of parameters. Request variables
are detailed more fully in Appendix B .

In the Python script given above, there is a subtle problem. You are probably expecting an integer rather than a string
for age, but all form variables are passed as strings. Perl takes care of such things automagically, but Python does not.
You could manually convert the string to an integer using the Python int built-in:

age=int(age)

But this manual conversion may be inconvenient. Zope provides a way for you to specify form input types in the form,
rather than in the processing script. Instead of converting the age variable to an integer in the processing script, you
can indicate that it is an integer in the form itself:

Age <input type="text" name="age:int">

The :int appended to the form input name tells Zope to automatically convert the form input to an integer. This
process is called marshalling . If the user of your form types something that cannot be converted to an integer (such as
"22 going on 23") then Zope will raise an exception as shown in the figure below.

Figure 14-10 Parameter conversion error

It's handy to have Zope catch conversion errors, but you may not like Zope's error messages. You should avoid using
Zope's converters if you want to provide your own error messages.

Zope can perform many parameter conversions. Here is a list of Zope's basic parameter converters.

 boolean — Converts a variable to true or false. Variables that are 0, None, an empty string, or an empty sequence are
false, all others are true.

 int — Converts a variable to an integer.

The Zope Book (2.6 Edition)

251

 long — Converts a variable to a long integer.

 float — Converts a variable to a floating point number.

 string — Converts a variable to a string. Most variables are strings already so this converter is seldom used.

 text — Converts a variable to a string with normalized line breaks. Different browsers on various platforms encode line
endings differently, so this script makes sure the line endings are consistent, regardless of how they were encoded by
the browser.

 list — Converts a variable to a Python list.

 tuple — Converts a variable to a Python tuple. A tuple is like a list, but cannot be modified.

 tokens — Converts a string to a list by breaking it on white spaces.

 lines — Converts a string to a list by breaking it on new lines.

 date — Converts a string to a DateTime object. The formats accepted are fairly flexible, for example 10/16/2000 ,
12:01:13 pm .

 required — Raises an exception if the variable is not present.

 ignore_empty — Excludes the variable from the request if the variable is an empty string.

These converters all work in more or less the same way to coerce a form variable, which is a string, into another
specific type. You may recognize these converters from the chapter entitled Using Basic Zope Objects , in which we
discussed properties. These converters are used by Zope's property facility to convert properties to the right type.

The list and tuple converters can be used in combination with other converters. This allows you to apply additional
converters to each element of the list or tuple. Consider this form:

<form action="processTimes">

<p>I would prefer not to be disturbed at the following
times:</p>

<input type="checkbox" name="disturb_times:list:date"
value="12:00 AM"> Midnight

<input type="checkbox" name="disturb_times:list:date"
value="01:00 AM"> 1:00 AM

<input type="checkbox" name="disturb_times:list:date"
value="02:00 AM"> 2:00 AM

<input type="checkbox" name="disturb_times:list:date"
value="03:00 AM"> 3:00 AM

<input type="checkbox" name="disturb_times:list:date"
value="04:00 AM"> 4:00 AM

<input type="submit">
</form>

By using the list and date converters together, Zope will convert each selected time to a date and then combine all
selected dates into a list named disturb_times .

A more complex type of form conversion is to convert a series of inputs into records. Records are structures that have
attributes. Using records, you can combine a number of form inputs into one variable with attributes. The available

The Zope Book (2.6 Edition)

252

record converters are:

 record — Converts a variable to a record attribute.

 records — Converts a variable to a record attribute in a list of records.

 default — Provides a default value for a record attribute if the variable is empty.

 ignore_empty — Skips a record attribute if the variable is empty.

Here are some examples of how these converters are used:

<form action="processPerson">

First Name <input type="text" name="person.fname:record">

Last Name <input type="text" name="person.lname:record">

Age <input type="text" name="person.age:record:int">

<input type="submit">
</form>

This form will call the processPerson script with one parameter, person . The person variable will have the attributes
fname , lname and age . Here's an example of how you might use the person variable in your processPerson script:

Script (Python) "processPerson"
##parameters=person
##
" process a person record "
full_name="%s %s" % (person.fname, person.lname)
if person.age < 21:
 return "Sorry, %s. You are not old enough to adopt an aardvark." % full_name
return "Thanks, %s. Your aardvark is on its way." % full_name

The records converter works like the record converter except that it produces a list of records, rather than just one.
Here is an example form:

<form action="processPeople">

<p>Please, enter information about one or more of your next of
kin.</p>

<p>First Name <input type="text" name="people.fname:records">
Last Name <input type="text" name="people.lname:records"></p>

<p>First Name <input type="text" name="people.fname:records">
Last Name <input type="text" name="people.lname:records"></p>

<p>First Name <input type="text" name="people.fname:records">
Last Name <input type="text" name="people.lname:records"></p>

<input type="submit">
</form>

This form will call the processPeople script with a variable called people that is a list of records. Each record will have
fname and lname attributes. Note the difference between the records converter and the list:record converter: the former
would create a list of records, whereas the latter would produce a single record whose attributes fname and lname
would each be a list of values.

The order of combined modifiers does not matter; for example, int:list is identical to list:int .

Another useful parameter conversion uses form variables to rewrite the action of the form. This allows you to submit a
form to different scripts depending on how the form is filled out. This is most useful in the case of a form with multiple
submit buttons. Zope's action converters are:

The Zope Book (2.6 Edition)

253

 action — Appends the attribute value to the original form action of the form. This is mostly useful for the case in which
you have multiple submit buttons on one form. Each button can be assigned to a script that gets called when that
button is clicked to submit the form. A synonym for action is method .

 default_action — Appends the attribute value to the original action of the form when no other action converter is used.

Here's an example form that uses action converters:

<form action="employeeHandlers">

<p>Select one or more employees</p>

<input type="checkbox" name="employees:list" value="Larry"> Larry

<input type="checkbox" name="employees:list" value="Simon"> Simon

<input type="checkbox" name="employees:list" value="Rene"> Rene

<input type="submit" name="fireEmployees:action"
value="Fire!">

<input type="submit" name="promoteEmployees:action"
value="Promote!">

</form>

This form will call either the fireEmployees or the promoteEmployees script in the employeeHandlers folder, depending
on which of the two submit buttons is used. Notice also how it builds a list of employees with the list converter. Form
converters can be very useful when designing Zope applications.

Returning Values from Scripts

Scripts have their own variable scope. In this respect, scripts in Zope behave just like functions, procedures, or
methods in most programming languages. If you call a script updateInfo , for example, and updateInfo assigns a value
to a variable status , then status is local to your script -- it gets cleared once the script returns. To get at the value of a
script variable, we must pass it back to the caller with a return statement.

Here is an example of how one might call a script from DTML and use a value returned from the script:

<dtml-let status="updateInfo(color='brown', pattern='spotted')">
 <dtml-if expr="status == 0">
 Data updated successfully
 <dtml-else>
 An error occured! The error status was: <dtml-var status>
 </dtml-if>
</dtml-let>

Scripts can only return a single object. If you need to return more than one value, put them in a dictionary and pass that
back.

Suppose you have a Python script compute_diets out of which you want to get values:

Script (Python) "compute_diets"
d = {'fat': 10,
 'protein': 20,
 'carbohydrate': 40,
 }
return d

The values would, of course, be calculated in a real application; in this simple example we will just hardcode some
numbers.

The Zope Book (2.6 Edition)

254

You could call this script from DTML like this:

<dtml-with compute_diets mapping>
 This animal needs
 <dtml-var fat>kg fat,
 <dtml-var protein>kg protein, and
 <dtml-var carbohydrate>kg carbohydrates.
</dtml-with>

Note the mapping attribute to the dtml-with tag - it tells DTML to expect a mapping (a dictionary in our case) instead of
an object.

Script Security

All scripts that can be edited through the web are subject to Zope's standard security policies. The only scripts that are
not subject to these security restrictions are scripts that must be edited through the filesystem. These unrestricted
scripts include Python and Perl External Methods .

The chapter entitled Users and Security covers security in more detail. You should consult the Roles of Executable
Objects and Proxy Roles sections for more information on how scripts are restricted by Zope security constraints.

Security Restrictions of Script (Python)

Scripts are restricted in order to limit their ability to do harm. What could be harmful? In general, scripts keep you from
accessing private Zope objects, making harmful changes to Zope objects, hurting the Zope process itself, and
accessing the server Zope is running on. These restrictions are implemented through a collection of limits on what your
scripts can do.

Loop limits — Scripts cannot create infinite loops. If your script loops a very large number of times Zope will raise an
error. This restriction covers all kinds of loops including for and while loops. The reason for this restriction is to limit your
ability to hang Zope by creating an infinite loop.

Import limits — Scripts cannot import arbitrary packages and modules. You are limited to importing the
Products.PythonScripts.standard utility module, the AccessControl module, those modules available via DTML (string ,
random , math , sequence), and modules which have been specifically made available to scripts by product authors.
See Appendix B, API Reference for more information on these modules. If you want to be able to import any Python
module, use an External Method, as described later in the chapter.

Access limits — You are restricted by standard Zope security policies when accessing objects. In other words the
user executing the script is checked for authorization when accessing objects. As with all executable objects, you can
modify the effective roles a user has when calling a script using Proxy Roles (see the chapter entitled Users and
Security for more information). In addition, you cannot access objects whose names begin with an underscore, since
Zope considers these objects to be private. Finally, you can define classes in scripts but it is not really practical to do
so, because you are not allowed to access attributes of these classes! Even if you were allowed to do so, the restriction
against using objects whose names begin with an underscore would prevent you from using your class's __init__
method. If you need to define classes, use External Methods (see below) or Zope Products (see the Zope Developers
Guide for more information about creating Products). You may, however, define functions in scripts, although it is rarely
useful or necessary to do so. In practice, a Script in Zope is treated as if it were a single method of the object you wish
to call it on.

Writing limits — In general you cannot directly change Zope object attributes using scripts. You should call the
appropriate methods from the Zope API instead.

The Zope Book (2.6 Edition)

255

Despite these limits, a determined user could use large amounts of CPU time and memory using Python-based Scripts.
So malicious scripts could constitute a kind of denial of service attack by using lots of resources. These are difficult
problems to solve and DTML suffers from the same potential for abuse. As with DTML, you probably should not grant
access to scripts to untrusted people.

The Zope API

One of the main reasons to script Zope is to get convenient access to the Zope API (Application Programmer
Interface). The Zope API describes built-in actions that can be called on Zope objects. You can examine the Zope API
in the help system, as shown in the figure below.

Figure 14-11 Zope API Documentation

Suppose you would like to have a script that takes a file you upload from a form and creates a Zope File object in a
folder. To do this you need to know a number of Zope API actions. It's easy enough to read files in Python or Perl, but
once you have the file you need to know what actions to call to create a new File object in a Folder.

There are many other things that you might like to script using the Zope API. Any management task that you can
perform through the web can be scripted using the Zope API. This includes creating, modifying and deleting Zope
objects. You can even perform maintenance tasks, like restarting Zope and packing the Zope database.

The Zope API is documented in Appendix B, API Reference as well as in the Zope online help. The API documentation
shows you which classes inherit from which other classes. For example, Folder inherits from ObjectManager . This
means that Folder objects have all the actions listed in the ObjectManager section of the API reference.

To get you started, and whet your appetite, we will go through some example Python scripts that demonstrate how you
can use the Zope API.

Get all objects in a folder

The objectValues() method returns a list of objects contained in a folder. If the context happens not to be a folder,
nothing is returned:

The Zope Book (2.6 Edition)

256

objs = context.objectValues()

Get the id of an object

The id is the "handle" to access an object, and is set at object creation:

id = context.getId()

Note that there is no setId() method - you have to either use the ZMI to rename them, set their id attribute via
security-unrestricted code, or use the manage_renameObject or manage_renameObjects API methods exposed
upon the container of the object you want to rename.

Get the Zope root folder

The root folder is the top level element in the Zope object database:

root = context.getPhysicalRoot()

Get the physical path to an object

The getPhysicalPath() method returns a list contained the ids of the object's containment heirarchy :

path_list = context.getPhysicalPath()
path_string = "/".join(path_list)

Get an object by path

restrictedTraverse() is the complement to getPhysicalPath(). The path can be absolute - starting at the Zope root - or
relative to the context:

path = "/Zoo/LargeAnimals/hippo"
hippo_obj = context.restrictedTraverse(path)

Change the content of an DTML Method or Document

You can actually change the content (and title) of a DTML Method or Document, exactly as if you edited it in the Zope
management interface, by using its manage_edit() method:

context has to be a DTML method or document!
context.manage_edit('new content', 'new title')

Change properties of an object

You can use the manage_changeProperties method of any Zope object to change its properties:

context may be any kind of Zope object
context.manage_changeProperties({'title':'Another title'})

Get a property

getProperty() returns a property of an object. Many objects support properties (those that are derived from the
PropertyManager class), the most notable exception being DTML Methods, which do not:

pattern = context.getProperty('pattern')
return pattern

The Zope Book (2.6 Edition)

257

Change properties of an object

The object has to support properties and the property must exist:

values = {'pattern' : 'spotted'}
context.manage_changeProperties(values)

Execute a DTML Method or DTML Document

This executes a DTML Method or Document and returns the result. Note that DTML Methods and Documents take
optional client and REQUEST parameters. If a client is passed to a DTML Method, the method tries to resolve names
by looking them up as attributes of the client object. By passing our context as a client, the method will look up names
in that context. Also, we can pass it a REQUEST object and additional keyword arguments - the DTML Method will first
try to resolve names in them. See the chapter entitled Advanced DTML , section "DTML Namespaces," for details:

dtml_method = context.a_dtml_method
s = dtml_method(client=context, REQUEST={}, foo='bar')
return s

Traverse to an object and add a new property

We get an object by its absolute path and add a property weight , and set it to some value. Again, the object must
support properties for this to work. We introduce another neat trick in this example. Long method names can make
lines in your scripts long and hard to read, so you can assign a shorter name for the method before using it:

path = "/Zoo/LargeAnimals/hippo"
hippo_obj = context.restrictedTraverse(path)
add_method = hippo_obj.manage_addProperty
add_method('weight', 500, 'int')

Add a new object to the context

Scripts can add objects to folders, just like you do in the Zope management interface. The context has to be a folderish
object (i.e. a folder or another object derived from ObjectManager). The general pattern is:

context.manage_addProduct['PackageName'].manage_addProductName(id)

manage_addProduct is a mapping in which we can look up a dispatcher - an object which gives us the necessary
factory for creating a new object in the context. For most of the built-in Zope classes, the PackageName is OFSP , and
the factory method is named after the product class itself. Once you have the factory method, you must pass it
whatever arguments are needed for adding an object of this type. Some examples will make this clear.

Let's add a DTML Method to a folder:

add_method = context.manage_addProduct['OFSP'].manage_addDTMLMethod
add_method('object_id', file="Initial contents of the DTML Method")

For any other product class that comes with Zope, we need only change the factory method and its arguments.

DTML Methods — manage_addDTMLMethod

DTML Documents — manage_addDTMLDocument

Images — manage_addImage

Files — manage_addFile

The Zope Book (2.6 Edition)

258

Folders — manage_addFolder

UserFolders — manage_addUserFolder

Version — manage_addVersion

To get a dispatcher for add-on Products which you download and install, replace OFSP with the directory which
contains the product code. For example, if you have installed the famous Boring product, you could add one like so:

add_method = context.manage_addProduct['Boring'].manage_addBoring
add_method(id='test_boring')

If the product author has been conscientious, the process for adding new instances of their product will be
documented; but it will always look something like the above examples.

DTML versus Python versus Perl versus Page Templates

Zope gives you many ways to script. For small scripting tasks the choice of Python, Perl or DTML probably doesn't
make a big difference. For larger, logic-oriented tasks you should use Python or Perl. You should choose the language
you are most comfortable with. Of course, your boss may want to have some say in the matter too.

For presentation, Perl and Python should not be used; the choice then becomes whether to use DTML or ZPT.

Just for the sake of comparison, here is a simple presentational script suggested by Gisle Aas, the author of Perl-based
Scripts, in four different languages.

In DTML:

<dtml-in objectValues>
 <dtml-var getId>: <dtml-var sequence-item>
</dtml-in>
done

In ZPT:

<div tal:repeat="item here/objectValues"
 tal:replace="python:'%s: %s\n' % (item.getId(), str(item))" />

In Python:

for item in context.objectValues():
 print "%s: %s" % (item.getId(), item)
print "done"
return printed

In Perl:

my $context = shift;
my @result;

for ($context->objectValues()) {
 push(@result, join(": ", $_->getId(), $_));
}
join("\n", @result, "done");

Despite the fact that Zope is implemented in Python, it sometimes (for better or worse) follows the Perl philosophy that
"there's more than one way to do it".

Remote Scripting and Network Services

The Zope Book (2.6 Edition)

259

Web servers are used to serve content to software clients; usually people using web browser software. The software
client can also be another computer that is using your web server to access some kind of service.

Because Zope exposes objects and scripts on the web, it can be used to provide a powerful, well organized, secure
web API to other remote network application clients.

There are two common ways to remotely script Zope. The first way is using a simple remote procedure call protocol
called XML-RPC . XML-RPC is used to execute a procedure on a remote machine and get a result on the local
machine. XML-RPC is designed to be language neutral, and in this chapter you'll see examples in Python, Perl and
Java.

The second common way to remotely script Zope is with any HTTP client that can be automated with a script. Many
language libraries come with simple scriptable HTTP clients and there are many programs that let you you script HTTP
from the command line.

Using XML-RPC

XML-RPC is a simple remote procedure call mechanism that works over HTTP and uses XML to encode information.
XML-RPC clients have been implemented for many languages including Python, Perl, Java, JavaScript, and TCL.

In-depth information on XML-RPC can be found at the XML-RPC website .

All Zope scripts that can be called from URLs can be called via XML-RPC. Basically XML-RPC provides a system to
marshal arguments to scripts that can be called from the web. As you saw earlier in the chapter Zope provides its own
marshaling controls that you can use from HTTP. XML-RPC and Zope's own marshaling accomplish much the same
thing. The advantage of XML-RPC marshaling is that it is a reasonably supported standard that also supports
marshaling of return values as well as argument values.

Here's a fanciful example that shows you how to remotely script a mass firing of janitors using XML-RPC.

Here's the code in Python:

import xmlrpclib

server = xmlrpclib.Server('http://www.zopezoo.org/')
for employee in server.JanitorialDepartment.personnel():
 server.fireEmployee(employee)

In Perl:

use Frontier::Client;

$server = Frontier::Client->new(url => "http://www.zopezoo.org/");

$employees = $server->call("JanitorialDepartment.personnel");
foreach $employee (@$employees) {

 $server->call("fireEmployee",$server->string($employee));

}

In Java:

try {
 XmlRpcClient server = new XmlRpcClient("http://www.zopezoo.org/");
 Vector employees = (Vector) server.execute("JanitorialDepartment.personnel");

 int num = employees.size();
 for (int i = 0; i < num; i++) {
 Vector args = new Vector(employees.subList(i, i+1));

The Zope Book (2.6 Edition)

260

 server.execute("fireEmployee", args);
 }

} catch (XmlRpcException ex) {
 ex.printStackTrace();
} catch (IOException ioex) {
 ioex.printStackTrace();
}

Actually the above example will probably not run correctly, since you will most likely want to protect the fireEmployee
script. This brings up the issue of security with XML-RPC. XML-RPC does not have any security provisions of its own;
however, since it runs over HTTP it can leverage existing HTTP security controls. In fact Zope treats an XML-RPC
request exactly like a normal HTTP request with respect to security controls. This means that you must provide
authentication in your XML-RPC request for Zope to grant you access to protected scripts. The Python client at the
time of this writing does not support control of HTTP Authorization headers. However it is a fairly trivial addition. For
example, an article on XML.com Internet Scripting: Zope and XML-RPC includes a patch to Python's XML-RPC support
showing how to add HTTP authorization headers to your XML-RPC client.

Remote Scripting with HTTP

Any HTTP client can be used for remotely scripting Zope.

On Unix systems you have a number of tools at your disposal for remotely scripting Zope. One simple example is to
use wget to call Zope script URLs and use cron to schedule the script calls. For example, suppose you have a Zope
script that feeds the lions and you'd like to call it every morning. You can use wget to call the script like so:

$ wget --spider http://www.zopezope.org/Lions/feed

The spider option tells wget not to save the response as a file. Suppose that your script is protected and requires
authorization. You can pass your user name and password with wget to access protected scripts:

$ wget --spider --http-user=ZooKeeper --http-passwd=SecretPhrase http://www.zopezope.org/Lions/feed

Now let's use cron to call this command every morning at 8am. Edit your crontab file with the crontab command:

$ crontab -e

Then add a line to call wget every day at 8 am:

0 8 * * * wget -nv --spider --http_user=ZooKeeper --http_pass=SecretPhrase http://www.zopezoo.org/Lions/feed

The only difference between using cron and calling wget manually is that you should use the nv switch when using cron
since you don't care about output of the wget command.

For our final example let's get really perverse. Since networking is built into so many different systems, it's easy to find
an unlikely candidate to script Zope. If you had an Internet-enabled toaster you would probably be able to script Zope
with it. Let's take Microsoft Word as our example Zope client. All that's necessary is to get Word to agree to tickle a
URL.

The easiest way to script Zope with Word is to tell word to open a document and then type a Zope script URL as the file
name as shown in Figure 8-9 .

The Zope Book (2.6 Edition)

261

Figure 14-12 Calling a URL with Microsoft Word

Word will then load the URL and return the results of calling the Zope script. Despite the fact that Word doesn't let you
POST arguments this way, you can pass GET arguments by entering them as part of the URL.

You can even control this behavior using Word's built-in Visual Basic scripting. For example, here's a fragment of
Visual Basic that tells Word to open a new document using a Zope script URL:

Documents.Open FileName:="http://www.zopezoo.org/LionCages/wash?use_soap=1&water_temp=hot"

You could use Visual Basic to call Zope script URLs in many different ways.

Zope's URL to script call translation is the key to remote scripting. Since you can control Zope so easily with simple
URLs you can easy script Zope with almost any network-aware system.

Conclusion

Zope provides scripting with Python, and optionally with Perl. With scripts you can control Zope objects and glue
together your application's logic, data, and presentation. You can programmatically manage objects in your Zope folder
hierarchy by using the Zope API. You can also perform serious programming tasks such as image processing and XML
parsing.

The Zope Book (2.6 Edition)

262

Zope Services

Some Zope objects are service objects. Service objects provide various kinds of support to your "domain-specific"
content, logic, and presentation objects. They help solve fundamental problems that many others have experienced
when writing applications in Zope.

Access Rule Services

Access Rules make it possible to cause an action to happen any time a user "traverses" a Folder in your Zope site.
When a user's browser submits a request for a URL to Zope which has a Folder's name in it, the Folder is "looked up"
by Zope during object publishing. That action (the lookup) is called traversal . Access Rules are arbitrary bits of code
which effect the environment in some way during Folder traversal. They are easiest to explain by way of an example.

In your Zope site, create a Folder named "accessrule_test". Inside the accessrule_test folder, create a Script (Python)
object named access_rule with two parameters: container and request . Give the access_rule Script
(Python) the following body:

useragent = request.get('HTTP_USER_AGENT', '')
if useragent.find('Windows') != -1:
 request.set('OS', 'Windows')
elif useragent.find('Linux') != -1:
 request.set('OS', 'Linux')
else:
 request.set('OS', 'Non-Windows, Non-Linux')

This Script causes the traversal of the accessrule_test folder to cause a new variable named OS to be entered into the
REQUEST, which has a value of Windows , Linux , or Non-Windows, Non-Linux depending on the user's
browser.

Save the access_rule script and revisit the accessrule_test folder's Contents view. Choose Set Access Rule from
the add list. In the Rule Id form field, type access_rule . Then click Set Rule . A confirmation screen appears
claiming that " access_rule is now the Access Rule for this object". Click "OK". Notice that the icon for the
access_rule Script (Python) has changed, denoting that it is now the access rule for this Folder.

Create a DTML Method named test in the accessrule_test folder with the following body:

<dtml-var standard_html_header>
<dtml-var REQUEST>
<dtml-var standard_html_footer>

Save the test DTML Method and click its "View" tab. You will see a representation of all the variables that exist in the
REQUEST. Note that in the other category, there is now a variable named "OS" with (depending on your browser
platform) either Windows , Linux or Non-Linux, Non-Windows).

Revisit the accessrule_test folder and again select Set Access Rule from the add list. Click the No Access Rule button.
A confirmation screen will be displayed stating that the object now has no Access Rule.

Visit the test script you created previously and click its View tab. You will notice that there is now no "OS" variable
listed in the request because we've turned off the Access Rule capability for access_rule .

Access Rules have many potential creative uses. For example, a ZopeLabs recipe submitted by xzc shows how to
restrict a specific user agent from accessing a particular Zope object. Another tip from runyaga shows how to use an
access rule to restrict management access in a CMF site for non-manager users. Another recipe by ivo tells us how to
transparently delegate requests for an object to another object using an Access Rule.

The Zope Book (2.6 Edition)

263

Access Rules don't need to be Script (Python) objects, they may also be DTML Methods or External Methods.

Temporary Storage Services

Temporary Folders are Zope folders that are used for storing objects temporarily. Temporary Folders acts almost
exactly like a regular Folder with two significant differences:

1. Everything contained in a Temporary Folder disappears when you restart Zope. (A Temporary Folder's contents are
stored in RAM).

2. You cannot undo actions taken to objects stored a Temporary Folder.

By default there is a Temporary Folder in your root folder named temp_folder . You may notice that there is an object
entitled, "Session Data Container" within temp_folder . This is an object used by Zope's default sessioning system
configuration. See the "Using Sessions" section later in this chapter for more information about sessions.

Temporary folders store their contents in RAM rather than in the Zope database. This makes them appropriate for
storing small objects that receive lots of writes, such as session data. However, it's a bad idea use temporary folders to
store large objects because your computer can potentially run out of RAM as a result.

Version Services

Version objects help coordinate the work of many people on the same set of objects. While you are editing a document,
someone else can be editing another document at the same time. In a large Zope site hundreds or even thousands of
people can be using Zope simultaneously. For the most part this works well, but problems can occur. For example, two
people might edit the same document at the same time. When the first person finishes their changes they are saved in
Zope. When the second person finishes their changes they over write the first person's changes. You can always work
around this problem using Undo and History , but it can still be a problem. To solve this problem, Zope has Version
objects.

Another problem that you may encounter is that you may wish to make some changes, but you may not want to make
them public until you are done. For example, suppose you want to change the menu structure of your site. You don't
want to work on these changes while folks are using your site because it may break the navigation system temporarily
while you're working.

Versions are a way of making private changes in Zope. You can make changes to many different documents without
other people seeing them. When you decide that you are done you can choose to make your changes public, or
discard them. You can work in a Version for as long as you wish. For example it may take you a week to put the
finishing touches on your new menu system. Once you're done you can make all your changes live at once by
committing the version.

 NOTE: Using versions via the Zope Management Interface requires that your browser supports and accepts
cookies from the Zope server.

Create a Version by choosing Version from the product add list. You should be taken to an add form. Give your Version
an id of MyChanges and click the Add button. Now you have created a version, but you are not yet using it. To use
your version click on it. You should be taken to the Join/Leave view of your version as shown in the figure below.

The Zope Book (2.6 Edition)

264

Figure 6-1 Joining a Version

The Version is telling you that you are not currently using it. Click on the Start Working in MyChanges button. Now
Zope should tell you that you are working in a version. Now return to the root folder. Notice that everywhere you go you
see a small message at the top of the screen that says You are currently working in version /MyChanges . This
message lets you know that any changes you make at this point will not be public, but will be stored in your version.
For example, create a new DTML Document named new . Notice how it has a small red diamond after its id. Now edit
your standard_html_header method. Add a line to it like so:

<HTML>
 <HEAD>
 <TITLE><dtml-var title_or_id></TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <H1>Changed in a Version</H1>

Any object that you create or edit while working in a version will be marked with a red diamond. Now return to your
version and click the Quit working in MyChanges button. Now try to return to the new document. Notice that the
document you created while in your version has now disappeared. Any other changes that you made in the version are
also gone. Notice how your standard_html_header method now has a small red diamond and a lock symbol after it.
This indicates that this object has been changed in a version. Changing an object in a version locks it, so no one else
can change it until you commit or discard the changes you made in your version. Locking ensures that your version
changes don't overwrite changes that other people make while you're working in a version. So for example if you want
to make sure that only you are working on an object at a given time you can change it in a version. In addition to
protecting you from unexpected changes, locking also makes things inconvenient if you want to edit something that is
locked by someone else. It's a good idea to limit your use of versions to avoid locking other people out of making
changes to objects.

Now return to your version by clicking on it and then clicking the Start working in MyChanges button. Notice how
everything returns to the way it was when you left the Version. At this point let's make your changes permanent. Go to
the Save/Discard view as shown in the figure below.

The Zope Book (2.6 Edition)

265

Figure 6-2 Committing Version changes.

Enter a comment like This is a test into the comment field and click the Save button. Your changes are now public, and
all objects that you changed in your Version are now unlocked. Notice that you are still working in your Version. Go to
the Join/Leave view and click the Quit Working in MyChanges button. Now verify that the document you created in your
version is visible. Your change to the standard_html_header should also be visible. Like anything else in Zope you can
choose to undo these changes if you want. Go to the Undo view. Notice that instead of many transactions one for each
change, you only have one transaction for all the changes you made in your version. If you undo the transaction, all the
changes you made in the version will be undone.

Versions are a powerful tool for group collaboration. You don't have to run a live server and a test server since versions
let you make experiments, evaluate them and then make them public when you decide that all is well. You are not
limited to working in a version alone. Many people can work in the same version. This way you can collaborate on
version's changes together, while keeping the changes hidden from the general public.

Caveat: Versions and ZCatalog

ZCatalog is Zope's indexing and searching engine, covered in depth in the chapter entitled Searching and Categorizing
Content .

Unfortunately, Versions don't work well with ZCatalog. This is because versions lock objects when they are modified in
a version, preventing changes outside the version.

ZCatalog has a way of connecting changes made to disparate objects. This is because cataloging an object must, by
necessity change the catalog. Objects that automatically catalog themselves when they are changed propagate their
changes to the catalog. If such an object is changed in a version, then the catalog is changed in the version too, thus
locking the catalog itself. This makes the catalog and versions get along poorly. As a rule, versions should not be used
in applications that use the catalog.

Caching Services

A cache is a temporary place to store information that you access frequently. The reason for using a cache is speed.
Any kind of dynamic content, like a DTML page or a Script (Python), must be evaluated each time it is called. For
simple pages or quick scripts, this is usually not a problem. For very complex DTML pages or scripts that do a lot of

The Zope Book (2.6 Edition)

266

computation or call remote servers, accessing that page or script could take more than a trivial amount of time. Both
DTML and Python can get this complex, especially if you use lots of looping (such as the in tag or the Python for
loop) or if you call lots of scripts, that in turn call lots of scripts, and so on. Computations that take a lot of time are said
to be expensive .

A cache can add a lot of speed to your site by calling an expensive page or script once and storing the result of that call
so that it can be reused. The very first person to call that page will get the usual "slow" response time, but then once
the value of the computation is stored in the cache, all subsequent users to call that page will see a very quick
response time because they are getting the cached copy of the result and not actually going through the same
expensive computation the first user went through.

To give you an idea of how caches can improve your site speed, imagine that you are creating www.zopezoo.org , and
that the very first page of your site is very complex. Let's suppose this page has complex headers, footers, queries
several different database tables, and calls several special scripts that parse the results of the database queries in
complex ways. Every time a user comes to www.zopezoo.org , Zope must render this very complex page. For the
purposes of demonstration, let's suppose this complex page takes one-half of a second, or 500 milliseconds, to
compute.

Given that it takes a half of a second to render this fictional complex main page, your machine can only really serve
120 hits per minute. In reality, this number would probably be even lower than that, because Zope has to do other
things in addition to just serving up this main page. Now, imagine that you set this page up to be cached. Since none of
the expensive computation needs to be done to show the cached copy of the page, many more users could see the
main page. If it takes, for example, 10 milliseconds to show a cached page, then this page is being served 50 times
faster to your web site visitors. The actual performance of the cache and Zope depends a lot on your computer and
your application, but this example gives you an idea of how caching can speed up your web site quite a bit. There are
some disadvantages to caching however:

Cache lifetime — If pages are cached for a long time, they may not reflect the most current information on your site. If
you have information that changes very quickly, caching may hide the new information from your users because the
cached copy contains the old information. How long a result remains cached is called the cache lifetime of the
information.

Personal information — Many web pages may be personalized for one particular user. Obviously, caching this
information and showing it to another user would be bad due to privacy concerns, and because the other user would
not be getting information about them , they'd be getting it about someone else. For this reason, caching is often never
used for personalized information.

Zope allows you to get around these problems by setting up a cache policy . The cache policy allows you to control
how content gets cached. Cache policies are controlled by Cache Manager objects.

Adding a Cache Manager

Cache managers can be added just like any other Zope object. Currently Zope comes with two kinds of cache
managers:

HTTP Accelerated Cache Manager — An HTTP Accelerated Cache Manager allows you to control an HTTP cache
server that is external to Zope, for example, Squid . HTTP Accelerated Cache Managers do not do the caching
themselves, but rather set special HTTP headers that tell an external cache server what to cache. Setting up an
external caching server like Squid is beyond the scope of this book, see the Squid site for more details.

(RAM) Cache Manager — A RAM Cache Manager is a Zope cache manager that caches the content of objects in your
computer memory. This makes it very fast, but also causes Zope to consume more of your computer's memory. A RAM
Cache Manager does not require any external resources like a Squid server, to work.

The Zope Book (2.6 Edition)

267

For the purposes of this example, create a RAM Cache Manager in the root folder called CacheManager . This is going
to be the cache manager object for your whole site.

Now, you can click on CacheManager and see its configuration screen. There are a number of elements on this
screen:

Title — The title of the cache manager. This is optional.

REQUEST variables — This information is used to store the cached copy of a page. This is an advanced feature, for
now, you can leave this set to just "AUTHENTICATED_USER".

Threshold Entries — The number of objects the cache manager will cache at one time.

Cleanup Interval — The lifetime of cached results.

For now, leave all of these entries as is, they are good, reasonable defaults. That's all there is to setting up a cache
manager!

There are a couple more views on a cache manager that you may find useful. The first is the Statistics view. This view
shows you the number of cache "hits" and "misses" to tell you how effective your caching is.

There is also an Associate view that allows you to associate a specific type or types of Zope objects with a particular
cache manager. For example, you may only want your cache manager to cache DTML Documents. You can change
these settings on the Associate view.

At this point, nothing is cached yet, you have just created a cache manager. The next section explains how you can
cache the contents of actual documents.

Caching an Object

Caching any sort of cacheable object is fairly straightforward. First, before you can cache an object you must have a
cache manager like the one you created in the previous section.

To cache a document, create a new DTML Document object in the root folder called Weather . This object will contain
some weather information. For example, let's say it contains:

<dtml-var standard_html_header>

 <p>Yesterday it rained.</p>

<dtml-var standard_html_footer>

Now, click on the Weather DTML Document and click on its Cache view. This view lets you associate this document
with a cache manager. If you pull down the select box at the top of the view, you'll see the cache manager you created
in the previous section, CacheManager . Select this as the cache manager for Weather .

Now, whenever anyone visits the Weather document, they will get the cached copy instead. For a document as trivial
as our Weather example, this is not much of a benefit. But imagine for a moment that Weather contained some
database queries. For example:

<dtml-var standard_html_header>

 <p>Yesterday's weather was <dtml-var yesterdayQuery> </p>

 <p>The current temperature is <dtml-var currentTempQuery></p>
<dtml-var standard_html_footer>

The Zope Book (2.6 Edition)

268

Let's suppose that yesterdayQuery and currentTempQuery are SQL Methods that query a database for yesterdays
forecast and the current temperature, respectively (for more information on SQL Methods, see the chapter entitled
Relational Database Connectivity .) Let's also suppose that the information in the database only changes once every
hour.

Now, without caching, the Weather document would query the database every time it was viewed. If the Weather
document was viewed hundreds of times in an hour, then all of those hundreds of queries would always contain the
same information.

If you specify that the document should be cached, however, then the document will only make the query when the
cache expires. The default cache time is 300 seconds (5 minutes), so setting this document up to be cached will save
you 91% of your database queries by doing them only one twelfth as often. There is a trade-off with this method, there
is a chance that the data may be five minutes out of date, but this is usually an acceptable compromise.

Outbound Mail Services

Zope comes with an object that is used to send outbound e-mail, usually in conjunction with the DTML sendmail tag,
described more in the chapter entitled Variables and Advanced DTML .

Mailhosts can be used from either Python or DTML to send an email message over the Internet. They are useful as
gateways out to the world. Each mailhost object is associated with one mail server, for example, you can associate a
mailhost object with yourmail.yourdomain.com , which would be your outbound SMTP mail server. Once you
associate a server with a mailhost object, the mailhost object will always use that server to send mail.

To create a mailhost object select MailHost from the add list. You can see that the default id is "MailHost" and the
default SMTP server and port are "localhost" and "25". make sure that either your localhost machine is running a mail
server, or change "localhost" to be the name of your outgoing SMTP server.

Now you can use the new MailHost object from a DTML sendmail tag. This is explained in more detail in the chapter
entitled Variables and Advanced DTML , but we provide a simple example below. In your root folder, create a DTML
Method named send_mail with a body that looks like the following:

<dtml-sendmail>
From: me@nowhere.com
To: you@nowhere.com
Subject: Stop the madness!

Take a day off, you need it.

</dtml-sendmail>

Ensure that all the lines are flush against the left side of the textarea for proper function. When you invoke this DTML
Method (perhaps by visiting its View tab), it will use your newly-created MailHost to send an admonishing mail to
"you@nowhere.com". Substitute your own email address to try it out.

The API for MailHost objects also allows you to send mail from Script (Python) objects and External Methods. See the
Zope MailHost API in the Zope help system at Zope Help -> API Reference -> MailHost for more information about the
interface it provides.

Error Logging Services

The Site Error Log object, typically accessible in the Zope root under the name error_log , provides debugging and
error logging information in real-time. When your site encounters an error, it will be logged in the Site Error Log,
allowing you to review (and hopefully fix!) the error.

The Zope Book (2.6 Edition)

269

Options settable on a Site Error Log instance include:

Number of exceptions to keep — keep 20 exceptions by default, rotating "old" exceptions out when more than 20 are
stored. Set this to a higher or lower number as you like.

Copy exceptions to the event log — If this option is selected, the site error log object will copy the text of exceptions
that it receives to the "event log" facility, which is typically controlled by the EVENT_LOG_FILE environment variable.
For more information about this environment variable, see the chapter entitled Installing and Starting Zope .

Virtual Hosting Services

For detailed information about using virtual hosting services in Zope, see the chapter entitled Virtual Hosting Services .

Searching and Indexing Services

For detailed information about using searching and indexing services in Zope to index and search a collection of
documents, see the chapter entitled Searching and Categorizing Content .

Sessioning Services

For detailed information about using Zope's "sessioning" services to "keep state" between HTTP requests for
anonymous users, see the chapter entitled Sessions .

Internationalization Services

This section of the document needs to be expanded. For now, please see documentation for Zope 2.6+ wrt Unicode
and object publishing at http://www.zope.org/Members/htrd/howto/unicode-zdg-changes and
http://www.zope.org/Members/htrd/howto/unicode .

The Zope Book (2.6 Edition)

270

Searching and Categorizing Content

The ZCatalog is Zope's built in search engine. It allows you to categorize and search all kinds of Zope objects. You can
also use it to search external data such as relational data, files, and remote web pages. In addition to searching you
can use the ZCatalog to organize collections of objects.

The ZCatalog supports a rich query interface. You can perform full text searching, and can search multiple indexes at
once. In addition, the ZCatalog keeps track of meta-data about indexed objects. Here are the two most common
ZCatalog usage patterns:

Mass Cataloging — Cataloging a large collection of objects all at once.

Automatic Cataloging — Cataloging objects as they are created and tracking changes made to them.

Getting started with Mass Cataloging

Let's take a look at how to use the ZCatalog to search documents. Cataloging a bunch of objects all at once is called
mass Cataloging . Mass Cataloging involves three steps:

 • Creating a ZCatalog

 • Creating Indexes

 • Finding objects and cataloging them

 • Creating a web interface to search the ZCatalog.

Creating a ZCatalog

Choose ZCatalog from the product add list to create a ZCatalog object within a subfolder named Zoo . This takes you
to the ZCatalog add form, as shown in the figure below.

The Zope Book (2.6 Edition)

271

Figure 16-1 ZCatalog add form

The Add form asks you for an Id and a Title . Give your ZCatalog the Id AnimalCatalog and click Add to create your
new ZCatalog. The ZCatalog icon looks like a folder with a small magnifying glass on it. Select the AnimalCatalog icon
to see the Contents view of the ZCatalog.

A ZCatalog looks a lot like a folder, but it has a few more tabs. Six tabs on the ZCatalog are the exact same six tabs
you find on a standard folder. ZCatalog have the following views: Contents , Catalog , Properties , Indexes , Metadata ,
Find Objects , Advanced , Undo , Security , and Ownership . When you click on a ZCatalog, you are on the Contents
view. Here, you can add new objects and the ZCatalog will contain them just as any folder does. Although a ZCatalog
is like a normal Zope folder, this does not imply that the objects contained within it are automatically searchable. A
ZCatalog can catalog objects at any level of your site, and it needs to be told exactly which ones to index.

Creating Indexes

In order to tell Zope what to catalog and where to store the information, we need to create a Lexicon and an Index . A
Lexicon is necessary to provide word storage services for full-text searching, and an Index is the object which stores
the data necessary to perform fast searching.

In the contents view of the AnimalCatalog ZCatalog, choose ZCTextIndex Lexicon , and give it an id of zooLexicon

The Zope Book (2.6 Edition)

272

Figure 16-2 ZCTextIndex Lexicon add form

Now we can create an index that will record the information we want to have in the ZCatalog. Click on the Indexes tab
of the ZCatalog. A drop down menu lists the available indexes. Choose ZCTextIndex ; in the add form fill in the id
zooTextIdx . Fill in PrincipiaSearchSource in the "Field name" input. This tells the ZCTextIndex to index the body text of
the DTML Documents (PrincipiaSearchSource is an API method of all DTML Document and Method objects). Note
that zooLexicon is preselected in the Lexicon menu.

Figure 16-3 ZCTextIndex add form

To keep this example short we will skip over some of the options presented here. In the section on indexes below, we
will discuss this more thoroughly.

The Zope Book (2.6 Edition)

273

Additionally, we will have to tell the ZCatalog which attributes of each cataloged object that it should store directly.
These attributes are called Metadata . For now, just go to the Metadata tab of the ZCatalog and add id and title .

Finding and Cataloging Objects

Now that you have created a ZCatalog and an Index, you can move onto the next step: finding objects and cataloging
them. Suppose you have a zoo site with information about animals. To work with these examples, create two DTML
Documents along-side the AnimalCatalog object (within the same folder that contains the AnimalCatalog ZCatalog) that
contain information about reptiles and amphibians.

The first should have an Id of "chilean_frog", a title "Chilean four-eyed frog" and its body text should read something
like this:

The Chilean four-eyed frog has a bright
pair of spots on its rump that look like enormous eyes. When
seated, the frog's thighs conceal these eyespots. When
predators approach, the frog lowers its head and lifts its
rump, creating a much larger and more intimidating head.
Frogs are amphibians.

For the second, fill in an id of "carpet_python" and a title of "Carpet Python"; its body text could be:

Morelia spilotes variegata averages 2.4 meters in length. It
is a medium-sized python with black-to-gray patterns of
blotches, crossbands, stripes, or a combination of these
markings on a light yellowish-to-dark brown background. Snakes
are reptiles.

Visitors to your Zoo want to be able to search for information on the Zoo's animals. Eager herpetologists want to know
if you have their favorite snake, so you should provide them with the ability to search for certain words and show all the
documents that contain those words. Searching is one of the most useful and common web activities.

The AnimalCatalog ZCatalog you created can catalog all of the documents in your Zope site and let your users search
for specific words. To catalog your documents, go to the AnimalCatalog ZCatalog and click on the Find Objects tab.

In this view, you tell the ZCatalog what kind of objects you are interested in. You want to catalog all DTML Documents
so select DTML Document from the Find objects of type multiple selection and click Find and Catalog .

The ZCatalog will now start from the folder where it is located and search for all DTML Documents. It will search the
folder and then descend down into all of the sub-folders and their sub-folders. For example, if your ZCatalog is located
at /Zoo/AnimalCatalog , then the /Zoo folder and all its subfolders will get searched.

If you have lots and lots of objects, this may take a long time to complete, so be patient.

After a period of time, the ZCatalog will take you to the Catalog view automatically, with a status message telling you
what it just did.

Below the status information is a list of objects that are cataloged, they are all DTML Documents. To confirm that these
are the objects you are interested in, you can click on them to visit them.

You have completed the first step of searching your objects, cataloging them into a ZCatalog. Now your documents are
in the ZCatalog's database. Now you can move onto the fourth step, creating a web page and result form to query the
ZCatalog.

Search and Report Forms

The Zope Book (2.6 Edition)

274

To create search and report forms, make sure you are inside the AnimalCatalog ZCatalog and select Z Search
Interface from the add list. Select the AnimalCatalog ZCatalog as the searchable object, as shown in the figure below.

Figure 16-4 Creating a search form for a ZCatalog

Name the Report Id "SearchResults", the Search Input Id "SearchForm", select "Generate Page Templates" and click
Add . This will create two new Page Templates in the AnimalCatalog ZCatalog named SeachForm and SearchResults .

These objects are contained in the ZCatalog, but they are not cataloged by the ZCatalog. The AnimalCatalog has only
cataloged DTML Documents. The search Form and Report templates are just a user interface to search the animal
documents in the ZCatalog. You can verify this by noting that the search and report forms are not listed in the
Cataloged Objects tab.

To search the AnimalCatalog ZCatalog, select the SearchForm template and click on its Test tab.

By typing words into the ZooTextIdx form element you can search all of the documents cataloged by the AnimalCatalog
ZCatalog. For example, type in the word "Reptiles". The AnimalCatalog ZCatalog will be searched and return a simple
table of objects that have the word "Reptiles" in them. The search results should include the carpet python. You can
also try specifying multiple search terms like "reptiles OR amphibians". Search results for this query should include both
the Chilean four-eyed Frog and the carpet python. Congratulations, you have successfully created a ZCatalog,
cataloged content into it and searched it through the web.

Configuring ZCatalogs

The ZCatalog is capable of much more powerful and complex searches than the one you just performed. Let's take a
look at how the ZCatalog stores information. This will help you tailor your ZCatalogs to provide the sort of searching
you want.

Defining Indexes

ZCatalogs store information about objects and their contents in fast databases called indexes . Indexes can store and
retrieve large volumes of information very quickly. You can create different kinds of indexes that remember different

The Zope Book (2.6 Edition)

275

kinds of information about your objects. For example, you could have one index that remembers the text content of
DTML Documents, and another index that remembers any objects that have a specific property.

When you search a ZCatalog you are not searching through your objects one by one. That would take far too much
time if you had a lot of objects. Before you search a ZCatalog, it looks at your objects and remembers whatever you tell
it to remember about them. This process is called indexing . From then on, you can search for certain criteria and the
ZCatalog will return objects that match the criteria you provide.

A good way to think of an index in a ZCatalog is just like an index in a book. For example, in a book's index you can
look up the word Python :

Python: 23, 67, 227

The word Python appears on three pages. Zope indexes work like this except that they map the search term, in this
case the word Python , to a list of all the objects that contain it, instead of a list of pages in a book.

In Zope 2.6, indexes can be added and removed from a ZCatalog using a new, "pluggable" index interface as shown in
the figure below:

Figure 16-5 Managing indexes

Each index has a name, like PrincipiaSearchSource , and a type, like ZCTextIndex .

When you catalog an object the ZCatalog uses each index to examine the object. The ZCatalog consults attributes and
methods to find an object's value for each index. For example, in the case of the DTML Documents cataloged with a
PrincipiaSearchSource index, the ZCatalog calls each document's PrincipiaSearchSource method and
records the results in its PrincipiaSearchSource index. If the ZCatalog cannot find an attribute or method for an
index, then it ignores it. In other words it's fine if an object does not support a given index. There are eight kinds of
indexes:

ZCTextIndex — Searches text. Use this kind of index when you want a full-text search.

FieldIndex — Searches objects for specific values. Use this kind of index when you want to search date objects,
numbers, or specific strings.

The Zope Book (2.6 Edition)

276

KeywordIndex — Searches collections of specific values. This index is like a FieldIndex, but it allows you to search
collections rather than single values.

PathIndex — Searches for all objects that contain certain URL path elements. For example, you could search for all
the objects whose paths begin with /Zoo/Animals .

TopicIndex — Searches among FilteredSets; each set contains the document IDs of documents which match the set's
filter expression. Use this kind of index to optimize frequently-accessed searches.

DateIndex — A subclass of FieldIndex, optimized for date-time values. Use this index for any field known to be a date
or a date-time.

DateRangeIndex — Searches objects based on a pair of dates / date-times. Use this index to search for objects which
are "current" or "in effect" at a given time.

TextIndex — Old version of a full-text index. Only provided for backward compatibility, use ZCTextIndex instead.

We'll examine these different indexes more closely later in the chapter. New indexes can be created from the Indexes
view of a ZCatalog. There, you can enter the name and select a type for your new index. This creates a new empty
index in the ZCatalog. To populate this index with information, you need to go to the Advanced view and click the the
Update Catalog button. Recataloging your content may take a while if you have lots of cataloged objects. For a
ZCTextIndex, you will also need a ZCTextIndex Lexicon object in your ZCatalog - see below for details.

To remove an index from a ZCatalog, select the Indexes and click on the Delete button. This will delete the index and
all of its indexed content. As usual, this operation is undoable.

Defining Meta Data

The ZCatalog can not only index information about your object, but it can also store information about your object in a
tabular database called the Metadata Table . The Metadata Table works similarly to a relational database table, it
consists of one or more columns that define the schema of the table. The table is filled with rows of information about
cataloged objects. These rows can contain information about cataloged objects that you want to store in the table. Your
meta data columns don't need to match your ZCatalog's indexes. Indexes allow you to search; meta-data allows you to
report search results.

The Metadata Table is useful for generating search reports. It keeps track of information about objects that goes on
your report forms. For example, if you create a Metadata Table column called Title , then your report forms can use this
information to show the titles of your objects that are returned in search results instead of requiring that you actually
obtain the object to show its title.

To add a new Metadata Table column, type in the name of the column on the Metadata Table view and click Add . To
remove a column from the Metadata Table, select the column check box and click on the Delete button. This will delete
the column and all of its content for each row. As usual, this operation is undoable. Next let's look more closely at how
to search a ZCatalog.

Searching ZCatalogs

You can search a ZCatalog by passing it search terms. These search terms describe what you are looking for in one or
more indexes. The ZCatalog can glean this information from the web request, or you can pass this information explicitly
from DTML or Python. In response to a search request, a ZCatalog will return a list of records corresponding to the
cataloged objects that match the search terms.

The Zope Book (2.6 Edition)

277

Searching with Forms

In this chapter you used the Z Search Interface to automatically build a Form/Action pair to query a ZCatalog (the
Form/Action pattern is discussed in the chapter entitled Advanced Page Templates). The Z Search Interface builds a
very simple form and a very simple report. These two methods are a good place to start understanding how ZCatalogs
are queried and how you can customize and extend your search interface.

Suppose you have a ZCatalog that holds news items named NewsCatalog . Each news item has content , an
author and a date attribute. Your ZCatalog has three indexes that correspond to these attributes, namely
"contentTextIdx", "author" and "date". The contents index is a ZCTextIndex, and the author and date indexes are a
FieldIndex and a DateIndex. For the ZCTextIndex you will need a ZCTextIndexLexicon, and to display the search
results in the Report template, you should add the author , date and absolute_url attributes as Metadata.
Here is a search form that would allow you to query such a ZCatalog:

<html><body>
<form action="Report" method="get">
<h2 tal:content="template/title_or_id">Title</h2>
Enter query parameters:
<table>
<tr><th>Author</th>
<td><input name="author" width=30 value=""></td></tr>
<tr><th>Content</th>
<td><input name="contentTextIdx" width=30 value=""></td></tr>
<tr><th>Date</th>
<td><input name="date" width=30 value=""></td></tr>
<tr><td colspan=2 align=center>
<input type="SUBMIT" name="SUBMIT" value="Submit Query">
</td></tr>
</table>
</form>
</body></html>

This form consists of three input boxes named contentTextIdx , author , and date . These names must match
the names of the ZCatalog's indexes for the ZCatalog to find the search terms. Here is a report form that works with the
search form:

<html>
<body tal:define="searchResults here/NewsCatalog;">
<table border>
 <tr>
 <th>Item no.</th>
 <th>Author</th>
 <th>Absolute url</th>
 <th>Date</th>
 </tr>
 <div tal:repeat="item searchResults">
 <tr>
 <td>

 #
 search item number goes here

 </td>
 <td>author goes here</td>
 <td>date goes here</td>
 </tr>
 </div>
</table>
</body></html>

There are a few things going on here which merit closer examination. The heart of the whole thing is in the definition of
the searchResults variable:

<body tal:define="searchResults here/NewsCatalog;">

The Zope Book (2.6 Edition)

278

This calls the NewsCatalog ZCatalog. Notice how the form parameters from the search form (contentTextIdx ,
author , date) are not mentioned here at all. Zope automatically makes sure that the query parameters from the
search form are given to the ZCatalog. All you have to do is make sure the report form calls the ZCatalog. Zope locates
the search terms in the web request and passes them to the ZCatalog.

The ZCatalog returns a sequence of Record Objects (just like ZSQL Methods). These record objects correspond to
search hits , which are objects that match the search criteria you typed in. For a record to match a search, it must
match all criteria for each specified index. So if you enter an author and some search terms for the contents, the
ZCatalog will only return records that match both the author and the contents.

ZSQL Record objects have an attribute for every column in the database table. Record objects for ZCatalogs work very
similarly, except that a ZCatalog Record object has an attribute for every column in the Metadata Table. In fact, the
purpose of the Metadata Table is to define the schema for the Record objects that ZCatalog queries return.

Searching from Python

Page Templates make querying a ZCatalog from a form very simple. For the most part, Page Templates will
automatically make sure your search parameters are passed properly to the ZCatalog.

Sometimes though you may not want to search a ZCatalog from a web form; some other part of your application may
want to query a ZCatalog. For example, suppose you want to add a sidebar to the Zope Zoo that shows news items
that only relate to the animals in the section of the site that you are currently looking at. As you've seen, the Zope Zoo
site is built up from Folders that organize all the sections according to animal. Each Folder's id is a name that specifies
the group or animal the folder contains. Suppose you want your sidebar to show you all the news items that contain the
id of the current section. Here is a Script called relevantSectionNews that queries the news ZCatalog with the
currentfolder's id:

Script (Python) "relevantSectionNews"
##
""" Returns news relevant to the current folder's id """
id=context.getId()
return context.NewsCatalog({'contentTextIdx' : id})

This script queries the NewsCatalog by calling it like a method. ZCatalogs expect a mapping as the first argument
when they are called. The argument maps the name of an index to the search terms you are looking for. In this case,
the contentTextIdx index will be queried for all news items that contain the name of the current Folder. To use this
in your sidebar place you could insert this snippet where appropriate in the main ZopeZoo Page Template:

...

 <li tal:repeat="item here/relevantSectionNews">

 news title

...

This template assumes that you have defined absolute_url and title as Metadata columns in the
NewsCatalog . Now, when you are in a particular section, the sidebar will show a simple list of links to news items that
contain the id of the current animal section you are viewing.

Searching and Indexing Details

Earlier you saw that the ZCatalog supports eight types of indexes. Let's examine these indexes more closely to
understand what they are good for and how to search them.

The Zope Book (2.6 Edition)

279

Searching ZCTextIndexes

A ZCTextIndex is used to index text. After indexing, you can search the index for objects that contain certain words.
ZCTextIndexes support a rich search grammar for doing more advanced searches than just looking for a word.

Boolean expressions

Search for Boolean expressions like:

word1 AND word2

This will search for all objects that contain both "word1" and "word2". Valid Boolean operators include AND, OR, and
NOT. A synonym for NOT is a leading hyphen:

word1 -word2

which would search for occurences of "word1" but would exclude documents which contain "word2". A sequence of
words without operators implies AND. A search for "carpet python snakes" translates to "carpet AND python AND
snakes".

Parentheses

Control search order with parenthetical expressions:

(word1 AND word2) OR word3)

This will return objects containing "word1" and "word2" or just objects that contain the term "word3".

Wild cards

Search for wild cards like:

Z*

which returns all words that begin with "Z", or:

Zop?

which returns all words that begin with "Zop" and have one more character - just like in a Un*x shell. Note though that
wild cards cannot be at the beginning of a search phrase. "?ope" is an illegal search term and will be ignored.

Phrase search

Double-quoted text implies phrase search, for example:

"carpet python" OR frogs

will search for all occurences of the phrase "carpet python" or of the word "frogs"

All of these advanced features can be mixed together. For example:

((bob AND uncle) NOT Zoo*)

will return all objects that contain the terms "bob" and "uncle" but will not include any objects that contain words that
start with "Zoo" like "Zoologist", "Zoology", or "Zoo" itself.

The Zope Book (2.6 Edition)

280

Similarly, a search for:

snakes OR frogs -"carpet python"

will return all objects which contain the word "snakes" or "frogs" but do not contain the phrase "carpet python".

Querying a ZCTextIndex with these advanced features works just like querying it with the original simple features. In
the HTML search form for DTML Documents, for example, you could enter "Koala AND Lion" and get all documents
about Koalas and Lions. Querying a ZCTextIndex from Python with advanced features works much the same; suppose
you want to change your relevantSectionNews Script to not include any news items that contain the word
"catastrophic":

Script (Python) "relevantSectionNews"
##
""" Returns relevant, non-catastropic news """"
id=context.getId()
return context.NewsCatalog(
 {'contentTextIdx' : id + ' -catastrophic'}
)

ZCTextIndexes are very powerful. When mixed with the Automatic Cataloging pattern described later in the chapter,
they give you the ability to automatically full-text search all of your objects as you create and edit them.

Lexicons

Lexicons are used by ZCTextIndexes. Lexicons process and store the words from the text and help in processing
queries.

Lexicons can:

Normalize Case — Often you want search terms to be case insensitive, eg. a search for "python", "Python" and
"pYTHON" should return the same results. The lexicons' Case Normalizer does exactly that.

Remove stop words — Stop words are words that are very common in a given language and should be removed from
the index. They would only cause bloat in the index and add little information.

Split text into words — A splitter parses text into words. Different texts have different needs of word splitting - if you
are going to process HTML documents, you might want to use the HTML aware splitter which effectively removes
HTML tags. On the other hand, if you are going to index plain text documents about HTML, you don't want to remove
HTML tags - people might want to look them up. Also, an eg. chinese language document has a different concept of
words and you might want to use a different splitter.

The Lexicon uses a pipeline architecture. This makes it possible to mix and match pipeline components. For instance,
you could implement a different splitting strategy for your language and use this pipeline element in conjunction with
the standard text processing elements. Implementing a pipeline element is out of the scope of this book; for examples
of implementing and registering a pipeline element see eg. lib/python/Products/ZCTextIndex/Lexicon.py .
A pipeline element should conform to the IPipelineElement interface.

To create a ZCTextIndex, you first have to create a Lexicon object. Multiple ZCTextIndexes can share the same
lexicon.

Searching Field Indexes

FieldIndexes differ slightly from ZCTextIndexes. A ZCTextIndex will treat the value it finds in your object, for example
the contents of a News Item, like text. This means that it breaks the text up into words and indexes all the individual

The Zope Book (2.6 Edition)

281

words.

A FieldIndex does not break up the value it finds. Instead, it indexes the entire value it finds. This is very useful for
tracking objects that have traits with fixed values.

In the news item example, you created a FieldIndex author . With the existing search form, this field is not very
useful. Unless you know exactly the name of the author you are looking for, you will not get any results. It would be
better to be able to select from a list of all the unique authors indexed by the author index.

There is a special method on the ZCatalog that does exactly this called uniqueValuesFor . The
uniqueValuesFor method returns a list of unique values for a certain index. Let's change your search form and
replace the original author input box with something a little more useful:

<html><body>
<form action="Report" method="get">
<h2 tal:content="template/title_or_id">Title</h2>
Enter query parameters:
<table>
<tr><th>Author</th>
<td>
 <select name="author:list" size="6" multiple>
 <option
 tal:repeat="item python:here.NewsCatalog.uniqueValuesFor('author')"
 tal:content="item"
 value="opt value">
 </option>
 </select>
</td></tr>
<tr><th>Content</th>
<td><input name="content_index" width=30 value=""></td></tr>
<tr><th>Date</th>
<td><input name="date_index" width=30 value=""></td></tr>
<tr><td colspan=2 align=center>
<input type="SUBMIT" name="SUBMIT" value="Submit Query">
</td></tr>
</table>
</form>
</body></html>

The new, important bit of code added to the search form is:

<select name="author:list" size="6" multiple>
 <option
 tal:repeat="item python:here.NewsCatalog.uniqueValuesFor('author')"
 tal:content="item"
 value="opt value">
 </option>
</select>

In this example, you are changing the form element author from just a simple text box to an HTML multiple select
box. This box contains a unique list of all the authors that are indexed in the author FieldIndex. When the form gets
submitted, the select box will contain the exact value of an authors name, and thus match against one or more of the
news objects. Your search form should look now like the figure below.

The Zope Book (2.6 Edition)

282

Figure 16-6 Range searching and unique Authors

That's it. You can continue to extend this search form using HTML form elements to be as complex as you'd like. In the
next section, we'll show you how to use the next kind of index, keyword indexes.

Searching Keyword Indexes

A KeywordIndex indexes a sequence of keywords for objects and can be queried for any objects that have one or more
of those keywords.

Suppose that you have a number of Image objects that have a keywords property. The keywords property is a lines
property that lists the relevant keywords for a given Image, for example, "Portraits", "19th Century", and "Women" for a
picture of Queen Victoria.

The keywords provide a way of categorizing Images. Each Image can belong in one or more categories depending on
its keywords property. For example, the portrait of Queen Victoria belongs to three categories and can thus be found
by searching for any of the three terms.

You can use a Keyword index to search the keywords property. Define a Keyword index with the name keywords
on your ZCatalog. Then catalog your Images. Now you should be able to find all the Images that are portraits by
creating a search form and searching for "Portraits" in the keywords field. You can also find all pictures that represent
19th Century subjects by searching for "19th Century".

It's important to realize that the same Image can be in more than one category. This gives you much more flexibility in
searching and categorizing your objects than you get with a FieldIndex. Using a FieldIndex your portrait of Queen
Victoria can only be categorized one way. Using a KeywordIndex it can be categorized a couple different ways.

Often you will use a small list of terms with KeywordIndexes. In this case you may want to use the uniqueValuesFor
method to create a custom search form. For example here's a snippet of a Page Template that will create a multiple
select box for all the values in the keywords index:

<select name="keywords:list" multiple>
 <option
 tal:repeat="item python:here.uniqueValuesFor('keywords')"
 tal:content="item">

The Zope Book (2.6 Edition)

283

 opt value goes here
 </option>
</select>

Using this search form you can provide users with a range of valid search terms. You can select as many keywords as
you want and Zope will find all the Images that match one or more of your selected keywords. Not only can each object
have several indexed terms, but you can provide several search terms and find all objects that have one or more of
those values.

Searching Path Indexes

Path indexes allow you to search for objects based on their location in Zope. Suppose you have an object whose path
is /zoo/animals/Africa/tiger.doc . You can find this object with the path queries: /zoo , or /zoo/animals ,
or /zoo/animals/Africa . In other words, a path index allows you to find objects within a given folder (and below).

If you place related objects within the same folders, you can use path indexes to quickly locate these objects. For
example:

<h2>Lizard Pictures</h2>
<p tal:repeat="item
 python:here.AnimalCatalog(pathindex='/Zoo/Lizards',
 meta_type='Image')">

 document title

</p>

This query searches a ZCatalog for all images that are located within the /Zoo/Lizards folder and below. It creates
a link to each image. To make this work, you will have to create a FieldIndex meta_type and Metadata entries for
absolute_url and title .

Depending on how you choose to arrange objects in your site, you may find that a path indexes are more or less
effective. If you locate objects without regard to their subject (for example, if objects are mostly located in user "home"
folders) then path indexes may be of limited value. In these cases, key word and field indexes will be more useful.

Searching DateIndexes

DateIndexes work like FieldIndexes, but are optimised for DateTime values. To minimize resource usage, DateIndexes
have a resolution of one minute, which is considerably lower than the resolution of DateTime values.

DateIndexes are used just like FieldIndexes; below in the section on "Advanced Searching with Records" we present
an example of searching them.

Searching DateRangeIndexes

DateRangeIndexes are specialised for searching for ranges of DateTime values. An example application would be
NewsItems which have two DateTime attributes effective and expiration , and which should only be published
if the current date would fall somewhere in between these two date values. Like DateIndexes, DateRangeIndexes have
a resolution of one minute.

Searching TopicIndexes

A TopicIndex is a container for so-called FilteredSets. A FilteredSet consists of an expression and a set of internal
ZCatalog document identifiers that represent a pre-calculated result list for performance reasons. Instead of executing
the same query on a ZCatalog multiple times it is much faster to use a TopicIndex instead.

The Zope Book (2.6 Edition)

284

Building up FilteredSets happens on the fly when objects are cataloged and uncatalogued. Every indexed object is
evaluated against the expressions of every FilteredSet. An object is added to a FilteredSet if the expression with the
object evaluates to 1. Uncatalogued objects are removed from the FilteredSet.

A built-in type of FilteredSet is the PythonFilteredSet - it would be possible to construct custom types though.

A PythonFilteredSet evaluates using the eval() function inside the context of the FilteredSet class. The object to be
indexes must be referenced inside the expression using "o.". Below are some examples of expressions.

This would index all DTML Methods:

o.meta_type=='DTML Method'

This would index all folderish objects which have a non-empty title:

o.isPrincipiaFolderish and o.title

Querying of TopicIndexes is done much in the same way as with other Indexes. Eg., if we named the last FilteredSet
above folders_with_titles , we could query our TopicIndex with a Python snippet like:

zcat = context.AnimalCatalog
results = zcat(topicindex='folders_with_titles')

Provided our AnimalCatalog contains a TopicIndex topicindex , this would return all folderish objects in
AnimalCatalog which had a non-empty title.

TopicIndexes also support the operator parameter with Records. More on Records below.

Advanced Searching with Records

A new feature in Zope 2.4 is the ability to query indexes more precisely using record objects. Record objects contain
information about how to query an index. Records are Python objects with attributes, or mappings. Different indexes
support different record attributes.

Keyword Index Record Attributes

query — Either a sequence of words or a single word. (mandatory)

operator — Specifies whether all keywords or only one need to match. Allowed values: and , or . (optional,
default: or)

For example:

big or shiny
results=ZCatalog(categories=['big, 'shiny'])

big and shiny
results=ZCatalog(categories={'query':['big','shiny'],
 'operator':'and'})

The second query matches objects that have both the keywords "big" and "shiny". Without using the record syntax you
can only match objects that are big or shiny.

FieldIndex Record Attributes

The Zope Book (2.6 Edition)

285

query — Either a sequence of objects or a single value to be passed as query to the index (mandatory)

range — Defines a range search on a Field Index (optional, default: not set).

Allowed values:

min — Searches for all objects with values larger than the minimum of the values passed in the query parameter.

max — Searches for all objects with values smaller than the maximum of the values passed in the query parameter.

minmax — Searches for all objects with values smaller than the maximum of the values passed in the query
parameter and larger than the minimum of the values passwd in the query parameter.

For example, here is a PythonScript snippet using a range search:

animals with population count greater than 5
zcat = context.AnimalCatalog
results=zcat(population_count={
 'query' : 5,
 'range': 'min'}
)

This query matches all objects in the AnimalCatalog which have a population count greater than 5 (provided that there
is a FieldIndex population_count and an attribute population_count present).

Path Index Record Attributes

query — Path to search for either as a string (e.g. "/Zoo/Birds") or list (e.g. ["Zoo", "Birds"]). (mandatory)

level — The path level to begin searching at. Level defaults to 0, which means searching from the root. A level of -1
means start from anywhere in the path.

Suppose you have a collection of objects with these paths:

1. /aa/bb/aa

2. /aa/bb/bb

3. /aa/bb/cc

4. /bb/bb/aa

5. /bb/bb/bb

6. /bb/bb/cc

7. /cc/bb/aa

8. /cc/bb/bb

9. /cc/bb/cc

Here are some examples queries and their results to show how the level attribute works:

The Zope Book (2.6 Edition)

286

query="/aa/bb", level=0 — This gives the same behaviour as our previous examples, ie. searching absolute
from the root, and results in:

 • /aa/bb/aa

 • /aa/bb/bb

 • /aa/bb/cc

query="/bb/bb", level=0 — Again, this returns the default:

 • /bb/bb/aa

 • /bb/bb/bb

 • /bb/bb/cc

query="/bb/bb", level=1 — This searches for all objects which have /bb/bb one level down from the root:

 • /aa/bb/bb

 • /bb/bb/bb

 • /cc/bb/bb

query="/bb/bb", level=-1 — Gives all objects which have /bb/bb anywhere in their path:

 • /aa/bb/bb

 • /bb/bb/aa

 • /bb/bb/bb

 • /bb/bb/cc

 • /cc/bb/bb

query="/xx", level=-1 — Returns None

You can use the level attribute to flexibly search different parts of the path.

As of Zope 2.4.1, you can also include level information in a search without using a record. Simply use a tuple
containing the query and the level. Here's an example tuple: ("/aa/bb", 1) .

DateIndex Record Attributes

The supported Record Attributes are the same as those of the FieldIndex:

query — Either a sequence of objects or a single value to be passed as query to the index (mandatory)

range — Defines a range search on a DateIndex (optional, default: not set).

The Zope Book (2.6 Edition)

287

Allowed values:

min — Searches for all objects with values larger than the minimum of the values passed in the query parameter.

max — Searches for all objects with values smaller than the maximum of the values passed in the query parameter.

minmax — Searches for all objects with values smaller than the maximum of the values passed in the query
parameter and larger than the minimum of the values passwd in the query parameter.

As an example, we go back to the NewsItems we created in the Section Searching with Forms . For this example, we
created news items with attributes content , author , and date . Additionally, we created a search form and a
report template for viewing search results.

Searching for dates of NewsItems was not very comfortable though - we had to type in exact dates to match a
document.

With a range query we are now able to search for ranges of dates. Take a look at this PythonScript snippet:

return NewsItems newer than a week
zcat = context.NewsCatalog
results = zcat(date={'query' : ZopeTime() - 7,
 'range' : 'min'
 })

DateRangeIndex Record Attributes

DateRangeIndexes only support the query attribute on Record objects. The query attribute results in the same
functionality as querying directly.

TopicIndex Record Attributes

Like KeywordIndexes, TopicIndexes support the operator attribute:

operator — Specifies whether all FieldSets or only one need to match. Allowed values: and , or . (optional,
default: or)

ZCTextIndex Record Attributes

Because ZCTextIndex operators are embedded in the query string, there are no additional Record Attributes for
ZCTextIndexes.

Creating Records in HTML

You can also perform record queries using HTML forms. Here's an example showing how to create a search form using
records:

<form action="Report" method="get">
<table>
<tr><th>Search Terms (must match all terms)</th>
 <td><input name="content.query:record" width=30 value=""></td></tr>
 <input type="hidden" name="content.operator:record" value="and">
<tr><td colspan=2 align=center>
<input type="SUBMIT" value="Submit Query">
</td></tr>
</table>
</form>

The Zope Book (2.6 Edition)

288

For more information on creating records in HTML see the section "Passing Parameters to Scripts" in Chapter 14,
Advanced Zope Scripting.

Automatic Cataloging

Automatic Cataloging is an advanced ZCatalog usage pattern that keeps objects up to date as they are changed. It
requires that as objects are created, changed, and destroyed, they are automatically tracked by a ZCatalog. This
usually involves the objects notifying the ZCatalog when they are created, changed, or deleted.

This usage pattern has a number of advantages in comparison to mass cataloging. Mass cataloging is simple but has
drawbacks. The total amount of content you can index in one transaction is equivalent to the amount of free virtual
memory available to the Zope process, plus the amount of temporary storage the system has. In other words, the more
content you want to index all at once, the better your computer hardware has to be. Mass cataloging works well for
indexing up to a few thousand objects, but beyond that automatic indexing works much better.

Another major advantage of automatic cataloging is that it can handle objects that change. As objects evolve and
change, the index information is always current, even for rapidly changing information sources like message boards.

In this section, we'll show you an example that creates "news" items that people can add to your site. These items will
get automatically cataloged. This example consists of two steps:

 • Creating a new type of object to catalog.

 • Creating a ZCatalog to catalog the newly created objects.

As of Zope 2.3, none of the "out-of-the-box" Zope objects support automatic cataloging. This is for backwards
compatibility reasons. For now, you have to define your own kind of objects that can be cataloged automatically. One of
the ways this can be done is by defining a ZClass .

A ZClass is a Zope object that defines new types of Zope objects. In a way, a ZClass is like a blueprint that describes
how new Zope objects are built. Consider a news item as discussed in examples earlier in the chapter. News items not
only have content, but they also have specific properties that make them news items. Often these Items come in
collections that have their own properties. You want to build a News site that collects News Items, reviews them, and
posts them online to a web site where readers can read them.

In this kind of system, you may want to create a new type of object called a NewsItem . This way, when you want to
add a new NewsItem to your site, you just select it from the product add list. If you design this object to be
automatically cataloged, then you can search your news content very powerfully. In this example, you will just skim a
little over ZClasses, which are described in much more detail in Chapter 22, "Extending Zope."

New types of objects are defined in the Products section of the Control Panel. This is reached by clicking on the
Control Panel and then clicking on Product Management . Products contain new kinds of ZClasses. On this screen,
click "Add" to add a New product. You will be taken to the Add form for new Products.

Name the new Product NewsItem and click "Generate". This will take you back to the Products Management view and
you will see your new Product.

Select the NewsItem Product by clicking on it. This new Product looks a lot like a Folder. It contains one object called
Help and has an Add menu, as well as the usual Folder "tabs" across the top. To add a new ZClass, pull down the Add
menu and select ZClass . This will take you to the ZClass add form, as shown in the figure below.

The Zope Book (2.6 Edition)

289

Figure 16-7 ZClass add form

This is a complicated form which will be explained in much more detail in Chapter 14, "Extending Zope". For now, you
only need to do three things to create your ZClass:

 • Specify the Id "NewsItem" This is the name of the new ZClass.

 • Specify the meta_type "News Item". This will be used to create the Add menu entry for your new type of object.

 • Select ZCatalog:CatalogPathAware from the left hand Base Classes box, and click the button with the arrow
pointing to the right hand Base Classes box. This should cause ZCatalog:CatalogPathAware to show up in
the right hand window. Note that if you are inheriting from more than one base class, CatalogPathAware
should be the first (specifically, it should come before ObjectManager).

When you're done, don't change any of the other settings in the Form. To create your new ZClass, click Add . This will
take you back to your NewsItem Product. Notice that there is now a new object called NewsItem as well as several
other objects. The NewsItem object is your new ZClass. The other objects are "helpers" that you will examine more in
Chapter 14, "Extending Zope".

Select the NewsItem ZClass object. Your view should now look like the figure below.

The Zope Book (2.6 Edition)

290

Figure 16-8 A ZClass Methods View

This is the Methods View of a ZClass. Here, you can add Zope objects that will act as methods on your new type of
object . Here, for example, you can create Page Templates or Scripts and these objects will become methods on any
new News Items that are created. Before creating any methods however, let's review the needs of this new "News
Item" object:

News Content — The news Item contains news content, this is its primary purpose. This content should be any kind of
plain text or marked up content like HTML or XML.

Author Credit — The News Item should provide some kind of credit to the author or organization that created it.

Date — News Items are timely, so the date that the item was created is important.

You may want your new News Item object to have other properties, these are just suggestions. To add new properties
to your News Item click on the Property Sheets tab. This takes you to the Property Sheets view.

Properties are added to new types of objects in groups called Property Sheets . Since your object has no property
sheets defined, this view is empty. To add a New Property Sheet, click Add Common Instance Property Sheet , and
give the sheet the name "News". Now click Add . This will add a new Property Sheet called News to your object.
Clicking on the new Property Sheet will take you to the Properties view of the News Property Sheet, as shown in the
figure below.

The Zope Book (2.6 Edition)

291

Figure 16-9 The properties screen for a Property Sheet

This view is almost identical to the Properties view found on Folders and other objects. Here, you can create the
properties of your News Item object. Create three new properties in this form:

content — This property's type should be text . Each newly created News Item will contain its own unique content
property.

author — This property's type should be string . This will contain the name of the news author.

date — This property's type should be date . This will contain the time and date the news item was last updated. A date
property requires a value, so for now you can enter the string "01/01/2000".

That's it! Now you have created a Property Sheet that describes your News Items and what kind of information they
contain. Properties can be thought of as the data that an object contains. Now that we have the data all set, you need
to create an interface to your new kind of objects. This is done by creating a new Form/Action pair to change the data
and assigning it to a new View for your object.

The Form/Action pair will give you the ability to edit the data defined in the propertysheet, while the View binds the form
to a tab of the Zope Management Interface.

Propertysheets come with built-in forms for editing their data; however we need to build our own so we can signal
changes to the ZCatalog.

First we are going to create a form to display and edit properties. Click on the Methods tab. Select "Page Template"
from the add drop-down menu, name it editPropertiesForm and fill it with:

<html><head>
<title tal:content="here/title_or_id">title</title>
<link rel="stylesheet" type="text/css" href="/manage_page_style.css">
</head>
<body bgcolor="#FFFFFF" link="#000099" vlink="#555555">
<span
 tal:define="manage_tabs_message options/manage_tabs_message | nothing"
 tal:replace="structure here/manage_tabs">
 prefab management tabs

The Zope Book (2.6 Edition)

292

<form action="manage_editNewsProps" method="get">
<table>
<tr>
 <th valign="top">Content</th>
 <td>
 <textarea
 name="content:text" rows="6" cols="35"
 tal:content="here/content">content text</textarea>
 </td>
</tr>
<tr>
 <th>Author</th>
 <td>
 <input name="author:string"
 value="author string"
 tal:attributes="value here/author">
 </td>
</tr>
<tr>
 <th>Date</th>
 <td>
 <input name="date:date"
 value="the date"
 tal:attributes="value here/date">
 </td>
</tr>
<tr><td></td><td>
<input type="submit">
</td></tr>
</form>
</body>
</html>

This is the Form part of the Form/Action pair. Note the call of manage_tabs at the top of the form - this will give your
form the standard ZMI tabs.

We will add the Action part now. Add a Script (Python) object and fill in the id manage_editNewsProps and
the following code:

first get the request
req = context.REQUEST
change the properties in the zclass' propertysheet
context.propertysheets.News.manage_editProperties(req)
signal the change to the zcatalog
context.reindex_object()
now return a message
form = context.editPropertiesForm
return form(REQUEST=req,
 manage_tabs_message="Saved changes.",
)

Done. The next step will be to define the View. Click on the Views tab. This will take you to the Views view.

Here, you can see that Zope has created three default Views for you. These views will be described in much more
detail in Chapter 14, "Extending Zope", but for now, it suffices to say that these views define the tabs that your objects
will eventually have.

To create a new view, use the form at the bottom of the Views view. Create a new View with the name "News" and
select "editPropertiesForm" from the select box and click Add . This will create a new View on this screen under the
original three Views, as shown in the figure below.

The Zope Book (2.6 Edition)

293

Figure 16-10 The Views view

We want to make our View the first view that you see when you select a News Item object. To change the order of the
views, select the newly created News view and click the First button. This should move the new view from the bottom to
the top of the list.

The final step in creating a ZClass is defining a method for displaying the class. Click on the Methods tab, select Page
Template from the add list and add a new Page Template with the id "index_html". This will be the default view of your
news item. Add the following to the new template:

<html><head>
<title tal:content="template/title">The title</title>
</head><body>
<h1>News Flash</h1>
<p tal:content="here/date">
 date goes here
</p>
<p tal:content="here/author">
 author goes here
</p>
<p tal:content="here/content">
 content goes here
</p>
</body></html>

Finally, we will add a new management tab for the display method. Once again, click on the Views tab, and create a
View named "View", and assign the index_html to it. Reorder the views so that the News view comes first, followed
by the View method.

That's it! You've created your own kind of object called a News Item . When you go to the root folder, you will now see
a new entry in your add list.

But don't add any new News Items yet, because the second step in this exercise is to create a ZCatalog that will
catalog your new News Items. Go to the root folder and create a new ZCatalog with the id Catalog . The ZClass finds
the ZCatalog by looking for a catalog named Catalog through acquisition, so this ZCatalog should be where it can be
acquired by all NewsItems you plan to create.

The Zope Book (2.6 Edition)

294

Like the previous two examples of using a ZCatalog, you need to create Indexes and a Metadata Table that make
sense for your objects. Create the following indexes:

content — This should be a ZCTextIndex. This will index the content of your News Items.

author — This should be a FieldIndex. This will index the author of the News Item.

date — This should be a DateIndex. This will index the date of the News Item.

After creating these Indexes, add these Metadata columns:

 • author

 • date

 • absolute_url

After creating the Indexes and Metadata Table columns, the automatic cataloguing is basically working. The last step is
creating a search interface for the ZCatalog using the Z Search Interface tool described previously in this chapter:

Now you are ready to go. Start by adding some new News Items to your Zope. Go anywhere in Zope and select News
Item from the add list. This will take you to the add Form for News items.

Give your new News Item the id "KoalaGivesBirth" and click Add . This will create a new News Item. Select the new
News Item.

Notice how it has four tabs that match the five Views that were in the ZClass. The first View is News , this view
corresponds to the News Property Sheet you created in the News Item ZClass.

Enter your news in the contents box:

Today, Bob the Koala bear gave birth to little baby Jimbo.

Enter your name in the Author box, and today's date in the Date box.

Click Change and your News Item should now contain some news. Because the News Item object is
CatalogPathAware , it is automatically cataloged when it is changed or added. Verify this by looking at the Cataloged
Objects tab of the ZCatalog you created for this example.

The News Item you added is the only object that is cataloged. As you add more News Items to your site, they will
automatically get cataloged here. Add a few more items, and then experiment with searching the ZCatalog. For
example, if you search for "Koala" you should get back the KoalaGivesBirth News Item.

At this point you may want to use some of the more advanced search forms that you created earlier in the chapter. You
can see for example that as you add new News Items with new authors, the authors select list on the search form
changes to include the new information.

Conclusion

The cataloging features of ZCatalog allow you to search your objects for certain attributes very quickly. This can be
very useful for sites with lots of content that many people need to be able to search in an efficient manner.

The Zope Book (2.6 Edition)

295

Searching the ZCatalog works a lot like searching a relational database, except that the searching is more
object-oriented. Not all data models are object-oriented however, so in some cases you will want to use the ZCatalog,
but in other cases you may want to use a relational database. The next chapter goes into more details about how Zope
works with relational databases, and how you can use relational data as objects in Zope.

The Zope Book (2.6 Edition)

296

Relational Database Connectivity

The Zope Object Database (ZODB) is used to store all the pages, files and other objects you create. It is fast and
requires almost no setting up or maintenance. Like a filesystem, it is especially good at storing moderately-sized binary
objects such as graphics.

Relational Databases work in a very different way. They are based on tables of data such as this:

Row First Name Last Name Age
=== ========== ========= ===
1 Bob McBob 42
2 John Johnson 24
3 Steve Smith 38

Information in the table is stored in rows. The table's column layout is called the schema . A standard language, called
the Structured Query Language (SQL) is used to query and change tables in relational databases. This chapter
assumes a basic knowledge of SQL, if you do not know SQL there are many books and tutorials on the web.

Relational databases and object databases are very different and each possesses its own strengths and weaknesses.
Zope allows you to use either, providing the flexibility to choose the storage mechanism which is best for your data.
The most common reasons to use relational databases are to access an existing database or to share data with other
applications. Most programming languages and thousands of software products work with relational databases.
Although it is possible to access the ZODB from other applications and languages, it will often require more effort than
using a relational database.

By using your relational data with Zope you retain all of Zope's benefits including security, dynamic presentation, and
networking. You can use Zope to dynamically tailor your data access, data presentation and data management.

Common Relational Databases

There are many relational database systems. The following is a brief list of some of the more popular database
systems:

Oracle — Oracle is arguably the most powerful and popular commercial relational database. It is, however, relatively
expensive and complex. Oracle can be purchased or evaluated from the Oracle Website .

DB2 — DB2 from IBM is the main commercial competitor to Oracle. It has similar power but also similar expense and
complexity. More information from http://www.ibm.com/software/data/db2/

PostgreSQL — PostgreSQL is a leading open source relational database with good support for SQL standards. You
can find more information about PostgreSQL at the PostgreSQL web site .

MySQL — MySQL is a fast open source relational database. You can find more information about MySQL at the
MySQL web site .

SAP DB — An open source database developed by SAP. Has an Oracle 7 compatibility mode. More information and
downloads from http://www.sapdb.org/ .

Sybase — Sybase is another popular commercial relational database. Sybase can be purchased or evaluated from the
Sybase Website .

SQL Sever — Microsoft's full featured SQL Server for the Windows operating systems. For any serious use on
Windows, it is preferable to Microsoft Access. Information from http://www.microsoft.com/sql/

The Zope Book (2.6 Edition)

297

Interbase — Interbase is an open source relational database from Borland/Inprise. You can find more information
about Interbase at the Borland web site . You may also be interested in FireBird which is a community maintained
offshoot of Interbase. The Zope Interbase adapter is maintained by Zope community member Bob Tierney.

Gadfly — Gadfly is a relational database written in Python by Aaron Waters. Gadfly is included with Zope for
demonstration purposes and small data sets. Gadfly is fast, but is not intended for large amounts of information since it
reads its entire data set into memory. You can find out more about Gadfly at http://gadfly.sourceforge.net/ .

The mechanics of setting up relational database is different for each database and is thus beyond the scope of this
book. All of the relational databases mentioned have their own installation and configuration documentation that you
should consult for specific details.

Zope can connect to all the above-listed database systems; however, you should be satisfied that the database is
running and operating in a satisfactory way on its own before attempting to connect it to Zope. An exception to this
policy is Gadfly, which is included with Zope and requires no setup.

Database Adapters

A database can only be used if a Zope Database Adapter is available, though a Database Adapter is fairly easy to write
if the database has Python support. Database adapters can be downloaded from the Products section of Zope.org The
exception to this is Gadfly, which is included with Zope.

At the time of writing the following adapters were available, but this list constantly changes as more adapters are
added.

Oracle — DCOracle2 package from Zope Corporation includes the ZoracleDA

DB2 — ZDB2DA from Blue Dynamics

PostgreSQL — The newest DA is ZPsycopgDA included in psycopg package. The older ZpopyDA is also available.

MySQL — ZMySQLDA Available as source and a Linux binary package.

SAP DB — ZsapdbDA by Ulrich Eck.

Sybase — SybaseDA is written and commerically supported by Zope Corporation.

SQLServer — ZODBC DA is written and commercially supported by Zope Corporation. Available for the Windows
platform only. This DA will also support any other ODBC compliant database.

Interbase/Firebird — There are a number of DAs available including isectZope , kinterbasdbDA and gvibDA

Informix — ZinformixDA which requires the informixdb product.

Gadfly — The Gadfly Database Adapter is built into Zope.

If you will need to connect to more than one database or wish to connect as to the same database as different users
then you may use multiple database connection objects.

Setting up a Database Connection

The Zope Book (2.6 Edition)

298

Once the database adapter has been downloaded and installed you may create a new Database Connection from the
Add menu on the Zope management pages. All database connection management interfaces are fairly similar.

The database connection object is used to establish and manage the connection to the database. Because the
database runs externally to Zope, they may require you to specify information necessary to connect successfully to the
database. This specification, called a connection string , is different for each kind of database. For example, the figure
below shows the PostgreSQL database connection add form.

Figure 17-1 PostgreSQL Database Connection

We'll be using the Gadfly database for the examples in this chapter, as it requires the least amount of configuration. If
you happen to be using a different database while "playing along", note that Database Connections work slightly
differently depending on which database is being used, however most have a "Test" tab for issuing a test SQL query to
the database and a "Browse" tab which will show the table structure. It is good practice to use these tabs to test the
database connection before going any further.

Select the Z Gadfly Database Connection from the add list. This will take you to the add form for a Gadfly database
connection. Select and add a Gadlfy connection to Zope. Note that because Gadfly runs inside Zope you do not need
to specify a "connection string".

Select the Demo data source, specify Gadfly_database_connection for the id, and click the Add button. This will create
a new Gadfly Database Connection. Select the new connection by clicking on it.

You are looking at the Status view of the Gadfly Database Connection. This view tells you if you are connected to the
database, and it exposes a button to connect or disconnect from the database. In general Zope will manage the
connection to your database for you, so in practice there is little reason to manually control the connection. For Gadfly,
the action of connecting and disconnecting is meaningless, but for external databases you may wish to connect or
disconnect manually to do database maintenance.

The next view is the Properties view. This view shows you the data source and other properties of the Database
Connection. This is useful if you want to move your Database Connection from one data source to another. The figure
below shows the Properties view.

The Zope Book (2.6 Edition)

299

Figure 17-2 The Properties view

You can test your connection to a database by going to the Test view. This view lets you type SQL code directly and
run it on your database. This view is used for testing your database and issuing "one-time" SQL commands (like
statements for creating tables). This is not the place where you will enter most of your SQL code. SQL commands
typically reside in Z SQL Methods which will be discussed in detail later in this chapter.

Let's create a table in your database for use in this chapter's examples. The Test view of the Database Connection
allows you to send SQL statements directly to your database. You can create tables by typing SQL code directly into
the Test view; there is no need to use a SQL Method to create tables. Create a table called employees with the
following SQL code by entering it into the Test tab:

CREATE TABLE employees
(
emp_id integer,
first varchar,
last varchar,
salary float
)

Click the Submit Query button of the Test tab to run the SQL command. Zope should return a confirmation screen that
confirms that the SQL code was run. It will additionally display the results, if any.

The SQL used here works under Gadfly but may differ depending on your database. For the exact details of creating
tables with your database, check the user documentation from your specific database vendor.

This SQL will create a new table in your Gadfly database called employees . This table will have four columns, emp_id ,
first , last and salary . The first column is the "employee id", which is a unique number that identifies the employee. The
next two columns have the type varchar which is similar to a string. The salary column has the type float which holds a
floating point number. Every database supports different kinds of types, so you will need to consult your documentation
to find out what kind of types your database supports.

To examine your table, go to the Browse view. This lets you view your database's tables and the schema of each table.
Here, you can see that there is an employees table, and if you click on the plus symbol , the table expands to show four
columns, emp_id , first , last and salary as shown in Figure 10-3 .

The Zope Book (2.6 Edition)

300

Figure 17-3 Browsing the Database Connection

This information is very useful when creating complex SQL applications with lots of large tables, as it lets you discover
the schemas of your tables. However, not all databases support browsing of tables.

Now that you've created a database connection and have defined a table, you can create Z SQL Methods to operate
on your database.

Z SQL Methods

Z SQL Methods are Zope objects that execute SQL code through a Database Connection. All Z SQL Methods must be
associated with a Database Connection. Z SQL Methods can both query and change database data. Z SQL Methods
can also contain more than one SQL command.

A ZSQL Method has two functions: it generates SQL to send to the database and it converts the response from the
database into an object. This has the following benefits:

 • Generated SQL will take care of special characters that may need to be quoted or removed from the query. This
speeds up code development.

 • If the underlying database is changed (for example, from Postgres to Oracle), then the generated SQL will, in
some cases, automatically change too, making the application more portable.

 • Results from the query are packaged into an easy to use object which will make display or processing of the
response very simple.

 • Transactions are mediated. Transactions are discussed in more detail later in this chapter.

Examples of ZSQL Methods

The Zope Book (2.6 Edition)

301

Create a new Z SQL Method called hire_employee that inserts a new employee in the employees table. When a new
employee is hired, this method is called and a new record is inserted in the employees table that contains the
information about the new employee. Select Z SQL Method from the Add List . This will take you to the add form for Z
SQL Methods, as shown in the figure below.

Figure 17-4 The Add form for Z SQL Methods

As usual, you must specify an id and title for the Z SQL Method. In addition you need to select a Database Connection
to use with this Z SQL Methods. Give this new method the id hire_employee and select the
Gadfly_database_connection that you created in the last section.

Next, you can specify arguments to the Z SQL Method. Just like Scripts, Z SQL Methods can take arguments.
Arguments are used to construct SQL statements. In this case your method needs four arguments, the employee id
number, the first name, the last name and the employee's salary. Type "emp_id first last salary" into the Arguments
field. You can put each argument on its own line, or you can put more than one argument on the same line separated
by spaces. You can also provide default values for argument just like with Python Scripts. For example, emp_id=100
gives the emp_id argument a default value of 100.

The last form field is the Query template . This field contains the SQL code that is executed when the Z SQL Method is
called. In this field, enter the following code:

insert into employees (emp_id, first, last, salary) values
(<dtml-sqlvar emp_id type="int">,
 <dtml-sqlvar first type="string">,
 <dtml-sqlvar last type="string">,
 <dtml-sqlvar salary type="float">
)

Notice that this SQL code also contains DTML. The DTML code in this template is used to insert the values of the
arguments into the SQL code that gets executed on your database. If the emp_id argument had the value 42 , the first
argument had the value Bob your last argument had the value Uncle and the salary argument had the value 50000.00
then the query template would create the following SQL code:

insert into employees (emp_id, first, last, salary) values
(42,
 'Bob',

The Zope Book (2.6 Edition)

302

 'Uncle',
 50000.00
)

The query template and SQL-specific DTML tags are explained further in the next section of this chapter.

You have your choice of three buttons to click to add your new Z SQL Method. The Add button will create the method
and take you back to the folder containing the new method. The Add and Edit button will create the method and make it
the currently selected object in the Workspace . The Add and Test button will create the method and take you to the
method's Test view so you can test the new method. To add your new Z SQL Method, click the Add button.

Now you have a Z SQL Method that inserts new employees in the employees table. You'll need another Z SQL Method
to query the table for employees. Create a new Z SQL Method with the id list_all_employees . It should have no
arguments and contain the following SQL code:

select * from employees

This simple SQL code selects all the rows from the employees table. Now you have two Z SQL Methods, one to insert
new employees and one to view all of the employees in the database. Let's test your two new methods by inserting
some new employees in the employees table and then listing them. To do this, click on the hire_employee Method and
click the Test tab. This will take you to the Test view of the Method, as shown in the figure below.

Figure 17-5 The hire_employee Test view

Here, you see a form with four input boxes, one for each argument to the hire_employee Z SQL Method. Zope
automatically generates this form for you based on the arguments of your Z SQL Method. Because the hire_employee
Method has four arguments, Zope creates this form with four input boxes. You can test the method by entering an
employee number, a first name, a last name, and a salary for your new employee. Enter the employee id "42", "Bob" for
the first name, "McBob" for the last name and a salary of "50000.00". Then click the Submit Query button. You will then
see the results of your test.

The screen says This statement returned no results . This is because the hire_employee method only inserts new
information in the table, it does not select any information out of the table, so no records were returned. The screen
also shows you how the query template get rendered into SQL. As expected, the sqlvar DTML tags rendered the four

The Zope Book (2.6 Edition)

303

arguments into valid SQL code that your database executed. You can add as many employees as you'd like by
repeatedly testing this method.

To verify that the information you added is being inserted into the table, select the list_all_employees Z SQL Method
and click on its Test tab.

This view says This query requires no input , indicating the list_all_employees does not have any argument and thus,
requires no input to execute. Click on the Submit Query button to test the method.

The list_all_employees method returns the contents of your employees table. You can see all the new employees that
you added. Zope automatically generates this tabular report screen for you. Next we'll show how you can create your
own user interface to your Z SQL Methods to integrate them into your web site.

Displaying Results from Z SQL Methods

Querying a relational database returns a sequence of results. The items in the sequence are called result rows . SQL
query results are always a sequence. Even if the SQL query returns only one row, that row is the only item contained in
a list of results.

Somewhat predictably, as Zope is object oriented , a Z SQL method returns a Result object . All the result rows are
packaged up into one object. For all practical purposes, the result object can be thought of as rows in the database
table that have been turned into Zope objects. These objects have attributes that match the schema of the database
result.

Result objects can be used from DTML to display the results of calling a Z SQL Method. For example, add a new DTML
Method to your site called listEmployees with the following DTML content:

<dtml-var standard_html_header>

 <dtml-in list_all_employees>
 <dtml-var emp_id>: <dtml-var last>, <dtml-var first>
 makes <dtml-var salary fmt=dollars-and-cents> a year.

 </dtml-in>

<dtml-var standard_html_footer>

This method calls the list_all_employees Z SQL Method from DTML. The in tag is used to iterate over each Result
object returned by the list_all_employees Z SQL Method. Z SQL Methods always return a list of objects, so you will
almost certainly use them from the DTML in tag unless you are not interested in the results or if the SQL code will
never return any results, like hire_employee .

The body of the in tag is a template that defines what gets rendered for each Result object in the sequence returned by
list_all_employees . In the case of a table with three employees in it, listEmployees might return HTML that looks like
this:

<html>
 <body>

 42: Roberts, Bob
 makes $50,000 a year.

 101: leCat, Cheeta
 makes $100,000 a year.

 99: Junglewoman, Jane
 makes $100,001 a year.

The Zope Book (2.6 Edition)

304

 </body>
</html>

The in tag rendered an HTML list item for each Result object returned by list_all_employees .

Zope Database Adapters behave slightly differently regarding how they handle different types of data. However the
more modern ones will return the Python type that is closest to the SQL type - as there are far more types in SQL than
in Python there cannot be a complete match. For example, a date will usually be returned as a Zope DateTime object;
char, varchar and text will all be returned as strings.

An important difference between result objects and other Zope objects is that result objects do not get created and
permanently added to Zope. Result objects are not persistent. They exist for only a short period of time; just long
enough for you to use them in a result page or to use their data for some other purpose. As soon as you are done with
a request that uses result objects they go away, and the next time you call a Z SQL Method you get a new set of fresh
result objects.

Next we'll look at how to create user interfaces in order to collect data and pass it to Z SQL Methods.

Providing Arguments to Z SQL Methods

So far, you have the ability to display employees with the listEmployees DTML Method which calls the
list_all_employees Z SQL Method. Now let's look at how to build a user interface for the hire_employee Z SQL Method.
Recall that the hire_employee accepts four arguments, emp_id , first , last , and salary . The Test tab on the
hire_employee method lets you call this method, but this is not very useful for integrating into a web application. You
need to create your own input form for your Z SQL Method or call it manually from your application.

The Z Search Interface can create an input form for you automatically. In the chapter entitled Searching and
Categorizing Content , you used the Z Search Interface to build a form/action pair of methods that automatically
generated an HTML search form and report screen that queried the Catalog and returned results. The Z Search
Interface also works with Z SQL Methods to build a similar set of search/result screens.

Select Z Search Interface from the add list and specify hire_employee as the Searchable object . Enter the value
"hireEmployeeReport" for the Report Id , "hireEmployeeForm" for the Search Id and check the "Generate DTML
Methods" button then click Add .

Click on the newly created hireEmployeeForm and click the View tab. Enter an employee_id, a first name, a last name,
and salary for a new employee and click Submit . Zope returns a screen that says "There was no data matching this
query". Because the report form generated by the Z Search Interface is meant to display the result of a Z SQL Method,
and the hire_employee Z SQL Method does not return any results; it just inserts a new row in the table. Edit the
hireEmployeeReport DTML Method a little to make it more informative. Select the hireEmployeeReport Method. It
should contain the following long stretch of DTML:

<dtml-var standard_html_header>

<dtml-in hire_employee size=50 start=query_start>

 <dtml-if sequence-start>

 <dtml-if previous-sequence>

 <a href="<dtml-var URL><dtml-var sequence-query
 >query_start=<dtml-var
 previous-sequence-start-number>">
 (Previous <dtml-var previous-sequence-size> results)

The Zope Book (2.6 Edition)

305

 </dtml-if previous-sequence>

 <table border>
 <tr>
 </tr>

 </dtml-if sequence-start>

 <tr>
 </tr>

 <dtml-if sequence-end>

 </table>
 <dtml-if next-sequence>

 <a href="<dtml-var URL><dtml-var sequence-query
 >query_start=<dtml-var
 next-sequence-start-number>">
 (Next <dtml-var next-sequence-size> results)

 </dtml-if next-sequence>

 </dtml-if sequence-end>

<dtml-else>

 There was no data matching this <dtml-var title_or_id> query.

</dtml-in>

<dtml-var standard_html_footer>

This is a pretty big piece of DTML! All of this DTML is meant to dynamically build a batch-oriented tabular result form.
Since we don't need this, let's change the generated hireEmployeeReport method to be much simpler:

<dtml-var standard_html_header>

<dtml-call hire_employee>

<h1>Employee <dtml-var first> <dtml-var last> was Hired!</h1>

<p>List Employees</p>

<p>Back to hiring</p>

<dtml-var standard_html_footer>

Now view hireEmployeeForm and hire another new employee. Notice how the hire_employee method is called from the
DTML call tag. This is because we know there is no output from the hire_employee method. Since there are no results
to iterate over, the method does not need to be called with the in tag. It can be called simply with the call tag.

You now have a complete user interface for hiring new employees. Using Zope's security system, you can now restrict
access to this method to only a certain group of users whom you want to have permission to hire new employees. Keep
in mind, the search and report screens generated by the Z Search Interface are just guidelines that you can easily
customize to suite your needs.

Next we'll take a closer look at precisely controlling SQL queries. You've already seen how Z SQL Methods allow you
to create basic SQL query templates. In the next section you'll learn how to make the most of your query templates.

Dynamic SQL Queries

A Z SQL Method query template can contain DTML that is evaluated when the method is called. This DTML can be
used to modify the SQL code that is executed by the relational database. Several SQL specific DTML tags exist to

The Zope Book (2.6 Edition)

306

assist you in the construction of complex SQL queries. In the next sections you'll learn about the sqlvar , sqltest and
sqlgroup tags.

Inserting Arguments with the Sqlvar Tag

It's pretty important to make sure you insert the right kind of data into a column in a database. You database will
complain if you try to use the string "12" where the integer 12 is expected. SQL requires that different types be quoted
differently. To make matters worse, different databases have different quoting rules.

In addition to avoiding errors, SQL quoting is important for security. Suppose you had a query that makes a select:

select * from employees
 where emp_id=<dtml-var emp_id>

This query is unsafe since someone could slip SQL code into your query by entering something like 12; drop table
employees as an emp_id . To avoid this problem you need to make sure that your variables are properly quoted. The
sqlvar tag does this for you. Here is a safe version of the above query that uses sqlvar :

select * from employees
 where emp_id=<dtml-sqlvar emp_id type=int>

The sqlvar tag operates similarly to the regular DTML var tag in that it inserts values. However it has some tag
attributes targeted at SQL type quoting, and dealing with null values. The sqlvar tag accepts a number of arguments:

 name — The name argument is identical to the name argument for the var tag. This is the name of a Zope variable or
Z SQL Method argument. The value of the variable or argument is inserted into the SQL Query Template. A name
argument is required, but the "name=" prefix may be omitted.

 type — The type argument determines the way the sqlvar tag should format the value of the variable or argument
being inserted in the query template. Valid values for type are string , int , float , or nb . nb stands for non-blank and
means a string with at least one character in it. The sqlvar tag type argument is required.

 optional — The optional argument tells the sqlvar tag that the variable or argument can be absent or be a null value. If
the variable or argument does not exist or is a null value, the sqlvar tag does not try to render it. The sqlvar tag optional
argument is optional.

The type argument is the key feature of the sqlvar tag. It is responsible for correctly quoting the inserted variable. See
Appendix A for complete coverage of the sqlvar tag.

You should always use the sqlvar tag instead of the var tag when inserting variables into a SQL code since it correctly
quotes variables and keeps your SQL safe.

Equality Comparisons with the sqltest Tag

Many SQL queries involve equality comparison operations. These are queries that ask for all values from the table that
are in some kind of equality relationship with the input. For example, you may wish to query the employees table for all
employees with a salary greater than a certain value.

To see how this is done, create a new Z SQL Method named employees_paid_more_than . Give it one argument,
salary , and the following SQL template:

select * from employees
 where <dtml-sqltest salary op=gt type=float>

The Zope Book (2.6 Edition)

307

Now click Add and Test . The op tag attribute is set to gt , which stands for greater than . This Z SQL Method will only
return records of employees that have a higher salary than what you enter in this input form. The sqltest builds the SQL
syntax necessary to safely compare the input to the table column. Type "10000" into the salary input and click the Test
button. As you can see the sqltest tag renders this SQL code:

select * from employees
 where salary > 10000

The sqltest tag renders these comparisons to SQL taking into account the type of the variable and the particularities of
the database. The sqltest tag accepts the following tag parameters:

 name — The name of the variable to insert.

 type — The data type of the value to be inserted. This attribute is required and may be one of string , int , float , or nb .
The nb data type stands for "not blank" and indicates a string that must have a length that is greater than 0. When
using the nb type, the sqltest tag will not render if the variable is an empty string.

 column — The name of the SQL column, if different than the name attribute.

 multiple — A flag indicating whether multiple values may be provided. This lets you test if a column is in a set of
variables. For example when name is a list of strings "Bob" , "Billy" , <dtml-sqltest name type="string"
multiple> renders to this SQL: name in ("Bob", "Billy") .

 optional — A flag indicating if the test is optional. If the test is optional and no value is provided for a variable then no
text is inserted. If the value is an empty string, then no text will be inserted only if the type is nb .

 op — A parameter used to choose the comparison operator that is rendered. The comparisons are: eq (equal to), gt
(greater than), lt (less than), ge (greater than or equal to), le (less than or equal to), and ne (not equal to).

See Appendix A for more information on the sqltest tag. If your database supports additional comparison operators
such as like you can use them with sqlvar . For example if name is the string "Mc%", the SQL code:

<dtml-sqltest name type="string" op="like">

would render to:

name like 'Mc%'

The sqltest tag helps you build correct SQL queries. In general your queries will be more flexible and work better with
different types of input and different database if you use sqltest rather than hand coding comparisons.

Creating Complex Queries with the sqlgroup Tag

The sqlgroup tag lets you create SQL queries that support a variable number of arguments. Based on the arguments
specified, SQL queries can be made more specific by providing more arguments, or less specific by providing less or
no arguments.

Here is an example of an unqualified SQL query:

select * from employees

Here is an example of a SQL query qualified by salary:

select * from employees
where(
 salary > 100000.00
)

The Zope Book (2.6 Edition)

308

Here is an example of a SQL query qualified by salary and first name:

select * from employees
where(
 salary > 100000.00
 and
 first in ('Jane', 'Cheetah', 'Guido')
)

Here is an example of a SQL query qualified by a first and a last name:

select * from employees
where(
 first = 'Old'
 and
 last = 'McDonald'
)

All three of these queries can be accomplished with one Z SQL Method that creates more specific SQL queries as
more arguments are specified. The following SQL template can build all three of the above queries:

select * from employees
<dtml-sqlgroup where>
 <dtml-sqltest salary op=gt type=float optional>
<dtml-and>
 <dtml-sqltest first op=eq type=nb multiple optional>
<dtml-and>
 <dtml-sqltest last op=eq type=nb multiple optional>
</dtml-sqlgroup>

The sqlgroup tag renders the string where if the contents of the tag body contain any text and builds the qualifying
statements into the query. This sqlgroup tag will not render the where clause if no arguments are present.

The sqlgroup tag consists of three blocks separated by and tags. These tags insert the string and if the enclosing
blocks render a value. This way the correct number of ands are included in the query. As more arguments are
specified, more qualifying statements are added to the query. In this example, qualifying statements restricted the
search with and tags, but or tags can also be used to expand the search.

This example also illustrates multiple attribute on sqltest tags. If the value for first or last is a list, then the right SQL is
rendered to specify a group of values instead of a single value.

You can also nest sqlgroup tags. For example:

select * from employees
<dtml-sqlgroup where>
 <dtml-sqlgroup>
 <dtml-sqltest first op=like type=nb>
 <dtml-and>
 <dtml-sqltest last op=like type=nb>
 </dtml-sqlgroup>
<dtml-or>
 <dtml-sqltest salary op=gt type=float>
</dtml-sqlgroup>

Given sample arguments, this template renders to SQL like so:

select * from employees
where
((first like 'A%'
 and
 last like 'Smith'
)
 or
 salary > 20000.0
)

The Zope Book (2.6 Edition)

309

You can construct very complex SQL statements with the sqlgroup tag. For simple SQL code you won't need to use the
sqlgroup tag. However, if you find yourself creating a number of different but related Z SQL Methods you should see if
you can't accomplish the same thing with one method that uses the sqlgroup tag.

Advanced Techniques

So far you've seen how to connect to a relational database, send it queries and commands, and create a user
interface. These are the basics of relational database connectivity in Zope.

In the following sections you'll see how to integrate your relational queries more closely with Zope and enhance
performance. We'll start by looking at how to pass arguments to Z SQL Methods both explicitly and by acquisition.
Then you'll find out how you can call Z SQL Methods directly from URLs using traversal to result objects. Next you'll
find out how to make results objects more powerful by binding them to classes. Finally we'll look at caching to improve
performance and how Zope handles database transactions.

Calling Z SQL Methods with Explicit Arguments

If you call a Z SQL Method without argument from DTML, the arguments are automatically collected from the
REQUEST. This is the technique that we have used so far in this chapter. It works well when you want to query a
database from a search form, but sometimes you want to manually or programmatically query a database. Z SQL
Methods can be called with explicit arguments from DTML or Python. For example, to query the employee_by_id Z
SQL Method manually, the following DTML can be used:

<dtml-var standard_html_header>

 <dtml-in expr="employee_by_id(emp_id=42)">
 <h1><dtml-var last>, <dtml-var first></h1>

 <p><dtml-var first>'s employee id is <dtml-var emp_id>. <dtml-var
 first> makes <dtml-var salary fmt=dollars-and-cents> per year.</p>
 </dtml-in>

<dtml-var standard_html_footer>

Remember, the employee_by_id method returns only one record, so the body of the in tag in this method will execute
only once. In the example you were calling the Z SQL Method like any other method and passing it a keyword
argument for emp_id . The same can be done easily from Python:

Script (Python) "join_name"
##parameters=id
##
for result in context.employee_by_id(emp_id=id):
 return result.last + ', ' + result.first

This script accepts an id argument and passes it to employee_by_id as the emp_id argument. It then iterates over the
single result and joins the last name and the first name with a comma.

You can provide more control over your relational data by calling Z SQL Methods with explicit arguments. It's also
worth noting that from DTML and Python Z SQL Methods can be called with explicit arguments just like you call other
Zope methods.

Acquiring Arguments from other Objects

Z SQL can acquire information from other objects and be used to modify the SQL query. Consider the below figure,
which shows a collection of Folders in a organization's web site.

The Zope Book (2.6 Edition)

310

Figure 17-6 Folder structure of an organizational web site

Suppose each department folder has a department_id string property that identifies the accounting ledger id for that
department. This property could be used by a shared Z SQL Method to query information for just that department. To
illustrate, create various nested folders with different department_id string properties and then create a Z SQL Method
with the id requisition_something in the root folder that takes three arguments, description , quantity , and unit_cost .
and the following query template:

INSERT INTO requisitions
 (
 department_id, description, quantity, unit_cost
)
VALUES
 (
 <dtml-sqlvar department_id type=string>,
 <dtml-sqlvar description type=string>,
 <dtml-sqlvar quantity type=int>,
 <dtml-sqlvar unit_cost type=float>
)

Now, create a Z Search Interface with a Search Id of "requisitionSomethingForm" and the Report id of
"requisitionSomething". Select the requisition_something Z SQL Method as the Searchable Object and click Add .

Edit the requisitionSomethingForm and remove the first input box for the department_id field. We don't want the value
of department_id to come from the form, we want it to come from a property that is acquired.

Now, you should be able to go to a URL like:

http://example.org/Departments/Support/requisitionSomethingForm

... and requisition some punching bags for the Support department. Alternatively, you could go to:

http://example.org/Departments/Sales/requisitionSomethingForm

..and requisition some tacky rubber key-chains with your logo on them for the Sales department. Using Zope's security
system as described in the chapter entitled Users and Security , you can now restrict access to these forms so
personnel from departments can requisition items just for their department and not any other.

The interesting thing about this example is that department_id was not one of the arguments provided to the query.
Instead of obtaining the value of this variable from an argument, it acquires the value from the folder where the Z SQL
Method is accessed. In the case of the above URLs, the requisition_something Z SQL Method acquires the value from
the Sales and Support folders. This allows you to tailor SQL queries for different purposes. All the departments can
share a query but it is customized for each department.

By using acquisition and explicit argument passing you can tailor your SQL queries to your web application.

Traversing to Result Objects

The Zope Book (2.6 Edition)

311

So far you've provided arguments to Z SQL Methods from web forms, explicit argument, and acquisition. You can also
provide arguments to Z SQL Methods by calling them from the web with special URLs. This is called traversing to
results objects. Using this technique you can "walk directly up to" result objects using URLs.

In order to traverse to result objects with URLs, you must be able to ensure that the SQL Method will return only one
result object given one argument. For example, create a new Z SQL Method named employee_by_id , with emp_id in
the Arguments field and the following in the SQL Template:

select * from employees where
 <dtml-sqltest emp_id op=eq type=int>

This method selects one employee out of the employees table based on their employee id. Since each employee has a
unique id, only one record will be returned. Relational databases can provide these kinds of uniqueness guarantees.

Zope provides a special URL syntax to access ZSQL Methods that always return a single result. The URL consists of
the URL of the ZSQL Method followed by the argument name followed by the argument value. For example,
http://localhost:8080/employee_by_id/emp_id/42 . Note, this URL will return a single result object as if you queried the
ZSQL Method from DTML and passed it a single argument it would return a list of results that happend to only have
one item in it.

Unfortunately the result object you get with this URL is not very interesting to look at. It has no way to display itself in
HTML. You still need to display the result object. To do this, you can call a DTML Method on the result object. This can
be done using the normal URL acquisition rules described in Chapter 10, "Advanced Zope Scripting". For example,
consider the following URL:

http://localhost:8080/employee_by_id/emp_id/42/viewEmployee

Here we see the employee_by_id Z SQL Method being passed the emp_id argument by URL. The viewEmployee
method is then called on the result object. Let's create a viewEmployee DTML Method and try it out. Create a new
DTML Method named viewEmployee and give it the following content:

<dtml-var standard_html_header>

 <h1><dtml-var last>, <dtml-var first></h1>

 <p><dtml-var first>'s employee id is <dtml-var emp_id>. <dtml-var
 first> makes <dtml-var salary fmt=dollars-and-cents> per year.</p>

<dtml-var standard_html_footer>

Now when you go to the URL http://localhost:8080/employee_by_id/emp_id/42/viewEmployee the viewEmployee
DTML Method is bound the result object that is returned by employee_by_id . The viewEmployee method can be used
as a generic template used by many different Z SQL Methods that all return employee records.

Since the employee_by_id method only accepts one argument, it isn't even necessary to specify emp_id in the URL to
qualify the numeric argument. If your Z SQL Method has one argument, then you can configure the Z SQL Method to
accept only one extra path element argument instead of a pair of arguments. This example can be simplified even
more by selecting the employee_by_id Z SQL Method and clicking on the Advanced tab. Here, you can see a check
box called Allow "Simple" Direct Traversal . Check this box and click Change . Now, you can browse employee records
with simpler URLs like http://localhost:8080/employee_by_id/42/viewEmployee . Notice how no emp_id qualifier is
declared in the URL.

Traversal gives you an easy way to provide arguments and bind methods to Z SQL Methods and their results. Next
we'll show you how to bind whole classes to result objects to make them even more powerful.

Other Result Object Methods

The Zope Book (2.6 Edition)

312

Up to now we have just been iterating through the attributes of the Result object in DTML. The result object does
however provide other methods which can be easier in some situations. These methods can be accessed from Python
scripts, page templates and from DTML. For example in Python we could write:

result=context.list_all_employees()
return len(result)

which in DTML would be:

<dtml-var "_.len(list_all_employees())">

Assuming that we have set result to being a result object we can use the following methods:

len(result) — this will show the number rows returned (which would be 3 in the example above).

result.names() — a list of all the column headings, returning a list containing emp_id , first , last and
salary

result.tuples() — returns a list of tuples in our example:

[(43, 'Bob', 'Roberts', 50000),
 (101, 'Cheeta', 'leCat', 100000),
 (99, 'Jane', 'Junglewoman', 100001)]

result.dictionaries() — will return a list of dictionaries, with one dictionary for each row:

[{'emp_id': 42, 'first': 'Bob','last': 'Roberts', 'salary': 50000},
 {'emp_id': 101, 'first: 'Cheeta', 'last': 'leCat', 'salary': 100000},
 {'emp_id': 99, 'first': 'Jane', 'last': 'Junglewoman', 'salary': 100001}]

result.data_dictionary() — returns a dictionary describing the structure of the results table. The dictionary has
the key name , type , null and width . Name and type are self explanatory, null is true if that field may contain
a null value and width is the width in characters of the field. Note that null and width may not be set by some
Database Adapters.

result.asRDB() — displays the result in a similar way to a relational database. The DTML below displays the result
below:

<pre>
 <dtml-var "list_all_employees().asRDB()">
</pre>

... displays ...

emp_id first last salary
42 Bob Roberts 50000
101 Cheeta leCat 100000
99 Jane Junglewoman 100001

result[0][1] — return row 0, column 1 of the result, bob in this example. Be careful using this method as changes
in the schema will cause unexpected results.

Binding Classes to Result Objects

A Result object has an attribute for each column in a results row. As we have seen there are some basic methods for
processing these attributes to produce some more useful output. However we can go further by writing our own custom
methods and adding them into the Result object.

There are two ways to bind a method to a Result object. As you saw previously, you can bind DTML and other methods
to Z SQL Method Result objects using traversal to the results object coupled with the normal URL based acquisition

The Zope Book (2.6 Edition)

313

binding mechanism described in the chapter entitled Advanced Zope Scripting . You can also bind methods to Result
objects by defining a Python class that gets mixed in with the normal, simple Result object class. These classes are
defined in the same location as External Methods in the filesystem, in Zope's Extensions directory. Python classes are
collections of methods and attributes. By associating a class with a Result object, you can make the Result object have
a rich API and user interface.

Classes used to bind methods and other class attributes to Result classes are called Pluggable Brains , or just Brains .
Consider the example Python class:

class Employee:

 def fullName(self):
 """ The full name in the form 'John Doe' """
 return self.first + ' ' + self.last

When result objects with this Brains class are created as the result of a Z SQL Method query, the Results objects will
have Employee as a base class. This means that the record objects will have all the methods defined in the Employee
class, giving them behavior, as well as data.

To use this class, create the above class in the Employee.py file in the Extensions directory. Go the Advanced tab of
the employee_by_id Z SQL Method and enter Employee in the Class Name field, and Employee in the Class File field
and click Save Changes . Now you can edit the viewEmployee DTML Method to contain:

<dtml-var standard_html_header>

 <h1><dtml-var fullName></h1>

 <p><dtml-var first>'s employee id is <dtml-var emp_id>. <dtml-var
 first> makes <dtml-var salary fmt=dollars-and-cents> per year.</p>

<dtml-var standard_html_footer>

Now when you go to the URL http://localhost:8080/employee_by_id/42/viewEmployee the fullName method is called by
the viewEmployee DTML Method. The fullName method is defined in the Employee class of the Employee module and
is bound to the result object returned by employee_by_id

Brains provide a very powerful facility which allows you to treat your relational data in a more object-centric way. For
example, not only can you access the fullName method using direct traversal, but you can use it anywhere you handle
result objects. For example:

<dtml-in employee_by_id>
 <dtml-var fullName>
</dtml-in>

For all practical purposes your Z SQL Method returns a sequence of smart objects, not just data.

This example only "scratches the surface" of what can be done with Brains classes. With a bit of Python, you could
create brains classes that accessed network resources, called other Z SQL Methods, or performed all kinds of business
logic. Since advanced Python programming is not within the scope of this book, we regrettably cannot provide a great
number of examples of this sort of functionality, but we will at least provide one below.

Here's a more powerful example of brains. Suppose that you have an managers table to go with the employees table
that you've used so far. Suppose also that you have a manager_by_id Z SQL Method that returns a manager id
manager given an emp_id argument:

select manager_id from managers where
 <dtml-sqltest emp_id type=int op=eq>

You could use this Z SQL Method in your brains class like so:

The Zope Book (2.6 Edition)

314

class Employee:

 def manager(self):
 """
 Returns this employee's manager or None if the
 employee does not have a manager.
 """
 # Calls the manager_by_id Z SQL Method.
 records=self.manager_by_id(emp_id=self.emp_id)
 if records:
 manager_id=records[0].manager_id
 # Return an employee object by calling the
 # employee_by_id Z SQL Method with the manager's emp_id
 return self.employee_by_id(emp_id=manager_id)[0]

This Employee class shows how methods can use other Zope objects to weave together relational data to make it
seem like a collection of objects. The manager method calls two Z SQL Methods, one to figure out the emp_id of the
employee's manager, and another to return a new Result object representing the manager. You can now treat
employee objects as though they have simple references to their manager objects. For example you could add
something like this to the viewEmployee DTML Method:

<dtml-if manager>
 <dtml-with manager>
 <p> My manager is <dtml-var first> <dtml-var last>.</p>
 </dtml-with>
</dtml-if>

As you can see brains can be both complex and powerful. When designing relational database applications you should
try to keep things simple and add complexity slowly. It's important to make sure that your brains classes don't add lots
of unneeded overhead.

Caching Results

You can increase the performance of your SQL queries with caching. Caching stores Z SQL Method results so that if
you call the same method with the same arguments frequently, you won't have to connect to the database every time.
Depending on your application, caching can dramatically improve performance.

To control caching, go to the Advanced tab of a SQL Method. You have three different cache controls as shown in the
figure below.

The Zope Book (2.6 Edition)

315

Figure 17-7 Caching controls for Z SQL Methods

The Maximum number of rows received field controls how much data to cache for each query. The Maximum number
of results to cache field controls how many queries to cache. The Maximum time (in seconds) to cache results controls
how long cached queries are saved for. In general, the larger you set these values the greater your performance
increase, but the more memory Zope will consume. As with any performance tuning, you should experiment to find the
optimum settings for your application.

In general you will want to set the maximum results to cache to just high enough and the maximum time to cache to be
just long enough for your application. For site with few hits you should cache results for longer, and for sites with lots of
hits you should cache results for a shorter period of time. For machines with lots of memory you should increase the
number of cached results. To disable caching set the cache time to zero seconds. For most queries, the default value
of 1000 for the maximum number of rows retrieved will be adequate. For extremely large queries you may have to
increase this number in order to retrieve all your results.

Transactions

A transaction is a group of operations that can be undone all at once. As was mentioned in the chapter entitled Zope
Concepts and Architecture , all changes done to Zope are done within transactions. Transactions ensure data integrity.
When using a system that is not transactional and one of your web actions changes ten objects, and then fails to
change the eleventh, then your data is now inconsistent. Transactions allow you to revert all the changes you made
during a request if an error occurs.

Imagine the case where you have a web page that bills a customer for goods received. This page first deducts the
goods from the inventory, and then deducts the amount from the customers account. If the second operation fails for
some reason you want to make sure the change to the inventory doesn't take effect.

Most commercial and open source relational databases support transactions. If your relational database supports
transactions, Zope will make sure that they are tied to Zope transactions. This ensures data integrity across both Zope
and your relational database.

In our example, the transaction would start with the customer submitting the form from the web page and would end
when the page is displayed. It is guaranteed that operations in this transaction are either all performed or none are

The Zope Book (2.6 Edition)

316

performed even if these operations use a mix of Zope Object Database and external relational database.

Further help

The zope-db@zope.org is the place to ask questions about relational databases. You can subscribe or browse the
archive of previous postings at http://lists.zope.org/mailman/listinfo/zope-db

Summary

Zope allows you to build web applications with relational databases. Unlike many web application servers, Zope has its
own object database and does not require the use of relational databases to store information.

Zope lets you use relational data just like you use other Zope objects. You can connect your relational data to business
logic with scripts and brains, you can query your relational data with Z SQL Methods and presentation tools like DTML,
and your can even use advanced Zope features like URL traversal, acquisition, undo and security while working with
relational data.

The Zope Book (2.6 Edition)

317

Virtual Hosting Services

Zope comes with two objects that help you do virtual hosting, SiteRoot and Virtual Host Monster . Virtual hosting is a
way to serve many web sites with one Zope server.

SiteRoot s are an artifact of an older generation of Zope virtual hosting services that are only retained in current Zope
versions for backwards-compatibility purposes. They are not documented in this book because they are somewhat
"dangerous" for new users, as they have the capability of temporarily "locking you out" of your Zope instance if you
configure them improperly. Luckily, we have Virtual Host Monsters , which do everything that SiteRoots do and more
without any of the dangerous side effects of SiteRoots. If you want to do virtual hosting in Zope, you should almost
certainly be using a Virtual Host Monster .

Virtual Host Monster

Zope objects need to generate their own URLs from time to time. For instance, when a Zope object has its
"absolute_url" method called, it needs to return a URL which is appropriate for itself. This URL typically contains a
hostname, a port, and a path. In a "default" Zope installation, this hostname, port, and path is typically what you want.
But when it comes time to serve multiple websites out of a single Zope instance, each with their own "top-level" domain
name, or when it comes time to integrate a Zope Folder within an existing website using Apache or another webserver,
the URLs that Zope objects generate need to change to suit your configuration.

A Virtual Host Monster's only job is to change the URLs which your Zope objects generate. This allows you to
customize the URLs that are displayed within your Zope application, allowing an object to have a different URL when
accessed in a different way. This is most typically useful, for example, when you wish to "publish" the contents of a
single Zope Folder (e.g. /FooFolder) as a URL that does not actually contain this Folder's name (e.g as the
hostname http://www.foofolder.com/).

The Virtual Host Monster performs this job by intercepting and deciphering information passed to Zope within special
path elements encoded in the URLs of requests which come in to Zope. If these special path elements are absent in
the URLs of requests to the Zope server, the Virtual Host Monster does nothing. If they are present, however, the
Virtual Host Monster deciphers the information passed in via these path elements and causes your Zope objects to
generate a URL that is different from their "default" URL.

The Zope values which are effected by the presence of a Virtual Host Monster include REQUEST variables starting
with URL or BASE (such as URL1, BASE2, URLPATH0), and the absolute_url() methods of objects.

Virtual Host Monster configuration can be complicated, because it requires that you rewrite URLs "on the way in" to
Zope. In order for the special path elements to be introduced into the URL of the request sent to Zope, a front-end URL
"rewriting" tool needs to be employed. Virtual Host Monster comes with a simple rewriting tool in the form of its
Mappings view, or alternately you can use Apache or another webserver to rewrite URLs of requests destined to Zope
for you.

Where to Put a Virtual Host Monster And What To Name It

A single Virtual Host Monster in your Zope root can handle all of your virtual hosting needs. It doesn't matter what id
you give it, as long as nothing else in your site has the same id .

Special VHM Path Elements VirtualHostBase and VirtualHostRoot

A Virtual Host Monster doesn't do anything unless it sees one of the following special path elements in a URL:

The Zope Book (2.6 Edition)

318

VirtualHostBase — if a VirtualHostMonster "sees" this name in the incoming URL, it causes Zope objects to
generate URLs with a potentially different protocol, a potentially different hostname, and a potentially different port
number.

VirtualHostRoot — if a VirtualHostMonster "sees" this name in the incoming URL, it causes Zope objects to
generate URLs which have a potentially different "path root"

 VirtualHostBase

The VirtualHostBase declaration is typically found at the beginning of an incoming URL. A Virtual Host Monster will
intercept two path elements following this name and will use them to compose a new protocol, hostname, and port
number.

The two path elements which must follow a VirtualHostBase declaration are protocol and
hostname:portnumber . They must be separated by a single slash. The colon and portnumber parts of the second
element are optional, and if they don't exist, the Virtual Host Monster will not change the port number of
Zope-generated URLs.

Examples:

If a VHM is installed in the root folder, and a request comes in to
your Zope with the URL:

 'http://zopeserver:8080/VirtualHostBase/http/www.buystuff.com'

URLs generated by Zope objects will start with
'http://buystuff.com:8080'.

If a VHM is installed in the root folder, and a request comes in to
your Zope with the URL:

 'http://zopeserver:8080/VirtualHostBase/http/www.buystuff.com:80'

URLs generated by Zope objects will start with
'http://buystuff.com' (port 80 is the default port number
so it is left out).

If a VHM is installed in the root folder, and a request comes in to
your Zope with the URL:

 'http://zopeserver:8080/VirtualHostBase/https/www.buystuff.com:443'

URLs generated by Zope objects will start with
'https://buystuff.com/'. (port 443 is the default https port number,
so it is left off.

One thing to note when reading the examples above is that if your Zope is running on a port number like 8080, and you
want generated URLs to not include this port number and instead be served on the standard HTTP port (80), you must
specifically include the default port 80 within the VirtualHostBase declaration, e.g.
/VirtualHostBase/http/www.buystuff.com:80 . If you don't specify the :80 , your Zope's HTTP port number
will be used (which is likely not what you want).

 VirtualHostRoot

The VirtualHostRoot declaration is typically found near the end of an incoming URL. A Virtual Host Monster will
gather up all path elements which precede and follow the VirtualHostRoot name, traverse the Zope object
hierarchy with these elements, and publish the object it finds with the path rewritten to the path element(s) which follow
(s) the VirtualHostRoot name.

The Zope Book (2.6 Edition)

319

This is easier to understand by example. For a URL /a/b/c/VirtualHostRoot/d , the Virtual Host Monster will
traverse "a/b/c/d" and then generate a URL with path /d.

Examples:

If a VHM is installed in the root folder, and a request comes in to
your Zope with the URL:

 'http://zopeserver:8080/Folder/VirtualHostRoot/

The object 'Folder' will be traversed to and published,
URLs generated by Zope will start with
'http://zopeserver:8080/', and when they are visited, they
will be considered relative to 'Folder'.

If a VHM is installed in the root folder, and a request comes in to
your Zope with the URL:

 'http://zopeserver:8080/HomeFolder/VirtualHostRoot/Chris

The object '/Folder/Chris' will be traversed to and
published, URLs generated by Zope will start with
'http://zopeserver:8080/Chris', and when they are visited,
they will be considered relative to '/HomeFolder/Chris'.

Using VirtualHostRoot and VirtualHostBase Together

The most common sort of virtual hosting setup is one in which you create a Folder in your Zope root for each domain
that you want to serve. For instance the site http://www.buystuff.com is served from a Folder in the Zope root named
/buystuff while the site http://www.mycause.org is served from a Folder in the Zope root named /mycause. In order to
do this, you need to generate URLs that have both VirtualHostBase and VirtualHostRoot in them.

To access /mycause as http://www.mycause.org/, you would cause Zope to be visited via the following URL:

/VirtualHostBase/http/www.mycause.org:80/mycause/VirtualHostRoot/

In the same Zope instance, to access /buystuff as http://www.buystuff.com/, you would cause Zope to be visited via the
following URL:

/VirtualHostBase/http/www.buystuff.com:80/buystuff/VirtualHostRoot/

Testing a Virtual Host Monster

Set up a Zope on your local machine that listens on HTTP port 8080 for incoming requests.

Visit the root folder, and select Virtual Host Monster from the Add list. Fill in the id on the add form as VHM and click
Add.

Create a Folder in your Zope root named vhm_test . Within the newly-created vhm_test folder, create a DTML
Method named index_html and enter the following into its body:

<html>
<body>
<table border="1">
 <tr>
 <td>Absolute URL</td>
 <td><dtml-var absolute_url></td>
 </tr>
 <tr>
 <td>URL0</td>
 <td><dtml-var URL0></td>
 </tr>

The Zope Book (2.6 Edition)

320

 <tr>
 <td>URL1</td>
 <td><dtml-var URL1></td>
 </tr>
</table>
</body>
</html>

View the DTML Method by clicking on its View tab, and you will see something like the following:

Absolute URL http://localhost:8080/vhm_test
URL0 http://localhost:8080/vhm_test/index_html
URL1 http://localhost:8080/vhm_test

Now visit the URL http://localhost:8080/vhm_test . You will be presented with something that looks almost
exactly the same.

Now visit the URL http://localhost:8080/VirtualHostBase/http/zope.com:80/vhm_test . You will be
presented with something that looks much like this:

Absolute URL http://zope.com/vhm_test
URL0 http://zope.com/vhm_test/index_html
URL1 http://zope.com/vhm_test

Note that the URLs that Zope is generating have changed. Instead of using localhost:8080 for the hostname and
path, we've instructed Zope, through the use of a VirtualHostBase directive to use zope.com as the hostname. No
port is shown because we've told Zope that we want to generate URLs with a port number of 80, which is the default
http port.

Now visit the URL
http://localhost:8080/VirtualHostBase/http/zope.com:80/vhm_test/VirtualHostRoot/ . You will
be presented with something that looks much like this:

Absolute URL http://zope.com
URL0 http://zope.com/index_html
URL1 http://zope.com

Note that we're now publishing the vhm_test folder as if it were the root folder of a domain named zope.com . We
did this by appending a VirtualHostRoot directive to the incoming URL, which essentially says "traverse to the vhm_root
folder as if it were the root of the site."

Arranginging for Incoming URLs to be Rewritten

At this point, you're probably wondering just how in the world any of this helps you. You're certainly not going to ask
people to use their browser to visit a URL like
http://yourserver.com//VirtualHostBase/http/zope.com/vhm_test/VirtualHostRoot/ just so your
Zope-generated URLs will be "right". That would defeat the pupose of virtual hosting entirely. The answer is: don't ask
humans to do it, ask your computer to do it. There are two common (but mutually excusive) ways to accomplish this:
via the VirtualHostMonster Mappings tab and via Apache "rewrite rules" (or your webserver's facility to do the same
thing if you don't use Apache). Be warned: use either one of these facilities or the other but not both or very strange
things may start to happen. We give examples of using both facilities below.

Virtual Host Monster Mappings Tab

Use the Virtual Host Monster's Mappings tab to cause your URLs to be rewritten if:

 • You run a "bare" Zope without a front-end webserver like Apache.

The Zope Book (2.6 Edition)

321

 • You have one or more folders in your Zope that you'd like to publish as "http://some.hostname.com/" instead
of "http://hostname.com/a/folder".

The lines entered into the Mappings tab are in the form

The best way to explain how to use the Mappings tab is by example. Assuming you've added a Virtual Host Monster
object in your root folder on a Zope running on localhost on port 8080, create an alias in your local system's
hosts file (in /etc/hosts on UNIX and in c:\WINNT\system32\drivers\etc\hosts on Windows) that looks like this:

127.0.0.1 www.example.com

This causes your local machine to contact itself when a hostname of wwww.example.com is encountered. For the
sake of this example, we're going to want to contact Zope via the hostname www.example.com through a browser
(also on your local host) and this makes it possible.

Then visit the VHM in the root folder and click on its Mappings tab. On a line by itself enter the following:

www.example.com:8080/vhm_test

This will cause the vhm_test folder to be published when we visit http://www.example.com:8080 . Visit
http://www.example.com:8080 . You will see:

Absolute URL http://www.example.com:8081
URL0 http://www.example.com:8080/index_html
URL1 http://www.example.com:8080

In the "real world" this means that you are "publishing" the vhm_test folder as http:// www.example.com:8080 .

You can match multiple subdomains by putting " ." in front of the host name in the mapping rule. For example, "
.buystuff.com" will match "my.buystuff.com", "zoom.buystuff.com", etc. If an exact match exists, it is used instead of a
wildcard match.

Apache Rewrite Rules

If you use Apache in front of Zope, instead of using the Mappings tab, you should use Apache's rewrite rule
functionality to rewrite URLs in to Zope. The way this works is straightforward: Apache listens on its "normal" port,
typically port 80. At the same time, Zope's web server (on the same host or on another host) listens on a different port
(typically 8080). Apache accepts requests on its listening port. A virtual host declaration in Apache's configuration tells
Apache to rewrite

Using Apache's rewrite rule functionality requires that the mod_rewrite Apache module be enabled. This is typically
done by configuring Apache with the --enable-module=rewrite flag.

After you've got Apache configured with mod_rewrite, you can start configuring Apache's config file and Zope for the
following example. Assuming you've added a Virtual Host Monster object in your root folder on a Zope running on
localhost on port 8080, create an alias in your local system's hosts file (in /etc/hosts on UNIX and in
c:\WINNT\system32\drivers\etc\hosts on Windows) that looks like this:

127.0.0.1 www.example.com

This causes your local machine to contact itself when a hostname of wwww.example.com is encountered. For the
sake of this example, we're going to want to contact Zope via the hostname www.example.com through a browser
(also on your local host) and this makes it possible.

Now, assuming you've got Apache running on port 80 and Zope running on port 8080 on your local machine, and
assuming that you want to serve the folder named vhm_test in Zope as www.example.com and, add the following

The Zope Book (2.6 Edition)

322

to your Apache's httpd.conf file and restart your Apache process:

NameVirtualHost *
<VirtualHost *>
ServerName www.example.com
RewriteEngine On
RewriteRule ^/(.*) http://127.0.0.1:8080/VirtualHostBase/http/www.example.com:80/vhm_test/VirtualHostRoot/$1 [L,P]
</VirtualHost>

When you visit http://www.example.com in your browser, you will see:

Absolute URL http://www.example.com
URL0 http://www.example.com/index_html
URL1 http://www.example.com

This page is being served by Apache, but the results are coming from Zope. Requests come in to Apache with "normal"
URLs (e.g. http://www.example.com). The VirtualHost stanza in Apache's httpd.conf causes the request URL to
be rewritten (e.g. to
http://127.0.0.1:8080/VirtualHostBase/http/www.example.com:80/vhm_test/VirtualHostRoot/
). Apache then calls the rewritten URL, and returns the result.

See the Apache Documentation for more information on the subject of rewrite rules.

"Inside-Out" Virtual Hosting

Another use for virtual hosting is to make Zope appear to be part of a site controlled by another server. For example,
Zope might only serve the contents of http://www.mycause.org/dynamic_stuff , while Apache or another
webserver serves files via http://www.mycause.org/ . To accomplish this, you want to add "dynamic_stuff" to the
start of all Zope-generated URLs.

If you insert VirtualHostRoot, followed by one or more path elements that start with _vh_ , then these elements will be
ignored during traversal and then added (without the _vh_) to the start of generated URLs. For instance, a request for
"/a/VirtualHostRoot/_vh_z/" will traverse "a" and then generate URLs that start with /z.

In our example, you would have the main server send requests for http://www.mycause.org/dynamic_stuff/anything to
Zope, rewritten as /VirtualHostRoot/_vh_dynamic_stuff/anything.

The Zope Book (2.6 Edition)

323

Sessions

Sessions allow you to keep state between HTTP requests for site users, making implementing things like "shopping
carts" and other applications which must maintain ad-hoc state related to a site visitor for some period of time greater
than a single request. Zopes 2.5.0 and greater have built-in sessioning machinery, which is described in this chapter.

Introduction

Sessions allow you keep track of site visitors. Web browsers use the HTTP protocol to exchange data with Zope. HTTP
does not provide a way to associate subsequent requests from the same user: each request is considered completely
independent of the last.

Sessions help overcome this limitation. The term "session" means a series of related HTTP requests that come from
the same client during a given time period. Zope's sessioning system makes use of cookies, HTTP form elements,
and/or parts of URLs "in the background" to keep track of user sessions. Zope's sessioning system allows you to avoid
manually managing user sessions. You can use sessions to keep track of anonymous users as well as those who have
Zope login accounts.

Data associated with a session is called "session data". Session data is valid only for the duration of one site visit as
determined by a configurable inactivity timeout value. Session data is used to keep track of information about a user's
visit such as the items that a user has put into a "shopping cart".

It is important to realize that keeping sensitive data in a session data object is potentially insecure unless the
connection between browsers and Zope is encrypted in some way. Don't store sensitive information such as phone
numbers, addresses, account numbers, credit card numbers or any other personal information about your site visitors
in a session unless you understand the risks involved in doing so. See the section entitled Security Considerations near
the end of this document to become more familiar with these risks.

Additionally, it is advisable to use sessions only on pages where they are really necessary as they will have a
performance impact on your application. The severity of this impact varies depending on usage and configuration, but a
good "rule of thumb" is to account for a 5% - 10% speed-of-execution penalty when viewing a page which references a
session versus a similar page which does not. This penalty can vary wildly depending on the number of "writes" you
perform during your use of sessioning, so (as always) it is wise to test your application which uses sessions under load
before putting it in to production.

Session Configuration

Zope versions after 2.5 come with a default sessioning environment configured "out of the box", so there's no need to
change these objects unless you're curious or want to change how sessions are configured. For information on
changing sessioning configuration, see the Details section in this chapter.

Zope uses several different types of objects to manage session data, and brief explanations of their purpose follow.

Browser ID Manager — This object manages how visitors' browsers are identified from request-to-request, and allows
you to configure whether this happens via cookies, form variables, or URL path elements or a combination of the
aforementioned. The default sessioning configuration provides a Browser Id Manager as the /browser_id_manager
object.

Transient Object Container — This object holds session data. It allows you to set how long session data lasts before
it expires. The default sessioning configuration provides a Transient Object Container named
/temp_folder/session_data . The session data objects in the default session_data Transient Object container

The Zope Book (2.6 Edition)

324

are lost each time Zope is restarted.

Session Data Manager — This object connects the browser id and session data information. When a folder which
contains a session data manager is traversed, the REQUEST object is populated with the SESSION, which is a
session data object. The default sessioning configuration provides a Session Data Manager named
/session_data_manager .

Using Session Data

You will typically access session data through the SESSION attribute of the REQUEST object.

Here's an example of how to work with a session using a Script (Python) object:

Script (Python) "sessionTest"
secs_per_day=24*60*60
session=context.REQUEST.SESSION
if session.has_key('last view'):
 # The script has been viewed before, since the 'last view'
 # has been previously set in the session.
 then=session['last view']
 now=context.ZopeTime()
 session['last view']=now # reset last view to now
 return 'Seconds since last view %.2f' % ((now - then) * secs_per_day)
The script hasn't been viewed before, since there's no 'last
view' in the session data.
session['last view']=context.ZopeTime()
return 'This is your first view'

Note that this script is very simpleminded example which demonstrates how how Zope sessions work. It is not a "best
practice" example. You should probably not attempt to keep a last-accessed time in this manner in a production
application because it might slow your application down dramatically and cause problems under high load.

Create a script with this body named sessionTest in your root folder, and run it via its Test tab. While viewing the test
output, reload the workspace frame a few times. Note that the script keeps track of when you last viewed it and
calculates how long it has been since you last viewed it. Notice that if you quit your browser and come back to the
script it forgets you. However, if you simply visit some other pages and then return within 20 minutes or so, it still
remembers the last time you viewed it.

This example shows the basic features of working with session data: session data objects act much like Python
dictionaries. A session data object can hold almost any kind of object as a key or a value, but it's likely that you will
almost always use session data that consists of "normal" Python objects such as lists, dictionaries, strings, and
numbers.

The only tricky thing about sessions is that when working with mutable session data (for example dictionaries or lists)
you need to save the session data by reassigning it. Here's an example:

Script (Python) "sessionExample"
session=context.REQUEST.SESSION
l is a list
l=session.get("myList", [])
l.append("spam")
If you quit here, your changes to the list won't
be saved. You need to save the session data by
reassigning it to the session.
session["myList"]=l

If you forget to perform the last step (session["myList"]=l) in the script, the changes to the list will not be saved,
and on a subsequent request, "spam" will not show up in the myList list. This is a limitation of the storage mechanism
used by sessions (Zope's ZODB). For more information about persistence and mutable data, see the Persistence
chapter of the Zope Developer's Guide .

The Zope Book (2.6 Edition)

325

You can use sessions in Page Templates and DTML Documents, too. For example, here's a template snippet that
displays the users favorite color (as stored in a session):

<p tal:content="request/SESSION/favorite_color">Blue</p>

Here's how to do the same thing in DTML:

<dtml-with SESSION mapping>
 <p><dtml-var favorite_color></p>
</dtml-with>

Sessions have a plethora of additional configuration parameters and usage patterns detailed below.

For an additional example of using sessions, see the "shopping cart" example that comes with Zope 2.5 and above (in
the Examples folder).

Details

There are four major components to the Zope sessioning machinery design. These are described in detail below:

 • Browser Id Manager -- this is the component which determines a remote client's "browser id", which uniquely
identifies a particular browser. The browser id is encoded in a form/querystring variable, a cookie variable, or as
part of the URL. The browser id manager examines cookies, form and querystring elements, and URLs to
determine the client's browser id. It can also modify cookies and URLs automatically in order to differentiate users
between requests. There may be more than one browser id manager in a Zope installation, but commonly there
will only be one. Application developers will generally not talk directly to a browser id manager. Instead, they will
use the SESSION object called out of REQUEST.SESSION, which will delegate some calls to a browser id
manager. Browser id managers have "fixed" Zope ids so they can be found via acquisition by session data
managers. Browser id managers also have interfaces for encoding a URL with browser id information and
performing other utility functions.

 • Session Data Manager -- this is the component which is responsible for handing out session data to callers. When
session data is required, the session data manager talks to a browser id manager to determine the current
browser id and creates a new session data object or hands back an existing session data object based on the
browser id. Developers will generally not directly use methods of session data managers to obtain session data
objects when writing application code. Instead, they will rely on the built-in REQUEST.SESSION object, which
represents the current session data object related to the user's browser id . The session data object itself has an
identifier which is different than the browser id. This identifier represents a single user session with the server
(unlike the browser id, which represents a single browser). Many session data managers can use one browser id
manager. Many session data managers can be instantiated on a single Zope installation. Different session data
managers can implement different policies related to session data object storage (e.g. to which session data
container the session data objects are stored).

 • Transient Data Container (aka Session Data Container) -- this is the component which actually holds information
related to sessions. Currently, it is used to hold a special "transient data object" (aka "session data object")
instance for each ongoing session. Developers will generally not interact with transient data containers. Transient
data containers are responsibile for expiring the session data objects which live within them.

 • Transient Data Object (aka Session Data Object) -- these are the objects which are stored in session data
containers and managed by transient data managers. Developers interact with a transient data object after
obtaining one via REQUEST.SESSION or from a session data manager directly. A single transient data object
actually stores the useful information related to a single user's session. Transient data objects can be expired
automatically by transient data containers as a result of inactivity, or they can be manually invalidated in the

The Zope Book (2.6 Edition)

326

course of a script.

Terminology

Here's a mini-glossary of terminology used by the session tracking product:

Browser Id — the string or integer used to represent a single anonymous visitor to the part of the Zope site managed
by a single browser id manager. E.g. "12083789728".

Browser Id Name — the name which is looked for in places enumerated by the currently configured browser id
namespaces. E.g. "_ZopeId".

Browser Id Namespaces — the browser id name will be found in one of three possible places ("namespaces"): in form
elements and/or query strings (aka "form"), in a cookie, or in the URL.

Session Data Object — an transient data object that is found by asking a session data container for the item with a
key that is the current browser id value.

Session Id — the identifier for a session data object. This is different than the browser id. Instead of representing a
single visitor , it represents a single visit .

Default Configuration

Zope is preconfigured with a default sessioning setup as of Zope versions 2.5 and higher.

The Zope "default" browser id manager lives in the root folder and is named browser_id_manager .

The Zope "default" session data manager lives in the root folder and is named session_data_manager .

A "default" transient data container (session data container) is created as /temp_folder/session_data when
Zope starts up. The temp_folder object is a "mounted, nonundoing" database that keeps information in RAM, so
"out of the box", Zope stores session information in RAM. The temp folder is a "nonundoing" storage (meaning you
cannot undo transactions which take place within it) because accesses to transient data containers are very
write-intensive, and undoability adds unnecessary overhead.

A transient data container stores transient data objects. The default implementation the transient data object shipped
with Zope is engineered to reduce the potential inherent in the ZODB for "conflict errors" related to the ZODB's
"optimistic concurrency" strategy.

You needn't change any of these default options to use sessioning under Zope unless you want to customize your
setup. However, if you have custom needs, can create your own session data managers, browser id managers,
temporary folders, and transient object containers by choosing these items from Zope's "add" list in the place of your
choosing.

Advanced Development Using Sessioning

Overview

Developers generally interact with a session data object named REQUEST.SESSION in order to make use of
sessioning in Zope. When you work with the REQUEST.SESSION object, you are working with a "session data object"
that is related to the current site user.

The Zope Book (2.6 Edition)

327

Session data objects have methods of their own, including methods with allow developers to get and set data. Session
data objects are also "wrapped" in the acquisition context of their session data manager, so you may additionally call
any method on a session data object that you can call on a session data manager. For information about the API of a
session data manager and a session data object, see the Zope Help system item in "Zope Help" -> "API Reference" ->
"Session API".

Obtaining A Session Data Object

The session data object associated with the browser id in the current request may be obtained via
REQUEST.SESSION. If a session data object does not exist in the session data container, one will be created
automatically when you reference REQUEST.SESSION:

<dtml-let data="REQUEST.SESSION">
 The 'data' name now refers to a new or existing session data object.
</dtml-let>

You may also use the getSessionData() method of a session data manager to do the same thing:

<dtml-let data="session_data_manager.getSessionData()">
 The 'data' name now refers to a new or existing session data object.
</dtml-let>

A reference to REQUEST.SESSION or getSessionData() implicitly creates a new browser id if one doesn't exist in
the current request. These mechanisms also create a new session data object in the session data container if one does
not exist related to the browser id in the current request. To inhibit this behavior, use the create=0 flag to the
getSessionData() method:

<dtml-let
 data="session_data_manager.getSessionData(create=0)"> The
 'data' name now refers to an existing session data object
 or None if there was no existing browser id or session data
 object. </dtml-let>

Modifying A Session Data Object

Once you've used REQUEST.SESSION or session_data_manager.getSessionData() to obtain a session data
object, you can set key/value pairs of that session data object. These key/value pairs are where you store information
related to a particular anonymous visitor. You can use the set , get , and has_key methods of session data objects
to perform actions related to manipulating data stored in a session data object:

<dtml-let data="REQUEST.SESSION">
 <dtml-call "data.set('foo', 'bar')">
 <dtml-comment>Set 'foo' key to 'bar' value.</dtml-comment>
 <dtml-var "data.get('foo')">
 <dtml-comment>Will print 'bar'</dtml-comment>
 <dtml-if "data.has_key('foo')">
 This will be printed.
 <dtml-else>
 This will not be printed.
 </dtml-if>
</dtml-let>

An essentially arbtrary set of key/value pairs can be placed into a session data object. Keys and values can be any
kinds of Python objects (note: see Concepts and Caveats section below wfor exceptions to this rule). The session data
container which houses the session data object determines its expiration policy. Session data objects will be available
across client requests for as long as they are not expired.

Manually Invalidating A Session Data Object

The Zope Book (2.6 Edition)

328

Developers can manually invalidate a session data object. When a session data object is invalidated, it will be flushed
from the system, and will not be returned by subsequent references to REQUEST.SESSION or getSessionData() .
The invalidate() method of a session data object causes this to happen:

<dtml-let data="REQUEST.SESSION">
 <dtml-call "data.invalidate()">
</dtml-let>

This session data object will be invalidated, and subsequent references to REQUEST.SESSION in this same request
will return a new session data object. Manual invalidation of session data is useful in cases where you know the
session data is stale and you wish to flush it from the data manager.

If an "onDelete" event is defined for a session data object, the onDelete method will be called before the data object is
invalidated. See a following section for information about session data object "onDelete" and "onAdd" events.

Manually Invalidating A Browser Id Cookie

Invalidating a session data object does not invalidate the browser id cookie stored on the user's browser. Developers
may manually invalidate the cookie associated with the browser id. To do so, they can use the
flushBrowserIdCookie() method of a browser id manager. For example:

<dtml-call "REQUEST.SESSION.getBrowserIdManager().flushBrowserIdCookie()">

If the cookies namespace isn't a valid browser id key namespace when this call is performed, an exception will be
raised.

An Example Of Using Session Data from DTML

An example of obtaining a session data object and setting one of its key-value pairs in DTML follows:

<dtml-let a="REQUEST.SESSION">
 Before change: <dtml-var a>

 <dtml-call "a.set('zopetime', ZopeTime())">
 <dtml-comment>
 'zopetime' will be set to a datetime object for the current
 session
 </dtml-comment>
 After change: <dtml-var a>

</dtml-let>

The first time you run this method, the "before change" representation of the session data object will be that of an
empty dictionary, and the "after change" representation will show a key/value pair of zopetime associated with a date
and time. Assuming you've configured your browser id manager with cookies and they're working on your browser
properly, the second and subsequent times you view this method, the "before change" representation of the session
data object will have date and time in it that was the same as the last call's "after change" representation of the same
session data object. This demonstrates the very basics of session management, because it demonstrates that we are
able to associate an object (the session data object obtained via REQUEST.SESSION) with an anonymous visitor
between HTTP requests.

NOTE: To use this method in conjunction with formvar-based sessioning, you'd need to encode a link to its URL with
the browser id by using the browser id manager's encodeUrl() method.

Using the mapping Keyword With A Session Data Object in a dtml-with

DTML has the facility to treat a session data object as a mapping, making it easier to spell some of the more common
methods of access to session data objects. The mapping keyword to dtml-with means "treat name lookups that follow

The Zope Book (2.6 Edition)

329

this section as queries to my contents by name." For example:

<dtml-let a="REQUEST.SESSION">
 <dtml-call "a.set('zopetime', ZopeTime())">
 <dtml-comment>
 'zopetime' will be set to a datetime object for the current
 session... the "set" it calls is the set method of the
 session data object.
 </dtml-comment>
</dtml-let>

<dtml-with "REQUEST.SESSION" mapping>
 <dtml-var zopetime>
 <dtml-comment>
 'dtml-var zopetime' will print the DateTime object just set
 because we've used the mapping keyword to map name lookups
 into the current session data object.
 </dtml-comment>
</dtml-with>

Using Session Data From Python

Here's an example of using a session data manager and session data object from a set of Python external methods:

import time
def setCurrentTime(self):
 a = self.REQUEST.SESSION
 a.set('thetime', time.time())

def getLastTime(self):
 a = self.REQUEST.SESSION
 return a.get('thetime')

Calling the setCurrentTime will method will set the value of the current session's "thetime" key to an integer
representation of the current time. Calling the getLastTime external method will return the integer representation of the
last known value of "thetime".

Interacting with Browser Id Data

You can obtain the browser id value associated with the current request:

<dtml-var "REQUEST.SESSION.getBrowserIdManager().getBrowserId()">

Another way of doing this, which returns the same value is:

<dtml-var "REQUEST.SESSION.getContainerKey()">

This snippet will print the browser id value to the remote browser. If no browser id exists for the current request, a new
browser id is created implicitly and returned.

If you wish to obtain the current browser id value without implicitly creating a new browser id for the current request,
you can ask the browser_id_manager object explicitly for this value with the create=0 parameter :

<dtml-var "browser_id_manager.getBrowserId(create=0)">

This snippet will print a representation of the None value if there isn't a browser id associated with the current request,
or it will print the browser id value if there is one associated with the current request. Using create=0 is useful if you
do not wish to cause the sessioning machinery to attach a new browser id to the current request, perhaps if you do not
wish a browser id cookie to be set.

The browser id is either a string or an integer and has no business meaning. In your code, you should not rely on the
browser id value composition, length, or type as a result, as it is subject to change.

The Zope Book (2.6 Edition)

330

Determining Which Namespace Holds The Browser Id

For some applications, it is advantageous to know from which namespace (currently one of "cookies", "form", or "url")
the browser id has been gathered. There are three methods of browser id managers which allow you to accomplish
this, isBrowserIdFromCookie() , isBrowserIdFromForm() , and 'isBrowserIdFromUrl()':

<dtml-if "REQUEST.SESSION.getBrowserIdManager().isBrowserIdFromCookie()">
 The browser id came from a cookie.
</dtml-if>

<dtml-if "REQUEST.SESSION.getBrowserIdManager().isBrowserIdFromForm()">
 The browser id came from a form.
</dtml-if>

<dtml-if "REQUEST.SESSION.getBrowserIdManager().isBrowserIdFromUrl()">
 The browser id came from the URL.
</dtml-if>

The isBrowserIdFromCookie() method will return true if the browser id in the current request comes from the
REQUEST.cookies namespace. This is true if the browser id was sent to the Zope server as a cookie.

The isBrowserIdFromForm() method will return true if the browser id in the current request comes from the
REQUEST.form namespace. This is true if the browser id was sent to the Zope server encoded in a query string or as
part of a form element.

The isBrowserIdFromUrl() method will return true if the browser id in the current request comes from the leading
elements of the URL.

If a browser id doesn't actually exist in the current request when one of these methods is called, an error will be raised.

During typical operations, you shouldn't need to use these methods, as you shouldn't care from which namespace the
browser id was obtained. However, for highly customized applications, this set of methods may be useful.

Obtaining the Browser Id Name/Value Pair and Embedding It Into A Form

You can obtain the browser id name from a browser id manager instance. We've already determined how to obtain the
browser id itself. It is useful to also obtain the browser id name if you wish to embed a browser id name/value pair as a
hidden form field for use in POST requests:

<html>
<body>
<form action="thenextmethod">
<input type=submit name="submit" value=" GO ">
<input type=hidden name="<dtml-var "REQUEST.SESSION.getBrowserIdManager().getBrowserIdName()">"
 value="<dtml-var "REQUEST.SESSION.getBrowserIdManager().getBrowserId()">">
</form>
</body>
</html>

A convenience function exists for performing this action as a method of a browser id manager named
"getHiddenFormField":

<html>
<body>
<form action="thenextmethod">
<input type="submit" name="submit" value=" GO ">
<dtml-var "REQUEST.SESSION.getBrowserIdManager().getHiddenFormField()">
</form>
</body>
</html>

The Zope Book (2.6 Edition)

331

When either of the above DTML snippets are rendered, the resulting HTML will look something like this:

<html>
<body>
<form action="thenextmethod">
<input type="submit" name="submit" value=" GO ">
<input type="hidden" name="_ZopeId" value="9as09a7fs70y1j2hd7at8g">
</form>
</body>
</html>

Note that to maintain state across requests when using a form submission, even if you've got Automatically
Encode Zope-Generated URLs With a Browser Id checked off in your browser id manager, you'll either need
to encode the form "action" URL with a browser id (see "Embedding A Browser Id Into An HTML Link" below) or embed
a hidden form field.

Determining Whether A Browser Id is "New"

A browser id is "new" if it has been set in the current request but has not yet been acknowledged by the client. "Not
acknowledged by the client" means it has not been sent back by the client in a request. This is the case when a new
browser id is created by the sessioning machinery due to a reference to REQUEST.SESSION or similar as opposed to
being received by the sessioning machinery in a browser id name namespace. You can use the isBrowserIdNew()
method of a browser id manager to determine whether the session is new:

<dtml-if "REQUEST.SESSION.getBrowserIdManager().isBrowserIdNew()">
 Browser id is new.
<dtml-else>
 Browser id is not new.
</dtml-if>

This method may be useful in cases where applications wish to prevent or detect the regeneration of new browser ids
when the same client visits repeatedly without sending back a browser id in the request (such as may be the case
when a visitor has cookies "turned off" in their browser and the browser id manager only uses cookies).

If there is no browser id associated with the current request, this method will raise an error.

You shouldn't need to use this method during typical operations, but it may be useful in advanced applications.

Determining Whether A Session Data Object Exists For The Browser Id Associated With This Request

If you wish to determine whether a session data object with a key that is the current request's browser id exists in the
session data manager's associated session data container, you can use the hasSessionData() method of the
session data manager. This method returns true if there is session data associated with the current browser id:

<dtml-if "session_data_manager.hasSessionData()">
 The sessiondatamanager object has session data for the browser id
 associated with this request.
<dtml-else>
 The sessiondatamanager object does not have session data for
 the browser id associated with this request.
</dtml-if>

The hasSessionData() method is useful in highly customized applications, but is probably less useful otherwise. It
is recommended that you use REQUEST.SESSION instead, allowing the session data manager to determine whether
or not to create a new data object for the current request.

Embedding A Browser Id Into An HTML Link

The Zope Book (2.6 Edition)

332

You can embed the browser id name/value pair into an HTML link for use during HTTP GET requests. When a user
clicks on a link with a URL encoded with the browser id, the browser id will be passed back to the server in the
REQUEST.form namespace. If you wish to use formvar-based session tracking, you will need to encode all of your
"public" HTML links this way. You can use the encodeUrl() method of browser id managers in order to perform this
encoding:

<html>
<body>
<a href="<dtml-var "REQUEST.SESSION.getBrowserIdManager().encodeUrl('/amethod')">">Here
 is a link.
</body>
</html>

The above dtml snippet will encode the URL "/amethod" (the target of the word "Here") with the browser id name/value
pair appended as a query string. The rendered output of this DTML snippet would look something like this:

<html>
<body>
Here
 is a link.
</body>
</html>

You may successfully pass URLs which already contain query strings to the encodeUrl() method. The encodeUrl
method will preserve the existing query string and append its own name/value pair.

You may choose to encode the browser id into the URL using an "inline" style if you're checking for browser ids in the
URL (e.g. if you've checked URLs in the "Look for Browser Id in" form element of your browser id manager):

<html>
<body>
<a href="<dtml-var "REQUEST.SESSION.getBrowserIdManager().encodeUrl('/amethod', style='inline')">">Here
 is a link.
</body>
</html>

The above dtml snippet will encode the URL "/amethod" (the target of the word "Here") with the browser id name/value
pair embedded as the first two elements of the URL itself. The rendered output of this DTML snippet would look
something like this:

<html>
<body>
Here
 is a link.
</body>
</html>

Using Session onAdd and onDelete Events

The configuration of a Transient Object Container (aka a session data container) allows a method to be called when a
session data object is created (onAdd) or when it is invalidated or timed out (onDelete). The events are independent of
each other. A session data manager can define, for example, an onAdd event but no onDelete event for the session
data objects it manages, and vice versa. Or it can define both or neither events.

Why is this useful? It is advantageous to be able to prepopulate a session data object with "default" values before it's
used by application code. You can use a session onAdd event to populate the session data object with default values.
It's also sometimes advantageous to be able to write the contents of a session data object out to a permanent data
store before it is timed out or invalidated. You can use a session onDelete event for this.

An onAdd or onDelete event for a session data object is defined by way of specifying the physical path to a callable
Zope object in the "Script to call when objects are added" (onAdd), or "Script to call when objects are deleted"

The Zope Book (2.6 Edition)

333

(onDelete) in the Manage tab of the default transient object container at /temp_folder/session_data .

The "script to call" string is the Zope "physical path" of a specially-written External Method or Python Script which can
perform an action on the contents of the data object at event time. For example, if you've written a method which aims
to prepopulate a session data object named "onaddmethod" in the root of your Zope instance, you would set the onAdd
method path on the Settings screen to "/onaddmethod". Likewise, if you've written a method which does
post-processing on the contents of a session data object named "ondeletemethod" in a folder of the Zope root named
"afolder", you would set the onDelete method path in the Settings screen to "/afolder/ondeletemethod". See the section
below "Writing onAdd and onDelete Methods" for an introduction to writing onAdd and onDelete methods.

onAdd and onDelete events do not raise exceptions if logic in the method code fails. Instead, an error is logged in the
Zope event log. You can see debug messages in the log if you've turned on debug logging via setting the
"EVENT_LOG_FILE" environment variable to a filename as documented in the chapter entitled Installing and Starting
Zope .

Writing onAdd and onDelete Methods

Session data objects optionally call a Zope method when they are created and when they are timed out or invalidated.

Specially-written Script (Python) scripts or External Methods can be written to serve the purpose of being called on
session data object creation and invalidation.

The Script (Python) or External Method should define two arguments, "sdo" and "toc". "sdo" represents the session
data object being created or terminated, and "toc" represents the transient object container in which this object is
stored.

For example, to create a method to handle a session data object onAdd event which preopulates the session data
object with a DateTime object, you might write a Script (Python) named onAdd which had function parameters "sdo"
and "toc" and a body of:

sdo['date'] = context.ZopeTime()

If you set the path to this method as the onAdd event, before any application handles the new session data object, it
will be prepopulated with a key date that has the value of a DateTime object set to the current time.

To create a method to handle a session onDelete event which writes a log message, you might write an External
Method with the following body:

from zLOG import LOG, WARNING
def onDelete(sdo, toc):
 logged_out = sdo.get('logged_out', None)
 if logged_out is None:
 LOG('session end', WARNING,
 'session ended without user logging out!')

If you set the path to this method as the onDelete event, a message will be logged if the logged_out key is not found
in the session data object.

Note that for onDelete events, there is no guarantee that the onDelete event will be called in the context of the user
who originated the session! Due to the "expire-after-so-many-minutes-of-inactivity" behavior of session data containers,
a session data object onDelete event initiated by one user may be called while a completely different user is visiting the
application. Your onDelete event method should not naively make any assumptions about user state. For example, the
result of the Zope call "getSecurityManager().getUser()" in an onDelete session event method will almost surely not be
the user who originated the session.

The Zope Book (2.6 Edition)

334

The session data object onAdd method will always be called in the context of the user who starts the session.

For both onAdd and onDelete events, it is almost always desirable to set proxy roles on event methods to replace the
roles granted to the executing user when the method is called because the executing user will likely not be the user for
whom the session data object was generated. For more information about proxy roles, see the chapter entitled Users
and Security .

For additional information about using session onDelete events in combination with data object timeouts, see the
section entitled "Session Data Object Expiration Considerations" in the Concepts and Caveats section below.

Configuration and Operation

Setting Initial Transient Object Container Parameters

Because the initial transient object container at /temp_folder/session_data is stored in a RAM database, it
disappears and is recreated after each restart of your Zope server. This means that if you change one of its
parameters, such as its timeout minutes setting, that change will be lost the next time you restart your Zope server.

To work around this problem, several environment variables may be specified during Zope startup which effect the
parameters of the session_data transient object container that gets created in the temp_folder. These are:

ZSESSION_ADD_NOTIFY

 An optional full Zope path name of a callable object to be
 set as the "script to call on object addition" of the
 session_data transient object container created in
 temp_folder at startup.

ZSESSION_DEL_NOTIFY

 An optional full Zope path name of a callable object to be
 set as the "script to call on object deletion" of the
 session_data transient object container created in
 temp_folder at startup.

ZSESSION_TIMEOUT_MINS

 The number of minutes to be used as the "data object
 timeout" of the "/temp_folder/session_data" transient
 object container.

ZSESSION_OBJECT_LIMIT

 The number of items to use as a "maximum number of
 subobjects" value of the "/temp_folder" session data
 transient object container.

Instantiating Multiple Browser Id Managers (Optional)

Though you'll likely interact mostly with transient data objects while you develop session-aware code, these objects
depend on a session data manager, which in turn depends on a browser id manager. A browser id manager is an
object which doles out and otherwise manages browser ids. All session data managers need to talk to a browser id
manager to get browser id information.

You needn't create a browser id manager to use sessioning. One is already created as a result of the initial Zope
installation. If you've got special needs, you may want to instantiate more than one browser id manager. Having
multiple browser id managers may be useful in cases where you have a "secure" section of a site and an "insecure"
section of a site, each using a different browser id manager with respectively restrictive security settings. Some special
considerations are required for this setup.

The Zope Book (2.6 Edition)

335

If you wish to add a add a different browser id manager anywhere in your Zope tree (for example, if you want to have
two different virtual hosted sites that manage different browser ids), you may. However, once you've instantiated one
browser id manager or if you keep the default browser id manager, you will not be able to instantiate another browser id
manager in a place where the new browser id manager can acquire the original browser id manager via its containment
path (for programmers: the session id manager's class' Zope __replaceable__ property is set to UNIQUE). This means,
practically, that if you wish to have multiple browser id managers, you need to carefully think about where they should
go, and then you'll need to delete the default root browser id manager, place new ones in the most deeply-nested
containers first, working your way out towards the root.

In the container of your choosing, select "Browser Id Manager" from the add dropdown list in the Zope management
interface. When you add a new browser id manager, the form options available are:

Id — you cannot choose an id for your browser id manager. It must always be "browser_id_manager". Additionally,
you cannot rename a browser id manager. This is required in the current implementation so that session data
managers can find session id managers via Zope acquisition.

Title — the browser id manager title.

Browser Id Name — the name used to look up the value of the browser id. This will be the name looked up in the
cookies or form REQUEST namespaces when the browser id manager attempts to find a cookie, form variable, or
URL with a browser id in it.

Look for Browser Id Name In — choose the request elements to look in when searching for the browser id name. You
may choose "cookies", "Forms and Query Strings", and "URLs".

Automatically Encode Zope-Generated URLs With A Browser Id — if this option is checked, all URLs generated by
Zope (such as URLs obtained via the absolute_url method of all Zope objects) will have a browser id name/value
pair embedded within them. This typically only make sense if you've also got the URLs setting of "Look for Browser Id
in" checked off.

Cookie Path — this is the path element which should be sent in the browser id cookie. For more information, see the
Netscape Cookie specification at http://home.netscape.com/newsref/std/cookie_spec.html.

Cookie Domain — this is the "domain" element which should be sent in the browser id cookie. For more information,
see the Netscape Cookie specification at http://home.netscape.com/newsref/std/cookie_spec.html. Leaving this form
element blank results in no domain element in the cookie. If you change the cookie domain here, the value you enter
must have at least two dots (as per the cookie spec).

Cookie Lifetime In Days — browser id cookies sent to browsers will last this many days on a remote system before
expiring if this value is set. If this value is 0, cookies will persist on client browsers for only as long as the browser is
open.

Only Send Cookie Over HTTPS — if this flag is set, only send cookies to remote browsers if they're communicating
with us over https. The browser id cookie sent under this circumstance will also have the secure flag set in it, which
the remote browser should interpret as a request to refrain from sending the cookie back to the server over an insecure
(non-https) connection. NOTE: In the case you wish to share browser id cookies between https and non-https
connections from the same browser, do not set this flag.

After reviewing and changing these options, click the "Add" button to instantiate a browser id manager.

You can change any of a browser id manager's initial settings by visiting it in the management interface.

The Zope Book (2.6 Edition)

336

Instantiating A Session Data Manager (Optional)

After instantiating at least one browser id manager, it's possible to instantiate a session data manager. You don't need
to do this in order to begin using Zope's sessioning machinery, as a default session data manager is created as
/session_data_manager . Creating a separate session data manager in a different location in case you want to
customize sessioning-related behavior in that place is possible, however.

You can place a session data manager in any Zope container,as long as a browser id manager object named
browser_id_manager can be acquired from that container. The session data manager will use the first acquired
browser id manager.

Choose "Session Data Manager" within the container you wish to house the session data manager from the "Add"
dropdown box in the Zope management interface.

The session data manager add form displays these options:

Id — choose an id for the session data manager

Title — choose a title for the session data manager

Transient Object Container Path — enter the Zope path to a Transient Object Container in this text box in order to
use it to store your session data objects. An example of a path to a Zope transient object container is
/temp_folder/session_data .

After reviewing and changing these options, click the "Add" button to instantiate a session data manager.

You can manage a session data manager by visiting it in the management interface. You may change all options
available during the add process by doing this.

Instantiating a Transient Object Container

The default transient object container at /temp_folder/session_data stores its objects in RAM, so these objects
disappear when you restart Zope. If you want your session data objects to persist across server reboots, or if you have
a potentially very large collection of session data objects, or if you'd like to share sessions between ZEO clients, you
will want to instantiate a transient data container in a more permanent storage. A heavily-utilized transient object
container should be instantiated inside a database which is nonundoing ! Although you may instantiate a transient data
container in any storage, if you make heavy use of an external session data container in an undoing database (such as
the default Zope database which is backed by "FileStorage", an undoing and versioning storage), your database will
grow in size very quickly due to the high-write nature of session tracking, forcing you to pack very often.

For a product which allows you to use a mounted nonundoing database, see Shane Hathaway's ExternalMount product
.

Here are descriptions of the add form of a Transient Object Container, which may be added by selecting "Transient
Object Container" for the Zope Add list.:

Id — the id of the transient object container

Title (optional) — the title of the transient object container

Data object timeout in minutes — enter the number of minutes of inactivity which causes a contained transient object
be be timed out. "0" means no expiration.

The Zope Book (2.6 Edition)

337

Maximum number of subobjects — enter the maximum number of transient objects that can be added to this
transient object container. This value helps prevent "denial of service" attacks to your Zope site by effectively limiting
the number of concurrent sessions.

Script to call upon object add (optional) — when a session starts, you may call an external method or Script
(Python). This is the Zope path to the external method or Script (Python) object to be called. If you leave this option
blank, no onAdd function will be called. An example of a method path is /afolder/amethod .

Script to call upon object delete (optional) — when a session ends, you may call an external method or Script
(Python). This is the Zope path to the external method or Script (Python) object to be called. If you leave this option
blank, no onDelete function will be called. An example of a method path is /afolder/amethod .

Multiple session data managers can make use of a single transient object container to the extent that they may share
the session data objects placed in the container between them. This is not a recommended practice, however, as it has
not been tested at all.

The data object timeout in minutes value is the number of minutes that session data objects are to be kept
since their last-accessed time before they are flushed from the data container. For instance, if a session data object is
accessed at 1:00 pm, and if the timeout is set to 20 minutes, if the session data object is not accessed again by
1:19:59, it will be flushed from the data container at 1:20:00 or a time shortly thereafter. "Accessed", in this terminology,
means "pulled out of the container" by a call to the session data manager's getSessionData() method or an equivalent
(e.g. a reference to REQUEST.SESSION). See "Session Data Object Expiration Considerations" in the Concepts and
Caveats section below for details on session data expiration.

Randall Kern has additionally written a ZEO + sessioning How-To that may help, although it describes an older
generation of Zope sessioning machinery, so you may need to extrapolate a bit.

Configuring Sessioning Permissions

You need only configure sessioning permissions if your requirements deviate substantially from the norm. In this case,
here is a description of the permissions related to sessioning:

Permissions related to browser id managers:

Add Browser Id Manager — allows a role to add browser id managers. By default, enabled for Manager .

Change Browser Id Manager — allows a role to change an instance of a browser id manager. By default, enabled for
Manager .

Access contents information — allows a role to obtain data about browser ids. By default, enabled for Manager and
Anonymous .

Permissions related to session data managers:

Add Session Data Manager — allows a role to add session data managers. By default, enabled for Manager .

Change Session Data Manager — allows a role to call management-related methods of a session data manager. By
default, enabled for Manager .

Access session data — allows a role to obtain access to the session data object related to the current browser id. By
default, enabled for Manager and Anonymous . You may wish to deny this permission to roles who have DTML or
Web-based Python scripting capabilities who should not be able to access session data.

The Zope Book (2.6 Edition)

338

Access arbitrary user session data — allows a role to obtain and otherwise manipulate any session data object for
which the browser id is known. By default, enabled for Manager . (For more information, see the
getSessionDataByKey method described in the sessioning API in the Zope Help System.)

Access contents information — allows a role to obtain data about session data. By default, enabled for Manager
and Anonymous .

Permissions related to transient object containers:

Add Transient Object Container — allows a role to add transient objects containers. By default, enabled for
Manager .

Change Transient Object Container — allows a role to make changes to a transient object container.

Access Transient Objects — allows a role to obtain and otherwise manipulate the transient object related to the
current browser id.

Concepts and Caveats

Security Considerations

Sessions are insecure by their very nature. If an attacker gets a hold of someone's browser id, and if they can construct
a cookie or use form elements or URL elements to pose as that user from their own browser, they will have access to
all information in that user's session. Sessions are not a replacement for authentication for this reason.

Ideally, you'd like to make certain that nobody but the user its intended for gets a hold of his browser id. To take steps
in this direction, and if you're truly concerned about security, you will ensure that you use cookies to maintain browser
id information, and you will secure the link between your users and your site using SSL. In this configuration, it is more
difficult to "steal" browser id information as the browser id will not be evident in the URL and it will be very difficult for
attackers to "tap" the encrypted link between the browser and the Zope site.

There are significant additional risks to user privacy in employing sessions in your application, especially if you use
URL-based or formvar-based browser ids. Commonly, a browser id is embedded into a form/querystring or a URL in
order to service users who don't have cookies turned on.

For example, this kind of bug was present until recently in a lot of webmail applications: if you sent a mail to someone
that included a link to a site whose logs you could read, and the user clicked on the link in his webmail page, the full
URL of the page, including the authentication (stored as session information in the URL) would be sent as a HTTP
REFERER to your site.

Nowadays all serious webmail applications either choose to store at least some of the authentication information
outside of the URL (in a cookie for instance), or process all the user-originated URLs included in the mail to make them
go through a redirection that sanitizes the HTTP REFERER.

The moral of the story is: if you're going to use sessions to store sensitive information, and you link to external sites
within your own site, you're best off using only cookie-based browser ids.

Browser Id (Non-)Expiration

Browser ids do not actually themselves expire. They persist for as long as their conveyance mechanism allows. For
example, a browser id will last for as long as the browser id cookie persists on the client, or for as long as someone

The Zope Book (2.6 Edition)

339

uses a bookmarked URL with a browser id encoded into it. The same id will be obtained by a browser id manager on
every visit by that client to a site - potentially indefinitely depending on which conveyance mechanisms you use and
your configuration for cookie persistence.

In lieu of exipry of browser ids, the transient object container which holds session data objects implements a policy for
data object expiration. If asked for a session data object related to a particular browser id which has been expired by a
session data container, a session data manager will a return a new session data object.

Session Data Object Expiration Considerations

Session data objects expire after the period between their last access and "now" exceeds the timeout value provided to
the session data container which hold them. No special action need be taken to expire session data objects.

However, because Zope has no scheduling facility, the sessioning machinery depends on the continual exercising of
itself to expire session data objects. If the sessioning machinery is not exercised continually, it's possible that session
data objects will stick around longer than the time specified by their data container timeout value. For example:

 • User A exercises application machinery that generates a session data object. It is inserted into a session data
container which advertises a 20-minute timeout.

 • User A "leaves" the site.

 • 40 minutes go by with no visitors to the site.

 • User B visits 60 minutes after User A first generated his session data object, and exercises app code which
hands out session data objects. User A's session is expired at this point, 40 minutes "late".

As shown, the time between a session's onAdd and onDelete is not by any means guaranteed to be anywhere close to
the amount of time represented by the timeout value of its session data container. The timeout value of the data
container should only be considered a "target" value.

Additionally, even when continually exercised, the sessioning machinery has a built in error potential of roughly 20%
with respect to expiration of session data objects to reduce resource requirements. This means, for example, if a
transient object container timeout is set to 20 minutes, data objects added to it may expire anywhere between 16 and
24 minutes after they are last accessed.

Sessioning and Transactions

Sessions interact with Zope's transaction system. If a transaction is aborted, the changes made to session data objects
during the transaction will be rolled back.

Mutable Data Stored Within Session Data Objects

If you mutate an object stored as a value within a session data object, you'll need to notify the sessioning machinery
that the object has changed by calling set or __setitem__ on the session data object with the new object value.
For example:

session = self.REQUEST.SESSION
foo = {}
foo['before'] = 1
session.set('foo', foo)

mutate the dictionary
foo['after'] = 1

The Zope Book (2.6 Edition)

340

performing session.get('foo') 10 minutes from now will likely
return a dict with only 'before' within!

You'll need to treat mutable objects immutably, instead. Here's an example that makes the intent of the last example
work by doing so:

session = self.REQUEST.SESSION
foo = {}
foo['before'] = 1
session.set('foo', foo)

mutate the dictionary
foo['after'] = 1

tickle the persistence machinery
session.set('foo', foo)

An easy-to-remember rule for manipulating data objects in session storage: always explicitly place an object back into
session storage whenever you change it. For further reference, see the "Persistent Components" chapter of the Zope
Developer's Guide at http://www.zope.org/Documentation/ZDG.

Session Data Object Keys

A session data object has essentially the same restrictions as a Python dictionary. Keys within a session data object
must be hashable (strings, tuples, and other immutable basic Python types; or instances which have a __hash__
method). This is a requirement of all Python objects that are to be used as keys to a dictionary. For more information,
see the associated Python documentation at http://www.python.org/doc/current/ref/types.html (Mappings ->
Dictionaries).

In-Memory Session Data Container RAM Utilization

Each session data object which is added to an "internal" (RAM-based) session data container will consume at least 2K
of RAM.

Mounted Transient Object Container Caveats

Persistent objects which have references to other persistent objects in the same database cannot be committed into a
mounted database because the ZODB does not currently handle cross-database references.

Transient object containers which are sometimes stored in a "mounted" database (as is currently the case for the
default /temp_folder/session_data TOC. If you use a transient object container that is accessed via a
"mounted" database, you cannot store persistent object instances which have already been stored in the "main"
database as keys or values in a session data object. If you try to do so, it is likely that an InvalidObjectReference
exception will be raised by the ZODB when the transaction involving the object attempts to commit. As a result, the
transaction will fail and the session data object (and other objects touched in the same transaction) will fail to be
committed to storage.

If your "main" ZODB database is backed by a nonundoing storage, you can avoid this condition by storing session data
objects in an transient object container instantiated within the "main" ZODB database. If this is not an option, you
should ensure that objects you store as values or keys in a session data object held in a mounted session data
container are instantiated "from scratch" (via their constructors), as opposed to being "pulled out" of the main ZODB.

Conflict Errors

The Zope Book (2.6 Edition)

341

This session tracking software stores all session state in Zope's ZODB. The ZODB uses an optimistic concurrency
strategy to maintain transactional integrity for simultaneous writes. This means that if two objects in the ZODB are
changed at the same time by two different connections (site visitors) that a "ConflictError" will be raised. Zope retries
requests that raise a ConflictError at most 3 times. If your site is extremely busy, you may notice ConflictErrors in the
Zope debug log (or they may be printed to the console from which you run Zope). An example of one of these errors is
as follows:

2001-01-16T04:26:58 INFO(0) Z2 CONFLICT Competing writes at, /getData
Traceback (innermost last):
File /zope/lib/python/ZPublisher/Publish.py, line 175, in publish
File /zope/lib/python/Zope/__init__.py, line 235, in commit
File /zope/lib/python/ZODB/Transaction.py, line 251, in commit
File /zope/lib/python/ZODB/Connection.py, line 268, in commit
ConflictError: '\000\000\000\000\000\000\002/'

Errors like this in your debug log (or console if you've not redirected debug logging to a file) are normal to an extent. If
your site is undergoing heavy load, you can expect to see a ConflictError perhaps every 20 to 30 seconds. The
requests which experience conflict errors will be retried automatically by Zope, and the end user should never see one.
Generally, session data objects attempt to provide application-level conflict resolution to reduce the limitations imposed
by conflict errors NOTE: to take advantage of this feature, you must store your transient object container in a storage
such as FileStorage or TemporaryStorage which supports application-level conflict resolution.

Zope Versions and Sessioning

In the default Zope sessioning configuration , session data objects are not versioned. This means that when you
change a session data object while using a Zope Version, the changes will be "seen" outside of the version.

Further Documentation

All of the methods implemented by Session Data Managers, Browser Id Managers, Transient Data Containers and
Transient Data objects are fully documented in the Zope help system under Zope Help -> API Reference -> Session
API and Zope Help -> API Reference -> Transient Object.

The Zope Book (2.6 Edition)

342

Scalability and ZEO

When a web application receives more requests than it can handle over a short period of time, it can become
unresponsive. In the worst case, too many concurrent requests to a web application can cause the software which
services the application to crash. This can be a problem for any kind of web-based app, not just those which are served
by Zope.

The obvious solution to this problem is to use more than one server. When one server becomes overloaded, the others
can then hopefully continue to successfully serve requests. By adding additional servers to this kind of configuration,
you can "scale" your web application as necessary to meet demand.

Using multiple servers has obvious benefits, but it also poses serious challenges. For example, if you have five servers,
then you must ensure that all five server installations are populated with the same information. This is not a very hard
task if you have only a few static web pages, but for larger applications with large bodies of rapidly changing
information, manually synchronizing the data which drives five separate server installations is almost impossible, even
with the "out of the box" features that Zope provides.

A "stock" Zope installation uses the Zope Object Database as its content store, using a "storage" which is named a
"FileStorage". This storage type (there are others) keeps all of your Zope data in a single file on your computer's hard
drive, typically named Data.fs . This configuration works well until you need to add an additional Zope server to your
site to handle increased traffic to your web application. Two Zope servers cannot share this file. The file is "locked" by
one Zope server and no other Zope server can access the file. Thus, in a "stock" Zope configuration, it is impossible to
add Zope servers which read from the same database in order to "scale" your web application to meet demand.

To solve this problem, Zope Corporation has created another kind of "storage", which operates using a client/server
architecture, allowing many Zopes to share the same database information. This product is known as Zope Enterprise
Objects , or ZEO.

This chapter gives you a brief overview on installing ZEO, but there are many other options we don't cover. For more
in-depth information, see the documentation that comes with the ZEO package, and also take a look at the ZEO
discussion area .

What is ZEO?

ZEO is a system that allows you to share a Zope Object Database between more than one Zope process. By using
ZEO, you may run multiple instances of Zope on a single computer or on multiple computers. Thus, you may spread
requests to your web application between Zope servers. You may add more computers as the number of requests
grows, allowing your web application to scale. Furthermore, if one Zope server fails or crashes, other servers can still
service requests while you fix the broken one. ZEO takes care of making sure each Zope installation uses consistent
information from the same Zope Object Database.

ZEO uses a client/server architecture. The Zope processes (shown on multiple computers in the diagram below) are
the ZEO Clients . All of the clients connect to one, central ZEO Storage Server , as shown in the image below.

The Zope Book (2.6 Edition)

343

Figure 20-1 Simple ZEO illustration

The terminology may be a bit confusing. Typically, you may think of Zope as a server, not a client. But when using
ZEO, your Zope processes act as both servers (for web requests) and clients (for data from the ZEO server).

ZEO clients and servers communicate using standard Internet protocols, so they can be in the same room or in
different countries. ZEO, in fact, can distribute a Zope site to disparate geographic locations. In this chapter we'll
explore some interesting ways you can distribute your ZEO clients.

When you should use ZEO

A ZEO-configured Zope installation has the capability to serve large numbers of requests in short periods of time. If
your site is only moderately trafficked and you get no complaints about the responsiveness of the site, you probably
don't need ZEO. You may need ZEO if:

 • You've got a single Zope server in production which cannot service application demand within a reasonable
amount of time. Zope is a high-performance system, and one Zope can handle millions of hits per day, but there
are upper bounds on the capacity of a single Zope server. ZEO allows you to scale your site by adding more
hardware on which you may place extra Zope servers to handle excess demand.

 • Your site is critical and requires 24/7 uptime. Using ZEO can help you add redundancy to your server
configuration.

 • You want to distribute your site to disparate geographic locations in order to increase response time to remote
sites. ZEO allows you to place Zope servers which use the same ZODB in separate geographic locations.

 • You want to "debug" an application which is currently served by a single Zope server from another Zope process.
This is a advanced technique useful to Python developers, but is not covered in this book.

Installing, configuring, and maintaining a ZEO-enabled Zope requires some system administration knowledge. Most
Zope users will not need ZEO, or may not have the expertise necessary to maintain a distributed server system like
ZEO. ZEO is fun, and can be very useful, but before jumping head-first and installing ZEO in your system you should

The Zope Book (2.6 Edition)

344

weigh the extra administrative burden ZEO creates against the simplicity of running just a simple, stand-alone Zope.

Installing and Running ZEO

ZEO is not distributed with Zope. You may download it from the Products Section of Zope.org. The most recent version
of ZEO as of this writing is ZEO 2.0.

There are some prerequisites before you will be successfully able to use ZEO:

 • All of the Zope servers in a ZEO-enabled configuration must run the same version of Zope and ZEO. A ZEO 1.0
client will not work against a ZEO 2.0 server and vice versa. Likewise, older versions of Zope may not work with
the latest version of ZEO. The easiest way to meet this prerequisite is to make sure all of your computers use the
latest versions of Zope and ZEO.

 • All of your ZEO clients must have the same third party Products installed and they must be the same version.
This is necessary, or your third-party objects may behave abnormally or not work at all.

 • If your Zope system requires access to external resources, like mail servers or relational databases, ensure that
all of your ZEO clients have access to those resources.

 • Slow or intermittent network connections between clients and server degrade the performance of your ZEO
clients. Your ZEO clients should have a good connection to their server.

Installing ZEO requires some manual preparation. To install ZEO, download the latest ZEO package (as of this writing it
is at http://www.zope.org/Products/ZEO/ZEO-2.0.tar.gz/view), from the Zope.org web site and place it in your Zope
installation directory. Now, unpack the tarball. On Unix, this can be done with the following command:

$ tar -zxf ZEO-X.X.tar.gz

On Unix that does not have GNU tar, use the following command:

$ gzip -cd ZEO-X.X.tar.gz | tar -xvf -

On Windows, you can unpack the archive with WinZip.

Now you should have a ZEO-X.X directory on your hard disk. The next few steps install ZEO itself. Before installing
ZEO, make sure you back up your Zope system first.

To make use of ZEO, you must install ZEO files into your Zope's top-level directory. This can be done on UNIX or
Windows by issuing the following commands (under a shell on UNIX or in a DOS box on Windows):

$ cd ZEO-X.X
$ python2.1 setup.py install --home=/path/to/your/Zope/top/level/dir

Make sure you use the same Python interpreter which you're using to run Zope to invoke the setup.py command.
When you're done with this step, you should have a "ZEO" directory inside your Zope's lib/python directory.

Next, you must create a special file in your "top-level" Zope directory named custom_zodb.py . In that file, put the
following python code:

import ZEO.ClientStorage
Storage=ZEO.ClientStorage.ClientStorage(('localhost',7700))

This will configure your Zope to run as a ZEO client. If you pass ClientStorage a "tuple", as this code does, the tuple
must have two elements, a string which contains the hostname or IP address of the ZEO server, and the port that the

The Zope Book (2.6 Edition)

345

server is listening on. In this example, we're going to show you how to run both the clients and the servers on the same
machine, so the machine name is set to localhost and the port is 7700.

You should now have ZEO properly installed. Try it out by first starting the server. Go to your Zope top level directory in
a terminal window or DOS box and type:

python2.1 lib/python/ZEO/start.py -p 7700

This will start the ZEO server listening on TCP port 7700 on your computer. Now, in another window, start up Zope like
you normally would, with the z2.py script:

$ python z2.py -D

2000-10-04T20:43:11 INFO(0) client Trying to connect to server

2000-10-04T20:43:11 INFO(0) ClientStorage Connected to storage

2000-10-04T20:43:12 PROBLEM(100) ZServer Computing default pinky

2000-10-04T20:43:12 INFO(0) ZServer Medusa (V1.19) started at Wed Oct 4 15:43:12 2000
 Hostname: pinky.zopezoo.org
 Port:8080

Notice how in the above example, Zope tells you client Trying to connect to server and then ClientStorage Connected
to storage . This means your ZEO client has successfully connected to your ZEO server. Now, you can visit
http://localhost:8080/manage (or whatever URL your ZEO client is listening on) and log into Zope as usual.

As you can see, everything looks the same. Go to the Control Panel and click on Database Managment . Here, you see
that Zope is connected to a ZEO Storage and that its state is connected .

Running ZEO on one computer is a great way to familiarize yourself with ZEO and how it works. Running a single ZEO
client does not however, improve the speed of your site, and in fact, it may slow it down just a little. To really get the
speed benefits that ZEO provides, you need to run mutliple ZEO clients, which is explained in the next section.

How to Run Multiple ZEO Clients

We can expand the capacity of the site by adding additional ZEO clients. For example, let's say you have four
computers. One computer named zooserver will be your ZEO server, and the other three computers, named zeoclient1
, zeoclient2 and zeoclient3 , will be your ZEO clients. Let's assume all of these computers exist within the
".zopezoo.org" Internet domain.

The first step is to run the ZEO server on zooserver . To tell your ZEO server to listen on the tcp socket at port 7700 on
the zooserver interface, run the server with the start.py script like this:

$ python2.1 lib/python/ZEO/start.py -p 7700

This will start the ZEO server. Now, you can start up your clients by going to each client and configuring each of them
by providing them with the following custom_zodb.py :

import ZEO.ClientStorage
Storage=ZEO.ClientStorage.ClientStorage(('zooserver.zopezoo.org',7700))

Now, you can start each client's z2.py script as shown in the previous section, Installing and Running ZEO . Notice how
the host and port for each client is the same, this is so they all connect to the same server. By following this procedure
for each of your three clients you will have three different Zope's all serving the same Zope site. You can verify this by
going visiting port 8080 on all three of your ZEO client machines.

The Zope Book (2.6 Edition)

346

You probably want to run ZEO on more than one computer so that you can take advantage of the speed increase this
gives you. Running more computers means that you can serve more hits per second than with just one computer.
Distributing the load of your web site's visitors however does require a bit more work. The next section describes why,
and how, you distribute the load of your visitors among many computers.

How to Distribute Load

In the previous example you have a ZEO server named zooServer and three ZEO clients named zeoclient1 , zeoclient2
, and zeoclient3 . The three ZEO clients are connected to the ZEO server and each client is verified to work properly.

Now you have three computers that serve content to your users. The next problem is how to actually spread the
incoming web requests evenly among the three ZEO clients. Your users only know about www.zopezoo.org , not
zeoclient1 , zeoclient2 or zeoclient3 . It would be a hassle to tell only some users to use zeoclient1 , and others to use
zeoclient3 , and it wouldn't be very good use of your computing resources. You want to automate, or at least make very
easy, the process of evenly distributing requests to your various ZEO clients.

There are a number of solutions to this problem, some easy, some advanced, and some expensive. The next section
goes over the more common ways of spreading web requests around various computers using different kinds of
technology, some of them based on freely-available or commercial software, and some of them based on special
hardware.

User Chooses a Mirror

The easiest way to distribute requests across many web servers is to pick from a list of mirrored sites , each of which is
a ZEO client. Using this method requires no extra software or hardware, it just requires the maintenance of a list of
mirror servers. By presenting your users with a menu of mirrors, they can use to choose which server to use.

Note that this method of distributing requests is passive (you have no active control over which clients are used) and
voluntary (your users need to make a voluntary choice to use another ZEO client). If your users do not use a mirror,
then the requests will go to your ZEO client that serves www.zopezoo.org .

If you do not have any administrative control over your mirrors, then this can be a pretty easy solution. If your mirrors
go off-line, your users can always choose to come back to the master site which you do have administrative control
over and choose a different mirror.

On a global level, this method improves performance. Your users can choose to use a server that is geographically
closer to them, which probably results in faster access. For example, if your main server was in Portland, Oregon on
the west coast of the USA and you had users in London, England, they could choose your London mirror and their
request would not have to go half-way across the world and back.

To use this method, create a property in your root folder of type lines named "mirror". On each line of this property, put
the URL to your various ZEO clients, as shown in the figure below.

The Zope Book (2.6 Edition)

347

Figure 20-2 Figure of property with URLs to mirrors

Now, add some simple DTML to your site to display a list of your mirrors:

<h2>Please choose from the following mirrors:

 <dtml-in mirrors>
 <dtml-var
 sequence-item>
 </dtml-in>

Or, in Script (Python):

Script (Python) "generate_mirror"
##bind container=container
##bind context=context
##bind namespace=
##bind script=script
##bind subpath=traverse_subpath
##parameters=a, b
##title=
##
print "<h2>Please choose from the following mirrors: "
for mirror in container.mirrors:
 print "%s" % (mirror, mirror)
return printed

This DTML (and Script (Python) equivalent) displays a list of all mirrors your users can choose from. When using this
model, it is good to name your computers in ways that assist your users in their choice of mirror. For example, if you
spread the load geographically, then choose names of countries for your computer names.

Alternately, if you do not want users voluntarily choosing a mirror, you can have the index_html method of your
www.zopezoo.org site issue HTTP redirects. For example, use the following code in your www.zopezoo.org site's
index_html method:

<dtml-call expr="RESPONSE.redirect(_.whrandom.choice(mirror_servers))">

This code will redirect any visitors to www.zopezoo.org to a random mirror server.

The Zope Book (2.6 Edition)

348

Using Round-robin DNS to Distribute Load

The Domain Name System , or DNS, is the Internet mechanism that translates computer names (like "www.zope.org")
into numeric addresses. This mechanism can map one name to many addresses.

The simplest method for load-balancing is to use round-robin DNS, as illustrated in the figure below.

Figure 20-3 Load balancing with round-robin DNS.

When www.zopezoo.org gets resolved, DNS answers with the address of either zeoclient1 , zeoclient2 , or zeoclient3 -
but in a rotated order every time. For example, one user may resolve www.zopezoo.org and get the address for
zeoclient1 , and another user may resolve www.zopezoo.org and get the address for zeoclient2 . This way your users
are spread over the various ZEO clients.

This not a perfect load balancing scheme, because DNS information gets cached by the other nameservers on the
Internet. Once a user has resolved www.zopezoo.org to a particular ZEO client, all subsequent requests for that user
also go to the same ZEO client. The final result is generally acceptable, because the total sum of the requests are
really spread over your various ZEO clients.

One potential problem with this solution is that it can take hours or days for name servers to refresh their cached copy
of what they think the address of www.zopezoo.org is. If you are not responsible for the maintenance of your ZEO
clients and one fails, then 1/Nth of your users (where N is the number of ZEO clients) will not be able to reach your site
until their name server cache refreshes.

Configuring your DNS server to do round-robin name resolution is an advanced technique that is not covered in this
book. A good reference on how to do this can be found in the Apache Documentation .

Distributing the load with round-robin DNS is useful, and cheap, but not 100% effective. DNS servers can have strange
caching policies, and you are relying on a particular quirk in the way DNS works to distribute the load. The next section
describes a more complex, but much more powerful way of distributing load called Layer 4 Switching .

Using Layer 4 Switching to Distribute Load

The Zope Book (2.6 Edition)

349

Layer 4 switching lets one computer transparently hand requests to a farm of computers. This is an advanced
technique that is largely beyond the scope of this book, but it is worth pointing out several products that do Layer 4
switching for you.

Layer 4 switching involves a switch that, according to your preferences, chooses from a group of ZEO clients whenever
a request comes in, as shown in the figure below.

Figure 20-4 Illustration of Layer 4 switching

There are hardware and software Layer 4 switches. There are a number of software solutions, but one in general that
stands out is the Linux Virtual Server (LVS). This is an extension to the free Linux operating system that lets you turn a
Linux computer into a Layer 4 switch. More information on the LVS can be found on its web site .

There are also a number of hardware solutions that claim higher performance than software based solutions like LVS.
Cisco Systems has a hardware router called LocalDirector that works as a Layer 4 switch, and Alteon also makes a
popular Layer 4 switch.

Dealing with the Storage Server as A Single Point of Failure

Without ZEO, a single Zope system is a single point of failure. ZEO allows you to spread that point of failure around to
many different computers. If one of your ZEO clients fails, other clients can answer requests on the failed clients behalf.

However, in a typical ZEO setup there is still a single point of failure: the ZEO server itself. Without using commercial
software, this single point of failure cannot be removed.

One popular method is to accept the single point of failure risk and mitigate that risk as much as possible by using very
high-end, reliable equipment for your ZEO server, frequently backing up your data, and using inexpensive, off-the-shelf
hardware for your ZEO clients. By investing the bulk of your infrastructure budget on making your ZEO server rock solid
(redundant power supplies, RAID, and other fail-safe methods) you can be pretty well assured that your ZEO server will
remain up, even if a handful of your inexpensive ZEO clients fail.

The Zope Book (2.6 Edition)

350

Some applications, however, require absolute one-hundred-percent uptime. There is still a chance, with the solution
described above, that your ZEO server will fail. If this happens, you want a backup ZEO server to jump in and take over
for the failed server right away.

Like Layer 4 switching, there are a number of products, software and hardware, that may help you to create a backup
storage server. One popular software solution for linux is called fake . Fake is a Linux-based utility that can make a
backup computer take over for a failed primary computer by "faking out" network addresses. When used in conjunction
with monitoring utilities like mon or heartbeat , fake can guarantee almost 100% up-time of your ZEO server and Layer
4 switches. Using fake in this way is beyond the scope of this book.

ZEO also has a commercial "multiple-server" configuration which provides for redundancy at the storage level. Zope
Corporation sells a commercial product named Zope Replication Services that provides redundancy in storage server
services. It allows a "secondary" storage server to take over for a "primary" server when the primary fails.

ZEO Server Details

The final piece of the puzzle is where the ZEO server stores its information. If your primary ZEO server fails, how can
your backup ZEO server ensure it has the most recent information that was contained in the primary server?

Before explaining the details of how the ZEO server works, it is worth understanding some details about how Zope
storages work in general.

Zope does not save any of its object or information directly to disk. Instead, Zope uses a storage component that takes
care of all the details of where objects should be saved.

This is a very flexible model, because Zope no longer needs to be concerned about opening files, or reading and
writing from databases, or sending data across a network (in the case of ZEO). Each particular storage takes care of
that task on Zope's behalf.

For example, a plain, stand-alone Zope system can be illustrated in the figure below.

Figure 20-5 Zope connected to a filestorage

The Zope Book (2.6 Edition)

351

You can see there is one Zope application which plugs into a FileStorage . This storage, as its name implies, saves all
of its information to a file on the computer's filesystem.

When using ZEO, you simple replace the FileStorage with a ClientStorage , as illustrated in the figure below.

Figure 20-6 Zope with a Client Storage and Storage server

Instead of saving objects to a file, a ClientStorage sends objects over a network connection to a Storage Server . As
you can see in the illustration, the Storage Server uses a FileStorage to save that information to a file on the ZEO
server's filesystem. In a "stock" ZEO setup, this storage file is in the same place as it would be were you not running
ZEO (within your Zope directory's var directory named Data.fs).

ZEO Caveats

For the most part, running ZEO is exactly like running Zope by itself, but there are a few issues to keep in mind.

First, it takes longer for information to be written to the Zope object database. This does not slow down your ability to
use Zope (because Zope does not block you during this write operation) but it does increase your chances of getting a
ConflictError . Conflict errors happen when two ZEO clients try to write to the same object at the same time. One of the
ZEO clients wins the conflict and continues on normally. The other ZEO client loses the conflict and has to try again.

Conflict errors should be as infrequent as possible because they could slow down your system. While it's normal to
have a few conflict errors (due to the concurrent nature of Zope) it is abnormal to have many conflict errors. The
pathological case is when more than one ZEO client tries to write to the same object over and over again very quickly.
In this case, there will be lots of conflict errors, and therefore lots of retries. If a ZEO client tries to write to the database
three times and gets three conflict errors in a row, then the request is aborted and the data is not written.

Because ZEO takes longer to write this information, the chances of getting a ConflictError are higher than if you are not
running ZEO. Because of this, ZEO is more write sensitive than running Zope without ZEO. You may have to keep this
in mind when you are designing your network or application. As a rule of thumb, more and more frequent writes to the
database increase your chances of getting a ConflictError. However, faster and more reliable network connections and

The Zope Book (2.6 Edition)

352

computers lower your chances of getting a ConflictError. By taking these two factors into account, conflict errors can be
mostly avoided.

Finally, as of this writing, there is no built in encryption or authentication between ZEO servers and clients. This means
that you must be very careful about who you expose your ZEO servers to. If you leave your ZEO servers open to the
whole Internet, then anyone can connect to your ZEO server and write data into your database.

This is not an unsolveable problem however, because you can use other tools, like firewalls, to protect your ZEO
servers. If you are running a ZEO client/server connection over an unsecure network and you want guarantee that your
information is kept private, you can use tools like OpenSSH and stunnel to set up secure, encrypted communication
channels between your ZEO clients and servers. How these tools work and how to set them up is beyond the scope of
this book, but both packages are adequately documented on their web sites. For more information on firewalls, with
Linux in particular, we recommend the book "Linux Firewalls" by Robert Ziegler, which is published by New Riders.

Conclusion

In this chapter we looked at ZEO, and how ZEO can substantially increases the capacity of your website. In addition to
running ZEO on one computer to get familiarized, we looked at running ZEO on many computers, and various
techniques for spreading the load of your visitors among those many computers.

ZEO is not a "magic bullet" solution, and like other system designed to work with many computers, it adds another level
of complexity to your web site. This complexity pays off however when you need to serve up lots of dynamic content to
your audience.

The Zope Book (2.6 Edition)

353

Managing Zope Objects Using External Tools

So far, you've been working with Zope objects in your web browser via the Zope Management Interface. This chapter
details how to use common non-browser-based common to access and modify your Zope content.

Editing Zope content and code in the Zope Management Interface is sometimes painful, especially when dealing with
Python code, DTML, ZPT, or even just HTML. The standard TEXTAREA text manipulation widget provided by most
browsers has an extremely limited feature set: no syntax highlighting, no autoindent, no key rebindings, no WYSIWYG
HTML editing, and sometimes not even a search and replace function!

In short, people want to use their own tools, or at least more featureful tools, to work with Zope content.

It is possible under most operating systems to use the text "cut and paste" facility (Ctrl-C, Ctrl-V under Windows, for
example) to move text between traditional text/HTML editors and your browser, copying data back and forth between
the Zope Management interface and your other tools. This is, at best, cumbersome.

Luckily, Zope provides features that may allow you to interface Zope directly with your existing tools. This chapter
describes these features, as well as the caveats for working with them.

General Caveats

Most external tools expect to deal with "file-like" content. Zope objects are not really files in the strict sense of the word
so there are caveats to using external tools with Zope:

 • Zope data is not stored in files in the filesystem. Thus, tools which only work on files will not work with Zope
without providing a "bridge" between the tool and Zope's file-like representation of its object database. This
"bridge" is typically accomplished using Zope's FTP or WebDAV features.

 • Zope doesn't enforce any file extension rules when creating objects. Some tools don't deal well with objects that
don't have file extensions in their names (notably Macromedia Dreamweaver). To avoid this issue, you may name
your objects with file extensions according to their type (e.g. name all of your ZPT objects with an .html file
extension), or use a tool that understands extensionless "files". However, this approach has numerous
drawbacks.

 • Creating new objects can sometimes be problematic. Because Zope doesn't have a default
object-type-to-file-extension policy, new content will often be created as the wrong "kind" of object. For example, if
you upload an HTML file "foo.html" via FTP to a place where "foo.html" did not previously exist, it will be created
(by default) as a DTML Document object, whereas you may want it to be created as a Zope Page Template. Zope
provides a facility to specify the object type created on a per-folder and per-request basis (PUT_factory) that is
detailed in this chapter.

 • External tools don't know about Zope object properties. If you modify an object in an external tool, it may forget
its property list.

 • Some external tools have semantics that can drive Zope crazy. For instance, some like to create backup files
with an id that is invalid for Zope. Also, some tools will do a move-then-copy when saving, which creates a new
Zope object that is divorced from the history of the original object.

 • There is nowhere to send meaningful error messages. These integration features expect a finite set of errors
defined by the protocol. Thus, the actual problem reported by Zope, such as a syntax error in a page template,

The Zope Book (2.6 Edition)

354

cannot be displayed to the user.

 • The interactions between the tools and Zope can vary widely. On the client side, different versions of software
have different bugs and features. For instance, using FTP under Emacs will sometimes work by default, but
sometimes it needs to be configured. Also, Microsoft has many different implementations of DAV in Windows and
Office, each with changes that make life difficult. Finally, Zope itself has substantially improved support between
Zope 2.3 and Zope 2.6.

 • Finally, the semantics of Zope can interfere with the experience. The same file on your hardrive, when copied
into www.zope.org and your local copy of Zope, will have different results. In the case of the CMF, Zope will
actually alter what your saved (to add metadata).

These caveats aside, you may use traditional file manipulation tools to manage most kinds of Zope objects.

FTP and WebDAV

Most Zope "file-like" objects like DTML Methods, DTML Documents, Zope Page Templates, Script (Python) objects and
others can be edited with FTP and WebDAV. Many HTML and text editors support these protocols for editing
documents on remote servers. Each of these protocols has advantages and disadvantages:

FTP — FTP is the File Transfer Protocol. FTP is used to transfer files from one computer to another. Many text editors
and HTML editors support FTP.

WebDAV — WebDAV is a new Internet protocol based on the Web's underlying protocol, HTTP. DAV stands for
Distributed Authoring and Versioning. Because DAV is new, it may not be supported by as many text and HTML editors
as FTP.

Greg Stein's excellent webdav.org site has an FAQ that introduces WebDAV. The FAQ provides a comparison of
DAV to FTP .

Using FTP to Manage Zope Content

There are many popular FTP clients, and many web browsers like Netscape and Microsoft Internet Explorer come with
FTP clients. Many text and HTML editors also directly support FTP. You can make use of these clients to manipulate
Zope objects via FTP.

Determining Your Zope's FTP Port

In the chapter entitled "Using the Zope Management Interface", you determined the HTTP port of your Zope system by
looking at Zope's start-up output. You can find your Zope's FTP port by following the same process:

 2000-08-07T23:00:53 INFO(0) ZServer Medusa (V1.18) started at Mon Aug 7
16:00:53 2000
 Hostname: peanut
 Port:8080

 2000-08-07T23:00:53 INFO(0) ZServer FTP server started at Mon Aug 7 16:00:53 2000
 Authorizer:None
 Hostname: peanut
 Port: 8021

 2000-08-07T23:00:53 INFO(0) ZServer Monitor Server (V1.9) started on port 8099

The Zope Book (2.6 Edition)

355

The startup log says that the Zope FTP server is listening to port 8021 on the machine named peanut . If Zope doesn't
report an "FTP server started", it likely means that you need to turn Zope's FTP server on by using the -f command
line option to the start script as detailed in the chapter entitled Installing and Starting Zope .

Transferring Files with WS_FTP

WS_FTP is a popular FTP client for Windows that you can use to transfer documents and files between Zope and your
local computer. WS_FTP can be downloaded from the Ipswitch Home Page .

When you start WS_FTP, you will need to know the machine name and port information so you can connect to Zope
via FTP. After typing in the machine name and port of your Zope server, hit the Connect button. WS_FTP will now ask
you for a username and password. Enter your management username and password for the Zope management
interface.

If you type in your username and password correctly, WS_FTP shows you what your Zope site looks like through FTP.
There are folders and documents that correspond exactly to what your root Zope folder looks like through the web, as
shown in the figure below.

Figure 5-1 Viewing the Zope object hierarchy through FTP

Transferring files to and from Zope is straightforward when using WS_FTP. On the left-hand side of the WS_FTP
window is a file selection box that represents files on your local machine. The file selection box on the right-hand side
of the WS_FTP window represents objects in your Zope system. Transferring files from your computer to Zope or back
again is a matter of selecting the file you want to transfer and clicking either the left arrow (download) or the right arrow
(upload).

You may transfer Zope objects to your local computer as files using WS_FTP. You may then edit them and upload
them to Zope again when you're finished.

Remote Editing with FTP/DAV-Aware Editors

The Zope Book (2.6 Edition)

356

Editing Zope Objects with Emacs FTP Modes

Emacs is a very popular text editor. Emacs comes in two major "flavors", GNU Emacs and XEmacs. Both of these
flavors of Emacs can work directly over FTP to manipulate Zope documents and other textual content.

Emacs will let you treat any remote FTP system like any other local filesystem, making remote management of Zope
content a fairly straightforward matter. More importantly, you need not leave Emacs in order to edit content that lives
inside your Zope.

To log into Zope, run Emacs. The file you visit to open an FTP connection depends on which text editor you are
running: XEmacs or Emacs:

Xemacs — To visit a remote directory in XEmacs, press Ctrl-X D and enter a directory specification in the form:

/user@server#port:/

This will open a "dired" window to the / folder of the FTP server running on server and listening on port port .

Emacs — To visit a remote directory in Emacs, press Ctrl-X D and enter a directory specification in the form:

/user@server port:/

The literal space is inserted by holding down the Control key and the Q key, and then pressing the space "C-Q ".

For the typical Zope installation with XEmacs, the filename to open up an FTP session with Zope is
/user@localhost#8021:/ .

Emacs will ask you for a password before displaying the directory contents. The directory contents of the root folder will
look a little like the picture below:

Figure 5-2 Viewing the Zope Root Folder via ange-ftp

The Zope Book (2.6 Edition)

357

You can visit any of these "files" (which are really Zope objects) by selecting them in the usual Emacs way: enter to
select, modify the file, Ctrl-X S to save, etc. You can even create new "files" by visiting a file via "Ctrl-X Ctrl-F". New
files will be created as DTML Document objects unless you have a PUT_factory (described below) installed to specify a
different kind of initial object.

The ftp program that ships with Microsoft Windows is incompatible with NTEmacs (the Windows NT version of GNU
Emacs). To edit Zope objects via "ange-ftp" under NTEmacs, it requires that you have a special FTP program. This
program ships with "Cygwin", a UNIX implementation for Windows. To use NTEmacs download and install Cygwin and
add the following to your .emacs configuration file:

(setq ange-ftp-ftp-program-name "/cygwin/bin/ftp.exe")
(setq ange-ftp-try-passive-mode t)
(setq ange-ftp-ftp-program-args '("-i" "-n" "-g" "-v" "--prompt" ""))

For another perspective on using Emacs with Zope, see the Zope.org HowTo written by Miklos Nemeth . There's even
a DTML mode for XEmacs and a ZWiki mode for Xemacs , both by "alburt".

Caveats With FTP

In addition to the general caveats listed above, using FTP with Zope has some unique caveats:

 • You need to be aware of passive mode for connecting to Zope.

 • The "move-then-copy" problem is most apparent when using Emacs' ange-ftp.

Editing Zope Objects with WebDAV

WebDAV is an extension to the HTTP protocol that provides features that allow users to concurrently author and edit
content on web sites. WebDAV offers features like locking, revision control, and the tagging of objects with properties.
Because WebDAV's goals of through the web editing match some of the goals of Zope, Zope has supported the
WebDAV protocol for a fairly long time.

WebDAV is a newer Internet protocol compared to HTTP or FTP, so there are fewer clients that support it. There is,
however, growing momentum behind the WebDAV movement and more clients are being developed rapidly.

The WebDAV protocol is evolving quickly, and new features are being added all the time. You can use any WebDAV
client to edit your Zope objects by simply pointing the client at your object's URL and editing it. For most clients,
however, this will cause them to try to edit the result of rendering the document, not the source . For DTML or ZPT
objects, this can be a problem.

Until clients catch up to the latest WebDAV standard and understand the difference between the source of a document
and its result, Zope offers a special HTTP server you can enable with the -W command line option to the Zope start
script. This server listens on a different port than your normal HTTP server and returns different, special source content
for WebDAV requests that come in on that port.

For more information about starting Zope with a WebDAV source port turned on, see the chapter entitled Installing and
Starting Zope . The "standard" WebDAV source port number (according to IANA) is 9800.

Unfortunately, this entire discussion of source vs. rendered requests is too esoteric most users, who will try the regular
port. Instead of breaking, it will work in very unexpected ways, leading to confusion. Until DAV clients support the
standard's provision for discovering the source URL, this distinction will have to confronted.

Note

The Zope Book (2.6 Edition)

358

Zope 2.6 has optional support for returning the source version of a resource on the normal HTTP port. It does this by
inspecting the user agent header of the HTTP request. If the user agent matches a string you have configured into your
server settings, the source is returned.

This is quite useful, as there are few cases in which authoring tools such as cadaver or Dreamweaver will want the
rendered version. For more information on this optional support, read the section "Environment Variables That Affect
Zope At Runtime" in Installing and Starting Zope .

One program that supports WebDAV is a command-line tool named cadaver . It is available for most UNIX systems
(and Cygwin under Windows) from WebDAV.org .

It is typically invoked from a command-line using the command cadaver against Zope's WebDAV "source port":

$ cadaver
dav:!> open http://saints.homeunix.com:9800/
Looking up hostname... Connecting to server... connected.
Connecting to server... connected.
dav:/> ls
Listing collection `/': (reconnecting...done) succeeded.
Coll: Control_Panel 0 Jun 14:03
Coll: Examples 0 Jun 14:01
Coll: ZopeBook 0 Jul 22:57
Coll: temp 0 Jul 2002
Coll: temp_folder 0 Jul 19:47
Coll: tutorial 0 Jun 00:42
 acl_users 0 Dec 1998
 browser_id_manager 0 Jun 14:01
 index_html 93 Jul 01:01
 session_data_manager 0 Jun 14:01
 standard_error_message 1365 Jan 2001
 standard_html_footer 53 Jan 2001
 standard_html_header 80 Jan 2001
 standard_template.pt 282 Jun 14:02
dav:/>

Cadaver allows you to invoke an editor against files while inside the command-line facility:

dav:/> edit index_html
Connecting to server... connected.
Locking `index_html': Authentication required for Zope on server `saints.homeunix.com':
Username: admin
Password:
Retrying: succeeded.
Downloading `/index_html' to /tmp/cadaver-edit-001320
Progress: [=============================>] 100.0% of 93 bytes succeeded.
Running editor: `vi /tmp/cadaver-edit-001320'...

In this case, the index_html object was pulled up for editing inside of the vi text editor. You can specify your editor
of choice on most UNIX-like systems by changing the EDITOR environment variable.

You can also use cadaver to transfer files between your local directory and remote Zope, as described above for
WS_FTP. For more advanced synchronization of data, the sitecopy program can inspect your local and remote data
and only transfer the changes, using FTP or DAV.

Other commercial applications, such as Macromedia Dreamweaver and Microsoft Office also support WebDAV. For
more information regarding programs which support the WebDAV protocol, see WebDAV.org .

Using a PUT_factory to Specify the Type of Objects Created With FTP and DAV

The Zope Book (2.6 Edition)

359

Because Zope is an "file-extensionless" system, it is often necessary to tell Zope to create a specific kind of object
when an FTP or WebDAV client causes a new object to be entered into the Zope system. This action is typically called
a "PUT" (the name of the FTP and DAV command that causes a file to be uploaded).

The default policy for new Zope object creation is as follows:

If the content type is Create this kind of object
---------------------- --------------------------
'text/{anything}' create a DTML Document

'image/{anything}' create an Image object

'{anything else}' create a File object

Zope allows you to override its default behavior by creating a Python Script or External Method named "PUT_factory" in
the folder in and under which you want the new behavior to take effect.

The following example is a bit of text suitable as an External Method that you can put in your "root" folder which causes
Zope to create Zope Page Templates instead of DTML Documents when it encounters a PUT of type "text/html" or
"text/plain" (or any other kind of textual content):

from Products.PageTemplates.ZopePageTemplate import ZopePageTemplate

def PUT_factory(self, name, typ, body):
 if typ.startswith('text'):
 return ZopePageTemplate(name, text=body, content_type=typ)

Put this text into a file on your Zope server's filesystem in your Zope installation's Extensions folder named
PUT_factory.py . Then create an External Method object in your root folder with an id of PUT_factory , a
title of "PUT factory for Page Templates" a Module Name of PUT_factory and a Function Name of
PUT_factory as well. Once this External Method has been created in the root folder, any new file that is uploaded via
FTP or DAV with a content-type of text/{anything} will be created as a Zope Page Template. Other kinds of
objects, such as images, will continue to be created as specified by the default policy. Note that different PUT_factories
may be created in different folders; each folder (and its subfolders) will inherit the policy of its particular PUT_factory.

To learn more about creating your own custom PUT_factories, consult the PUT_factory specification .

Using The External Editor Product

Casey Duncan has created a useful Zope product named External Editor. It allows Zope users to use their browsers to
navigate the Zope object hierarchy using the ZMI, launching the editor of their choice (for example, vim, Emacs, or
Dreamweaver) for that particular object when you click a "pencil" icon next to the object's name. It has both a "client"
component, which installs on your local machine and a "server" component, which installs on the server from which you
run Zope.

External Editor offers a bit of the "best of both worlds" when it comes to editing Zope content. You can use your existing
text and HTML editing tools, manipulated by navigating the Zope Management Interface. It is available for download in
Casey's Zope.org area .

The Zope Book (2.6 Edition)

360

Figure 5-2 A Zope With External Editor Installed

Other Integration Facilities

This chapter focused on FTP, DAV, and External Editor. These are the most popular and mature approaches for
integration. However, other choices are available.

For instance, Zope has long supported the use of HTTP PUT, originally implemented by Netscape as "Netscape
Publishing". This allows Netscape Composer, Mozilla Composer, and Amaya to edit and create new pages, along with
associated elements such as images and stylesheets.

Also, Zope provides command-line tools such as load_site that can interact with your Zope server.

The Zope Book (2.6 Edition)

361

Chapter 14: Extending Zope

You can extend Zope by creating your own types of objects that are customized to your applications needs. New kinds
of objects are installed in Zope by Products . Products are extensions to Zope that Zope Corporation and many other
third party developers create. There are hundreds of different Products and many serve very specific purposes. A
complete library of Products is at the Download Section . of Zope.org.

Products can be developed two ways, through the web using ZClasses, and in the Python programming language.
Products can even be a hybrid of both through the web products and Python code. This chapter discusses building new
products through the web, a topic which you've already have some brief exposure to in Chapter 11, "Searching and
Categorizing Content". Developing a Product entirely in Python product programming is the beyond its scope and you
should visit Zope.org for specific Product developer documentation.

This chapter shows you how to:

 • Create new Products in Zope

 • Define ZClasses in Products

 • Integrating Python with ZClasses

 • Distribute Products to other Zope users

The first step in customizing Zope starts in the next section, where you learn how to create new Zope Products.

Creating Zope Products

Through the web Products are stored in the Product Management folder in the Control Panel. Click on the
Control_Panel in the root folder and then click Products . You are now in the screen shown in Figure 12-1 .

The Zope Book (2.6 Edition)

362

Figure 12-1 Installed Products

Each blue box represents an installed Product. From this screen, you can manage these Products. Some Products are
built into Zope by default or have been installed by you or your administrator. These products have a closed box icon,
as shown in Figure 12-1 . Closed-box products cannot be managed through the web. You can get information about
these products by clicking on them, but you cannot change them.

You can also create your own Products that you can manage through the web. Your products let you create new kinds
of objects in Zope. These through the web managable product have open-box icons. If you followed the examples in
Chapter 11, "Searching and Categorizing Content", then you have a News open-box product.

Why do you want to create products? For example, all of the various caretakers in the Zoo want an easy way to build
simple on-line exhibits about the Zoo. The exhibits must all be in the same format and contain similar information
structure, and each will be specific to a certain animal in the Zoo.

To accomplish this, you could build an exhibit for one animal, and then copy and paste it for each exhibit, but this would
be a difficult and manual process. All of the information and properties would have to be changed for each new exhibit.
Further, there may be thousands of exhibits.

To add to this problem, let's say you now want to have information on each exhibit that tells whether the animal is
endangered or not. You would have to change each exhibit, one by one, to do this by using copy and paste. Clearly,
copying and pasting does not scale up to a very large zoo, and could be very expensive.

You also need to ensure each exhibit is easy to manage. The caretakers of the individual exhibits should be the ones
providing information, but none of the Zoo caretakers know much about Zope or how to create web sites and you
certainly don't want to waste their time making them learn. You just want them to type some simple information into a
form about their topic of interest, click submit, and walk away.

By creating a Zope product, you can acomplish these goals quickly and easily. You can create easy to manage objects
that your caretakers can use. You can define exhibit templates that you can change once and effect all of the exhibits.
You can do these things by creating Zope Products.

Creating A Simple Product

Using Products you can solve the exhibit creation and management problems. Let's begin with an example of how to
create a simple product that will allow you to collect information about exhibits and create a customized exhibit. Later in
the chapter you see more complex and powerful ways to use products.

The chief value of a Zope product is that it allows you to create objects in a central location and it gives you access to
your objects through the product add list. This gives you the ability to build global services and make them available via
a standard part of the Zope management interface. In other words a Product allows you to customize Zope.

Begin by going to the Products folder in the Control Panel . To create a new Product, click the Add Product button on
the Product Management folder. This will take you to the Product add form. Enter the id "ZooExhibit" and click
Generate . You will now see your new Product in the Product Management folder. It should be a blue box with an open
lid. The open lid means you can click on the Product and manage it through the web.

Select the ZooExhibit Product. This will take you to the Product management screen.

The management screen for a Product looks and acts just like a Folder except for a few differences:

1. There is a new view, called Distribution , all the way to the right. This gives you the ability to package and distribute
your Product. This is discussed later.

The Zope Book (2.6 Edition)

363

2. If you select the add list, you will see some new types of objects you can add including ZClass , Factory , and
Permission .

3. The folder with a question mark on it is the ZooExhibit Product's Help Folder . This folder can contain Help Topics
that tell people how to use your Product.

4. There is also a new view Define Permissions that define the permissions associated with this Product. This is
advanced and is not necessary for this example.

In the Contents View create a DTML Method named hello with these contents:

<dtml-var standard_html_header>

<h2>Hello from the Zoo Exhibit Product</h2>

<dtml-var standard_html_footer>

Anonymous User - Nov. 20, 2002 9:55 am:
 2. If you select the add list, you will see some new types of objects you can add including ZClass, <i>Zope
 Factory</i>, and <i>Zope Permission</i>.

This method will allow you to test your product. Next create a Factory. Select Zope Factory from the product add list.
You will be taken to a Factory add form as shown in Figure 12-2 .

Figure 12-2 Adding A Factory

Factories create a bridge from the product add list to your Product. Give your Factory an id of myFactory . In the Add
list name field enter Hello and in the Method selection, choose hello . Now click Generate . Now click on the new
Factory and change the Permission to Add Document, Images, and Files and click on Save Changes . This tells Zope
that you must have the Add Documents, Images, and Files permission to use the Factory. Congratulations, you've just
customized the Zope management interface. Go to the root folder and click the product add list. Notice that it now
includes an entry named Hello . Choose Hello from the product add list. It calls your hello method.

One of the most common things to do with methods that you link to with Factories is to copy objects into the current
Folder. In other words your methods can get access to the location from which they were called and can then perform

The Zope Book (2.6 Edition)

364

operations on that Folder including copy objects into it. Just because you can do all kinds of crazy things with Factories
and Products doesn't mean that you should. In general people expect that when they select something from the
product add list that they will be taken to an add form where they specify the id of a new object. Then they expect that
when they click Add that a new object with the id they specified will be created in their folder. Let's see how to fulfill
these expectations.

First create a new Folder named exhibitTemplate in your Product. This will serve as a template for exhibits. Also in the
Product folder create a DTML Method named addForm , and Python Script named add . These objects will create new
exhibit instances. Now go back to your Factory and change it so that the Add list name is Zoo Exhibit and the method is
addForm .

So what's going to happen is that when someone chooses Zoo Exhibit from the product add list, the addForm method
will run. This method should collect information about the id and title of the exhibit. When the user clicks Add it should
call the add script that will copy the exhibitTemplate folder into the calling folder and will rename it to have the specified
id. The next step is to edit the addForm method to have these contents:

<dtml-var manage_page_header>

 <h2>Add a Zoo Exhibit</h2>

 <form action="add" method="post">
 id <input type="text" name="id">

 title <input type="text" name="title">

 <input type="submit" value=" Add ">
 </form>

<dtml-var manage_page_footer>

Admittedly this is a rather bleak add form. It doesn't collect much data and it doesn't tell the user what a Zoo Exhibit is
and why they'd want to add one. When you create your own web applications you'll want to do better than this example.

Notice that this method doesn't include the standard HTML headers and footers. By convention Zope management
screens don't use the same headers and footers that your site uses. Instead management screens use
manage_page_header and manage_page_footer . The management view header and footer ensure that
management views have a common look and feel.

Also notice that the action of the form is the add script. Now paste the following body into the add script:

Script (Python) "add"
##parameters=id ,title, REQUEST=None
##
"""
Copy the exhibit template to the calling folder
"""

Clone the template, giving it the new ID. This will be placed
in the current context (the place the factory was called from).
exhibit=context.manage_clone(container.exhibitTemplate,id)

Change the clone's title
exhibit.manage_changeProperties(title=title)

If we were called through the web, redirect back to the context
if REQUEST is not None:
 try: u=context.DestinationURL()
 except: u=REQUEST['URL1']
 REQUEST.RESPONSE.redirect(u+'/manage_main?update_menu=1')

rmg - Sep. 18, 2002 2:36 pm:
 The instructions are to 'Paste' in the code. If you paste in with the first three '##' lines, you get an
 error. Remove those lines and set the parameters in the 'Parameters' form field and all works fine.

The Zope Book (2.6 Edition)

365

This script clones the exhibitTemplate and copies it to the current folder with the specified id. Then it changes the title
property of the new exhibit. Finally it returns the current folder's main management screen by calling manage_main .

Congratulations, you've now extended Zope by creating a new product. You've created a way to copy objects into Zope
via the product add list. However, this solution still suffers from some of the problems we discussed earlier in the
chapter. Even though you can edit the exhibit template in a centralized place, it's still only a template. So if you add a
new property to the template, it won't affect any of the existing exhibits. To change existing exhibits you'll have to
modify each one manually.

ZClasses take you one step farther by allowing you to have one central template that defines a new type of object, and
when you change that template, all of the objects of that type change along with it. This central template is called a
ZClass. In the next section, we'll show you how to create ZClasses that define a new Exhibit ZClass.

Creating ZClasses

ZClasses are tools that help you build new types of objects in Zope by defining a class . A class is like a blueprint for
objects. When defining a class, you are defining what an object will be like when it is created. A class can define
methods, properties, and other attributes.

Objects that you create from a certain class are called instances of that class. For example, there is only one Folder
class, but you many have many Folder instances in your application.

Instances have the same methods and properties as their class. If you change the class, then all of the instances
reflect that change. Unlike the templates that you created in the last section, classes continue to exert control over
instances. Keep in mind this only works one way, if you change an instance, no changes are made to the class or any
other instances.

A good real world analogy to ZClasses are word processor templates. Most word processors come with a set of
predefined templates that you can use to create a certain kind of document, like a resume. There may be hundreds of
thousands of resumes in the world based on the Microsoft Word Resume template, but there is only one template. Like
the Resume template is to all those resumes, a ZClass is a template for any number of similar Zope objects.

ZClasses are classes that you can build through the web using Zope's management interface. Classes can also be
written in Python, but this is not covered in this book.

ZClasses can inherit attributes from other classes. Inheritance allows you to define a new class that is based on
another class. For example, say you wanted to create a new kind of document object that had special properties you
were interested in. Instead of building all of the functionality of a document from scratch, you can just inherit all of that
functionality from the DTML Document class and add only the new information you are interested in.

Inheritance also lets you build generalization relationships between classes. For example, you could create a class
called Animal that contains information that all animals have in general. Then, you could create Reptile and Mammal
classes that both inherit from Animal . Taking it even further, you could create two additional classes Lizard and Snake
that both inherit from Reptile , as shown in Figure 12-3 .

The Zope Book (2.6 Edition)

366

Figure 12-3 Example Class Inheritance

ZClasses can inherit from most of the objects you've used in this book. In addition, ZClasses can inherit from other
ZClasses defined in the same Product. We will use this technique and others in this chapter.

Before going on with the next example, you should rename the existing ZooExhibit Product in your Zope Products
folder to something else, like ZooTemplate so that it does not conflict with this example. Now, create a new Product in
the Product folder called ZooExhibit .

Select ZClass from the add list of the ZooExhibit Contents view and go to the ZClass add form. This form is complex,
and has lots of elements. We'll go through them one by one:

Id — This is the name of the class to create. For this example, choose the name ZooExhibit .

Meta Type — The Meta Type of an object is a name for the type of this object. This should be something short but
descriptive about what the object does. For this example, choose the meta type "Zoo Exhibit".

Base Classes — Base classes define a sequence of classes that you want your class to inherit attributes from. Your
new class can be thought of as extending or being derived from the functionality of your base classes. You can choose
one or more classes from the list on the left, and click the -> button to put them in your base class list. The <- button
removes any base classes you select on the right. For this example, don't select any base classes. Later in this
chapter, we'll explain some of the more interesting base classes, like ObjectManager .

Create constructor objects? — You usually want to leave this option checked unless you want to take care of
creating form/action constructor pairs and a Factory object yourself. If you want Zope to do this task for you, leave this
checked. Checking this box means that this add form will create five objects, a Class, a Constructor Form, a
Constructor Action, a Permission, and a Factory. For this example, leave this box checked.

Include standard Zope persistent object base classes? — This option should be checked unless you don't want
your object to be saved in the database. This is an advanced option and should only be used for Pluggable Brains. For
this example, leave this box checked.

The Zope Book (2.6 Edition)

367

Now click Add . This will take you back to the ZooExhibit Product and you will see five new objects, as shown in Figure
12-4 .

Figure 12-4 Product with a ZClass

The five objects Zope created are all automatically configured to work properly, you do not need to change them for
now. Here is a brief description of each object that was created:

 ZooExhibit — This is the ZClass itself. It's icon is a white box with two horizontal lines in it. This is the traditional
symbol for a class .

 ZooExhibit_addForm — This DTML Method is the constructor form for the ZClass. It is a simple form that accepts an
id and title. You can customize this form to accept any kind of input your new object requires. The is very similar to the
add form we created in the first example.

 ZooExhibit_add — This DTML Method gets called by the constructor form, ZooExhibit_addForm . This method
actually creates your new object and sets its id and title . You can customize this form to do more advanced changes to
your object based on input parameters from the ZooExhibit_addForm . This has the same functionality as the Python
script we created in the previous example.

 ZooExhibit_add_permission — The curious looking stick-person carrying the blue box is a Permission . This defines
a permission that you can associate with adding new ZooExhibit objects. This lets you protect the ability to add new
Zoo exhibits. If you click on this Permission, you can see the name of this new permission is "Add ZooExhibits".

 ZooExhibit_factory — The little factory with a smokestack icon is a Factory object. If you click on this object, you can
change the text that shows up in the add list for this object in the Add list name box. The Method is the method that
gets called when a user selects the Add list name from the add list. This is usually the constructor form for your object,
in this case, ZooExhibit_addForm . You can associate the Permission the user must have to add this object, in this
case, ZooExhibit_add_permission . You can also specify a regular Zope permission instead.

That's it, you've created your first ZClass. Click on the new ZClass and click on its Basic tab. The Basic view on your
ZClass lets you change some of the information you specified on the ZClass add form. You cannot change the base
classes of a ZClass. As you learned earlier in the chapter, these settings include:

The Zope Book (2.6 Edition)

368

meta-type — The name of your ZClass as it appears in the product add list.

class id — A unique identifier for your class. You should only change this if you want to use your class definition for
existing instances of another ZClass. In this case you should copy the class id of the old class into your new class.

icon — The path to your class's icon image. There is little reason to change this. If you want to change your class's
icon, upload a new file with the Browse button.

At this point, you can start creating new instances of the ZooExhibit ZClass. First though, you probably want a common
place where all exhibits are defined, so go to your root folder and select Folder from the add list and create a new
folder with the id "Exhibits". Now, click on the Exhibits folder you just created and pull down the Add list. As you can
see, ZooExhibit is now in the add list.

Go ahead and select ZooExhibit from the add list and create a new Exhibit with the id "FangedRabbits". After creating
the new exhibit, select it by clicking on it.

As you can see your object already has three views, Undo , Ownership , and Security . You don't have to define these
parts of your object, Zope does that for you. In the next section, we'll add some more views for you to edit your object.

Creating Views of Your ZClass

All Zope objects are divided into logical screens called Views . Views are used commonly when you work with Zope
objects in the management interface, the tabbed screens on all Zope objects are views. Some views like Undo , are
standard and come with Zope.

Views are defined on the Views view of a ZClass. Go to your ZooExhibit ZClass and click on the Views tab. The Views
view looks like Figure 12-5 .

Figure 12-5 The Views view.

On this view you can see the three views that come automatically with your new object, Undo , Ownership , and
Security . They are automatically configured for you as a convenience, since almost all objects have these interfaces,

The Zope Book (2.6 Edition)

369

but you can change them or remove them from here if you really want to (you generally won't).

The table of views is broken into three columns, Name , Method , and Help Topic . The Name is the name of the view
and is the label that gets drawn on the view's tab in the management interface. The Method is the method of the class
or property sheet that gets called to render the view. The Help Topic is where you associate a Help Topic object with
this view. Help Topics are explained more later.

Views also work with the security system to make sure users only see views on an object that they have permission to
see. Security will be explained in detail a little further on, but it is good to know at this point that views now only divide
an object management interfaces into logical chunks, but they also control who can see which view.

The Method column on the Methods view has select boxes that let you choose which method generates which view.
The method associated with a view can be either an object in the Methods view, or a Property Sheet in the Property
Sheets view.

Creating Properties on Your ZClass

Properties are collections of variables that your object uses to store information. A Zoo Exhibit object, for example,
would need properties to contain information about the exhibit, like what animal is in the exhibit, a description, and who
the caretakers are.

Properties for ZClasses work a little differently than properties on Zope objects. In ZClasses, Properties come in named
groups called Property Sheets . A Property Sheet is a way of organizing a related set of properties together. Go to your
ZooExhibit ZClass and click on the Property Sheets tab. To create a new sheet, click Add Common Instance Property
Sheet . This will take you to the Property Sheet add form. Call your new Property Sheet "ExhibitProperties" and click
Add .

Now you can see that your new sheet, ExhibitProperties , has been created in the Property Sheets view of your
ZClass. Click on the new sheet to manage it, as shown in Figure 12-6 .

Figure 12-6 A Property Sheet

The Zope Book (2.6 Edition)

370

As you can see, this sheet looks very much like the Properties view on Zope objects. Here, you can create new
properties on this sheet. Properties on Property Sheets are exactly like Properties on Zope objects, they have a name,
a type, and a value.

Create three new properties on this sheet:

 animal — This property should be of type string . It will hold the name of the animal this exhibit features.

 description — This property should be of type text . It will hold the description of the exhibit.

 caretakers — This property should be of type lines . It will hold a list of names for the exhibit caretakers.

Property Sheets have two uses. As you've seen with this example, they are a tool for organizing related sets of
properties about your objects, second to that, they are used to generate HTML forms and actions to edit those set of
properties. The HTML edit forms are generated automatically for you, you only need to associate a view with a Property
Sheet to see the sheet's edit form. For example, return to the ZooExhibit ZClass and click on the Views tab and create
a new view with the name Edit and associate it with the method propertysheets/ExhibitProperties/manage_edit .

Since you can use Property Sheets to create editing screens you might want to create more than one Property Sheet
for your class. By using more than one sheet you can control which properties are displayed together for editing
purposes. You can also separate private from public properties on different sheets by associating them with different
permissions.

Now, go back to your Exhibits folder and either look at an existing ZooExhibit instance or create a new one. As you can
see, a new view called Edit has been added to your object, as shown in Figure Figure 12-7 .

Figure 12-7 A ZooExhibit Edit view

This edit form has been generated for you automatically. You only needed to create the Property Sheet, and then
associate that sheet with a View. If you add another property to the ExhibitProperties Property Sheet, all of your
instances will automatically get a new updated edit form, because when you change a ZClass, all of the instances of
that class inherit the change.

The Zope Book (2.6 Edition)

371

It is important to understand that changes made to the class are reflected by all of the instances, but changes to an
instance are not reflected in the class or in any other instance. For example, on the Edit view for your ZooExhibit
instance (not the class), enter "Fanged Rabbit" for the animal property, the description "Fanged, carnivorous rabbits
plagued early medieval knights. They are known for their sharp, pointy teeth." and two caretakers, "Tim" and
"Somebody Else". Now click Save Changes .

As you can see, your changes have obviously effected this instance, but what happened to the class? Go back to the
ZooExhibit ZClass and look at the ExhibitProperties Property Sheet. Nothing has changed! Changes to instances have
no effect on the class.

You can also provide default values for properties on a Property Sheet. You could, for example, enter the text
"Describe your exhibit in this box" in the description property of the ZooExhibit ZClass. Now, go back to your Exhibits
folder and create a new , ZooExhibit object and click on its Edit view. Here, you see that the value provided in the
Property Sheet is the default value for the instance. Remember, if you change this instance, the default value of the
property in the Property Sheet is not changed. Default values let you set up useful information in the ZClass for
properties that can later be changed on an instance-by-instance basis.

You may want to go back to your ZClass and click on the Views tab and change the "Edit" view to be the first view by
clicking the First button. Now, when you click on your instances, they will show the Edit view first.

Creating Methods on your ZClass

The Methods View of your ZClass lets you define the methods for the instances of your ZClass. Go to your ZooExhibit
ZClass and click on the Methods tab. The Methods view looks like Figure 12-8 .

Figure 12-8 The Methods View

You can create any kind of Zope object on the Methods view, but generally only callable objects (DTML Methods and
Scripts, for example) are added.

Methods are used for several purposes:

The Zope Book (2.6 Edition)

372

Presentation — When you associate a view with a method, the method is called when a user selects that view on an
instance. For example, if you had a DTML Method called showAnimalImages , and a view called Images , you could
associate the showAnimalImages method with the Images view. Whenever anyone clicked on the Images view on an
instance of your ZClass, the showAnimalImages method would get called.

Logic — Methods are not necessarily associated with views. Methods are often created that define how you can work
with your object.

For example, consider the isHungry method of the ZooExhibit ZClass defined later in this section. It does not define a
view for a ZooExhibit , it just provide very specific information about the ZooExhibit . Methods in a ZClass can call each
other just like any other Zope methods, so logic methods could be used from a presentation method, even though they
don't define a view.

Shared Objects — As was pointed out earlier, you can create any kind of object on the Methods view of a ZClass. All
instances of your ZClass will share the objects on the Methods view. For example, if you create a Z Gadfly Connection
in the Methods view of your ZClass, then all instances of that class will share the same Gadfly connection. Shared
objects can be useful to your class's logic or presentation methods.

A good example of a presentation method is a DTML Method that displays a Zoo Exhibit to your web site viewers. This
is often called the public interface to an object and is usually associated with the View view found on most Zope
objects.

Create a new DTML Method on the Methods tab of your ZooExhibit ZClass called index_html . Like all objects named
index_html , this will be the default representation for the object it is defined in, namely, instances of your ZClass. Put
the following DTML in the index_html Method you just created:

<dtml-var standard_html_header>

 <h1><dtml-var animal></h1>

 <p><dtml-var description></p>

 <p>The <dtml-var animal> caretakers are:

 <dtml-in caretakers>
 <dtml-var sequence-item>

 </dtml-in>
 </p>

<dtml-var standard_html_footer>

Now, you can visit one of your ZooExhibit instances directly through the web, for example,
http://www.zopezoo.org/Exhibits/FangedRabbits/ will show you the public interface for the Fanged Rabbit exhibit.

You can use Python-based or Perl-based Scripts, and even Z SQL Methods to implement logic. Your logic objects can
call each other, and can be called from your presentation methods. To create the isHungry method, first create two new
properties in the ExhibitProperties property sheet named "last_meal_time" that is of the type date and "isDangerous"
that is of the type boolean . This adds two new fields to your Edit view where you can enter the last time the animal was
fed and select whether or not the animal is dangerous.

Here is an example of an implementation of the isHungry method in Python:

Script (Python) "isHungry"
##
"""
Returns true if the animal hasn't eaten in over 8 hours
"""
from DateTime import DateTime
if (DateTime().timeTime()
 - container.last_meal_time.timeTime() > 60 * 60 * 8):
 return 1

The Zope Book (2.6 Edition)

373

else:
 return 0

The container of this method refers to the ZClass instance. So you can use the container in a ZClass instance in
the same way as you use self in normal Python methods.

You could call this method from your index_html display method using this snippet of DTML:

<dtml-if isHungry>
 <p><dtml-var animal> is hungry</p>
</dtml-if>

You can even call a number of logic methods from your display methods. For example, you could improve the hunger
display like so:

<dtml-if isHungry>

 <p><dtml-var animal> is hungry.

 <dtml-if isDangerous>

 Tell an authorized
 caretaker.

 <dtml-else>

 Feed the <dtml-var animal>.

 </dtml-if>

 </p>

</dtml-if>

Your display method now calls logic methods to decide what actions are appropriate and creates links to those actions.
For more information on Properties, see Chapter 3, "Using Basic Zope Objects".

ObjectManager ZClasses

If you choose ZClasses:ObjectManager as a base class for your ZClass then instances of your class will be able to
contain other Zope objects, just like Folders. Container classes are identical to other ZClasses with the exception that
they have an addition view Subobjects .

From this view you can control what kinds of objects your instances can contain. For example if you created a FAQ
container class, you might restrict it to holding Question and Answer objects. Select one or more meta-types from the
select list and click the Change button. The Objects should appear in folder lists check box control whether or not
instances of your container class are shown in the Navigator pane as expandable objects.

Container ZClasses can be very powerful. A very common pattern for web applications is to have two classes that work
together. One class implements the basic behavior and hold data. The other class contains instances of the basic class
and provides methods to organize and list the contained instances. You can model many problems this way, for
example a ticket manager can contain problem tickets, or a document repository can contain documents, or an object
router can contain routing rules, and so on. Typically the container class will provide methods to add, delete, and query
or locate contained objects.

ZClass Security Controls

When building new types of objects, security can play an important role. For example, the following three Roles are
needed in your Zoo:

The Zope Book (2.6 Edition)

374

 Manager — This role exists by default in Zope. This is you, and anyone else who you want to be able to completely
manage your Zope system.

 Caretaker — After you create a ZooExhibit instance, you want users with the Caretaker role to be able to edit exhibits.
Only users with this role should be able to see the Edit view of a ZooExhibit instance.

 Anonymous — This role exists by default in Zope. People with the Anonymous role should be able to view the exhibit,
but not manage it or change it in any way.

As you learned in Chapter 7, "Users and Security", creating new roles is easy, but how can you control who can create
and edit new ZooExhibit instances? To do this, you must define some security policies on the ZooExhibit ZClass that
control access to the ZClass and its methods and property sheets.

Controlling access to Methods and Property Sheets

By default, Zope tries to be sensible about ZClasses and security. You may, however, want to control access to
instances of your ZClass in special ways.

For example, Zoo Caretakers are really only interested in seeing the Edit view (and perhaps the Undo view, which we'll
show later), but definitely not the Security or Ownership views. You don't want Zoo caretakers changing the security
settings on your Exhibits; you don't even want them to see those aspects of an Exhibit, you just want to give them the
ability to edit an exhibit and nothing else.

To do this, you need to create a new Zope Permission object in the ZooExhibit Product (not the ZClass, permissions
are defined in Products only). To do this, go to the ZooExhibit Product and select Zope Permission from the add list.
Give the new permission the Id "edit_exhibit_permission" and the Name "Edit Zoo Exhibits" and click Generate .

Now, select your ZooExhibit ZClass, and click on the Permissions tab. This will take you to the Permissions view as
shown in Figure Figure 12-9 .

Figure 12-9 The Permissions view

The Zope Book (2.6 Edition)

375

This view shows you what permissions your ZClass uses and lets you choose additional permissions to use. On the
right is a list of all of the default Zope permissions your ZClass inherits automatically. On the left is a multiple select box
where you can add new permissions to your class. Select the Edit Zoo Exhibits permission in this box and click Save
Changes . This tells your ZClass that it is interested in this permission as well as the permissions on the right.

Now, click on the Property Sheets tab and select the ExhibitProperties Property Sheet. Click on the Define Permissions
tab.

You want to tell this Property Sheet that only users who have the Edit Zoo Exhibits permission you just created can
manage the properties on the ExhibitProperties sheet. On this view, pull down the select box and choose Edit Zoo
Exhibits . This will map the Edit Zoo Exhibits to the Manage Properties permission on the sheet. This list of permissions
you can select from comes from the ZClass Permissions view you were just on, and because you selected the Edit Zoo
Exhibits permission on that screen, it shows up on this list for you to select. Notice that all options default to disabled
which means that the property sheet cannot be edited by anyone.

Now, you can go back to your Exhibits folder and select the Security view. Here, you can see your new Permission is
on the left in the list of available permission. What you want to do now is create a new Role called Caretaker and map
that new Role to the Edit Zoo Exhibits permission.

Now, users must have the Caretaker role in order to see or use the Edit view on any of your ZooExhibit instances.

Access to objects on your ZClass's Methods view are controlled in the same way.

Controlling Access to instances of Your ZClass

The previous section explained how you can control access to instances of your ZClass's Methods and Properties.
Access control is controlling who can create new instances of your ZClass. As you saw earlier in the chapter, instances
are created by Factories. Factories are associated with permissions. In the case of the Zoo Exhibit, the Add Zoo
Exhibits permission controls the ability to create Zoo Exhibit instances.

Normally only Managers will have the Add Zoo Exhibits permission, so only Managers will be able to create new Zoo
Exhibits. However, like all Zope permissions, you can change which roles have this permissions in different locations of
your site. It's important to realize that this permission is controlled separately from the Edit Zoo Exhibits permission.
This makes it possible to allow some people such as Caretakers to change, but not create Zoo Exhibits.

Providing Context-Sensitive Help for your ZClass

On the View screen of your ZClass, you can see that each view can be associated with a Help Topic . This allows you
to provide a link to a different help topics depending on which view the user is looking at. For example, let's create a
Help Topic for the Edit view of the ZooExhibit ZClass.

First, you need to create an actual help topic object. This is done by going to the ZooExhibit Product which contains the
ZooExhibit ZClass, and clicking on the Help folder. The icon should look like a folder with a blue question mark on it.

Inside this special folder, pull down the add list and select Help Topic . Give this topic the id "ExhibitEditHelp" and the
title "Help for Editing Exhibits" and click Add .

Now you will see the Help folder contains a new help topic object called ExhibitEditHelp . You can click on this object
and edit it, it works just like a DTML Document. In this document, you should place the help information you want to
show to your users:

<dtml-var standard_html_header>

 <h1>Help!</h1>

The Zope Book (2.6 Edition)

376

 <p>To edit an exhibit, click on either the animal,
 description, or caretakers boxes to edit
 them.</p>

<dtml-var standard_html_footer>

Now that you have created the help topic, you need to associate with the Edit view of your ZClass. To do this, select
the ZooExhibit ZClass and click on the Views tab. At the right, in the same row as the Edit view is defined, pull down
the help select box and select ExhibitEditHelp and click Change . Now go to one of your ZooExhibit instances, the Edit
view now has a Help! link that you can click to look at your Help Topic for this view.

In the next section, you'll see how ZClasses can be cobined with standard Python classes to extend their functionality
into raw Python.

Using Python Base Classes

ZClasses give you a web managable interface to design new kinds of objects in Zope. In the beginning of this chapter,
we showed you how you can select from a list of base classes to subclass your ZClass from. Most of these base
classes are actually written in Python, and in this section you'll see how you can take your own Python classes and
include them in that list so that your ZClasses can extend their methods.

Writing Python base classes is easy, but it involves a few installation details. To create a Python base class you need
access to the filesystem. Create a directory inside your lib/python/Products directory named AnimalBase . In this
directory create a file named Animal.py with these contents:

class Animal:
 """
 A base class for Animals
 """

 _hungry=0

 def eat(self, food, servings=1):
 """
 Eat food
 """
 self._hungry=0

 def sleep(self):
 """
 Sleep
 """
 self._hungry=1

 def hungry(self):
 """
 Is the Animal hungry?
 """
 return self._hungry

Anonymous User - Sep. 2, 2002 10:34 am:
 Let's suppose I need an __init__ method for class Animal: I found that this __init__ method, if present, is
 automatically called when I create an instance of
 the ZClass that "wraps" (inherits from) Annimal. But what if __init__ has parameters? Where can I pass these
 parameters from? I guess the right place is from the Animal_add dtml method that acts as a constructor, but
 what's the dtml for doing so? Please help!

This class defines a couple related methods and one default attribute. Notice that like External Methods, the methods
of this class can access private attributes.

Next you need to register your base class with Zope. Create an __init__.py file in the AnimalBase directory with these
contents:

The Zope Book (2.6 Edition)

377

from Animal import Animal

def initialize(context):
 """
 Register base class
 """
 context.registerBaseClass(Animal)

Now you need to restart Zope in order for it find out about your base class. After Zope restarts you can verify that your
base class has been registered in a couple different ways. First go to the Products Folder in the Control Panel and look
for an AnimalBase package. You should see a closed box product. If you see broken box, it means that there is
something wrong with your AnimalBase product.

Click on the Traceback view to see a Python traceback showing you what problem Zope ran into trying to register your
base class. Once you resolve any problems that your base class might have you'll need to restart Zope again. Continue
this process until Zope successfully loads your product. Now you can create a new ZClass and you should see
AnimalBase:Animal as a choice in the base classes selection field.

To test your new base class create a ZClass that inherits from AnimalBase:Animal . Embellish you animal however you
wish. Create a DTML Method named care with these contents:

<dtml-var standard_html_header>

<dtml-if give_food>
 <dtml-call expr="eat('cookie')">
</dtml-if>

<dtml-if give_sleep>
 <dtml-call sleep>
</dtml-if>

<dtml-if hungry>
 <p>I am hungry</p>
<dtml-else>
 <p>I am not hungry</p>
</dtml-if>

<form>
<input type="submit" value="Feed" name="give_food">
<input type="submit" value="Sleep" name="give_sleep">
</form>

<dtml-var standard_html_footer>

Now create an instance of your animal class and test out its care method. The care method lets you feed your animal
and give it sleep by calling methods defined in its Python base class. Also notice how after feeding your animal is not
hungry, but if you give it a nap it wakes up hungry.

As you can see, creating your own Products and ZClasses is an involved process, but simple to understand once you
grasp the basics. With ZClasses alone, you can create some pretty complex web applications right in your web
browser.

In the next section, you'll see how to create a distribution of your Product, so that you can share it with others or deliver
it to a customer.

Distributing Products

Now you have created your own Product that lets you create any number of exhibits in Zope. Suppose you have a
buddy at another Zoo who is impressed by your new online exhibit system, and wants to get a similar system for his
Zoo.

The Zope Book (2.6 Edition)

378

Perhaps you even belong to the Zoo keeper's Association of America and you want to be able to give your product to
anyone interested in an exhibit system similar to yours. Zope lets you distribute your Products as one, easy to transport
package that other users can download from you and install in their Zope system.

To distribute your Product, click on the ZooExhibit Product and select the Distribution tab. This will take you to the
Distribution view.

The form on this view lets you control the distribution you want to create. The Version box lets you specify the version
for your Product distribution. For every distribution you make, Zope will increment this number for you, but you may
want to specify it yourself. Just leave it at the default of "1.0" unless you want to change it.

The next two radio buttons let you select whether or not you want others to be able to customize or redistribute your
Product. If you want them to be able to customize or redistribute your Product with no restrictions, select the Allow
Redistribution button. If you want to disallow their ability to redistribute your Product, select the Disallow redistribution
and allow the user to configure only the selected objects: button. If you disallow redistribution, you can choose on an
object by object basis what your users can customize in your Product. If you don't want them to be able to change
anything, then don't select any of the items in this list. If you want them to be able to change the ZooExhibit ZClass,
then select only that ZClass. If you want them to be able to change everything (but still not be able to redistribute your
Product) then select all the objects in this list.

Now, you can create a distribution of your Product by clicking Create a distribution archive . Zope will now automatically
generate a file called ZooExhibit-1.0.tar.gz . This Product can be installed in any Zope just like any other Product, by
unpacking it into the root directory of your Zope installation.

Don't forget that when you distribute your Product you'll also need to include any files such as External Method files
and Python base classes that your class relies on. This requirement makes distribution more difficult and for this reason
folks sometimes try to avoid relying on Python files when creating through the web Products for distribution.

The Zope Book (2.6 Edition)

379

Maintaining Zope

Keeping a Zope site running smoothly involves a number of administrative tasks. This chapter covers some of these
tasks, such as:

 • Starting Zope automatically at boot time

 • Installing new products

 • Setting parameters in the Control Panel

 • Monitoring

 • Cleaning up log files

 • Packing and backing up the database

 • Database recovery tools

Maintenance often is a very platform-specific task, and Zope runs on many platforms, so you will find instructions for
several different operating systems here. It is not possible to provide specifics for every system; instead, we will supply
general instructions which should be modified according to your specific needs and platform.

Starting Zope Automatically at Boot Time

For testing and developing purposes you will start Zope manually most of the time, but for production systems it is
necessary to start Zope automatically at boot time. Also, we will want to shut down Zope in an orderly fashion when the
system goes down. We will describe the necessary steps for Microsoft Windows and some Linux distributions. Take a
look at the Linux section for other Unix-like operating systems. Much of the information presented here also applies to
System V like Unices.

Debug Mode and Automatic Startup

If you are planning to run Zope on a Unix production system you should also disable debug mode . This means
removing the -D option in startup scripts (e.g. the start script created by Zope at installation time which calls z2.py
with the -D switch) and if you've manually set it, unsetting the Z_DEBUG_MODE environment variable. In debug mode,
Zope does not detach itself from the terminal, which could cause startup scripts to malfunction.

On Windows, running Zope as a service disables debug mode by default. You still can run Zope in debug mode by
setting the Z_DEBUG_MODE environment variable or running Zope manually from a startup script with the -D option.
Again, this is not recommended for production systems, since debug mode causes performance loss.

Linux

Distributions with Prepackaged Zope

For many Linux distributions there are ready-made Zope packages which integrate nicely with the system. For
instance, Debian , SuSE , Mandrake and Gentoo usually come with fairly recent Zope packages. Those packages
contain ready-made scripts for automatic startup.

The Zope Book (2.6 Edition)

380

Automatic Startup for Custom-Built Zopes

Even if you do not want to use the prepackaged Zope that comes with your distribution it should be possible to re-use
those startup scripts, eg. by installing the prepackaged Zope and editing the appropriate files and symlinks in
/etc/rc.d or by extracting them with a tool like rpm2cpio .

In the following examples we assume you installed your custom Zope to a system-wide directory, eg.
/usr/local/zope . If this is not the case please replace every occurence of /usr/local/zope below with your
Zope installation directory. There should also be a separate Zope system user present. Below we assume that there is
a user zope , group nogroup present on your system. The user zope should of course have read access to the
$ZOPE_HOME directory (the directory which contains the "top-level" Zope software and the "z2.py" script) and its
descendants, and write access to the contents of the var directory.

If you start Zope as root, which is usually the case when starting Zope automatically on system boot, it is required that
the var directory belongs to root. Set the ownership by executing the command chown root var as root.

As an example, the startup script that comes as a part of the SuSE Linux distribution looks like this:

#! /bin/sh
Copyright (c) 1995-2000 SuSE GmbH Nuernberg, Germany.
#
Authors: Kurt Garloff, Vladimír Linek
<feedback@suse.de>
#
init.d/zope
#
and symbolic its link
#
/usr/sbin/rczope
#
System startup script for the Zope server
#
BEGIN INIT INFO
Provides: zope
Required-Start: $remote_fs
Required-Stop: $remote_fs
Default-Start: 3 5
Default-Stop: 0 1 2 6
Description: Start Zope server.
END INIT INFO

Source Zope relevant things
. /etc/sysconfig/zope
. /etc/sysconfig/apache

PYTHON_BIN="/usr/bin/python2.1"
test -x $PYTHON_BIN || exit 5
ZOPE_HOME="/opt/zope"
test -d $ZOPE_HOME || exit 5
ZOPE_SCRIPT="$ZOPE_HOME/z2.py"
test -f $ZOPE_SCRIPT || exit 5

Shell functions sourced from /etc/rc.status:
rc_check check and set local and overall rc status
rc_status check and set local and overall rc status
rc_status -v ditto but be verbose in local rc status
rc_status -v -r ditto and clear the local rc status
rc_failed set local and overall rc status to failed
rc_failed <num> set local and overall rc status to <num><num>
rc_reset clear local rc status (overall remains)
rc_exit exit appropriate to overall rc status
. /etc/rc.status

First reset status of this service

The Zope Book (2.6 Edition)

381

rc_reset

Return values acc. to LSB for all commands but status:
0 - success
1 - generic or unspecified error
2 - invalid or excess argument(s)
3 - unimplemented feature (e.g. "reload")
4 - insufficient privilege
5 - program is not installed
6 - program is not configured
7 - program is not running

Note that starting an already running service, stopping
or restarting a not-running service as well as the restart
with force-reload (in case signalling is not supported) are
considered a success.

COMMON_PARAMS="-u zope -z $ZOPE_HOME -Z /var/run/zope.pid -l /var/log/zope.log"
PCGI_PARAMS="-p $ZOPE_HOME/Zope.cgi"

[-z "$ZOPE_HTTP_PORT"] && ZOPE_HTTP_PORT="8080"
ALONE_PARAMS="-w $ZOPE_HTTP_PORT"

For debugging...
#SPECIAL_PARAMS="-D"

[-z "$ZOPE_FTP_PORT"] && ZOPE_FTP_PORT="8021"
if ["$ZOPE_FTP" == "yes"]; then
 SPECIAL_PARAMS="-f $ZOPE_FTP_PORT $SPECIAL_PARAMS"
fi

if ["$ZOPE_PCGI" == "yes"]; then
 PARAMS="$SPECIAL_PARAMS $PCGI_PARAMS $COMMON_PARAMS"
else
 PARAMS="$SPECIAL_PARAMS $ALONE_PARAMS $COMMON_PARAMS"
fi

case "$1" in
 start)
 echo -n "Starting zope"
 ## Start daemon with startproc(8). If this fails
 ## the echo return value is set appropriate.

 # NOTE: startproc return 0, even if service is
 # already running to match LSB spec.
 startproc $PYTHON_BIN $ZOPE_SCRIPT -X $PARAMS

 # Remember status and be verbose
 rc_status -v
 ;;
 stop)
 echo -n "Shutting down zope"
 ## Stop daemon with killproc(8) and if this fails
 ## set echo the echo return value.

 killproc -g -p /var/run/zope.pid -TERM $PYTHON_BIN

 # Remember status and be verbose
 rc_status -v
 ;;
 try-restart)
 ## Stop the service and if this succeeds (i.e. the
 ## service was running before), start it again.
 ## Note: try-restart is not (yet) part of LSB (as of 0.7.5)
 $0 status >/dev/null && $0 restart

 # Remember status and be quiet
 rc_status
 ;;
 restart)
 ## Stop the service and regardless of whether it was
 ## running or not, start it again.

The Zope Book (2.6 Edition)

382

 $0 stop
 $0 start

 # Remember status and be quiet
 rc_status
 ;;
 force-reload)
 ## Signal the daemon to reload its config. Most daemons
 ## do this on signal 1 (SIGHUP).
 ## If it does not support it, restart.

 echo -n "Reload service zope"
 $0 stop && $0 start
 rc_status
 ;;
 reload)
 ## Like force-reload, but if daemon does not support
 ## signalling, do nothing (!)

 rc_failed 3
 rc_status -v
 ;;
 status)
 echo -n "Checking for zope: "
 ## Check status with checkproc(8), if process is running
 ## checkproc will return with exit status 0.

 # Status has a slightly different for the status command:
 # 0 - service running
 # 1 - service dead, but /var/run/ pid file exists
 # 2 - service dead, but /var/lock/ lock file exists
 # 3 - service not running

 # NOTE: checkproc returns LSB compliant status values.
 checkproc -p /var/run/zope.pid $PYTHON_BIN
 rc_status -v
 ;;
 probe)
 ## Optional: Probe for the necessity of a reload,
 ## give out the argument which is required for a reload.

 test $ZOPE_HOME/superuser -nt /var/run/zope.pid && echo reload
 ;;
 *)
 echo "Usage: $0 {start|stop|status|try-restart|restart|force-reload|reload|probe}"
 exit 1
 ;;
esac
rc_exit

You could adapt this script to start your own Zope by modifying the PYTHON_BIN, ZOPE_HOME and
COMMON_PARAMS.

To set up a Zope binary package with built-in python situated in /usr/local/zope running as user zope , with a
"WebDAV Source port" set to 8081, you would set:

ZOPE_HOME=/usr/local/zope
PYTHON_BIN=$ZOPE_HOME/bin/python
COMMON_PARAMS="-u zope -z $ZOPE_HOME -Z /var/run/zope.pid \
 -l /var/log/Z2.log -W 8081 "

You can also set up a file /etc/sysconfig/zope with variables ZOPE_FTP_PORT, ZOPE_HTTP_PORT:

ZOPE_HTTP_PORT=80
ZOPE_FTP_PORT=21

to set the HTTP and FTP ports. The default is to start them at port 8080 and 8021.

The Zope Book (2.6 Edition)

383

For Red Hat, you can find a start-up script which seems to work here

Unfortunately, all Linux distributions start and stop services a little differently, so it is not possible to write a startup
script that integrates well with every distribution. We will try to outline a crude version of a generic startup script which
you can refine according to your needs.

To do this some shell scripting knowledge and root system access is required.

Linux startup scripts usually reside in /etc/init.d or in /etc/rc.d/init.d . For our examples we assume the
startup scripts to be in /etc/rc.d/init.d , adjust if necessary.

To let the boot process call a startup script, you also have to place a symbolic link to the startup script in the
/etc/rc.d/rc?.d directories, where '? is a number from 0-6 which stands for the SystemV run
levels. You usually will want to start Zope in run levels 3 and 5 (3 is full multi-user
mode, 5 is multiuser mode with X started, according to the "Linux Standard
Base":http://www.linuxbase.org), so you would place two links in the /etc/rc.d' directories. Be
warned that some systems (such as Debian) assume that runlevel 2 is full multiuser mode. As stated above, we
assume the main startup script to located in /etc/rc.d/init.d/zope , if your system puts the init.d directory
somewhere else, you should accomodate the paths below:

cd /etc/rc.d/rc3.d
ln -s /etc/rc.d/init.d/zope S99zope
cd /etc/rc.d/rc5.d
ln -s /etc/rc.d/init.d/zope S99zope

The scripts are called by the boot process with an argument start when starting up and stop on shutdown.

A simple generic startup script structure could be something like this:

#!/bin/sh

set paths and startup options
ZOPE_HOME=/usr/local/zope
PYTHON_BIN=$ZOPE_HOME/bin/python
ZOPE_OPTS=" -u zope -P 8000"
EVENT_LOG_FILE=$ZOPE_HOME/var/event.log
EVENT_LOG_SEVERITY=-300
define more environment variables ...

export EVENT_LOG_FILE EVENT_LOG_SEVERITY
export more environment variables ...

umask 077
cd $ZOPE_HOME

case "$1" in

start)
 # start service
 exec $PYTHON_BIN $ZOPE_HOME/z2.py $ZOPE_OPTS

 # if you want to start in debug mode (not recommended for
 # production systems):
 # exec $PYTHON_BIN $ZOPE_HOME/z2.py $ZOPE_OPTS -D &
 ;;
stop)
 # stop service
 kill `cat $ZOPE_HOME/var/Z2.pid`
 ;;
restart)
 # stop service and restart
 $0 stop
 $0 start
 ;;

The Zope Book (2.6 Edition)

384

*)
 echo "Usage: $0 {start|stop|restart}"
 exit 1
 ;;
esac

This script lets you perform start / stop / restart operations:

start — Start Zope (and the zdaemon management process)

stop — Stop Zope. Kill Zope and the zdaemon management process

restart — Stop then start Zope

Mac OS X

For Mac OS X, there is a website:http://zope-mosx.zopeonarope.com devoted to running Zope on Mac OS X; you also
might want to look here:http://www.zope.org/Members/jens/docs/zope_osx for building / installing Zope on OS X. You
might also want to check out this:http://www.zope.org/Members/richard/zope_controller/mac for starting / stopping Zope
on Mac OS X, although it is currently unmaintained.

MS Windows

The prevalent way to autostart Zope on MS Windows is to install Zope as a service. However, since services are not
available on Windows 95, Windows 98, or Windows ME, you will have to resort to the somewhat crude method of
putting a link to Zope's start.bat script into the Startup folder of the Windows start menu on those platforms.

If you installed Zope on Windows NT/2000/XP to be started manually and later on want it started as a service, perform
these steps from the command line to register Zope as a Windows service:

> cd c:\Program Files\zope
> bin\lib\win32\PythonService.exe /register
> bin\python.exe ZServer\ZService.py --startup auto install

Replace c:\Program Files\zope with the path to your Zope installation. Zope should now be installed as a
service which starts automatically on system boot. To start and stop Zope manually, go to the Windows service
administration tool, right-click the Zope service and select the corresponding entry.

Installing New Products

Zope is a framework for building websites from new and existing software, known as Zope products . A product is a
Python package with special conventions that register with the Zope framework. The primary purpose of a Zope
product is to create new kinds of objects that appear in the add list. This extensibility through products has spawned a
broad market of add-on software for Zope.

The guidelines for packaging a product are given in the "Packaging Products" section in the Zope Products chapter of
the Zope Developer Guide . However, since these guidelines are not enforced, many Zope products adhere to different
conventions. This section will discuss the different approaches to installing Zope packages.

To install a Zope product, you first download an archive file from a website, such as the Downloads section of zope.org.
These archive files come in several varieties, such as tgz (gzipped tar files), zip (the popular ZIP format common on
Windows), and others.

The Zope Book (2.6 Edition)

385

In general, unpacking these archives will create a subdirectory containing the Product itself. For instance, the
Poll-1.0.tgz archive file in the "Packaging Products" section mentioned above contains a subdirectory of Poll .
All the software is contained in this directory.

To install the product, you unarchive the file in the lib/python/Products directory. In the Poll example, this will
create a directory lib/python/Products/Poll .

Unfortunately not all Zope developers adhere to this convention. Often the archive file will have the
lib/python/Products part of the path included. Worse, the archive might contain no directory, and instead have all
the files in the top-level of the archive. Thus, it is advised to inspect the contents of the archive first.

Once you have the new directory in lib/python/Products , you need to tell Zope that a new product has been
added. You can do this by restarting your Zope server through the Control Panel of the Zope Management Interface
(ZMI), or, on POSIX systems, by sending the Zope process a -HUP signal. For instance, from the Zope directory:

kill -HUP `cat var/Z2.pid`

If your Zope server is running in debug mode, a log message will appear indicating a new product has been discovered
and registered.

To confirm that your product is installed, log into your Zope site and visit the Control Panel's Products section. You
should see the new product appear in the list of installed products.

If there was a problem with the installation, the Control Panel will list it as a "Broken Product". Usually this is because
Python had a problem importing a package, or the software had a syntax error. You can visit the broken product in the
Control Panel and click on its Traceback tab. You will see the Python traceback generated when the package was
imported.

A traceback generally will tell you what went wrong with the import. For instance, a package the software depends on
could be missing. To illustrate this take a look at the traceback below - a result of trying to install
CMFOODocument:http://www.zope.org/Members/longsleep/CMFOODocument without the (required) CMF package:

Traceback (most recent call last):
File "/usr/share/zope/2.6.0/lib/python/OFS/Application.py", line 541, in import_product
product=__import__(pname, global_dict, global_dict, silly)
File "/usr/share/zope/2.6.0/lib/python/Products/CMFOODocument/__init__.py", line 19, in ?
import OODocument
File "/usr/share/zope/2.6.0/lib/python/Products/CMFOODocument/OODocument.py", line 31, in ?
from Products.CMFCore.PortalContent import NoWL, ResourceLockedError
ImportError: No module named CMFCore.PortalContent

Server Settings

The Zope server has a number of settings that can be adjusted for performance. Unfortunately, performance tuning is
not an exact science, that is, there is no recipe for setting parameters. Rather, you have to test every change. To load
test a site, you should run a test setup with easily reproducible results. Load test a few significant spots in your
application. The trick is to identify typical situations while still permitting automated testing. There are several tools to
load test websites. One of the simple yet surprisingly useful tools is ab which comes with Apache distributions. With
ab you can test individual URLs, optionally providing cookies and POST data. Other tools often allow one to create or
record a user session and playing it back multiple times. See eg. the Open System Testing Architecture , JMeter , or
Microsoft's Web Application Stress Tool .

Database Cache

The Zope Book (2.6 Edition)

386

The most important is the database cache setting. To adjust these settings, visit the Control Panel and click on the
Database link.

Figure 23-1 Database Cache settings

There are usually seven database connections to the internal Zope database (see Database Connections below for
information about how to change the number of connections). Each connection gets its own database cache. The
"Target number of objects in memory per cache" setting controls just that - the system will try not to put more than this
number of persistent Zope objects into RAM per database connection. So if this number is set to 400 and there are
seven database connections configured, there should not be more than 2800 objects sitting in memory. Obviously, this
does not say much about memory consumption, since the objects might be anything in size - from a few hundred bytes
upwards. The cache favors commonly used objects - it wholly depends on your application and the kind of objects
which memory consumption will result from the number set here. As a rule, Zope objects are about as big as the data
they contain. There is only little overhead in wrapping data into Zope objects.

Note that only objects residing in the Zope object database are affected - data residing in external files (for instance
through the ExtFile or LocalFS add-on products) or in relational databases connected to Zope will not be cached here.

Interpreter Check Intervals

The interpreter check interval determines how often the interpreter stops to execute Zope code and checks for
housekeeping things like signal handlers and thread switches. A higher number means it stops less often. The default
of 500 should give good performance with most platforms, but you may want to experiment with other values. The
general rule is to set it higher for faster machines, so if you have a really fast system you could try setting this higher.

The interpreter check interval is set with the -i argument to z2.py script. This means you should set it in Zopes own
start script if you start Zope manually, or in the system start script.

ZServer Threads

This number determines how many ZServer threads Zope starts to service requests. The default number is four (4).
You may try to increase this number if you are running a heavily loaded website. If you want to increase this to more

The Zope Book (2.6 Edition)

387

than seven (7) threads, you also should increase the number of database connections (see the next section).

Database Connections

We briefly mentioned Zope's internal database connections in the Database Cache section above. Out of the box, the
number of database connections is hardwired to seven (7); but this can be changed. There is no "knob" to change this
number so in order to change the number of database connections, you will need to enter quite deep into the systems'
bowels. It is probably a wise idea to back up your Zope installation before following any of the instructions below.

Each database connection maintains its own cache (see above, "Database Cache"), so bumping the number of
connections up increases memory requirements. Only change this setting if you're sure you have the memory to spare.

To change this setting, create a file called "custom_zodb.py" in your Zope installation directory. In this file, put the
following code:

import ZODB.FileStorage
import ZODB.DB

filename = os.path.join(INSTANCE_HOME, 'var', 'Data.fs')
Storage = ZODB.FileStorage.FileStorage(filename)
DB = ZODB.DB(Storage, pool_size=25, cache_size=2000)

This only applies if you are using the standard Zope FileStorage storage.

The "pool_size" parameter is the number of database connections. Note that the number of database connections
should always be higher than the number of ZServer threads by a few (it doesn't make sense to have fewer database
connections than threads). See above on how to change the number of ZServer threads.

Signals (POSIX only)

Signals are a POSIX inter-process communications mechanism. If you are using Windows then this documentation
does not apply.

Zope responds to signals which are sent to the process id specified in the file '$ZOPE_HOME/var/Z2.pid':

SIGHUP - close open database connections, then restart the server
 process. The common idiom for restarting a Zope server is:

 kill -HUP `cat $ZOPE_HOME/var/Z2.pid`

SIGTERM - close open database connections then shut down. The common
 idiom for shutting down Zope is:

 kill -TERM `cat $ZOPE_HOME/var/Z2.pid`

SIGINT - same as SIGTERM

SIGUSR2 - close and re-open all Zope log files (z2.log, event log,
 detailed log.) The common idiom after rotating Zope log files
 is:

 kill -USR2 `cat $ZOPE_HOME/var/Z2.pid`

The process id written to the Z2.pid file depends on whether Zope is run under the zdaemon management process.
If Zope is run under a management process (as it is by default) then the pid of the management process is recorded
here. Relevant signals sent to the management process are forwarded on to the server process. Specifically, it
forwards all those signals listed above, plus SIGQUIT and SIGUSR1. If Zope is not using a management process (-Z0
on the z2.py command line), the server process records its own pid into z2.pid , but all signals work the same way.

The Zope Book (2.6 Edition)

388

Monitoring

To detect problems (both present and future) when running Zope on production systems, it is wise to watch a few
parameters.

Monitor the Event Log and the Access Log

If you set the EVENT_LOG_FILE (formerly known as the STUPID_LOG_FILE) as an environment variable or a
parameter to the startup script, you can find potential problems logged to the file set there. Each log entry is tagged
with a severity level, ranging from TRACE (lowest) to PANIC (highest). You can set the verbosity of the event log with
the environment variable EVENT_LOG_SEVERITY. You have to set this to an integer value - see below:

TRACE=-300 -- Trace messages

DEBUG=-200 -- Debugging messages

BLATHER=-100 -- Somebody shut this app up.

INFO=0 -- For things like startup and shutdown.

PROBLEM=100 -- This isn't causing any immediate problems, but
deserves attention.

WARNING=100 -- A wishy-washy alias for PROBLEM.

ERROR=200 -- This is going to have adverse effects.

PANIC=300 -- We're dead!

So, for example setting EVENT_LOG_SEVERITY=-300 should give you all log messages for Zope and Zope
applications that use Zopes' logging system.

You also should look at your access log (usually placed in $ZOPE_HOME/var/Z2.log). The Z2.log file is recorded in the
Common Log Format . The sixth field of each line contains the HTTP status code. Look out for status codes of 5xx,
server error. Server errors often point to performance problems.

Monitor the HTTP Service

You can find several tools on the net which facilitate monitoring of remote services, for example Nagios or VisualPulse .

For a simple "ping" type of HTTP monitoring, you could also try to put a small DTML Method with a known value on
your server, for instance only containing the character "1". Then, using something along the line of the shell script
below, you could periodically request the URL of this DTML Method, and mail an error report if we are getting some
other value (note the script below requires a Un*x-like operating system):

#!/bin/sh

configure the values below
URL="http://localhost/ping"
EXPECTED_ANSWER="1"
MAILTO="your.mailaddress@domain.name"
SUBJECT="There seems to be a problem with your website"
MAIL_BIN="/bin/mail"

resp=`wget -O - -q -t 1 -T 1 $URL`
if ["$resp" != "$EXPECTED_ANSWER"]; then
 $MAIL_BIN -s "$SUBJECT" $MAILTO <<EOF
The URL
--
$URL
--

The Zope Book (2.6 Edition)

389

did not respond with the expected value of $EXPECTED_ANSWER.
EOF
fi;

Run this script eg. every 10 minutes from cron and you should be set for simple tasks. Be aware though that we do not
handle connections timeouts well here. If the connection hangs, for instance because of firewall misconfiguration,
wget will likely wait for quite a while (around 15 minutes) before it reports an error.

Log Files

There are two main sources of log information in Zope, the access log and the event log.

Access Log

The access log records every request made to the HTTP server. It is recorded in the Common Log Format .

The default target of the access log is the file $ZOPE_HOME/var/Z2.log. Under Unix it is however possible to direct this
to the syslog by setting the environment variable ZSYSLOG_ACCESS to the desired domain socket (usually
/dev/log)

If you are using syslog, you can also set a facility name by setting the environment variable ZSYSLOG_FACILITY. It is
also possible to log to a remote machine. This is also controlled, you might have guessed it, by an environment
variable. The variable is called ZSYSLOG_SERVER and should be set to a string of the form "host:port" where host is
the remote logging machine name or IP address and port is the port number the syslog daemon is listening on (usually
514).

Event Log

The event log (formerly also called "stupid log") logs Zope and third-party application message. The ordinary log
method is to log to a file specified by the EVENT_LOG_FILE, eg. EVENT_LOG_FILE=$ZOPE_HOME/var/event.log
.

On Unix it is also possible to use the syslog daemon by setting the environment variable ZSYSLOG to the desired Unix
domain socket, usually /dev/log . Like with access logs (see above), it is possible to set a facility name by setting
the ZSYSLOG_FACILITY environment variable, and to log to a remote logging machine by setting the
ZSYSLOG_SERVER variable to a string of the form "host:port", where port usually should be 514.

You can coarsely control how much logging information you want to get by setting the variable
EVENT_LOG_SEVERITY to an integer number - see the section "Monitor the Event Log and the Access Log" above.

Log Rotation

Log files always grow, so it is customary to periodically rotate logs. This means logfiles are closed, renamed (and
optionally compressed) and new logfiles get created. On Unix, there is the logrotate package which traditionally
handles this. A sample configuration might look like this:

compress
/usr/local/zope/var/Z2.log {
 rotate 25
 weekly
 postrotate
 /sbin/kill -USR2 `cat /usr/local/zope/var/Z2.pid`
 endscript
}

The Zope Book (2.6 Edition)

390

This would tell logrotate to compress all log files (not just Zope's!), handle Zopes access log file, keep 25 rotated log
files, do a log rotation every week, and send the SIGUSR2 signal to Zope after rotation. This will cause Zope to close
the logfile and start a new one. See the documentation to logrotate for further details.

On Windows there are no widespread tools for log rotation. You might try the KiWi Syslog Daemon and configure Zope
to log to it. Also see the sections "Access Log" and "Event Log" above.

Packing and Backing Up the FileStorage Database

The storage used by default by Zope's built-in object database, FileStorage, is an undoable storage. This essentially
means changes to Zope objects do not overwrite the old object data, rather the new object gets appended to the
database. This makes it possible to recreate an objects previous state, but it also means that the file the objects are
kept in (which usually resides in $ZOPE_HOME/var/Data.fs) always keeps growing.

To get rid of obsolete objects, you need to pack the ZODB. This can be done manually by opening Zopes
Control_Panel and clicking on the "Database Management" link. Zope offers you the option of removing only object
version older than an adjustable amount of days.

If you want to automatically pack the ZODB you could tickle the appropriate URL with a small python script (the
traditional filesystem based kind, not Zopes "Script (Python)"):

#!/usr/bin/python
import sys, urllib
host = sys.argv[1]
days = sys.argv[2]
url = "%s/Control_Panel/Database/manage_pack?days:float=%s" % \
 (host, days)
try:
 f = urllib.urlopen(url).read()
except IOError:
 print "Cannot open URL %s, aborting" % url
print "Successfully packed ZODB on host %s" % host

The script takes two arguments, the URL of your server (eg. http://mymachine.com) and the number of days old an
object version has to be to get discarded.

On Unix, put this in eg. the file /usr/local/sbin/zope_pack , and make it executable with chmod +x
zope_pack . Then you can put in into your crontab with eg.:

5 4 * * sun /usr/local/sbin/zope_pack http://localhost 7

This would instruct your system to pack the ZODB on 4:05 every sunday. It would connect to the local machine, and
leave object versions younger than 7 days in the ZODB.

Under Windows, you should use the scheduler to periodically start the script. Put the above script in eg. c:\Program
Files\zope_pack.py or whereever you keep custom scripts, and create a batch file zope_pack.bat with
contents similar to the following:

"C:\Program Files\zope\bin\python.exe" "C:\Program Files\zope_pack.py" "http://localhost" 7

The first parameter to python is the path to the python script we just created. The second is the root URL of the
machine you want to pack, and the third is the maximum age of object versions you want to keep. Now instruct the
scheduler to run this .bat file every week.

Zope backup is quite straightforward. If you are using the default storage (FileStorage), all you need to do is to save the
file $ZOPE_HOME/var/Data.fs . This can be done online, because Zope only appends to the Data.fs file - and if
a few bytes are missing at the end of the file due to a copy while the file is being written to, ZODB is usually capable of

The Zope Book (2.6 Edition)

391

repairing that upon startup. The only thing to worry about would be if someone were to be using the Undo feature
during backup. If you cannot ensure that this does not happen, you should take one of two routes. The first is be to
shutdown Zope prior to a backup, and the second is to do a packing operation in combination with backup. Packing the
ZODB leaves a file Data.fs.old with the previous contents of the ZODB. Since Zope does not write to that file
anymore after packing, it is safe to backup this file even if undo operations are performed on the live ZODB.

To backup Data.fs on Linux, you should not tar it directly, because tar will exit with an error if files change in the
middle of a tar operation. Simply copying it over first will do the trick. Another option is to use rsync like in this shell
script by Jeff Rush:

#!/bin/sh
##
File: /etc/cron.daily/zbackup.cron
#
Backup Zope Database Daily
##
#
rsync arguments:
-q ::= Quiet operation, for cron logs
-u ::= Update only, don't overwrite newer files
-t ::= Preserve file timestamps
-p ::= Preserve file permissions
-o ::= Preserve file owner
-g ::= Preserve file group
-z ::= Compress during transfer
-e ssh ::= Use the ssh utility to secure the link
#
ARCHTOP="/archive/zope/"
DOW=`date +%A`
ARCHDIR="${ARCHTOP}${DOW}"
#
Insure Our Day-of-Week Directory Exists
[-d ${ARCHDIR}] || mkdir ${ARCHDIR} || {
 echo "Could Not Create Day-of-Week Directory: ${ARCHDIR}" ; exit 1
}
#
/usr/bin/rsync -q -u -t -p -o -g /var/zope/var/Data.fs ${ARCHDIR}
#
ln -sf ${ARCHDIR} ${ARCHTOP}Current
#
exit 0

This script should be run daily from cron. It will create day-of-week subdirectories under /archive/zope , and
update the Data.fs file there with the current version. rsync only transmits differences between files, so only a
minimal amount of disk copying is needed. This could be advantageous especially for large ZODB databases.

Database Recovery Tools

To recover data from corrupted ZODB database file (typically located in $ZOPE_HOME/var/Data.fs) there is a
script fsrecover.py located in $ZOPE_HOME/lib/python/ZODB .

fsrecover.py has the following help output:

python fsrecover.py [<options>] inputfile outputfile

Options:

-f -- force output even if output file exists

-v level -- Set the
verbosity level:

 0 -- Show progress indicator (default)

 1 -- Show transaction times and sizes

The Zope Book (2.6 Edition)

392

 2 -- Show transaction times and sizes, and
 show object (record) ids, versions, and sizes.

-p -- Copy partial transactions. If a data record in the middle of a
 transaction is bad, the data up to the bad data are packed. The
 output record is marked as packed. If this option is not used,
 transaction with any bad data are skipped.

-P t -- Pack data to t seconds in the past. Note that is the "-p"
 option is used, then t should be 0.

The Zope Book (2.6 Edition)

393

Appendix A: DTML Reference

DTML is the Document Template Markup Language , a handy presentation and templating language that comes with
Zope. This Appendix is a reference to all of DTMLs markup tags and how they work.

call: Call a method

The call tag lets you call a method without inserting the results into the DTML output.

Syntax

call tag syntax:

<dtml-call Variable|expr="Expression">

If the call tag uses a variable, the methods arguments are passed automatically by DTML just as with the var tag. If
the method is specified in a expression, then you must pass the arguments yourself.

Examples

Calling by variable name:

<dtml-call UpdateInfo>

This calls the UpdateInfo object automatically passing arguments.

Calling by expression:

<dtml-call expr="RESPONSE.setHeader('content-type', 'text/plain')">

See Also

var tag

comment: Comments DTML

The comment tag lets you document your DTML with comments. You can also use it to temporarily disable DTML tags
by commenting them out.

Syntax

comment tag syntax:

<dtml-comment>
</dtml-comment>

The comment tag is a block tag. The contents of the block are not executed, nor are they inserted into the DTML
output.

Examples

The Zope Book (2.6 Edition)

394

Documenting DTML:

<dtml-comment>
 This content is not executed and does not appear in the
 output.
</dtml-comment>

Commenting out DTML:

<dtml-comment>
 This DTML is disabled and will not be executed.
 <dtml-call someMethod>
</dtml-comment>

Anonymous User - Apr. 29, 2002 2:00 pm:
 This explanation is misleading and partially incorrect. Zope will not save any comments that are not valid
 DTML. So you cannot not comment: using <dtml-in myExample> to loop ...
 This produces a Zope error.�
 This is counter-intuitive and cripples good documentation practices.�
 Zope collector Issue 370
 http://collector.zope.org/Zope/370
Anonymous User - May 16, 2002 5:53 pm:
 Also, it appears (at least in Zope 2.32-ish) that DTML commands inside comments ARE parsed, since errors in
 syntax or references to objects, methods, etc. that are invalid will cause Zope to complain about the file. Normal
 programming language syntax would dictate that NOTHING after a start-comment token should be parsed until an
 end-comment token is encountered.
Anonymous User - July 26, 2002 3:31 pm:
 Agreed with the normal prg lang syntax...

functions: DTML Functions

DTML utility functions provide some Python built-in functions and some DTML-specific functions.

Functions

abs(number) — Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

chr(integer) — Return a string of one character whose ASCII code is the integer, e.g., chr(97) returns the string a .
This is the inverse of ord(). The argument must be in the range 0 to 255, inclusive; ValueError will be raised if the
integer is outside that range.

DateTime() — Returns a Zope DateTime object given constructor arguments. See the DateTime API reference for
more information on constructor arguments.

divmod(number, number) — Take two numbers as arguments and return a pair of numbers consisting of their
quotient and remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the result is the same as (a / b, a % b) . For floating point numbers the result
is (q, a % b) , where q is usually math.floor(a / b) but may be 1 less than that. In any case q * b + a %
b is very close to a , if a % b is non-zero it has the same sign as b , and 0 <= abs(a % b) < abs(b) .

float(number) — Convert a string or a number to floating point. If the argument is a string, it must contain a possibly
signed decimal or floating point number, possibly embedded in whitespace; this behaves identical to
string.atof(number) . Otherwise, the argument may be a plain or long integer or a floating point number, and a
floating point number with the same value (within Python's floating point precision) is returned.

getattr(object, string) — Return the value of the named attributed of object. name must be a string. If the string is the
name of one of the object's attributes, the result is the value of that attribute. For example, getattr(x, "foobar")
is equivalent to x.foobar . If the named attribute does not exist, default is returned if provided, otherwise

The Zope Book (2.6 Edition)

395

AttributeError is raised.

getitem(variable, render=0) — Returns the value of a DTML variable. If render is true, the variable is rendered. See
the render function.

hasattr(object, string) — The arguments are an object and a string. The result is 1 if the string is the name of one of
the object's attributes, 0 if not. (This is implemented by calling getattr(object, name) and seeing whether it raises an
exception or not.)

hash(object) — Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value
(even if they are of different types, e.g. 1 and 1.0).

has_key(variable) — Returns true if the DTML namespace contains the named variable.

hex(integer) — Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, hex(-1) yields 0xffffffff .
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raise an OverflowError exception.

int(number) — Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly
signed decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi(number[, radix]). The radix parameter gives the base for the conversion and may be any
integer in the range 2 to 36. If radix is specified and the number is not a string, TypeError is raised. Otherwise, the
argument may be a plain or long integer or a floating point number. Conversion of floating point numbers to integers is
defined by the C semantics; normally the conversion truncates towards zero.

len(sequence) — Return the length (the number of items) of an object. The argument may be a sequence (string, tuple
or list) or a mapping (dictionary).

max(s) — With a single argument s, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min(s) — With a single argument s, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

namespace([name=value]...) — Returns a new DTML namespace object. Keyword argument name=value pairs are
pushed into the new namespace.

oct(integer) — Convert an integer number (of any size) to an octal string. The result is a valid Python expression.
Note: this always yields an unsigned literal, e.g. on a 32-bit machine, oct(-1) yields 037777777777 . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may turn up
as a large positive number or raise an OverflowError exception.

ord(character) — Return the ASCII value of a string of one character. E.g., ord("a") returns the integer 97. This is
the inverse of chr() .

pow(x, y Figure ,z) — Return x to the power y ; if z is present, return x to the power y , modulo z (computed more
efficiently than pow(x, y) % z). The arguments must have numeric types. With mixed operand types, the rules for
binary arithmetic operators apply. The effective operand type is also the type of the result; if the result is not
expressible in this type, the function raises an exception; e.g., pow(2, -1) or pow(2, 35000) is not allowed.

The Zope Book (2.6 Edition)

396

range(Figure start, stop Figure ,step) — This is a versatile function to create lists containing arithmetic
progressions. The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. The full form returns a list of plain integers [start, start + step, start +
2 * step, ...] . If step is positive, the last element is the largest start + i * step less than stop ; if step is
negative, the last element is the largest start + i * step greater than stop . step must not be zero (or else
ValueError is raised).

round(x Figure ,n) — Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minus n; if two multiples are equally close, rounding is done away from 0 (so e.g. round(0.5) is 1.0 and round(-0.5) is
-1.0).

render(object) — Render object . For DTML objects this evaluates the DTML code with the current namespace. For
other objects, this is equivalent to str(object) .

reorder(s Figure ,with Figure ,without) — Reorder the items in s according to the order given in with and without
the items mentioned in without . Items from s not mentioned in with are removed. s, with, and without are all either
sequences of strings or sequences of key-value tuples, with ordering done on the keys. This function is useful for
constructing ordered select lists.

SecurityCalledByExecutable() — Return a true if the current object (e.g. DTML document or method) is being called
by an executable (e.g. another DTML document or method, a script or a SQL method).

SecurityCheckPermission(permission, object) — Check whether the security context allows the given permission
on the given object. For example, SecurityCheckPermission("Add Documents, Images, and Files",
this()) would return true if the current user was authorized to create documents, images, and files in the current
location.

SecurityGetUser() — Return the current user object. This is normally the same as the
REQUEST.AUTHENTICATED_USER object. However, the AUTHENTICATED_USER object is insecure since it can be
replaced.

SecurityValidate(innerlink object Figure ,parent Figure ,name Figure ,value) — Return true if the value is
accessible to the current user. object is the object the value was accessed in, parent is the container of the value,
and name is the named used to access the value (for example, if it was obtained via getattr). You may omit some
of the arguments, however it is best to provide all available arguments.

SecurityValidateValue(object) — Return true if the object is accessible to the current user. This function is the same
as calling SecurityValidate(None, None, None, object) .

str(object) — Return a string containing a nicely printable representation of an object. For strings, this returns the
string itself.

test(condition, result [,condition, result]... Figure ,default) — Takes one or more condition, result pairs and returns
the result of the first true condition. Only one result is returned, even if more than one condition is true. If no condition is
true and a default is given, the default is returned. If no condition is true and there is no default, None is returned.

unichr(number) — Return a unicode string representing the value of number as a unicode character. This is the
inverse of ord() for unicode characters.

unicode(string[, encoding[, errors]]) — Decodes string using the codec for encoding. Error handling is done
according to errors. The default behavior is to decode UTF-8 in strict mode, meaning that encoding errors raise
ValueError.

The Zope Book (2.6 Edition)

397

Attributes

None — The None object is equivalent to the Python built-in object None . This is usually used to represent a Null or
false value.

See Also

string module

random module

math module

sequence module

 Built-in Python Functions

if: Tests Conditions

The if tags allows you to test conditions and to take different actions depending on the conditions. The if tag
mirrors Python's if/elif/else condition testing statements.

Syntax

If tag syntax:

<dtml-if ConditionVariable|expr="ConditionExpression">
[<dtml-elif ConditionVariable|expr="ConditionExpression">]
 ...
[<dtml-else>]
</dtml-if>

The if tag is a block tag. The if tag and optional elif tags take a condition variable name or a condition
expression, but not both. If the condition name or expression evaluates to true then the if block is executed. True
means not zero, an empty string or an empty list. If the condition variable is not found then the condition is considered
false.

If the initial condition is false, each elif condition is tested in turn. If any elif condition is true, its block is executed.
Finally the optional else block is executed if none of the if and elif conditions were true. Only one block will be
executed.

Examples

Testing for a variable:

<dtml-if snake>
 The snake variable is true
</dtml-if>

Testing for expression conditions:

<dtml-if expr="num > 5">

The Zope Book (2.6 Edition)

398

 num is greater than five
<dtml-elif expr="num < 5">
 num is less than five
<dtml-else>
 num must be five
</dtml-if>

See Also

 Python Tutorial: If Statements

in: Loops over sequences

The in tag gives you powerful controls for looping over sequences and performing batch processing.

Syntax

in tag syntax:

<dtml-in SequenceVariable|expr="SequenceExpression">
[<dtml-else>]
</dtml-in>

Anonymous User - May 8, 2002 7:56 am:
 a commenting identifier at the end tag is allowed and will be ignored like
 </dtml-in my_short_sequ_name>�
 same for if / let (dunno abt other tags)

The in block is repeated once for each item in the sequence variable or sequence expression. The current item is
pushed on to the DTML namespace during each executing of the in block.

If there are no items in the sequence variable or expression, the optional else block is executed.

Attributes

mapping — Iterates over mapping objects rather than instances. This allows values of the mapping objects to be
accessed as DTML variables.

reverse — Reverses the sequence.

sort=string — Sorts the sequence by the given attribute name.

start=int — The number of the first item to be shown, where items are numbered from 1.

end=int — The number of the last item to be shown, where items are numbered from 1.

size=int — The size of the batch.

skip_unauthorized — Don't raise an exception if an unauthorized item is encountered.

orphan=int — The desired minimum batch size. This controls how sequences are split into batches. If a batch smaller
than the orphan size would occur, then no split is performed, and a batch larger than the batch size results.

For example, if the sequence size is 12, the batch size is 10 the orphan size is 3, then the result is one batch with all 12
items since splitting the items into two batches would result in a batch smaller than the orphan size.

The Zope Book (2.6 Edition)

399

The default value is 0.

overlap=int — The number of items to overlap between batches. The default is no overlap.

previous — Iterates once if there is a previous batch. Sets batch variables for previous sequence.

next — Iterates once if there is a next batch. Sets batch variables for the next sequence.

prefix=string — Provide versions of the tag variables that start with this prefix instead of "sequence", and that use
underscores () instead of hyphens (-). The prefix must start with a letter and contain only alphanumeric characters and
underscores ().

sort_expr=expression — Sorts the sequence by an attribute named by the value of the expression. This allows you to
sort on different attributes.

reverse_expr=expression — Reverses the sequence if the expression evaluates to true. This allows you to selectively
reverse the sequence.

Tag Variables

Current Item Variables

These variables describe the current item.

sequence-item — The current item.

sequence-key — The current key. When looping over tuples of the form (key,value) , the in tag interprets them
as (sequence-key, sequence-item) .

sequence-index — The index starting with 0 of the current item.

sequence-number — The index starting with 1 of the current item.

sequence-roman — The index in lowercase Roman numerals of the current item.

sequence-Roman — The index in uppercase Roman numerals of the current item.

sequence-letter — The index in lowercase letters of the current item.

sequence-Letter — The index in uppercase letters of the current item.

sequence-start — True if the current item is the first item.

sequence-end — True if the current item is the last item.

sequence-even — True if the index of the current item is even.

sequence-odd — True if the index of the current item is odd.

sequence-length — The length of the sequence.

sequence-var- variable — A variable in the current item. For example, sequence-var-title is the title
variable of the current item. Normally you can access these variables directly since the current item is pushed on the

The Zope Book (2.6 Edition)

400

DTML namespace. However these variables can be useful when displaying previous and next batch information.

sequence-index- variable — The index of a variable of the current item.

Summary Variables

These variable summarize information about numeric item variables. To use these variable you must loop over objects
(like database query results) that have numeric variables.

total- variable — The total of all occurrences of an item variable.

count- variable — The number of occurrences of an item variable.

min- variable — The minimum value of an item variable.

max- variable — The maximum value of an item variable.

mean- variable — The mean value of an item variable.

variance- variable — The variance of an item variable with count-1 degrees of freedom.

variance-n- variable — The variance of an item variable with n degrees of freedom.

standard-deviation- variable — The standard-deviation of an item variable with count-1 degrees of freedom.

standard-deviation-n- variable — The standard-deviation of an item variable with n degrees of freedom.

Grouping Variables

These variables allow you to track changes in current item variables.

first- variable — True if the current item is the first with a particular value for a variable.

last- variable — True if the current item is the last with a particular value for a variable.

Batch Variables

sequence-query — The query string with the start variable removed. You can use this variable to construct links to
next and previous batches.

sequence-step-size — The batch size.

previous-sequence — True if the current batch is not the first one. Note, this variable is only true for the first loop
iteration.

previous-sequence-start-index — The starting index of the previous batch.

previous-sequence-start-number — The starting number of the previous batch. Note, this is the same as
previous-sequence-start-index + 1.

previous-sequence-end-index — The ending index of the previous batch.

The Zope Book (2.6 Edition)

401

previous-sequence-end-number — The ending number of the previous batch. Note, this is the same as
previous-sequence-end-index + 1.

previous-sequence-size — The size of the previous batch.

previous-batches — A sequence of mapping objects with information about all previous batches. Each mapping
object has these keys batch-start-index , batch-end-index , and batch-size .

next-sequence — True if the current batch is not the last batch. Note, this variable is only true for the last loop
iteration.

next-sequence-start-index — The starting index of the next sequence.

next-sequence-start-number — The starting number of the next sequence. Note, this is the same as
next-sequence-start-index + 1.

next-sequence-end-index — The ending index of the next sequence.

next-sequence-end-number — The ending number of the next sequence. Note, this is the same as
next-sequence-end-index + 1.

next-sequence-size — The size of the next index.

next-batches — A sequence of mapping objects with information about all following batches. Each mapping object has
these keys batch-start-index , batch-end-index , and batch-size .

Examples

Looping over sub-objects:

<dtml-in objectValues>
 title: <dtml-var title>

</dtml-in>

Looping over two sets of objects, using prefixes:

<dtml-let rows="(1,2,3)" cols="(4,5,6)">
 <dtml-in rows prefix="row">
 <dtml-in cols prefix="col">
 <dtml-var expr="row_item * col_item">

 <dtml-if col_end>
 <dtml-var expr="col_total_item * row_mean_item">
 </dtml-if>
 </dtml-in>
 </dtml-in>
</dtml-let>

Looping over a list of (key, value) tuples:

<dtml-in objectItems>
 id: <dtml-var sequence-key>, title: <dtml-var title>

</dtml-in>

Creating alternate colored table rows:

<table>
<dtml-in objectValues>
<tr <dtml-if sequence-odd>bgcolor="#EEEEEE"
 <dtml-else>bgcolor="#FFFFFF">
 </dtml-if>

The Zope Book (2.6 Edition)

402

 <td><dtml-var title></td>
</tr>
</dtml-in>
</table>

Basic batch processing:

<p>
<dtml-in largeSequence size=10 start=start previous>
 <a href="<dtml-var absolute_url><dtml-var sequence-query>start=<dtml-var previous-sequence-start-number>">Previous
</dtml-in>

<dtml-in largeSequence size=10 start=start next>
 <a href="<dtml-var absolute_url><dtml-var sequence-query>start=<dtml-var next-sequence-start-number>">Next
</dtml-in>
</p>

<p>
<dtml-in largeSequence size=10 start=start>
 <dtml-var sequence-item>
</dtml-in>
</p>

This example creates Previous and Next links to navigate between batches. Note, by using sequence-query , you
do not lose any GET variables as you navigate between batches.

let: Defines DTML variables

The let tag defines variables in the DTML namespace.

Syntax

let tag syntax:

<dtml-let [Name=Variable][Name="Expression"]...>
</dtml-let>

The let tag is a block tag. Variables are defined by tag arguments. Defined variables are pushed onto the DTML
namespace while the let block is executed. Variables are defined by attributes. The let tag can have one or more
attributes with arbitrary names. If the attributes are defined with double quotes they are considered expressions,
otherwise they are looked up by name. Attributes are processed in order, so later attributes can reference, and/or
overwrite earlier ones.

Examples

Basic usage:

<dtml-let name="'Bob'" ids=objectIds>
 name: <dtml-var name>
 ids: <dtml-var ids>
</dtml-let>

Using the let tag with the in tag:

<dtml-in expr="(1,2,3,4)">
 <dtml-let num=sequence-item
 index=sequence-index
 result="num*index">
 <dtml-var num> * <dtml-var index> = <dtml-var result>
 </dtml-let>
</dtml-in>

The Zope Book (2.6 Edition)

403

This yields:

1 * 0 = 0
2 * 1 = 2
3 * 2 = 6
4 * 3 = 12

See Also

with tag

mime: Formats data with MIME

The mime tag allows you to create MIME encoded data. It is chiefly used to format email inside the sendmail tag.

Syntax

mime tag syntax:

<dtml-mime>
[<dtml-boundry>]
...
</dtml-mime>

Anonymous User - Apr. 6, 2002 8:09 pm:
 /boundry/boundary

The mime tag is a block tag. The block is can be divided by one or more boundry tags to create a multi-part MIME
message. mime tags may be nested. The mime tag is most often used inside the sendmail tag.

Attributes

Both the mime and boundry tags have the same attributes.

encode=string — MIME Content-Transfer-Encoding header, defaults to base64 . Valid encoding options include
base64 , quoted-printable , uuencode , x-uuencode , uue , x-uue , and 7bit . If the encode attribute is
set to 7bit no encoding is done on the block and the data is assumed to be in a valid MIME format.

type=string — MIME Content-Type header.

type_expr=string — MIME Content-Type header as a variable expression. You cannot use both type and
type_expr .

name=string — MIME Content-Type header name.

name_expr=string — MIME Content-Type header name as a variable expression. You cannot use both name and
name_expr .

disposition=string — MIME Content-Disposition header.

disposition_expr=string — MIME Content-Disposition header as a variable expression. You cannot use both
disposition and disposition_expr .

filename=string — MIME Content-Disposition header filename.

The Zope Book (2.6 Edition)

404

filename_expr=string — MIME Content-Disposition header filename as a variable expression. You cannot use both
filename and filename_expr .

skip_expr=string — A variable expression that if true, skips the block. You can use this attribute to selectively include
MIME blocks.

Examples

Sending a file attachment:

<dtml-sendmail>
To: <dtml-recipient>
Subject: Resume
<dtml-mime type="text/plain" encode="7bit">

Hi, please take a look at my resume.

<dtml-boundary type="application/octet-stream" disposition="attachment"
encode="base64" filename_expr="resume_file.getId()"><dtml-var expr="resume_file.read()"></dtml-mime>
</dtml-sendmail>

Anonymous User - June 10, 2002 5:47 am:
 There's a <dtml-recipient> tag?!?!
 I think line 2 of the code is supposed to read:
 To: &dtml-recipient;

See Also

 Python Library: mimetools

raise: Raises an exception

The raise tag raises an exception, mirroring the Python raise statement.

Syntax

raise tag syntax:

<dtml-raise ExceptionName|ExceptionExpression>
</dtml-raise>

The raise tag is a block tag. It raises an exception. Exceptions can be an exception class or a string. The contents of
the tag are passed as the error value.

Examples

Raising a KeyError:

<dtml-raise KeyError></dtml-raise>

Raising an HTTP 404 error:

<dtml-raise NotFound>Web Page Not Found</dtml-raise>

See Also

try tag

The Zope Book (2.6 Edition)

405

 Python Tutorial: Errors and Exceptions

 Python Built-in Exceptions

return: Returns data

The return tag stops executing DTML and returns data. It mirrors the Python return statement.

Syntax

return tag syntax:

<dtml-return ReturnVariable|expr="ReturnExpression">

Stops execution of DTML and returns a variable or expression. The DTML output is not returned. Usually a return
expression is more useful than a return variable. Scripts largely obsolete this tag.

Examples

Returning a variable:

<dtml-return result>

Returning a Python dictionary:

<dtml-return expr="{'hi':200, 'lo':5}">

sendmail: Sends email with SMTP

The sendmail tag sends an email message using SMTP.

Syntax

sendmail tag syntax:

<dtml-sendmail>
</dtml-sendmail>

The sendmail tag is a block tag. It either requires a mailhost or a smtphost argument, but not both. The tag
block is sent as an email message. The beginning of the block describes the email headers. The headers are
separated from the body by a blank line. Alternately the To , From and Subject headers can be set with tag
arguments.

Attributes

mailhost — The name of a Zope MailHost object to use to send email. You cannot specify both a mailhost and a
smtphost.

smtphost — The name of a SMTP server used to send email. You cannot specify both a mailhost and a smtphost.

port — If the smtphost attribute is used, then the port attribute is used to specify a port number to connect to. If not
specified, then port 25 will be used.

The Zope Book (2.6 Edition)

406

mailto — The recipient address or a list of recipient addresses separated by commas. This can also be specified with
the To header.

mailfrom — The sender address. This can also be specified with the From header.

subject — The email subject. This can also be specified with the Subject header.

Examples

Sending an email message using a Mail Host:

<dtml-sendmail mailhost="mailhost">
To: <dtml-var recipient>
From: <dtml-var sender>
Subject: <dtml-var subject>

Dear <dtml-var recipient>,

You order number <dtml-var order_number> is ready.
Please pick it up at your soonest convenience.
</dtml-sendmail>

See Also

 RFC 821 (SMTP Protocol)

mime tag

sqlgroup: Formats complex SQL expressions

The sqlgroup tag formats complex boolean SQL expressions. You can use it along with the sqltest tag to build
dynamic SQL queries that tailor themselves to the environment. This tag is used in SQL Methods.

Syntax

sqlgroup tag syntax:

<dtml-sqlgroup>
[<dtml-or>]
[<dtml-and>]
...
</dtml-sqlgroup>

The sqlgroup tag is a block tag. It is divided into blocks with one or more optional or and and tags. sqlgroup
tags can be nested to produce complex logic.

Attributes

required=boolean — Indicates whether the group is required. If it is not required and contains nothing, it is excluded
from the DTML output.

where=boolean — If true, includes the string "where". This is useful for the outermost sqlgroup tag in a SQL
select query.

Examples

The Zope Book (2.6 Edition)

407

Sample usage:

select * from employees
<dtml-sqlgroup where>
 <dtml-sqltest salary op="gt" type="float" optional>
<dtml-and>
 <dtml-sqltest first type="nb" multiple optional>
<dtml-and>
 <dtml-sqltest last type="nb" multiple optional>
</dtml-sqlgroup>

If first is Bob and last is Smith, McDonald it renders:

select * from employees
where
(first='Bob'
 and
 last in ('Smith', 'McDonald')
)

If salary is 50000 and last is Smith it renders:

select * from employees
where
(salary > 50000.0
 and
 last='Smith'
)

Nested sqlgroup tags:

select * from employees
<dtml-sqlgroup where>
 <dtml-sqlgroup>
 <dtml-sqltest first op="like" type="nb">
 <dtml-and>
 <dtml-sqltest last op="like" type="nb">
 <dtml-sqlgroup>
<dtml-or>
 <dtml-sqltest salary op="gt" type="float">
</dtml-sqlgroup>

Anonymous User - May 22, 2002 11:37 am:
 Looks like the 3rd <dtml-sqlgroup> should be a close tag: </dtml-sqlgroup>

Given sample arguments, this template renders to SQL like so:

select * form employees
where
(
 (
 name like 'A*'
 and
 last like 'Smith'
)
 or
 salary > 20000.0
)

See Also

sqltest tag

sqltest: Formats SQL condition tests

The Zope Book (2.6 Edition)

408

The sqltest tag inserts a condition test into SQL code. It tests a column against a variable. This tag is used in SQL
Methods.

Syntax

sqltest tag syntax:

<dtml-sqltest Variable|expr="VariableExpression">

The sqltest tag is a singleton. It inserts a SQL condition test statement. It is used to build SQL queries. The
sqltest tag correctly escapes the inserted variable. The named variable or variable expression is tested against a
SQL column using the specified comparison operation.

Attributes

type=string — The type of the variable. Valid types include: string , int , float and nb . nb means non-blank
string, and should be used instead of string unless you want to test for blank values. The type attribute is required
and is used to properly escape inserted variable.

column=string — The name of the SQL column to test against. This attribute defaults to the variable name.

multiple=boolean — If true, then the variable may be a sequence of values to test the column against.

optional=boolean — If true, then the test is optional and will not be rendered if the variable is empty or non-existent.

op=string — The comparison operation. Valid comparisons include:

eq — equal to

gt — greater than

lt — less than

ne — not equal to

ge — greater than or equal to

le — less than or equal to

The comparison defaults to equal to. If the comparison is not recognized it is used anyway. Thus you can use
comparisons such as like .

Examples

Basic usage:

select * from employees
 where <dtml-sqltest name type="nb">

If the name variable is Bob then this renders:

select * from employees
 where name = 'Bob'

Multiple values:

The Zope Book (2.6 Edition)

409

select * from employees
 where <dtml-sqltest empid type=int multiple>

If the empid variable is (12,14,17) then this renders:

select * from employees
 where empid in (12, 14, 17)

See Also

sqlgroup tag

sqlvar tag

sqlvar: Inserts SQL variables

The sqlvar tag safely inserts variables into SQL code. This tag is used in SQL Methods.

Syntax

sqlvar tag syntax:

<dtml-sqlvar Variable|expr="VariableExpression">

The sqlvar tag is a singleton. Like the var tag, the sqlvar tag looks up a variable and inserts it. Unlike the var
tag, the formatting options are tailored for SQL code.

Attributes

type=string — The type of the variable. Valid types include: string , int , float and nb . nb means non-blank
string and should be used in place of string unless you want to use blank strings. The type attribute is required and
is used to properly escape inserted variable.

optional=boolean — If true and the variable is null or non-existent, then nothing is inserted.

Examples

Basic usage:

select * from employees
 where name=<dtml-sqlvar name type="nb">

This SQL quotes the name string variable.

See Also

sqltest tag

tree: Inserts a tree widget

The tree tag displays a dynamic tree widget by querying Zope objects.

Syntax

The Zope Book (2.6 Edition)

410

tree tag syntax:

<dtml-tree [VariableName|expr="VariableExpression"]>
</dtml-tree>

The tree tag is a block tag. It renders a dynamic tree widget in HTML. The root of the tree is given by variable name
or expression, if present, otherwise it defaults to the current object. The tree block is rendered for each tree node,
with the current node pushed onto the DTML namespace.

Tree state is set in HTTP cookies. Thus for trees to work, cookies must be enabled. Also you can only have one tree
per page.

Attributes

branches=string — Finds tree branches by calling the named method. The default method is tpValues which most
Zope objects support.

branches_expr=string — Finds tree branches by evaluating the expression.

id=string — The name of a method or id to determine tree state. It defaults to tpId which most Zope objects support.
This attribute is for advanced usage only.

url=string — The name of a method or attribute to determine tree item URLs. It defaults to tpURL which most Zope
objects support. This attribute is for advanced usage only.

leaves=string — The name of a DTML Document or Method used to render nodes that don't have any children. Note:
this document should begin with <dtml-var standard_html_header> and end with <dtml-var
standard_html_footer> in order to ensure proper display in the tree.

header=string — The name of a DTML Document or Method displayed before expanded nodes. If the header is not
found, it is skipped.

footer=string — The name of a DTML Document or Method displayed after expanded nodes. If the footer is not found,
it is skipped.

nowrap=boolean — If true then rather than wrap, nodes may be truncated to fit available space.

sort=string — Sorts the branches by the named attribute.

reverse — Reverses the order of the branches.

assume_children=boolean — Assumes that nodes have children. This is useful if fetching and querying child nodes is
a costly process. This results in plus boxes being drawn next to all nodes.

single=boolean — Allows only one branch to be expanded at a time. When you expand a new branch, any other
expanded branches close.

skip_unauthorized — Skips nodes that the user is unauthorized to see, rather than raising an error.

urlparam=string — A query string which is included in the expanding and contracting widget links. This attribute is for
advanced usage only.

The Zope Book (2.6 Edition)

411

prefix=string — Provide versions of the tag variables that start with this prefix instead of "tree", and that use
underscores () instead of hyphens (-). The prefix must start with a letter and contain only alphanumeric characters and
underscores ().

Tag Variables

tree-item-expanded — True if the current node is expanded.

tree-item-url — The URL of the current node.

tree-root-url — The URL of the root node.

tree-level — The depth of the current node. Top-level nodes have a depth of zero.

tree-colspan — The number of levels deep the tree is being rendered. This variable along with the tree-level
variable can be used to calculate table rows and colspan settings when inserting table rows into the tree table.

tree-state — The tree state expressed as a list of ids and sub-lists of ids. This variable is for advanced usage only.

Tag Control Variables

You can control the tree tag by setting these variables.

expand_all — If this variable is true then the entire tree is expanded.

collapse_all — If this variable is true then the entire tree is collapsed.

Examples

Display a tree rooted in the current object:

<dtml-tree>
 <dtml-var title_or_id>
</dtml-tree>

Anonymous User - June 4, 2002 8:00 am:
 Is there a way to prevent the tree of showing the user folder?
 And how can I change the order of the displayed folders?

Display a tree rooted in another object, using a custom branches method:

<dtml-tree expr="folder.object" branches="objectValues">
 Node id : <dtml-var getId>
</dtml-tree>

rklahn - Aug. 19, 2002 7:29 pm:
 It is often useful to generate a tree of your parent, from a DTML document. I think it would be helpful if an
 example was provided that performed this function, such as:
 <dtml-tree expr="aq_parent" skip_unauthorized="1">
 <dtml-var title_or_id>
 </dtml-tree>

try: Handles exceptions

The try tag allows exception handling in DTML, mirroring the Python try/except and try/finally constructs.

Syntax

The Zope Book (2.6 Edition)

412

The try tag has two different syntaxes, try/except/else and try/finally .

try/except/else Syntax:

<dtml-try>
<dtml-except [ExceptionName] [ExceptionName]...>
...
[<dtml-else>]
</dtml-try>

The try tag encloses a block in which exceptions can be caught and handled. There can be one or more except
tags that handles zero or more exceptions. If an except tag does not specify an exception, then it handles all
exceptions.

When an exception is raised, control jumps to the first except tag that handles the exception. If there is no except
tag to handle the exception, then the exception is raised normally.

If no exception is raised, and there is an else tag, then the else tag will be executed after the body of the try tag.

The except and else tags are optional.

try/finally Syntax:

<dtml-try>
<dtml-finally>
</dtml-try>

The finally tag cannot be used in the same try block as the except and else tags. If there is a finally tag,
its block will be executed whether or not an exception is raised in the try block.

Attributes

except — Zero or more exception names. If no exceptions are listed then the except tag will handle all exceptions.

Tag Variables

Inside the except block these variables are defined.

error_type — The exception type.

error_value — The exception value.

error_tb — The traceback.

Examples

Catching a math error:

<dtml-try>
<dtml-var expr="1/0">
<dtml-except ZeroDivisionError>
You tried to divide by zero.
</dtml-try>

Returning information about the handled exception:

<dtml-try>

The Zope Book (2.6 Edition)

413

<dtml-call dangerousMethod>
<dtml-except>
An error occurred.
Error type: <dtml-var error_type>
Error value: <dtml-var error_value>
</dtml-try>

Using finally to make sure to perform clean up regardless of whether an error is raised or not:

<dtml-call acquireLock>
<dtml-try>
<dtml-call someMethod>
<dtml-finally>
<dtml-call releaseLock>
</dtml-try>

See Also

raise tag

 Python Tutorial: Errors and Exceptions

 Python Built-in Exceptions

unless: Tests a condition

The unless tag provides a shortcut for testing negative conditions. For more complete condition testing use the if
tag.

Syntax

unless tag syntax:

<dtml-unless ConditionVariable|expr="ConditionExpression">
</dtml-unless>

The unless tag is a block tag. If the condition variable or expression evaluates to false, then the contained block is
executed. Like the if tag, variables that are not present are considered false.

Examples

Testing a variable:

<dtml-unless testMode>
 <dtml-call dangerousOperation>
</dtml-unless>

The block will be executed if testMode does not exist, or exists but is false.

See Also

if tag

var: Inserts a variable

The var tags allows you insert variables into DTML output.

The Zope Book (2.6 Edition)

414

Syntax

var tag syntax:

<dtml-var Variable|expr="Expression">

The var tag is a singleton tag. The var tag finds a variable by searching the DTML namespace which usually
consists of current object, the current object's containers, and finally the web request. If the variable is found, it is
inserted into the DTML output. If not found, Zope raises an error.

var tag entity syntax:

&dtml-variableName;

Entity syntax is a short cut which inserts and HTML quotes the variable. It is useful when inserting variables into HTML
tags.

var tag entity syntax with attributes:

&dtml.attribute1[.attribute2]...-variableName;

To a limited degree you may specify attributes with the entity syntax. You may include zero or more attributes delimited
by periods. You cannot provide arguments for attributes using the entity syntax. If you provide zero or more attributes,
then the variable is not automatically HTML quoted. Thus you can avoid HTML quoting with this syntax,
&dtml.-variableName; .

Attributes

html_quote — Convert characters that have special meaning in HTML to HTML character entities.

missing=string — Specify a default value in case Zope cannot find the variable.

fmt=string — Format a variable. Zope provides a few built-in formats including C-style format strings. For more
information on C-style format strings see the Python Library Reference If the format string is not a built-in format, then it
is assumed to be a method of the object, and it called.

whole-dollars — Formats the variable as dollars.

dollars-and-cents — Formats the variable as dollars and cents.

collection-length — The length of the variable, assuming it is a sequence.

structured-text — Formats the variable as Structured Text. For more information on Structured Text see Structured
Text How-To on the Zope.org web site.

null=string — A default value to use if the variable is None.

lower — Converts upper-case letters to lower case.

upper — Converts lower-case letters to upper case.

capitalize — Capitalizes the first character of the inserted word.

spacify — Changes underscores in the inserted value to spaces.

The Zope Book (2.6 Edition)

415

thousands_commas — Inserts commas every three digits to the left of a decimal point in values containing numbers
for example 12000 becomes 12,000 .

url — Inserts the URL of the object, by calling its absolute_url method.

url_quote — Converts characters that have special meaning in URLs to HTML character entities.

url_quote_plus — URL quotes character, like url_quote but also converts spaces to plus signs.

sql_quote — Converts single quotes to pairs of single quotes. This is needed to safely include values in SQL strings.

newline_to_br — Convert newlines (including carriage returns) to HTML break tags.

size=arg — Truncates the variable at the given length (Note: if a space occurs in the second half of the truncated
string, then the string is further truncated to the right-most space).

etc=arg — Specifies a string to add to the end of a string which has been truncated (by setting the size attribute
listed above). By default, this is ...

Examples

Inserting a simple variable into a document:

<dtml-var standard_html_header>

mcdonc - Aug. 14, 2002 11:47 am:
 Need docs for url_unquote_plus and url_unquote (added in 2.6)

Truncation:

<dtml-var colors size=10 etc=", etc.">

will produce the following output if colors is the string 'red yellow green':

red yellow, etc.

C-style string formatting:

<dtml-var expr="23432.2323" fmt="%.2f">

renders to:

23432.23

Inserting a variable, link , inside an HTML A tag with the entity syntax:

Link

Inserting a link to a document doc , using entity syntax with attributes:

<dtml-var doc fmt="title_or_id">

This creates an HTML link to an object using its URL and title. This example calls the object's absolute_url method
for the URL (using the url attribute) and its title_or_id method for the title.

with: Controls DTML variable look up

The with tag pushes an object onto the DTML namespace. Variables will be looked up in the pushed object first.

The Zope Book (2.6 Edition)

416

Syntax

with tag syntax:

<dtml-with Variable|expr="Expression">
</dtml-with>

The with tag is a block tag. It pushes the named variable or variable expression onto the DTML namespace for the
duration of the with block. Thus names are looked up in the pushed object first.

Attributes

only — Limits the DTML namespace to only include the one defined in the with tag.

mapping — Indicates that the variable or expression is a mapping object. This ensures that variables are looked up
correctly in the mapping object.

Examples

Looking up a variable in the REQUEST:

<dtml-with REQUEST only>
 <dtml-if id>
 <dtml-var id>
 <dtml-else>
 'id' was not in the request.
 </dtml-if>
</dtml-with>

Pushing the first child on the DTML namespace:

<dtml-with expr="objectValues()[0]">
 First child's id: <dtml-var id>
</dtml-with>

See Also

let tag

The Zope Book (2.6 Edition)

417

Appendix B: API Reference

This reference describes the interfaces to the most common set of basic Zope objects. This reference is useful while
writing DTML, Perl, and Python scripts that create and manipulate Zope objects.

module AccessControl

AccessControl: Security functions and classes

The functions and classes in this module are available to Python-based Scripts and Page Templates.

class SecurityManager

A security manager provides methods for checking access and managing executable context and policies

 calledByExecutable(self)

Return a boolean value indicating if this context was called by an executable.

permission — Always available

 validate(accessed=None, container=None, name=None, value=None, roles=None)

Validate access.

Arguments:

accessed — the object that was being accessed

container — the object the value was found in

name — The name used to access the value

value — The value retrieved though the access.

roles — The roles of the object if already known.

The arguments may be provided as keyword arguments. Some of these arguments may be omitted, however, the
policy may reject access in some cases when arguments are omitted. It is best to provide all the values possible.

permission — Always available

 checkPermission(self, permission, object)

Check whether the security context allows the given permission on the given object.

permission — Always available

 getUser(self)

The Zope Book (2.6 Edition)

418

Get the current authenticated user. See the AuthenticatedUser class.

permission — Always available

 validateValue(self, value, roles=None)

Convenience for common case of simple value validation.

permission — Always available

 def getSecurityManager()

Returns the security manager. See the SecurityManager class.

module AuthenticatedUser

class AuthenticatedUser

This interface needs to be supported by objects that are returned by user validation and used for access control.

 getUserName()

Return the name of a user

Permission — Always available

 getId()

Get the ID of the user. The ID can be used from Python to get the user from the user's UserDatabase.

Permission — Always available

 has_role(roles, object=None)

Return true if the user has at least one role from a list of roles, optionally in the context of an object.

Permission — Always available

 getRoles()

Return a list of the user's roles.

Permission — Always available

 has_permission(permission, object)

Return true if the user has a permission on an object.

The Zope Book (2.6 Edition)

419

Permission — Always available

 getRolesInContext(object)

Return the list of roles assigned to the user, including local roles assigned in context of an object.

Permission — Always available

 getDomains()

Return the list of domain restrictions for a user.

Permission — Always available

module DTMLDocument

class DTMLDocument(ObjectManagerItem, PropertyManager)

A DTML Document is a Zope object that contains and executes DTML code. It is useful to represent web pages.

 manage_edit(data, title)

Change the DTML Document, replacing its contents with data and changing its title.

The data argument may be a file object or a string.

Permission — Change DTML Documents

 document_src()

Returns the unrendered source text of the DTML Document.

Permission — View management screens

 __call__(client=None, REQUEST={}, RESPONSE=None, **kw)

Calling a DTMLDocument causes the Document to interpret the DTML code that it contains. The method returns the
result of the interpretation, which can be any kind of object.

To accomplish its task, DTML Document often needs to resolve various names into objects. For example, when the
code <dtml-var spam> is executed, the DTML engine tries to resolve the name spam .

In order to resolve names, the Document must be passed a namespace to look them up in. This can be done several
ways:

 • By passing a client object -- If the argument client is passed, then names are looked up as attributes on
the argument.

 • By passing a REQUEST mapping -- If the argument REQUEST is passed, then names are looked up as items
on the argument. If the object is not a mapping, an TypeError will be raised when a name lookup is attempted.

The Zope Book (2.6 Edition)

420

 • By passing keyword arguments -- names and their values can be passed as keyword arguments to the
Document.

The namespace given to a DTML Document is the composite of these three methods. You can pass any number of
them or none at all. Names are looked up first in the keyword arguments, then in the client, and finally in the mapping.

A DTMLDocument implicitly pass itself as a client argument in addition to the specified client, so names are looked up
in the DTMLDocument itself.

Passing in a namespace to a DTML Document is often referred to as providing the Document with a context .

DTML Documents can be called three ways.

From DTML

A DTML Document can be called from another DTML Method or Document:

<dtml-var standard_html_header>
 <dtml-var aDTMLDocument>
<dtml-var standard_html_footer>

In this example, the Document aDTMLDocument is being called from another DTML object by name. The calling
method passes the value this as the client argument and the current DTML namespace as the REQUEST argument.
The above is identical to this following usage in a DTML Python expression:

<dtml-var standard_html_header>
 <dtml-var "aDTMLDocument(_.None, _)">
<dtml-var standard_html_footer>

From Python

Products, External Methods, and Scripts can call a DTML Document in the same way as calling a DTML Document
from a Python expression in DTML; as shown in the previous example.

By the Publisher

When the URL of a DTML Document is fetched from Zope, the DTML Document is called by the publisher. The
REQUEST object is passed as the second argument to the Document.

Permission — View

 get_size()

Returns the size of the unrendered source text of the DTML Document in bytes.

Permission — View

ObjectManager Constructor

 manage_addDocument(id, title)

Add a DTML Document to the current ObjectManager

The Zope Book (2.6 Edition)

421

module DTMLMethod

class DTMLMethod(ObjectManagerItem)

A DTML Method is a Zope object that contains and executes DTML code. It can act as a template to display other
objects. It can also hold small pieces of content which are inserted into other DTML Documents or DTML Methods.

The DTML Method's id is available via the document_id variable and the title is available via the document_title
variable.

 manage_edit(data, title)

Change the DTML Method, replacing its contents with data and changing its title.

The data argument may be a file object or a string.

Permission — Change DTML Methods

 document_src()

Returns the unrendered source text of the DTML Method.

Permission — View management screens

 __call__(client=None, REQUEST={}, **kw)

Calling a DTMLMethod causes the Method to interpret the DTML code that it contains. The method returns the result of
the interpretation, which can be any kind of object.

To accomplish its task, DTML Method often needs to resolve various names into objects. For example, when the code
<dtml-var spam> is executed, the DTML engine tries to resolve the name spam .

In order to resolve names, the Method must be passed a namespace to look them up in. This can be done several
ways:

 • By passing a client object -- If the argument client is passed, then names are looked up as attributes on
the argument.

 • By passing a REQUEST mapping -- If the argument REQUEST is passed, then names are looked up as items
on the argument. If the object is not a mapping, an TypeError will be raised when a name lookup is attempted.

 • By passing keyword arguments -- names and their values can be passed as keyword arguments to the
Method.

The namespace given to a DTML Method is the composite of these three methods. You can pass any number of them
or none at all. Names will be looked up first in the keyword argument, next in the client and finally in the mapping.

Unlike DTMLDocuments, DTMLMethods do not look up names in their own instance dictionary.

Passing in a namespace to a DTML Method is often referred to as providing the Method with a context .

The Zope Book (2.6 Edition)

422

DTML Methods can be called three ways:

From DTML

A DTML Method can be called from another DTML Method or Document:

<dtml-var standard_html_header>
 <dtml-var aDTMLMethod>
<dtml-var standard_html_footer>

In this example, the Method aDTMLMethod is being called from another DTML object by name. The calling method
passes the value this as the client argument and the current DTML namespace as the REQUEST argument. The
above is identical to this following usage in a DTML Python expression:

<dtml-var standard_html_header>
 <dtml-var "aDTMLMethod(_.None, _)">
<dtml-var standard_html_footer>

From Python

Products, External Methods, and Scripts can call a DTML Method in the same way as calling a DTML Method from a
Python expression in DTML; as shown in the previous example.

By the Publisher

When the URL of a DTML Method is fetched from Zope, the DTML Method is called by the publisher. The REQUEST
object is passed as the second argument to the Method.

Permission — View

 get_size()

Returns the size of the unrendered source text of the DTML Method in bytes.

Permission — View

ObjectManager Constructor

 manage_addDTMLMethod(id, title)

Add a DTML Method to the current ObjectManager

module DateTime

class DateTime

The DateTime object provides an interface for working with dates and times in various formats. DateTime also provides
methods for calendar operations, date and time arithmetic and formatting.

DateTime objects represent instants in time and provide interfaces for controlling its representation without affecting the
absolute value of the object.

The Zope Book (2.6 Edition)

423

DateTime objects may be created from a wide variety of string or numeric data, or may be computed from other
DateTime objects. DateTimes support the ability to convert their representations to many major timezones, as well as
the ability to create a DateTime object in the context of a given timezone.

DateTime objects provide partial numerical behavior:

 • Two date-time objects can be subtracted to obtain a time, in days between the two.

 • A date-time object and a positive or negative number may be added to obtain a new date-time object that is the
given number of days later than the input date-time object.

 • A positive or negative number and a date-time object may be added to obtain a new date-time object that is the
given number of days later than the input date-time object.

 • A positive or negative number may be subtracted from a date-time object to obtain a new date-time object that is
the given number of days earlier than the input date-time object.

DateTime objects may be converted to integer, long, or float numbers of days since January 1, 1901, using the
standard int, long, and float functions (Compatibility Note: int, long and float return the number of days since 1901 in
GMT rather than local machine timezone). DateTime objects also provide access to their value in a float format usable
with the python time module, provided that the value of the object falls in the range of the epoch-based time module.

A DateTime object should be considered immutable; all conversion and numeric operations return a new DateTime
object rather than modify the current object.

A DateTime object always maintains its value as an absolute UTC time, and is represented in the context of some
timezone based on the arguments used to create the object. A DateTime object's methods return values based on the
timezone context.

Note that in all cases the local machine timezone is used for representation if no timezone is specified.

DateTimes may be created with from zero to seven arguments.

 • If the function is called with no arguments, then the current date/time is returned, represented in the timezone of
the local machine.

 • If the function is invoked with a single string argument which is a recognized timezone name, an object
representing the current time is returned, represented in the specified timezone.

 • If the function is invoked with a single string argument representing a valid date/time, an object representing that
date/time will be returned.

As a general rule, any date-time representation that is recognized and unambiguous to a resident of North America is
acceptable.(The reason for this qualification is that in North America, a date like: 2/1/1994 is interpreted as February 1,
1994, while in some parts of the world, it is interpreted as January 2, 1994.) A date/time string consists of two
components, a date component and an optional time component, separated by one or more spaces. If the time
component is omitted, 12:00am is assumed. Any recognized timezone name specified as the final element of the
date/time string will be used for computing the date/time value. (If you create a DateTime with the string Mar 9,
1997 1:45pm US/Pacific , the value will essentially be the same as if you had captured time.time() at the specified
date and time on a machine in that timezone):

e=DateTime("US/Eastern")

The Zope Book (2.6 Edition)

424

returns current date/time, represented in US/Eastern.

x=DateTime("1997/3/9 1:45pm")
returns specified time, represented in local machine zone.

y=DateTime("Mar 9, 1997 13:45:00")
y is equal to x

The date component consists of year, month, and day values. The year value must be a one-, two-, or four-digit
integer. If a one- or two-digit year is used, the year is assumed to be in the twentieth century. The month may be an
integer, from 1 to 12, a month name, or a month abbreviation, where a period may optionally follow the abbreviation.
The day must be an integer from 1 to the number of days in the month. The year, month, and day values may be
separated by periods, hyphens, forward slashes, or spaces. Extra spaces are permitted around the delimiters. Year,
month, and day values may be given in any order as long as it is possible to distinguish the components. If all three
components are numbers that are less than 13, then a month-day-year ordering is assumed.

The time component consists of hour, minute, and second values separated by colons. The hour value must be an
integer between 0 and 23 inclusively. The minute value must be an integer between 0 and 59 inclusively. The second
value may be an integer value between 0 and 59.999 inclusively. The second value or both the minute and second
values may be omitted. The time may be followed by am or pm in upper or lower case, in which case a 12-hour clock is
assumed.

 • If the DateTime function is invoked with a single Numeric argument, the number is assumed to be a floating point
value such as that returned by time.time().

A DateTime object is returned that represents the gmt value of the time.time() float represented in the local machine's
timezone.

 • If the function is invoked with two numeric arguments, then the first is taken to be an integer year and the second
argument is taken to be an offset in days from the beginning of the year, in the context of the local machine
timezone. The date-time value returned is the given offset number of days from the beginning of the given year,
represented in the timezone of the local machine. The offset may be positive or negative. Two-digit years are
assumed to be in the twentieth century.

 • If the function is invoked with two arguments, the first a float representing a number of seconds past the epoch in
gmt (such as those returned by time.time()) and the second a string naming a recognized timezone, a DateTime
with a value of that gmt time will be returned, represented in the given timezone.:

import time
t=time.time()

now_east=DateTime(t,'US/Eastern')
Time t represented as US/Eastern

now_west=DateTime(t,'US/Pacific')
Time t represented as US/Pacific

now_east == now_west
only their representations are different

 • If the function is invoked with three or more numeric arguments, then the first is taken to be an integer year, the
second is taken to be an integer month, and the third is taken to be an integer day. If the combination of values is
not valid, then a DateTimeError is raised. Two-digit years are assumed to be in the twentieth century. The fourth,
fifth, and sixth arguments specify a time in hours, minutes, and seconds; hours and minutes should be positive
integers and seconds is a positive floating point value, all of these default to zero if not given. An optional string
may be given as the final argument to indicate timezone (the effect of this is as if you had taken the value of
time.time() at that time on a machine in the specified timezone).

The Zope Book (2.6 Edition)

425

If a string argument passed to the DateTime constructor cannot be parsed, it will raise DateTime.SyntaxError. Invalid
date, time, or timezone components will raise a DateTime.DateTimeError.

The module function Timezones() will return a list of the timezones recognized by the DateTime module. Recognition of
timezone names is case-insensitive.

 strftime(format)

Return date time string formatted according to format

See Python's time.strftime function.

 dow()

Return the integer day of the week, where Sunday is 0

Permission — Always available

 aCommon()

Return a string representing the object's value in the format: Mar 1, 1997 1:45 pm

Permission — Always available

 h_12()

Return the 12-hour clock representation of the hour

Permission — Always available

 Mon_()

Compatibility: see pMonth

Permission — Always available

 HTML4()

Return the object in the format used in the HTML4.0 specification, one of the standard forms in ISO8601.

See HTML 4.0 Specification

Dates are output as: YYYY-MM-DDTHH:MM:SSZ T, Z are literal characters. The time is in UTC.

Permission — Always available

 greaterThanEqualTo(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is returned
by the python time module. Returns true if the object represents a date/time greater than or equal to the specified

The Zope Book (2.6 Edition)

426

DateTime or time module style time. Revised to give more correct results through comparison of long integer
milliseconds.

Permission — Always available

 dayOfYear()

Return the day of the year, in context of the timezone representation of the object

Permission — Always available

 lessThan(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is returned
by the python time module. Returns true if the object represents a date/time less than the specified DateTime or time
module style time. Revised to give more correct results through comparison of long integer milliseconds.

Permission — Always available

 AMPM()

Return the time string for an object to the nearest second.

Permission — Always available

 isCurrentHour()

Return true if this object represents a date/time that falls within the current hour, in the context of this object's timezone
representation

Permission — Always available

 Month()

Return the full month name

Permission — Always available

 mm()

Return month as a 2 digit string

Permission — Always available

 ampm()

Return the appropriate time modifier (am or pm)

Permission — Always available

The Zope Book (2.6 Edition)

427

 hour()

Return the 24-hour clock representation of the hour

Permission — Always available

 aCommonZ()

Return a string representing the object's value in the format: Mar 1, 1997 1:45 pm US/Eastern

Permission — Always available

 Day_()

Compatibility: see pDay

Permission — Always available

 pCommon()

Return a string representing the object's value in the format: Mar. 1, 1997 1:45 pm

Permission — Always available

 minute()

Return the minute

Permission — Always available

 day()

Return the integer day

Permission — Always available

 earliestTime()

Return a new DateTime object that represents the earliest possible time (in whole seconds) that still falls within the
current object's day, in the object's timezone context

Permission — Always available

 Date()

Return the date string for the object.

Permission — Always available

 Time()

The Zope Book (2.6 Edition)

428

Return the time string for an object to the nearest second.

Permission — Always available

 isFuture()

Return true if this object represents a date/time later than the time of the call

Permission — Always available

 greaterThan(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is returned
by the python time module. Returns true if the object represents a date/time greater than the specified DateTime or
time module style time. Revised to give more correct results through comparison of long integer milliseconds.

Permission — Always available

 TimeMinutes()

Return the time string for an object not showing seconds.

Permission — Always available

 yy()

Return calendar year as a 2 digit string

Permission — Always available

 isCurrentDay()

Return true if this object represents a date/time that falls within the current day, in the context of this object's timezone
representation

Permission — Always available

 dd()

Return day as a 2 digit string

Permission — Always available

 rfc822()

Return the date in RFC 822 format

Permission — Always available

The Zope Book (2.6 Edition)

429

 isLeapYear()

Return true if the current year (in the context of the object's timezone) is a leap year

Permission — Always available

 fCommon()

Return a string representing the object's value in the format: March 1, 1997 1:45 pm

Permission — Always available

 isPast()

Return true if this object represents a date/time earlier than the time of the call

Permission — Always available

 fCommonZ()

Return a string representing the object's value in the format: March 1, 1997 1:45 pm US/Eastern

Permission — Always available

 timeTime()

Return the date/time as a floating-point number in UTC, in the format used by the python time module. Note that it is
possible to create date/time values with DateTime that have no meaningful value to the time module.

Permission — Always available

 toZone(z)

Return a DateTime with the value as the current object, represented in the indicated timezone.

Permission — Always available

 lessThanEqualTo(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is returned
by the python time module. Returns true if the object represents a date/time less than or equal to the specified
DateTime or time module style time. Revised to give more correct results through comparison of long integer
milliseconds.

Permission — Always available

 Mon()

Compatibility: see aMonth

The Zope Book (2.6 Edition)

430

Permission — Always available

 parts()

Return a tuple containing the calendar year, month, day, hour, minute second and timezone of the object

Permission — Always available

 isCurrentYear()

Return true if this object represents a date/time that falls within the current year, in the context of this object's timezone
representation

Permission — Always available

 PreciseAMPM()

Return the time string for the object.

Permission — Always available

 AMPMMinutes()

Return the time string for an object not showing seconds.

Permission — Always available

 equalTo(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is returned
by the python time module. Returns true if the object represents a date/time equal to the specified DateTime or time
module style time. Revised to give more correct results through comparison of long integer milliseconds.

Permission — Always available

 pDay()

Return the abbreviated (with period) name of the day of the week

Permission — Always available

 notEqualTo(t)

Compare this DateTime object to another DateTime object OR a floating point number such as that which is returned
by the python time module. Returns true if the object represents a date/time not equal to the specified DateTime or time
module style time. Revised to give more correct results through comparison of long integer milliseconds.

Permission — Always available

 h_24()

The Zope Book (2.6 Edition)

431

Return the 24-hour clock representation of the hour

Permission — Always available

 pCommonZ()

Return a string representing the object's value in the format: Mar. 1, 1997 1:45 pm US/Eastern

Permission — Always available

 isCurrentMonth()

Return true if this object represents a date/time that falls within the current month, in the context of this object's
timezone representation

Permission — Always available

 DayOfWeek()

Compatibility: see Day

Permission — Always available

 latestTime()

Return a new DateTime object that represents the latest possible time (in whole seconds) that still falls within the
current object's day, in the object's timezone context

Permission — Always available

 dow_1()

Return the integer day of the week, where Sunday is 1

Permission — Always available

 timezone()

Return the timezone in which the object is represented.

Permission — Always available

 year()

Return the calendar year of the object

Permission — Always available

 PreciseTime()

The Zope Book (2.6 Edition)

432

Return the time string for the object.

Permission — Always available

 ISO()

Return the object in ISO standard format

Dates are output as: YYYY-MM-DD HH:MM:SS

Permission — Always available

 millis()

Return the millisecond since the epoch in GMT.

Permission — Always available

 second()

Return the second

Permission — Always available

 month()

Return the month of the object as an integer

Permission — Always available

 pMonth()

Return the abbreviated (with period) month name.

Permission — Always available

 aMonth()

Return the abbreviated month name.

Permission — Always available

 isCurrentMinute()

Return true if this object represents a date/time that falls within the current minute, in the context of this object's
timezone representation

Permission — Always available

 Day()

The Zope Book (2.6 Edition)

433

Return the full name of the day of the week

Permission — Always available

 aDay()

Return the abbreviated name of the day of the week

Permission — Always available

module ExternalMethod

class ExternalMethod

Web-callable functions that encapsulate external Python functions.

The function is defined in an external file. This file is treated like a module, but is not a module. It is not imported
directly, but is rather read and evaluated. The file must reside in the Extensions subdirectory of the Zope installation,
or in an Extensions subdirectory of a product directory.

Due to the way ExternalMethods are loaded, it is not currently possible to import Python modules that reside in the
Extensions directory. It is possible to import modules found in the lib/python directory of the Zope installation, or
in packages that are in the lib/python directory.

 manage_edit(title, module, function, REQUEST=None)

Change the External Method.

See the description of manage_addExternalMethod for a description of the arguments module and function .

Note that calling manage_edit causes the "module" to be effectively reloaded. This is useful during debugging to see
the effects of changes, but can lead to problems of functions rely on shared global data.

 __call__(*args, **kw)

Call the External Method.

Calling an External Method is roughly equivalent to calling the original actual function from Python. Positional and
keyword parameters can be passed as usual. Note however that unlike the case of a normal Python method, the "self"
argument must be passed explicitly. An exception to this rule is made if:

 • The supplied number of arguments is one less than the required number of arguments, and

 • The name of the function's first argument is self .

In this case, the URL parent of the object is supplied as the first argument.

ObjectManager Constructor

 manage_addExternalMethod(id, title, module, function)

The Zope Book (2.6 Edition)

434

Add an external method to an ObjectManager .

In addition to the standard object-creation arguments, id and title, the following arguments are defined:

function — The name of the python function. This can be a an ordinary Python function, or a bound method.

module — The name of the file containing the function definition.

The module normally resides in the Extensions directory, however, the file name may have a prefix of product. ,
indicating that it should be found in a product directory.

For example, if the module is: ACMEWidgets.foo , then an attempt will first be made to use the file
lib/python/Products/ACMEWidgets/Extensions/foo.py . If this failes, then the file
Extensions/ACMEWidgets.foo.py will be used.

module File

class File(ObjectManagerItem, PropertyManager)

A File is a Zope object that contains file content. A File object can be used to upload or download file information with
Zope.

Using a File object in Zope is easy. The most common usage is to display the contents of a file object in a web page.
This is done by simply referencing the object from DTML:

<dtml-var standard_html_header>
 <dtml-var FileObject>
<dtml-var standard_html_footer>

A more complex example is presenting the File object for download by the user. The next example displays a link to
every File object in a folder for the user to download:

<dtml-var standard_html_header>

 <dtml-in "ObjectValues('File')">
 <a href="<dtml-var absolute_url>"><dtml-var
 id>
 </dtml-in>

<dtml-var standard_html_footer>

In this example, the absolute_url method and id are used to create a list of HTML hyperlinks to all of the File
objects in the current Object Manager.

Also see ObjectManager for details on the objectValues method.

 getContentType()

Returns the content type of the file.

Permission — View

 update_data(data, content_type=None, size=None)

The Zope Book (2.6 Edition)

435

Updates the contents of the File with data .

The data argument must be a string. If content_type is not provided, then a content type will not be set. If size is
not provided, the size of the file will be computed from data .

Permission — Python only

 getSize()

Returns the size of the file in bytes.

Permission — View

ObjectManager Constructor

 manage_addFile(id, file="", title="", precondition="", content_type="")

Add a new File object.

Creates a new File object id with the contents of file

module Folder

class Folder(ObjectManagerItem, ObjectManager, PropertyManager)

A Folder is a generic container object in Zope.

Folders are the most common ObjectManager subclass in Zope.

ObjectManager Constructor

 manage_addFolder(id, title)

Add a Folder to the current ObjectManager

Permission — Add Folders

module Image

class Image(File)

An Image is a Zope object that contains image content. An Image object can be used to upload or download image
information with Zope.

Image objects have two properties the define their dimension, height and width . These are calculated when the
image is uploaded. For image types that Zope does not understand, these properties may be undefined.

The Zope Book (2.6 Edition)

436

Using a Image object in Zope is easy. The most common usage is to display the contents of an image object in a web
page. This is done by simply referencing the object from DTML:

<dtml-var standard_html_header>
 <dtml-var ImageObject>
<dtml-var standard_html_footer>

This will generate an HTML IMG tag referencing the URL to the Image. This is equivalent to:

<dtml-var standard_html_header>
 <dtml-with ImageObject>
 <img src="<dtml-var absolute_url>">
 </dtml-with>
<dtml-var standard_html_footer>

You can control the image display more precisely with the tag method. For example:

<dtml-var "ImageObject.tag(border='5', align='left')">

 tag(height=None, width=None, alt=None, scale=0, xscale=0, yscale=0, **args)

This method returns a string which contains an HTML IMG tag reference to the image.

Optionally, the height , width , alt , scale , xscale and yscale arguments can be provided which are
turned into HTML IMG tag attributes. Note, height and width are provided by default, and alt comes from the
title_or_id method.

Keyword arguments may be provided to support other or future IMG tag attributes. The one exception to this is the
HTML Cascading Style Sheet tag class . Because the word class is a reserved keyword in Python, you must
instead use the keyword argument css_class . This will be turned into a class HTML tag attribute on the rendered
img tag.

Permission — View

ObjectManager Constructor

 manage_addImage(id, file, title="", precondition="", content_type="")

Add a new Image object.

Creates a new Image object id with the contents of file .

module MailHost

class MailHost

MailHost objects work as adapters to Simple Mail Transfer Protocol (SMTP) servers. MailHosts are used by DTML
sendmail tags to find the proper host to deliver mail to.

 send(messageText, mto=None, mfrom=None, subject=None, encode=None)

Sends an email message where the messageText is an rfc822 formatted message. This allows you complete control
over the message headers, including setting any extra headers such as Cc: and Bcc:. The arguments are:

The Zope Book (2.6 Edition)

437

messageText — The mail message. It can either be a rfc822 formed text with header fields, or just a body without any
header fields. The other arguments given will override the header fields in the message, if they exist.

mto — A commaseparated string or list of recipient(s) of the message.

mfrom — The address of the message sender.

subject — The subject of the message.

encode — The rfc822 defined encoding of the message. The default of None means no encoding is done. Valid
values are base64 , quoted-printable and uuencode .

 simple_send(self, mto, mfrom, subject, body)

Sends a message. Only To:, From: and Subject: headers can be set. The arguments are:

mto — A commaseparated string or list of recipient(s) of the message.

mfrom — The address of the message sender.

subject — The subject of the message.

body — The body of the message.

MailHost Constructor

 manage_addMailHost(id, title="", smtp_host=None, localhost=localhost, smtp_port=25,

timeout=1.0)

Add a mailhost object to an ObjectManager.

module ObjectManager

class ObjectManager

An ObjectManager contains other Zope objects. The contained objects are Object Manager Items.

To create an object inside an object manager use 'manage_addProduct':

self.manage_addProduct['OFSP'].manage_addFolder(id, title)

Anonymous User - June 13, 2002 4:37 pm:
 what is OFSP??????
 explanation would help here...

In DTML this would be:

<dtml-call "manage_addProduct['OFSP'].manage_addFolder(id, title)">

These examples create a new Folder inside the current ObjectManager.

manage_addProduct is a mapping that provides access to product constructor methods. It is indexed by product id.

The Zope Book (2.6 Edition)

438

Constructor methods are registered during product initialization and should be documented in the API docs for each
addable object.

 objectItems(type=None)

This method returns a sequence of (id, object) tuples.

Like objectValues and objectIds, it accepts one argument, either a string or a list to restrict the results to objects of a
given meta_type or set of meta_types.

Each tuple's first element is the id of an object contained in the Object Manager, and the second element is the object
itself.

Example:

<dtml-in objectItems>
 id: <dtml-var sequence-key>,
 type: <dtml-var meta_type>
<dtml-else>
 There are no sub-objects.
</dtml-in>

Permission — Access contents information

 superValues(type)

This method returns a list of objects of a given meta_type(es) contained in the Object Manager and all its parent Object
Managers.

The type argument specifies the meta_type(es). It can be a string specifying one meta_type, or it can be a list of strings
to specify many.

Permission — Python only

 objectValues(type=None)

This method returns a sequence of contained objects.

Like objectItems and objectIds, it accepts one argument, either a string or a list to restrict the results to objects of a
given meta_type or set of meta_types.

Example:

<dtml-in expr="objectValues('Folder')">
 <dtml-var icon>
 This is the icon for the: <dtml-var id> Folder
.
<dtml-else>
 There are no Folders.
</dtml-in>

Anonymous User - July 17, 2002 9:30 pm:
 The above sample illustrates how to pass a meta_type to the objectValues method. But how do you pass a set of
 meta_types to objectValues method?
Anonymous User - July 17, 2002 9:40 pm:
 Use list to specify a set of meta_types, try this:
 <dtml-in expr="objectValues(['File','Folder'])">
 ...
 </dtml-in>

The Zope Book (2.6 Edition)

439

The results were restricted to Folders by passing a meta_type to objectValues method.

Permission — Access contents information

 objectIds(type=None)

This method returns a list of the ids of the contained objects.

Optionally, you can pass an argument specifying what object meta_type(es) to restrict the results to. This argument can
be a string specifying one meta_type, or it can be a list of strings to specify many.

Example:

<dtml-in objectIds>
 <dtml-var sequence-item>
<dtml-else>
 There are no sub-objects.
</dtml-in>

This DTML code will display all the ids of the objects contained in the current Object Manager.

Permission — Access contents information

module ObjectManagerItem

class ObjectManagerItem

A Zope object that can be contained within an Object Manager. Almost all Zope objects that can be managed through
the web are Object Manager Items.

ObjectMangerItems have these instance attributes:

title — The title of the object.

This is an optional one-line string description of the object.

meta_type — A short name for the type of the object.

This is the name that shows up in product add list for the object and is used when filtering objects by type.

This attribute is provided by the object's class and should not be changed directly.

REQUEST — The current web request.

This object is acquired and should not be set.

 title_or_id()

If the title is not blank, return it, otherwise return the id.

Permission — Always available

 getPhysicalRoot()

The Zope Book (2.6 Edition)

440

Returns the top-level Zope Application object.

Permission — Python only

 manage_workspace()

This is the web method that is called when a user selects an item in a object manager contents view or in the Zope
Management navigation view.

Permission — View management screens

 getPhysicalPath()

Get the path of an object from the root, ignoring virtual hosts.

Permission — Always available

 unrestrictedTraverse(path, default=None)

Return the object obtained by traversing the given path from the object on which the method was called. This method
begins with "unrestricted" because (almost) no security checks are performed.

If an object is not found then the default argument will be returned.

Permission — Python only

 getId()

Returns the object's id.

The id is the unique name of the object within its parent object manager. This should be a string, and can contain
letters, digits, underscores, dashes, commas, and spaces.

This method replaces direct access to the id attribute.

Permission — Always available

 absolute_url(relative=None)

Return the absolute url to the object.

If the relative argument is provided with a true value, then the URL returned is relative to the site object. Note, if virtual
hosts are being used, then the path returned is a logical, rather than a physical path.

Permission — Always available

 this()

Return the object.

The Zope Book (2.6 Edition)

441

This turns out to be handy in two situations. First, it provides a way to refer to an object in DTML expressions.

The second use for this is rather deep. It provides a way to acquire an object without getting the full context that it was
acquired from. This is useful, for example, in cases where you are in a method of a non-item subobject of an item and
you need to get the item outside of the context of the subobject.

Permission — Always available

 restrictedTraverse(path, default=None)

Return the object obtained by traversing the given path from the object on which the method was called, performing
security checks along the way.

If an object is not found then the default argument will be returned.

Permission — Always available

 title_and_id()

If the title is not blank, the return the title followed by the id in parentheses. Otherwise return the id.

Permission — Always available

module PropertyManager

class PropertyManager

A Property Manager object has a collection of typed attributes called properties. Properties can be managed through
the web or via DTML.

In addition to having a type, properties can be writable or read-only and can have default values.

 propertyItems()

Return a list of (id, property) tuples.

Permission — Access contents information

 propertyValues()

Returns a list of property values.

Permission — Access contents information

 propertyMap()

Returns a tuple of mappings, giving meta-data for properties. The meta-data includes id , type , and mode .

Permission — Access contents information

The Zope Book (2.6 Edition)

442

 propertyIds()

Returns a list of property ids.

Permission — Access contents information

 getPropertyType(id)

Get the type of property id . Returns None if no such property exists.

Permission — Access contents information

 getProperty(id, d=None)

Return the value of the property id . If the property is not found the optional second argument or None is returned.

Permission — Access contents information

 hasProperty(id)

Returns a true value if the Property Manager has the property id . Otherwise returns a false value.

Permission — Access contents information

module PropertySheet

class PropertySheet

A PropertySheet is an abstraction for organizing and working with a set of related properties. Conceptually it acts like a
container for a set of related properties and meta-data describing those properties. A PropertySheet may or may not
provide a web interface for managing its properties.

 xml_namespace()

Return a namespace string usable as an xml namespace for this property set. This may be an empty string if there is
no default namespace for a given property sheet (especially property sheets added in ZClass definitions).

Permission — Python only

 propertyItems()

Return a list of (id, property) tuples.

Permission — Access contents information

 propertyValues()

Returns a list of actual property values.

The Zope Book (2.6 Edition)

443

Permission — Access contents information

 getPropertyType(id)

Get the type of property id . Returns None if no such property exists.

Permission — Python only

 propertyInfo()

Returns a mapping containing property meta-data.

Permission — Python only

 getProperty(id, d=None)

Get the property id , returning the optional second argument or None if no such property is found.

Permission — Python only

 manage_delProperties(ids=None, REQUEST=None)

Delete one or more properties with the given ids . The ids argument should be a sequence (tuple or list) containing
the ids of the properties to be deleted. If ids is empty no action will be taken. If any of the properties named in ids
does not exist, an error will be raised.

Some objects have "special" properties defined by product authors that cannot be deleted. If one of these properties is
named in ids , an HTML error message is returned.

If no value is passed in for REQUEST , the method will return None. If a value is provided for REQUEST (as it will be
when called via the web), the property management form for the object will be rendered and returned.

This method may be called via the web, from DTML or from Python code.

Permission — Manage Properties

 manage_changeProperties(REQUEST=None, **kw)

Change existing object properties by passing either a mapping object as REQUEST containing name:value pairs or by
passing name=value keyword arguments.

Some objects have "special" properties defined by product authors that cannot be changed. If you try to change one of
these properties through this method, an error will be raised.

Note that no type checking or conversion happens when this method is called, so it is the caller's responsibility to
ensure that the updated values are of the correct type. This should probably change .

If a value is provided for REQUEST (as it will be when called via the web), the method will return an HTML message
dialog. If no REQUEST is passed, the method returns None on success.

This method may be called via the web, from DTML or from Python code.

The Zope Book (2.6 Edition)

444

Permission — Manage Properties

 manage_addProperty(id, value, type, REQUEST=None)

Add a new property with the given id , value and type .

These are the property types:

boolean — 1 or 0.

date — A DateTime value, for example 12/31/1999 15:42:52 PST .

float — A decimal number, for example 12.4 .

int — An integer number, for example, 12 .

lines — A list of strings, one per line.

long — A long integer, for example 12232322322323232323423 .

string — A string of characters, for example This is a string .

text — A multi-line string, for example a paragraph.

tokens — A list of strings separated by white space, for example one two three .

selection — A string selected by a pop-up menu.

multiple selection — A list of strings selected by a selection list.

This method will use the passed in type to try to convert the value argument to the named type. If the given value
cannot be converted, a ValueError will be raised.

The value given for selection and multiple selection properites may be an attribute or method name. The
attribute or method must return a sequence values.

If the given type is not recognized, the value and type given are simply stored blindly by the object.

If no value is passed in for REQUEST , the method will return None . If a value is provided for REQUEST (as it will
when called via the web), the property management form for the object will be rendered and returned.

This method may be called via the web, from DTML or from Python code.

Permission — Manage Properties

 propertyMap()

Returns a tuple of mappings, giving meta-data for properties.

Permssion — Python only

 propertyIds()

The Zope Book (2.6 Edition)

445

Returns a list of property ids.

Permission — Access contents information

 hasProperty(id)

Returns true if self has a property with the given id , false otherwise.

Permission — Access contents information

module PropertySheets

class PropertySheets

A PropertySheet is an abstraction for organizing and working with a set of related properties. Conceptually it acts like a
container for a set of related properties and meta-data describing those properties. PropertySheet objects are
accessed through a PropertySheets object that acts as a collection of PropertySheet instances.

Objects that support property sheets (objects that support the PropertyManager interface or ZClass objects) have a
propertysheets attribute (a PropertySheets instance) that is the collection of PropertySheet objects. The
PropertySheets object exposes an interface much like a Python mapping, so that individual PropertySheet objects may
be accessed via dictionary-style key indexing.

 get(name, default=None)

Return the PropertySheet identified by name , or the value given in default if the named PropertySheet is not found.

Permission — Python only

 values()

Return a sequence of all of the PropertySheet objects in the collection.

Permission — Python only

 items()

Return a sequence containing an (id, object) tuple for each PropertySheet object in the collection.

Permission — Python only

module PythonScript

class PythonScript(Script)

Python Scripts contain python code that gets executed when you call the script by:

 • Calling the script through the web by going to its location with a web browser.

The Zope Book (2.6 Edition)

446

 • Calling the script from another script object.

 • Calling the script from a method object, such as a DTML Method.

Python Scripts can contain a "safe" subset of the python language. Python Scripts must be safe because they can be
potentially edited by many different users through an insecure medium like the web. The following safety issues drive
the need for secure Python Scripts:

 • Because many users can use Zope, a Python Script must make sure it does not allow a user to do something
they are not allowed to do, like deleting an object they do not have permission to delete. Because of this
requirement, Python Scripts do many security checks in the course of their execution.

 • Because Python Scripts can be edited through the insecure medium of the web, they are not allowed access to
the Zope server's file-system. Normal Python builtins like open are, therefore, not allowed.

 • Because many standard Python modules break the above two security restrictions, only a small subset of Python
modules may be imported into a Python Scripts with the "import" statement unless they have been validated by
Zope's security policy. Currently, the following standard python modules have been validated:

 • string

 • math

 • whrandom and random

 • Products.PythonScripts.standard

 • Because it allows you to execute arbitrary python code, the python "exec" statement is not allowed in Python
methods.

 • Because they may represent or cause security violations, some Python builtin functions are not allowed. The
following Python builtins are not allowed:

 • open

 • input

 • raw_input

 • eval

 • execfile

 • compile

 • type

 • coerce

 • intern

The Zope Book (2.6 Edition)

447

 • dir

 • globals

 • locals

 • vars

 • buffer

 • reduce

 • Other builtins are restricted in nature. The following builtins are restricted:

range — Due to possible memory denial of service attacks, the range builtin is restricted to creating ranges less than
10,000 elements long.

filter, map, tuple, list — For the same reason, builtins that construct lists from sequences do not operate on strings.

getattr, setattr, delattr — Because these may enable Python code to circumvent Zope's security system, they are
replaced with custom, security constrained versions.

 • In order to be consistent with the Python expressions available to DTML, the builtin functions are augmented with
a small number of functions and a class:

 • test

 • namespace

 • render

 • same_type

 • DateTime

 • Because the "print" statement cannot operate normally in Zope, its effect has been changed. Rather than
sending text to stdout, "print" appends to an internal variable. The special builtin name "printed" evaluates to the
concatenation of all text printed so far during the current execution of the script.

 document_src(REQUEST=None, RESPONSE=None)

Return the text of the read method, with content type text/plain set on the RESPONSE.

 ZPythonScript_edit(params, body)

Change the parameters and body of the script. This method accepts two arguments:

params — The new value of the Python Script's parameters. Must be a comma seperated list of values in valid python
function signature syntax. If it does not contain a valid signature string, a SyntaxError is raised.

The Zope Book (2.6 Edition)

448

body — The new value of the Python Script's body. Must contain valid Python syntax. If it does not contain valid
Python syntax, a SyntaxError is raised.

 ZPythonScript_setTitle(title)

Change the script's title. This method accepts one argument, title which is the new value for the script's title and
must be a string.

 ZPythonScriptHTML_upload(REQUEST, file="")

Pass the text in file to the write method.

 write(text)

Change the script by parsing the text argument into parts. Leading lines that begin with ## are stripped off, and if they
are of the form ##name=value , they are used to set meta-data such as the title and parameters. The remainder of
the text is set as the body of the Python Script.

 ZScriptHTML_tryParams()

Return a list of the required parameters with which to test the script.

 read()

Return the body of the Python Script, with a special comment block prepended. This block contains meta-data in the
form of comment lines as expected by the write method.

 ZPythonScriptHTML_editAction(REQUEST, title, params, body)

Change the script's main parameters. This method accepts the following arguments:

REQUEST — The current request.

title — The new value of the Python Script's title. This must be a string.

params — The new value of the Python Script's parameters. Must be a comma seperated list of values in valid python
function signature syntax. If it does not contain a valid signature string, a SyntaxError is raised.

body — The new value of the Python Script's body. Must contain valid Python syntax. If it does not contain valid
Python syntax, a SyntaxError is raised.

ObjectManager Constructor

 manage_addPythonScript(id, REQUEST=None)

Add a Python script to a folder.

module Request

The Zope Book (2.6 Edition)

449

class Request

The request object encapsulates all of the information regarding the current request in Zope. This includes, the input
headers, form data, server data, and cookies.

The request object is a mapping object that represents a collection of variable to value mappings. In addition, variables
are divided into five categories:

 • Environment variables

These variables include input headers, server data, and other request-related data. The variable names are as specified in the CGI specification

 • Form data

These are data extracted from either a URL-encoded query string or body, if present.

 • Cookies

These are the cookie data, if present.

 • Lazy Data

These are callables which are deferred until explicitly referenced, at which point they are resolved (called) and the
result stored as "other" data, ie regular request data.

Thus, they are "lazy" data items. An example is SESSION objects.

Lazy data in the request may only be set by the Python method set_lazy(name,callable) on the REQUEST object. This
method is not callable from DTML or through the web.

 • Other

Data that may be set by an application object.

The request object may be used as a mapping object, in which case values will be looked up in the order: environment
variables, other variables, form data, and then cookies.

These special variables are set in the Request:

PARENTS — A list of the objects traversed to get to the published object. So, PARENTS[0] would be the ancestor of
the published object.

REQUEST — The Request object.

RESPONSE — The Response object.

PUBLISHED — The actual object published as a result of url traversal.

URL — The URL of the Request without query string.

The Zope Book (2.6 Edition)

450

 URLn — URL0 is the same as URL . URL1 is the same as URL0 with the last path element removed. URL2 is the
same as URL1 with the last element removed. Etcetera.

For example if URL= http://localhost/foo/bar , then URL1= http://localhost/foo and URL2=
http://localhost .

 URLPATHn — URLPATH0 is the path portion of URL , URLPATH1 is the path portion of URL1 , and so on.

For example if URL= http://localhost/foo/bar , then URLPATH1= /foo and URLPATH2= / .

 BASEn — BASE0 is the URL up to but not including the Zope application object. BASE1 is the URL of the Zope
application object. BASE2 is the URL of the Zope application object with an additional path element added in the path
to the published object. Etcetera.

For example if URL= http://localhost/Zope.cgi/foo/bar , then BASE0= http://localhost , BASE1=
http://localhost/Zope.cgi , and BASE2= http://localhost/Zope.cgi/foo .

 BASEPATHn — BASEPATH0 is the path portion of BASE0 , BASEPATH1 is the path portion of BASE1 , and so on.
BASEPATH1 is the externally visible path to the root Zope folder, equivalent to CGI's SCRIPT_NAME , but virtual-host
aware.

For example if URL= http://localhost/Zope.cgi/foo/bar , then BASEPATH0='/ , BASEPATH1= /Zope.cgi',
and BASEPATH2= /Zope.cgi/foo .

 get_header(name, default=None)

Return the named HTTP header, or an optional default argument or None if the header is not found. Note that both
original and CGI header names without the leading HTTP_ are recognized, for example, Content-Type ,
CONTENT_TYPE and HTTP_CONTENT_TYPE should all return the Content-Type header, if available.

Permission — Always available

 items()

Returns a sequence of (key, value) tuples for all the keys in the REQUEST object.

Permission — Always available

 keys()

Returns a sorted sequence of all keys in the REQUEST object.

Permission — Always available

 setVirtualRoot(path, hard=0)

Alters URL , URLn , URLPATHn , BASEn , BASEPATHn , and absolute_url() so that the current object has path
path . If hard is true, PARENTS is emptied.

Provides virtual hosting support. Intended to be called from publishing traversal hooks.

Permission — Always available

The Zope Book (2.6 Edition)

451

 values()

Returns a sequence of values for all the keys in the REQUEST object.

Permission — Always available

 set(name, value)

Create a new name in the REQUEST object and assign it a value. This name and value is stored in the Other
category.

Permission — Always available

 has_key(key)

Returns a true value if the REQUEST object contains key, returns a false value otherwise.

Permission — Always available

 setServerURL(protocol=None, hostname=None, port=None)

Sets the specified elements of SERVER_URL , also affecting URL , URLn , BASEn , and absolute_url() .

Provides virtual hosting support.

Permission — Always available

module Response

class Response

The Response object represents the response to a Zope request.

 setHeader(name, value)

Sets an HTTP return header "name" with value "value", clearing the previous value set for the header, if one exists. If
the literal flag is true, the case of the header name is preserved, otherwise word-capitalization will be performed on the
header name on output.

Permission — Always available

 setCookie(name, value, **kw)

Set an HTTP cookie on the browser

The response will include an HTTP header that sets a cookie on cookie-enabled browsers with a key "name" and value
"value". This overwrites any previously set value for the cookie in the Response object.

Permission — Always available

The Zope Book (2.6 Edition)

452

 addHeader(name, value)

Set a new HTTP return header with the given value, while retaining any previously set headers with the same name.

Permission — Always available

 appendHeader(name, value, delimiter=,)

Append a value to a cookie

Sets an HTTP return header "name" with value "value", appending it following a comma if there was a previous value
set for the header.

Permission — Always available

 write(data)

Return data as a stream

HTML data may be returned using a stream-oriented interface. This allows the browser to display partial results while
computation of a response to proceed.

The published object should first set any output headers or cookies on the response object.

Note that published objects must not generate any errors after beginning stream-oriented output.

Permission — Always available

 setStatus(status, reason=None)

Sets the HTTP status code of the response; the argument may either be an integer or one of the following strings:

OK, Created, Accepted, NoContent, MovedPermanently, MovedTemporarily, NotModified, BadRequest, Unauthorized,
Forbidden, NotFound, InternalError, NotImplemented, BadGateway, ServiceUnavailable

that will be converted to the correct integer value.

Permission — Always available

 setBase(base)

Set the base URL for the returned document.

Permission — Always available

 expireCookie(name, **kw)

Cause an HTTP cookie to be removed from the browser

The Zope Book (2.6 Edition)

453

The response will include an HTTP header that will remove the cookie corresponding to "name" on the client, if one
exists. This is accomplished by sending a new cookie with an expiration date that has already passed. Note that some
clients require a path to be specified - this path must exactly match the path given when creating the cookie. The path
can be specified as a keyword argument.

Permission — Always available

 appendCookie(name, value)

Returns an HTTP header that sets a cookie on cookie-enabled browsers with a key "name" and value "value". If a
value for the cookie has previously been set in the response object, the new value is appended to the old one
separated by a colon.

Permission — Always available

 redirect(location, lock=0)

Cause a redirection without raising an error. If the "lock" keyword argument is passed with a true value, then the HTTP
redirect response code will not be changed even if an error occurs later in request processing (after redirect() has been
called).

Permission — Always available

module Script Script module

This provides generic script support

class Script

Web-callable script base interface.

 ZScriptHTML_tryAction(REQUEST, argvars)

Apply the test parameters provided by the dictionary argvars . This will call the current script with the given
arguments and return the result.

module SessionInterfaces

Session API

See Also

 • Transient Object API

class SessionDataManagerErr

Error raised during some session data manager operations, as explained in the API documentation of the Session Data
Manager.

The Zope Book (2.6 Edition)

454

This exception may be caught in PythonScripts. A successful import of the exception for PythonScript use would need
to be:

from Products.Sessions import SessionDataManagerErr

class BrowserIdManagerInterface

Zope Browser Id Manager interface.

A Zope Browser Id Manager is responsible for assigning ids to site visitors, and for servicing requests from Session
Data Managers related to the browser id.

 getBrowserId(self, create=1)

If create=0, returns a the current browser id or None if there is no browser id associated with the current request. If
create=1, returns the current browser id or a newly-created browser id if there is no browser id associated with the
current request. This method is useful in conjunction with getBrowserIdName if you wish to embed the
browser-id-name/browser-id combination as a hidden value in a POST-based form. The browser id is opaque, has no
business meaning, and its length, type, and composition are subject to change.

Permission required: Access contents information

Raises: BrowserIdManagerErr if ill-formed browser id is found in REQUEST.

 isBrowserIdFromCookie(self)

Returns true if browser id comes from a cookie.

Permission required: Access contents information

Raises: BrowserIdManagerErr. If there is no current browser id.

 isBrowserIdNew(self)

Returns true if browser id is new . A browser id is new when it is first created and the client has therefore not sent it
back to the server in any request.

Permission required: Access contents information

Raises: BrowserIdManagerErr. If there is no current browser id.

 encodeUrl(self, url)

Encodes a provided URL with the current request's browser id and returns the result. For example, the call encodeUrl(
http://foo.com/amethod) might return http://foo.com/amethod?_ZopeId=as9dfu0adfu0ad .

Permission required: Access contents information

Raises: BrowserIdManagerErr. If there is no current browser id.

 flushBrowserIdCookie(self)

The Zope Book (2.6 Edition)

455

Deletes the browser id cookie from the client browser, iff the cookies browser id namespace is being used.

Permission required: Access contents information

Raises: BrowserIdManagerErr. If the cookies namespace isn't a browser id namespace at the time of the call.

 getBrowserIdName(self)

Returns a string with the name of the cookie/form variable which is used by the current browser id manager as the
name to look up when attempting to obtain the browser id value. For example, _ZopeId .

Permission required: Access contents information

 isBrowserIdFromForm(self)

Returns true if browser id comes from a form variable (query string or post).

Permission required: Access contents information

Raises: BrowserIdManagerErr. If there is no current browser id.

 hasBrowserId(self)

Returns true if there is a browser id for this request.

Permission required: Access contents information

 setBrowserIdCookieByForce(self, bid)

Sets the browser id cookie to browser id bid by force. Useful when you need to chain browser id cookies across
domains for the same user (perhaps temporarily using query strings).

Permission required: Access contents information

Raises: BrowserIdManagerErr. If the cookies namespace isn't a browser id namespace at the time of the call.

class BrowserIdManagerErr

Error raised during some browser id manager operations, as explained in the API documentation of the Browser Id
Manager.

This exception may be caught in PythonScripts. A successful import of the exception for PythonScript use would need
to be:

from Products.Sessions import BrowserIdManagerErr

class SessionDataManagerInterface

Zope Session Data Manager interface.

A Zope Session Data Manager is responsible for maintaining Session Data Objects, and for servicing requests from
application code related to Session Data Objects. It also communicates with a Browser Id Manager to provide

The Zope Book (2.6 Edition)

456

information about browser ids.

 getSessionDataByKey(self, key)

Returns a Session Data Object associated with key . If there is no Session Data Object associated with key return
None.

Permission required: Access arbitrary user session data

 getSessionData(self, create=1)

Returns a Session Data Object associated with the current browser id. If there is no current browser id, and create is
true, returns a new Session Data Object. If there is no current browser id and create is false, returns None.

Permission required: Access session data

 getBrowserIdManager(self)

Returns the nearest acquirable browser id manager.

Raises SessionDataManagerErr if no browser id manager can be found.

Permission required: Access session data

 hasSessionData(self)

Returns true if a Session Data Object associated with the current browser id is found in the Session Data Container.
Does not create a Session Data Object if one does not exist.

Permission required: Access session data

module TransienceInterfaces

Transient Objects

class TransientObject

A transient object is a temporary object contained in a transient object container.

Most of the time you'll simply treat a transient object as a dictionary. You can use Python sub-item notation:

SESSION['foo']=1
foo=SESSION['foo']
del SESSION['foo']

When using a transient object from Python-based Scripts or DTML you can use the get , set , and delete
methods instead.

Methods of transient objects are not protected by security assertions.

It's necessary to reassign mutuable sub-items when you change them. For example:

The Zope Book (2.6 Edition)

457

l=SESSION['myList']
l.append('spam')
SESSION['myList']=l

This is necessary in order to save your changes. Note that this caveat is true even for mutable subitems which inherit
from the Persistence.Persistent class.

 delete(self, k)

Call __delitem__ with key k.

Permission — Always available

 setLastAccessed(self)

Cause the last accessed time to be set to now.

Permission — Always available

 getCreated(self)

Return the time the transient object was created in integer seconds-since-the-epoch form.

Permission — Always available

 values(self)

Return sequence of value elements.

Permission — Always available

 has_key(self, k)

Return true if item referenced by key k exists.

Permission — Always available

 getLastAccessed(self)

Return the time the transient object was last accessed in integer seconds-since-the-epoch form.

Permission — Always available

 getId(self)

Returns a meaningful unique id for the object.

Permission — Always available

 update(self, d)

The Zope Book (2.6 Edition)

458

Merge dictionary d into ourselves.

Permission — Always available

 clear(self)

Remove all key/value pairs.

Permission — Always available

 items(self)

Return sequence of (key, value) elements.

Permission — Always available

 keys(self)

Return sequence of key elements.

Permission — Always available

 get(self, k, default=marker)

Return value associated with key k. If k does not exist and default is not marker, return default, else raise KeyError.

Permission — Always available

 set(self, k, v)

Call __setitem__ with key k, value v.

Permission — Always available

 getContainerKey(self)

Returns the key under which the object is "filed" in its container. getContainerKey will often return a differnt value than
the value returned by getId.

Permission — Always available

 invalidate(self)

Invalidate (expire) the transient object.

Causes the transient object container's "before destruct" method related to this object to be called as a side effect.

Permission — Always available

class MaxTransientObjectsExceeded

The Zope Book (2.6 Edition)

459

An exception importable from the Products.Transience.Transience module which is raised when an attempt is made to
add an item to a TransientObjectContainer that is full .

This exception may be caught in PythonScripts through a normal import. A successful import of the exception can be
achieved via:

from Products.Transience import MaxTransientObjectsExceeded

class TransientObjectContainer

TransientObjectContainers hold transient objects, most often, session data.

You will rarely have to script a transient object container. You'll almost always deal with a TransientObject itself which
you'll usually get as REQUEST.SESSION .

 new(self, k)

Creates a new subobject of the type supported by this container with key "k" and returns it.

If an object already exists in the container with key "k", a KeyError is raised.

"k" must be a string, else a TypeError is raised.

If the container is full , a MaxTransientObjectsExceeded will be raised.

Permission — Create Transient Objects

 setDelNotificationTarget(self, f)

Cause the before destruction function to be f .

If f is not callable and is a string, treat it as a Zope path to a callable function.

before destruction functions need accept a single argument: item , which is the item being destroyed.

Permission — Manage Transient Object Container

 getTimeoutMinutes(self)

Return the number of minutes allowed for subobject inactivity before expiration.

Permission — View management screens

 has_key(self, k)

Return true if container has value associated with key k, else return false.

Permission — Access Transient Objects

 setAddNotificationTarget(self, f)

Cause the after add function to be f .

The Zope Book (2.6 Edition)

460

If f is not callable and is a string, treat it as a Zope path to a callable function.

after add functions need accept a single argument: item , which is the item being added to the container.

Permission — Manage Transient Object Container

 getId(self)

Returns a meaningful unique id for the object.

Permission — Always available

 setTimeoutMinutes(self, timeout_mins)

Set the number of minutes of inactivity allowable for subobjects before they expire.

Permission — Manage Transient Object Container

 new_or_existing(self, k)

If an object already exists in the container with key "k", it is returned.

Otherwiser, create a new subobject of the type supported by this container with key "k" and return it.

"k" must be a string, else a TypeError is raised.

If the container is full , a MaxTransientObjectsExceeded exception be raised.

Permission — Create Transient Objects

 get(self, k, default=None)

Return value associated with key k. If value associated with k does not exist, return default.

Permission — Access Transient Objects

 getAddNotificationTarget(self)

Returns the current after add function, or None.

Permission — View management screens

 getDelNotificationTarget(self)

Returns the current before destruction function, or None.

Permission — View management screens

module UserFolder

The Zope Book (2.6 Edition)

461

class UserFolder

User Folder objects are containers for user objects. Programmers can work with collections of user objects using the
API shared by User Folder implementations.

 userFolderEditUser(name, password, roles, domains, **kw)

API method for changing user object attributes. Note that not all user folder implementations support changing of user
object attributes. Implementations that do not support changing of user object attributes will raise an error for this
method.

Permission — Manage users

 userFolderDelUsers(names)

API method for deleting one or more user objects. Note that not all user folder implementations support deletion of user
objects. Implementations that do not support deletion of user objects will raise an error for this method.

Permission — Manage users

 userFolderAddUser(name, password, roles, domains, **kw)

API method for creating a new user object. Note that not all user folder implementations support dynamic creation of
user objects. Implementations that do not support dynamic creation of user objects will raise an error for this method.

Permission — Manage users

 getUsers()

Returns a sequence of all user objects which reside in the user folder.

Permission — Manage users

 getUserNames()

Returns a sequence of names of the users which reside in the user folder.

Permission — Manage users

 getUser(name)

Returns the user object specified by name. If there is no user named name in the user folder, return None.

Permission — Manage users

module Vocabulary

class Vocabulary

The Zope Book (2.6 Edition)

462

A Vocabulary manages words and language rules for text indexing. Text indexing is done by the ZCatalog and other
third party Products.

 words()

Return list of words.

 insert(word)

Insert a word in the Vocabulary.

 query(pattern)

Query Vocabulary for words matching pattern.

ObjectManager Constructor

 manage_addVocabulary(id, title, globbing=None, REQUEST=None)

Add a Vocabulary object to an ObjectManager.

module ZCatalog

class ZCatalog

ZCatalog object

A ZCatalog contains arbitrary index like references to Zope objects. ZCatalog's can index either Field values of
object, Text values, or KeyWord values:

ZCatalogs have three types of indexes:

Text — Text indexes index textual content. The index can be used to search for objects containing certain words.

Field — Field indexes index atomic values. The index can be used to search for objects that have certain properties.

Keyword — Keyword indexes index sequences of values. The index can be used to search for objects that match one
or more of the search terms.

The ZCatalog can maintain a table of extra data about cataloged objects. This information can be used on search result
pages to show information about a search result.

The meta-data table schema is used to build the schema for ZCatalog Result objects. The objects have the same
attributes as the column of the meta-data table.

ZCatalog does not store references to the objects themselves, but rather to a unique identifier that defines how to get
to the object. In Zope, this unique identifier is the object's relative path to the ZCatalog (since two Zope objects cannot
have the same URL, this is an excellent unique qualifier in Zope).

 schema()

The Zope Book (2.6 Edition)

463

Returns a sequence of names that correspond to columns in the meta-data table.

 __call__(REQUEST=None, **kw)

Search the catalog, the same way as searchResults .

 uncatalog_object(uid)

Uncatalogs the object with the unique identifier uid .

 getobject(rid, REQUEST=None)

Return a cataloged object given a data_record_id_

 indexes()

Returns a sequence of names that correspond to indexes.

 getpath(rid)

Return the path to a cataloged object given a data_record_id_

 index_objects()

Returns a sequence of actual index objects.

 searchResults(REQUEST=None, **kw)

Search the catalog. Search terms can be passed in the REQUEST or as keyword arguments.

Search queries consist of a mapping of index names to search parameters. You can either pass a mapping to
searchResults as the variable REQUEST or you can use index names and search parameters as keyword arguments to
the method, in other words:

searchResults(title='Elvis Exposed',
 author='The Great Elvonso')

is the same as:

searchResults({'title' : 'Elvis Exposed',
 'author : 'The Great Elvonso'})

Anonymous User - Aug. 6, 2002 10:03 am:
 missing ' in "'author"

In these examples, title and author are indexes. This query will return any objects that have the title Elvis
Exposed AND also are authored by The Great Elvonso . Terms that are passed as keys and values in a
searchResults() call are implicitly ANDed together. To OR two search results, call searchResults() twice and add
concatenate the results like this:

results = (searchResults(title='Elvis Exposed') +
 searchResults(author='The Great Elvonso'))

The Zope Book (2.6 Edition)

464

This will return all objects that have the specified title OR the specified author.

There are some special index names you can pass to change the behavior of the search query:

sort_on — This parameters specifies which index to sort the results on.

sort_order — You can specify reverse or descending . Default behavior is to sort ascending.

There are some rules to consider when querying this method:

 • an empty query mapping (or a bogus REQUEST) returns all items in the catalog.

 • results from a query involving only field/keyword indexes, e.g. {'id':'foo'} and no sort_on will be returned
unsorted.

 • results from a complex query involving a field/keyword index and a text index, e.g. {'id': foo
,'PrincipiaSearchSource':'bar'} and no sort_on will be returned unsorted.

 • results from a simple text index query e.g.{'PrincipiaSearchSource':'foo'} will be returned sorted in descending
order by score . A text index cannot beused as a sort_on parameter, and attempting to do so will raise an
error.

Depending on the type of index you are querying, you may be able to provide more advanced search parameters that
can specify range searches or wildcards. These features are documented in The Zope Book.

 uniqueValuesFor(name)

returns the unique values for a given FieldIndex named name .

 catalog_object(obj, uid)

Catalogs the object obj with the unique identifier uid .

ObjectManager Constructor

 manage_addZCatalog(id, title, vocab_id=None)

Add a ZCatalog object.

vocab_id is the name of a Vocabulary object this catalog should use. A value of None will cause the Catalog to create
its own private vocabulary.

module ZSQLMethod

class ZSQLMethod

ZSQLMethods abstract SQL code in Zope.

The Zope Book (2.6 Edition)

465

SQL Methods behave like methods of the folders they are accessed in. In particular, they can be used from other
methods, like Documents, ExternalMethods, and even other SQL Methods.

Database methods support the Searchable Object Interface. Search interface wizards can be used to build user
interfaces to them. They can be used in joins and unions. They provide meta-data about their input parameters and
result data.

For more information, see the searchable-object interface specification.

Database methods support URL traversal to access and invoke methods on individual record objects. For example,
suppose you had an employees database method that took a single argument employee_id . Suppose that
employees had a service_record method (defined in a record class or acquired from a folder). The
service_record method could be accessed with a URL like:

employees/employee_id/1234/service_record

Search results are returned as Record objects. The schema of a Record objects matches the schema of the table
queried in the search.

 manage_edit(title, connection_id, arguments, template)

Change database method properties.

The connection_id argument is the id of a database connection that resides in the current folder or in a folder
above the current folder. The database should understand SQL.

The arguments argument is a string containing an arguments specification, as would be given in the SQL method
creation form.

The template argument is a string containing the source for the SQL Template.

 __call__(REQUEST=None, **kw)

Call the ZSQLMethod.

The arguments to the method should be passed via keyword arguments, or in a single mapping object. If no arguments
are given, and if the method was invoked through the Web, then the method will try to acquire and use the Web
REQUEST object as the argument mapping.

The returned value is a sequence of record objects.

ObjectManager Constructor

 manage_addZSQLMethod(id, title, connection_id, arguments, template)

Add an SQL Method to an ObjectManager.

The connection_id argument is the id of a database connection that resides in the current folder or in a folder
above the current folder. The database should understand SQL.

The arguments argument is a string containing an arguments specification, as would be given in the SQL method
cration form.

The Zope Book (2.6 Edition)

466

The template argument is a string containing the source for the SQL Template.

module ZTUtils

ZTUtils: Page Template Utilities

The classes in this module are available from Page Templates.

class Batch

Batch - a section of a large sequence.

You can use batches to break up large sequences (such as search results) over several pages.

Batches provide Page Templates with similar functions as those built-in to <dtml-in> .

You can access elements of a batch just as you access elements of a list. For example:

>>> b=Batch(range(100), 10)
>>> b[5]
4
>>> b[10]
IndexError: list index out of range

Batches have these public attributes:

start — The first element number (counting from 1).

first — The first element index (counting from 0). Note that this is that same as start - 1.

end — The last element number (counting from 1).

orphan — The desired minimum batch size. This controls how sequences are split into batches. If a batch smaller than
the orphan size would occur, then no split is performed, and a batch larger than the batch size results.

overlap — The number of elements that overlap between batches.

length — The actual length of the batch. Note that this can be different than size due to orphan settings.

size — The desired size. Note that this can be different than the actual length of the batch due to orphan settings.

previous — The previous batch or None if this is the first batch.

next — The next batch or None if this is the last batch.

 __init__(self, sequence, size, start=0, end=0, orphan=0, overlap=0)

Creates a new batch given a sequence and a desired batch size.

sequence — The full sequence.

size — The desired batch size.

The Zope Book (2.6 Edition)

467

start — The index of the start of the batch (counting from 0).

end — The index of the end of the batch (counting from 0).

orphan — The desired minimum batch size. This controls how sequences are split into batches. If a batch smaller than
the orphan size would occur, then no split is performed, and a batch larger than the batch size results.

overlap — The number of elements that overlap between batches.

module math

math: Python math module

The math module provides trigonometric and other math functions. It is a standard Python module.

Since Zope 2.4 requires Python 2.1, make sure to consult the Python 2.1 documentation.

See Also

"Python math module":http://www.python.org/doc/current/lib/module-math.html documentation at Python.org

module random

random: Python random module

The random module provides pseudo-random number functions. With it, you can generate random numbers and
select random elements from sequences. This module is a standard Python module.

Since Zope 2.4 requires Python 2.1, make sure to consult the Python 2.1 documentation.

See Also

"Python random module":http://www.python.org/doc/current/lib/module-random.html documentation at Python.org

module sequence

sequence: Sequence sorting module

This module provides a sort function for use with DTML, Page Templates, and Python-based Scripts.

 def sort(seq, sort)

Sort the sequence seq of objects by the optional sort schema sort . sort is a sequence of tuples (key, func,
direction) that describe the sort order.

key — Attribute of the object to be sorted.

func — Defines the compare function (optional). Allowed values:

The Zope Book (2.6 Edition)

468

"cmp" — Standard Python comparison function

"nocase" — Case-insensitive comparison

"strcoll" or "locale" — Locale-aware string comparison

"strcoll_nocase" or "locale_nocase" — Locale-aware case-insensitive string comparison

other — A specified, user-defined comparison function, should return 1, 0, -1.

direction — defines the sort direction for the key (optional). (allowed values: "asc", "desc")

DTML Examples

Sort child object (using the objectValues method) by id (using the getId method), ignoring case:

<dtml-in expr="_.sequence.sort(objectValues(),
 (('getId', 'nocase'),))">
 <dtml-var getId>

</dtml-in>

Sort child objects by title (ignoring case) and date (from newest to oldest):

<dtml-in expr="_.sequence.sort(objectValues(),
 (('title', 'nocase'),
 ('bobobase_modification_time',
 'cmp', 'desc')
))">
 <dtml-var title> <dtml-var bobobase_modification_time>

</dtml-in>

Page Template Examples

You can use the sequence.sort function in Python expressions to sort objects. Here's an example that mirrors the
DTML example above:

<table tal:define="objects here/objectValues;
 sort_on python:(('title', 'nocase', 'asc'),
 ('bobobase_modification_time', 'cmp', 'desc'));
 sorted_objects python:sequence.sort(objects, sort_on)">
 <tr tal:repeat="item sorted_objects">
 <td tal:content="item/title">title</td>
 <td tal:content="item/bobobase_modification_time">
 modification date</td>
 </tr>
</table>

This example iterates over a sorted list of object, drawing a table row for each object. The objects are sorted by title
and modification time.

See Also

 Python cmp function

module standard

Products.PythonScripts.standard: Utility functions and classes

The Zope Book (2.6 Edition)

469

The functions and classes in this module are available from Python-based scripts, DTML, and Page Templates.

 def structured_text(s)

Convert a string in structured-text format to HTML.

See Also

 Structured-Text Rules

 def html_quote(s)

Convert characters that have special meaning in HTML to HTML character entities.

See Also

"Python cgi module":http://www.python.org/doc/current/lib/Functions_in_cgi_module.html escape function.

 def url_quote_plus(s)

Like url_quote but also replace blank space characters with + . This is needed for building query strings in some
cases.

See Also

"Python urllib module":http://www.python.org/doc/current/lib/module-urllib.html url_quote_plus function.

 def dollars_and_cents(number)

Show a numeric value with a dollar symbol and two decimal places.

 def sql_quote(s)

Convert single quotes to pairs of single quotes. This is needed to safely include values in Standard Query Language
(SQL) strings.

 def whole_dollars(number)

Show a numeric value with a dollar symbol.

 def url_quote(s)

Convert characters that have special meaning in URLS to HTML character entities using decimal values.

See Also

"Python urllib module":http://www.python.org/doc/current/lib/module-urllib.html url_quote function.

The Zope Book (2.6 Edition)

470

class DTML

DTML - temporary, security-restricted DTML objects

 __init__(source, **kw)

Create a DTML object with source text and keyword variables. The source text defines the DTML source content. The
optinal keyword arguments define variables.

 call(client=None, REQUEST={}, **kw)

Render the DTML.

To accomplish its task, DTML often needs to resolve various names into objects. For example, when the code
<dtml-var spam> is executed, the DTML engine tries to resolve the name spam .

In order to resolve names, you must be pass a namespace to the DTML. This can be done several ways:

 • By passing a client object - If the argument client is passed, then names are looked up as attributes on
the argument.

 • By passing a REQUEST mapping - If the argument REQUEST is passed, then names are looked up as items on
the argument. If the object is not a mapping, an TypeError will be raised when a name lookup is attempted.

 • By passing keyword arguments -- names and their values can be passed as keyword arguments to the
Method.

The namespace given to a DTML object is the composite of these three methods. You can pass any number of them or
none at all. Names will be looked up first in the keyword argument, next in the client and finally in the mapping.

 def thousand_commas(number)

Insert commas every three digits to the left of a decimal point in values containing numbers. For example, the value,
"12000 widgets" becomes "12,000 widgets".

 def newline_to_br(s)

Convert newlines and carriage-return and newline combinations to break tags.

module string

string: Python string module

The string module provides string manipulation, conversion, and searching functions. It is a standard Python
module.

Since Zope 2.4 requires Python 2.1, make sure to consult the Python 2.1 documentation.

See Also

The Zope Book (2.6 Edition)

471

"Python string module":http://www.python.org/doc/current/lib/module-string.html documentation at Python.org

The Zope Book (2.6 Edition)

472

Appendix C: Zope Page Templates Reference

Zope Page Templates are an HTML/XML generation tool. This appendix is a reference to Zope Page Templates
standards: Tag Attribute Language (TAL), TAL Expression Syntax (TALES), and Macro Expansion TAL (METAL). It
also describes some ZPT-specific behaviors that are not part of the standards.

TAL Overview

The Template Attribute Language (TAL) standard is an attribute language used to create dynamic templates. It allows
elements of a document to be replaced, repeated, or omitted.

The statements of TAL are XML attributes from the TAL namespace. These attributes can be applied to an XML or
HTML document in order to make it act as a template.

A TAL statement has a name (the attribute name) and a body (the attribute value). For example, an content
statement might look like tal:content="string:Hello" . The element on which a statement is defined is its
statement element . Most TAL statements require expressions, but the syntax and semantics of these expressions are
not part of TAL. TALES is recommended for this purpose.

TAL Namespace

The TAL namespace URI and recommended alias are currently defined as:

xmlns:tal="http://xml.zope.org/namespaces/tal"

This is not a URL, but merely a unique identifier. Do not expect a browser to resolve it successfully.

Zope does not require an XML namespace declaration when creating templates with a content-type of text/html .
However, it does require an XML namespace declaration for all other content-types.

TAL Statements

These are the tal statements:

 • tal:attributes - dynamically change element attributes.

 • tal:define - define variables.

 • tal:condition - test conditions.

 • tal:content - replace the content of an element.

 • tal:omit-tag - remove an element, leaving the content of the element.

 • tal:on-error - handle errors.

 • tal:repeat - repeat an element.

 • tal:replace - replace the content of an element and remove the element leaving the content.

The Zope Book (2.6 Edition)

473

Expressions used in statements may return values of any type, although most statements will only accept strings, or
will convert values into a string representation. The expression language must define a value named nothing that is not
a string. In particular, this value is useful for deleting elements or attributes.

Order of Operations

When there is only one TAL statement per element, the order in which they are executed is simple. Starting with the
root element, each element's statements are executed, then each of its child elements is visited, in order, to do the
same.

Any combination of statements may appear on the same elements, except that the content and replace
statements may not appear together.

Due to the fact that TAL sees statements as XML attributes, even in HTML documents, it cannot use the order in which
statements are written in the tag to determine the order in which they are executed. TAL must also forbid multiples of
the same kind of statement on a single element, so it is sufficient to arrange the kinds of statement in a precendence
list.

When an element has multiple statements, they are executed in this order:

1. define

2. condition

3. repeat

4. content or replace

5. attributes

6. omit-tag

Since the on-error statement is only invoked when an error occurs, it does not appear in the list.

The reasoning behind this ordering goes like this: You often want to set up variables for use in other statements, so
define comes first. The very next thing to do is decide whether this element will be included at all, so condition is
next; since the condition may depend on variables you just set, it comes after define . It is valuable be able to
replace various parts of an element with different values on each iteration of a repeat, so repeat is next. It makes no
sense to replace attributes and then throw them away, so attributes is last. The remaining statements clash,
because they each replace or edit the statement element.

See Also

TALES Overview

METAL Overview

tal:attributes

tal:define

tal:condition

The Zope Book (2.6 Edition)

474

tal:content

tal:omit-tag

tal:on-error

tal:repeat

tal:replace

attributes: Replace element attributes

Syntax

tal:attributes syntax:

argument ::= attribute_statement [';' attribute_statement]*
attribute_statement ::= attribute_name expression
attribute_name ::= [namespace-prefix ':'] Name
namespace-prefix ::= Name

Note: If you want to include a semi-colon (;) in an expression , it must be escaped by doubling it (;;).

Description

The tal:attributes statement replaces the value of an attribute (or creates an attribute) with a dynamic value. You
can qualify an attribute name with a namespace prefix, for example html:table , if you are generating an XML
document with multiple namespaces. The value of each expression is converted to a string, if necessary.

If the expression associated with an attribute assignment evaluates to nothing , then that attribute is deleted from the
statement element. If the expression evaluates to default , then that attribute is left unchanged. Each attribute
assignment is independent, so attributes may be assigned in the same statement in which some attributes are deleted
and others are left alone.

If you use tal:attributes on an element with an active tal:replace command, the tal:attributes
statement is ignored.

If you use tal:attributes on an element with a tal:repeat statement, the replacement is made on each
repetition of the element, and the replacement expression is evaluated fresh for each repetition.

Examples

Replacing a link:

<a href="/sample/link.html"
 tal:attributes="href here/sub/absolute_url">

Replacing two attributes:

<textarea rows="80" cols="20"
 tal:attributes="rows request/rows;cols request/cols">

condition: Conditionally insert or remove an element

The Zope Book (2.6 Edition)

475

Syntax

tal:condition syntax:

argument ::= expression

Description

The tal:condition statement includes the statement element in the template only if the condition is met, and omits
it otherwise. If its expression evaluates to a true value, then normal processing of the element continues, otherwise the
statement element is immediately removed from the template. For these purposes, the value nothing is false, and
default has the same effect as returning a true value.

 Note: Zope considers missing variables, None, zero, empty strings, and empty sequences false; all other values are
true.

Examples

Test a variable before inserting it (the first example tests for existence and truth, while the second only tests for
existence):

<p tal:condition="request/message | nothing"
 tal:content="request/message">message goes here</p>

<p tal:condition="exists:request/message"
 tal:content="request/message">message goes here</p>

Test for alternate conditions:

<div tal:repeat="item python:range(10)">
<p tal:condition="repeat/item/even">Even</p>
<p tal:condition="repeat/item/odd">Odd</p>
</div>

content: Replace the content of an element

Syntax

tal:content syntax:

argument ::= (['text'] | 'structure') expression

Description

Rather than replacing an entire element, you can insert text or structure in place of its children with the tal:content
statement. The statement argument is exactly like that of tal:replace , and is interpreted in the same fashion. If the
expression evaluates to nothing , the statement element is left childless. If the expression evaluates to default , then
the element's contents are unchanged.

The default replacement behavior is text , which replaces angle-brackets and ampersands with their HTML entity
equivalents. The structure keyword passes the replacement text through unchanged, allowing HTML/XML markup
to be inserted. This can break your page if the text contains unanticipated markup (eg. text submitted via a web form),
which is the reason that it is not the default.

Examples

The Zope Book (2.6 Edition)

476

Inserting the user name:

<p tal:content="user/getUserName">Fred Farkas</p>

Inserting HTML/XML:

<p tal:content="structure here/getStory">marked up
content goes here.</p>

See Also

 tal:replace

define: Define variables

Syntax

tal:define syntax:

argument ::= define_scope [';' define_scope]*
define_scope ::= (['local'] | 'global') define_var
define_var ::= variable_name expression
variable_name ::= Name

Note: If you want to include a semi-colon (;) in an expression , it must be escaped by doubling it (;;).

Description

The tal:define statement defines variables. You can define two different kinds of TAL variables: local and global.
When you define a local variable in a statement element, you can only use that variable in that element and the
elements it contains. If you redefine a local variable in a contained element, the new definition hides the outer element's
definition within the inner element. When you define a global variables, you can use it in any element processed after
the defining element. If you redefine a global variable, you replace its definition for the rest of the template.

 Note: local variables are the default

If the expression associated with a variable evaluates to nothing , then that variable has the value nothing , and may be
used as such in further expressions. Likewise, if the expression evaluates to default , then the variable has the value
default , and may be used as such in further expressions.

Examples

Defining a global variable:

tal:define="global company_name string:Zope Corp, Inc."

Defining two variables, where the second depends on the first:

tal:define="mytitle template/title; tlen python:len(mytitle)"

omit-tag: Remove an element, leaving its contents

Syntax

The Zope Book (2.6 Edition)

477

tal:omit-tag syntax:

argument ::= [expression]

Description

The tal:omit-tag statement leaves the contents of an element in place while omitting the surrounding start and
end tags.

If the expression evaluates to a false value, then normal processing of the element continues and the tags are not
omitted. If the expression evaluates to a true value, or no expression is provided, the statement element is replaced
with its contents.

Zope treats empty strings, empty sequences, zero, None, and nothing as false. All other values are considered true,
including default .

Examples

Unconditionally omitting a tag:

<div tal:omit-tag="" comment="This tag will be removed">
 <i>...but this text will remain.</i>
</div>

Conditionally omitting a tag:

<b tal:omit-tag="not:bold">I may be bold.

The above example will omit the b tag if the variable bold is false.

Creating ten paragraph tags, with no enclosing tag:

<span tal:repeat="n python:range(10)"
 tal:omit-tag="">
 <p tal:content="n">1</p>

on-error: Handle errors

Syntax

tal:on-error syntax:

argument ::= (['text'] | 'structure') expression

Description

The tal:on-error statement provides error handling for your template. When a TAL statement produces an error,
the TAL interpreter searches for a tal:on-error statement on the same element, then on the enclosing element,
and so forth. The first tal:on-error found is invoked. It is treated as a tal:content statement.

A local variable error is set. This variable has these attributes:

type — the exception type

value — the exception instance

The Zope Book (2.6 Edition)

478

traceback — the traceback object

The simplest sort of tal:on-error statement has a literal error string or nothing for an expression. A more complex
handler may call a script that examines the error and either emits error text or raises an exception to propagate the
error outwards.

Examples

Simple error message:

<b tal:on-error="string: Username is not defined!"
 tal:content="here/getUsername">Ishmael

Removing elements with errors:

<b tal:on-error="nothing"
 tal:content="here/getUsername">Ishmael

Calling an error-handling script:

<div tal:on-error="structure here/errorScript">
 ...
</div>

Here's what the error-handling script might look like:

Script (Python) "errHandler"
##bind namespace=_
##
error=_['error']
if error.type==ZeroDivisionError:
 return "<p>Can't divide by zero.</p>"
else
 return """<p>An error ocurred.</p>
 <p>Error type: %s</p>
 <p>Error value: %s</p>""" % (error.type,
 error.value)

See Also

 Python Tutorial: Errors and Exceptions

 Python Built-in Exceptions

repeat: Repeat an element

Syntax

tal:repeat syntax:

argument ::= variable_name expression
variable_name ::= Name

Description

The tal:repeat statement replicates a sub-tree of your document once for each item in a sequence. The expression
should evaluate to a sequence. If the sequence is empty, then the statement element is deleted, otherwise it is

The Zope Book (2.6 Edition)

479

repeated for each value in the sequence. If the expression is default , then the element is left unchanged, and no new
variables are defined.

The variable_name is used to define a local variable and a repeat variable. For each repetition, the local variable is
set to the current sequence element, and the repeat variable is set to an iteration object.

Repeat Variables

You use repeat variables to access information about the current repetition (such as the repeat index). The repeat
variable has the same name as the local variable, but is only accessible through the built-in variable named repeat .

The following information is available from the repeat variable:

 • index - repetition number, starting from zero.

 • number - repetition number, starting from one.

 • even - true for even-indexed repetitions (0, 2, 4, ...).

 • odd - true for odd-indexed repetitions (1, 3, 5, ...).

 • start - true for the starting repetition (index 0).

 • end - true for the ending, or final, repetition.

 • first - true for the first item in a group - see note below

 • last - true for the last item in a group - see note below

 • length - length of the sequence, which will be the total number of repetitions.

 • letter - repetition number as a lower-case letter: "a" - "z", "aa" - "az", "ba" - "bz", ..., "za" - "zz", "aaa" - "aaz",
and so forth.

 • Letter - upper-case version of letter .

 • roman - repetition number as a lower-case roman numeral: "i", "ii", "iii", "iv", "v", etc.

 • Roman - upper-case version of roman .

You can access the contents of the repeat variable using path expressions or Python expressions. In path expressions,
you write a three-part path consisting of the name repeat , the statement variable's name, and the name of the
information you want, for example, repeat/item/start . In Python expressions, you use normal dictionary notation
to get the repeat variable, then attribute access to get the information, for example, "python:repeat['item'].start".

With the exception of start , end , and index , all of the attributes of a repeat variable are methods. Thus, when
you use a Python expression to access them, you must call them, as in "python:repeat['item'].length()".

Note that first and last are intended for use with sorted sequences. They try to divide the sequence into group of
items with the same value. If you provide a path, then the value obtained by following that path from a sequence item is
used for grouping, otherwise the value of the item is used. You can provide the path by passing it as a parameter, as in

The Zope Book (2.6 Edition)

480

"python:repeat['item'].first(color)", or by appending it to the path from the repeat variable, as in
"repeat/item/first/color".

Examples

Iterating over a sequence of strings::

<p tal:repeat="txt python:'one', 'two', 'three'">

</p>

Inserting a sequence of table rows, and using the repeat variable to number the rows:

<table>
 <tr tal:repeat="item here/cart">
 <td tal:content="repeat/item/number">1</td>
 <td tal:content="item/description">Widget</td>
 <td tal:content="item/price">$1.50</td>
 </tr>
</table>

Nested repeats:

<table border="1">
 <tr tal:repeat="row python:range(10)">
 <td tal:repeat="column python:range(10)">
 <span tal:define="x repeat/row/number;
 y repeat/column/number;
 z python:x*y"
 tal:replace="string:$x * $y = $z">1 * 1 = 1
 </td>
 </tr>
</table>

Insert objects. Seperates groups of objects by meta-type by drawing a rule between them:

<div tal:repeat="object objects">
 <h2 tal:condition="repeat/object/first/meta_type"
 tal:content="object/meta_type">Meta Type</h2>
 <p tal:content="object/getId">Object ID</p>
 <hr tal:condition="repeat/object/last/meta_type" />
</div>

Note, the objects in the above example should already be sorted by meta-type.

replace: Replace an element

Syntax

tal:replace syntax:

argument ::= (['text'] | 'structure') expression

Description

The tal:replace statement replaces an element with dynamic content. It replaces the statement element with either
text or a structure (unescaped markup). The body of the statement is an expression with an optional type prefix. The
value of the expression is converted into an escaped string if you prefix the expression with text or omit the prefix,
and is inserted unchanged if you prefix it with structure . Escaping consists of converting "&" to "&amp;",
"<" to "&lt;", and ">" to "&gt;".

The Zope Book (2.6 Edition)

481

If the value is nothing , then the element is simply removed. If the value is default , then the element is left unchanged.

Examples

The two ways to insert the title of a template:

Title
Title

Inserting HTML/XML:

<div tal:replace="structure table" />

Inserting nothing:

<div tal:replace="nothing">This element is a comment.</div>

See Also

 tal:content

TALES Overview

The Template Attribute Language Expression Syntax (TALES) standard describes expressions that supply TAL and
METAL with data. TALES is one possible expression syntax for these languages, but they are not bound to this
definition. Similarly, TALES could be used in a context having nothing to do with TAL or METAL.

TALES expressions are described below with any delimiter or quote markup from higher language layers removed.
Here is the basic definition of TALES syntax:

Expression ::= [type_prefix ':'] String
type_prefix ::= Name

Here are some simple examples:

a/b/c
path:a/b/c
nothing
path:nothing
python: 1 + 2
string:Hello, ${user/getUserName}

The optional type prefix determines the semantics and syntax of the expression string that follows it. A given
implementation of TALES can define any number of expression types, with whatever syntax you like. It also determines
which expression type is indicated by omitting the prefix.

If you do not specify a prefix, Zope assumes that the expression is a path expression.

TALES Expression Types

These are the TALES expression types supported by Zope:

 • path expressions - locate a value by its path.

 • exists expressions - test whether a path is valid.

The Zope Book (2.6 Edition)

482

 • nocall expressions - locate an object by its path.

 • not expressions - negate an expression

 • string expressions - format a string

 • python expressions - execute a Python expression

Built-in Names

These are the names that always available to TALES expressions in Zope:

 • nothing - special value used by to represent a non-value (e.g. void, None, Nil, NULL).

 • default - special value used to specify that existing text should not be replaced. See the documentation for
individual TAL statements for details on how they interpret default .

 • options - the keyword arguments passed to the template. These are generally available when a template is
called from Methods and Scripts, rather than from the web.

 • repeat - the repeat variables; see the tal:repeat documentation.

 • attrs - a dictionary containing the initial values of the attributes of the current statement tag.

 • CONTEXTS - the list of standard names (this list). This can be used to access a built-in variable that has been
hidden by a local or global variable with the same name.

 • root - the system's top-most object: the Zope root folder.

 • here - the object to which the template is being applied.

 • container - The folder in which the template is located.

 • template - the template itself.

 • request - the publishing request object.

 • user - the authenticated user object.

 • modules - a collection through which Python modules and packages can be accessed. Only modules which are
approved by the Zope security policy can be accessed.

Note the names root , here , container , template , request , user , and modules are optional names
supported by Zope, but are not required by the TALES standard.

See Also

TAL Overview

METAL Overview

The Zope Book (2.6 Edition)

483

exists expressions

nocall expressions

not expressions

string expressions

path expressions

python expressions

TALES Exists expressions

Syntax

Exists expression syntax:

exists_expressions ::= 'exists:' path_expression

Description

Exists expressions test for the existence of paths. An exists expression returns true when the path expressions
following it expression returns a value. It is false when the path expression cannot locate an object.

Examples

Testing for the existence of a form variable:

<p tal:condition="not:exists:request/form/number">
 Please enter a number between 0 and 5
</p>

Note that in this case you can't use the expression, not:request/form/number , since that expression will be true
if the number variable exists and is zero.

TALES Nocall expressions

Syntax

Nocall expression syntax:

nocall_expression ::= 'nocall:' path_expression

Description

Nocall expressions avoid rendering the results of a path expression.

An ordinary path expression tries to render the object that it fetches. This means that if the object is a function, Script,
Method, or some other kind of executable thing, then expression will evaluate to the result of calling the object. This is
usually what you want, but not always. For example, if you want to put a DTML Document into a variable so that you
can refer to its properties, you can't use a normal path expression because it will render the Document into a string.

The Zope Book (2.6 Edition)

484

Examples

Using nocall to get the properties of a document:

<span tal:define="doc nocall:here/aDoc"
 tal:content="string:${doc/getId}: ${doc/title}">
Id: Title

Using nocall expressions on a functions:

<p tal:define="join nocall:modules/string/join">

This example defines a variable join which is bound to the string.join function.

TALES Not expressions

Syntax

Not expression syntax:

not_expression ::= 'not:' expression

Description

Not expression evaluate the expression string (recursively) as a full expression, and returns the boolean negation of its
value. If the expression supplied does not evaluate to a boolean value, not will issue a warning and coerce the
expression's value into a boolean type based on the following rules:

1. the number 0 is false

2. positive and negative numbers are true

3. an empty string or other sequence is false

4. a non-empty string or other sequence is true

5. a non-value (e.g. void, None, Nil, NULL, etc) is false

6. all other values are implementation-dependent.

If no expression string is supplied, an error should be generated.

Zope considers all objects not specifically listed above as false to be true .

Examples

Testing a sequence:

<p tal:condition="not:here/objectIds">
 There are no contained objects.
</p>

TALES Path expressions

The Zope Book (2.6 Edition)

485

Syntax

Path expression syntax:

PathExpr ::= Path ['|' Expression]
Path ::= variable ['/' PathSegment]*
variable ::= Name
PathSegment ::= ('?' variable) | PathChar+
PathChar ::= AlphaNumeric | ' ' | '_' | '-' | '.' | ',' | '~'

Description

A path expression consists of a path optionally followed by a vertical bar (|) and alternate expression. A path consists of
one or more non-empty strings separated by slashes. The first string must be a variable name (a built-in variable or a
user defined variable), and the remaining strings, the path segments , may contain letters, digits, spaces, and the
punctuation characters underscore, dash, period, comma, and tilde.

A limited amount of indirection is possible by using a variable name prefixed with ? as a path segment. The variable
must contain a string, which replaces that segment before the path is traversed.

For example:

request/cookies/oatmeal
nothing
here/some-file 2001_02.html.tar.gz/foo
root/to/branch | default

request/name | string:Anonymous Coward
here/?tname/macros/?mname

When a path expression is evaluated, Zope attempts to traverse the path, from left to right, until it succeeds or runs out
of paths segments. To traverse a path, it first fetches the object stored in the variable. For each path segment, it
traverses from the current object to the subobject named by the path segment. Subobjects are located according to
standard Zope traversal rules (via getattr, getitem, or traversal hooks).

Once a path has been successfully traversed, the resulting object is the value of the expression. If it is a callable object,
such as a method or template, it is called.

If a traversal step fails, and no alternate expression has been specified, an error results. Otherwise, the alternate
expression is evaluated.

The alternate expression can be any TALES expression. For example, request/name | string:Anonymous
Coward is a valid path expression. This is useful chiefly for providing default values, such as strings and numbers,
which are not expressable as path expressions. Since the alternate expression can be a path expression, it is possible
to "chain" path expressions, as in first | second | third | nothing .

If no path is given the result is nothing .

Since every path must start with a variable name, you need a set of starting variables that you can use to find other
objects and values. See the TALES overview for a list of built-in variables. Variable names are looked up first in locals,
then in globals, then in the built-in list, so the built-in variables act just like built-ins in Python; They are always
available, but they can be shadowed by a global or local variable declaration. You can always access the built-in
names explicitly by prefixing them with CONTEXTS . (e.g. CONTEXTS/root, CONTEXTS/nothing, etc).

Examples

The Zope Book (2.6 Edition)

486

Inserting a cookie variable or a property:

 preference

Inserting the user name:

<p tal:content="user/getUserName">
 User name
</p>

TALES Python expressions

Syntax

Python expression syntax:

Any valid Python language expression

Description

Python expressions evaluate Python code in a security-restricted environment. Python expressions offer the same
facilities as those available in Python-based Scripts and DTML variable expressions.

Security Restrictions

Python expressions are subject to the same security restrictions as Python-based scripts. These restrictions include:

access limits — Python expressions are subject to Zope permission and role security restrictions. In addition,
expressions cannot access objects whose names begin with underscore.

write limits — Python expressions cannot change attributes of Zope objects.

Despite these limits malicious Python expressions can cause problems. See The Zope Book for more information.

Built-in Functions

Python expressions have the same built-ins as Python-based Scripts with a few additions.

These standard Python built-ins are available: None , abs , apply , callable , chr , cmp , complex ,
delattr , divmod , filter , float , getattr , hash , hex , int , isinstance , issubclass , list ,
len , long , map , max , min , oct , ord , repr , round , setattr , str , tuple .

The range and pow functions are available and work the same way they do in standard Python; however, they are
limited to keep them from generating very large numbers and sequences. This limitation helps protect against denial of
service attacks.

In addition, these utility functions are available: DateTime , test , and same_type . See DTML functions for more
information on these functions.

Finally, these functions are available in Python expressions, but not in Python-based scripts:

path(string) — Evaluate a TALES path expression.

The Zope Book (2.6 Edition)

487

string(string) — Evaluate a TALES string expression.

exists(string) — Evaluates a TALES exists expression.

nocall(string) — Evaluates a TALES nocall expression.

Python Modules

A number of Python modules are available by default. You can make more modules available. You can access
modules either via path expressions (for example modules/string/join) or in Python with the modules mapping
object (for example modules["string"].join). Here are the default modules:

string — The standard Python string module . Note: most of the functions in the module are also available as
methods on string objects.

random — The standard Python random module .

math — The standard Python math module .

sequence — A module with a powerful sorting function. See sequence for more information.

Products.PythonScripts.standard — Various HTML formatting functions available in DTML. See
Products.PythonScripts.standard for more information.

ZTUtils — Batch processing facilities similar to those offered by dtml-in . See ZTUtils for more information.

AccessControl — Security and access checking facilities. See AccessControl for more information.

Examples

Using a module usage (pick a random choice from a list):

<span tal:replace="python:modules['random'].choice(['one',
 'two', 'three', 'four', 'five'])">
 a random number between one and five

String processing (capitalize the user name):

<p tal:content="python:user.getUserName().capitalize()">
 User Name
</p>

Basic math (convert an image size to megabytes):

<p tal:content="python:image.getSize() / 1048576.0">
 12.2323
</p>

String formatting (format a float to two decimal places):

<p tal:content="python:'%0.2f' % size">
 13.56
</p>

TALES String expressions

The Zope Book (2.6 Edition)

488

Syntax

String expression syntax:

string_expression ::= (plain_string | [varsub])*
varsub ::= ('$' Path) | ('${' Path '}')
plain_string ::= ('$$' | non_dollar)*
non_dollar ::= any character except '$'

Description

String expressions interpret the expression string as text. If no expression string is supplied the resulting string is empty
. The string can contain variable substitutions of the form $name or ${path} , where name is a variable name, and
path is a path expression. The escaped string value of the path expression is inserted into the string. To prevent a $
from being interpreted this way, it must be escaped as $$.

Examples

Basic string formatting:

 Spam and Eggs

Using paths:

<p tal:content="total: ${request/form/total}">
 total: 12
</p>

Including a dollar sign:

<p tal:content="cost: $$$cost">
 cost: $42.00
</p>

METAL Overview

The Macro Expansion Template Attribute Language (METAL) standard is a facility for HTML/XML macro
preprocessing. It can be used in conjunction with or independently of TAL and TALES.

Macros provide a way to define a chunk of presentation in one template, and share it in others, so that changes to the
macro are immediately reflected in all of the places that share it. Additionally, macros are always fully expanded, even
in a template's source text, so that the template appears very similar to its final rendering.

METAL Namespace

The METAL namespace URI and recommended alias are currently defined as:

xmlns:metal="http://xml.zope.org/namespaces/metal"

Just like the TAL namespace URI, this URI is not attached to a web page; it's just a unique identifier.

Zope does not require an XML namespace declaration when creating templates with a content-type of text/html .
However, it does require an XML namespace declaration for all other content-types.

METAL Statements

The Zope Book (2.6 Edition)

489

METAL defines a number of statements:

 • metal:define-macro - Define a macro.

 • metal:use-macro - Use a macro.

 • metal:define-slot - Define a macro customization point.

 • metal:fill-slot - Customize a macro.

Although METAL does not define the syntax of expression non-terminals, leaving that up to the implementation, a
canonical expression syntax for use in METAL arguments is described in TALES Specification.

See Also

TAL Overview

TALES Overview

metal:define-macro

metal:use-macro

metal:define-slot

metal:fill-slot

define-macro: Define a macro

Syntax

metal:define-macro syntax:

argument ::= Name

Description

The metal:define-macro statement defines a macro. The macro is named by the statement expression, and is
defined as the element and its sub-tree.

In Zope, a macro definition is available as a sub-object of a template's macros object. For example, to access a
macro named header in a template named master.html , you could use the path expression
master.html/macros/header .

Examples

Simple macro definition:

<p metal:define-macro="copyright">
 Copyright 2001, Foobar Inc.
</p>

The Zope Book (2.6 Edition)

490

See Also

metal:use-macro

metal:define-slot

define-slot: Define a macro customization point

Syntax

metal:define-slot syntax:

argument ::= Name

Description

The metal:define-slot statement defines a macro customization point or slot . When a macro is used, its slots
can be replaced, in order to customize the macro. Slot definitions provide default content for the slot. You will get the
default slot contents if you decide not to customize the macro when using it.

The metal:define-slot statement must be used inside a metal:define-macro statement.

Slot names must be unique within a macro.

Examples

Simple macro with slot:

<p metal:define-macro="hello">
 Hello <b metal:define-slot="name">World
</p>

This example defines a macro with one slot named name . When you use this macro you can customize the b
element by filling the name slot.

See Also

metal:fill-slot

fill-slot: Customize a macro

Syntax

metal:fill-slot syntax:

argument ::= Name

Description

The metal:fill-slot statement customizes a macro by replacing a slot in the macro with the statement element
(and its content).

The Zope Book (2.6 Edition)

491

The metal:fill-slot statement must be used inside a metal:use-macro statement.

Slot names must be unique within a macro.

If the named slot does not exist within the macro, the slot contents will be silently dropped.

Examples

Given this macro:

<p metal:define-macro="hello">
 Hello <b metal:define-slot="name">World
</p>

You can fill the name slot like so:

<p metal:use-macro="container/master.html/macros/hello">
 Hello <b metal:fill-slot="name">Kevin Bacon
</p>

See Also

metal:define-slot

use-macro: Use a macro

Syntax

metal:use-macro syntax:

argument ::= expression

Description

The metal:use-macro statement replaces the statement element with a macro. The statement expression describes
a macro definition.

In Zope the expression will generally be a path expression referring to a macro defined in another template. See
"metal:define-macro" for more information.

The effect of expanding a macro is to graft a subtree from another document (or from elsewhere in the current
document) in place of the statement element, replacing the existing sub-tree. Parts of the original subtree may remain,
grafted onto the new subtree, if the macro has slots . See metal:define-slot for more information. If the macro body
uses any macros, they are expanded first.

When a macro is expanded, its metal:define-macro attribute is replaced with the metal:use-macro attribute
from the statement element. This makes the root of the expanded macro a valid use-macro statement element.

Examples

Basic macro usage:

<p metal:use-macro="container/other.html/macros/header">
 header macro from defined in other.html template
</p>

The Zope Book (2.6 Edition)

492

This example refers to the header macro defined in the other.html template which is in the same folder as the
current template. When the macro is expanded, the p element and its contents will be replaced by the macro. Note:
there will still be a metal:use-macro attribute on the replacement element.

See Also

metal:define-macro

metal:fill-slot

ZPT-specific Behaviors

The behavior of Zope Page Templates is almost completely described by the TAL, TALES, and METAL specifications.
ZPTs do, however, have a few additional features that are not described in the standards.

HTML Support Features

When the content-type of a Page Template is set to text/html , Zope processes the template somewhat differently
than with any other content-type. As mentioned under TAL Namespace, HTML documents are not required to declare
namespaces, and are provided with tal and metal namespaces by default.

HTML documents are parsed using a non-XML parser that is somewhat more forgiving of malformed markup. In
particular, elements that are often written without closing tags, such as paragraphs and list items, are not treated as
errors when written that way, unless they are statement elements. This laxity can cause a confusing error in at least
one case; A <div> element is block-level, and therefore technically not allowed to be nested in a <p> element, so it
will cause the paragraph to be implicity closed. The closing </p> tag will then cause a NestingError, since it is not
matched up with the opening tag. The solution is to use instead.

Unclosed statement elements are always treated as errors, so as not to cause subtle errors by trying to infer where the
element ends. Elements which normally do not have closing tags in HTML, such as image and input elements, are not
required to have a closing tag, or to use the XHTML <tag /> form.

Certain boolean attributes, such as checked and selected , are treated differently by tal:attributes . The
value is treated as true or false (as defined by tal:condition). The attribute is set to attr="attr" in the true
case and omitted otherwise. If the value is default , then it is treated as true if the attribute already exists, and false
if it does not. For example, each of the following lines:

<input type="checkbox" checked tal:attributes="checked default">
<input type="checkbox" tal:attributes="checked string:yes">
<input type="checkbox" tal:attributes="checked python:42">

...will render as:

<input type="checkbox" checked="checked">

...while each of these:

<input type="checkbox" tal:attributes="checked default">
<input type="checkbox" tal:attributes="checked string:">
<input type="checkbox" tal:attributes="checked nothing">

...will render as:

<input type="checkbox">

The Zope Book (2.6 Edition)

493

This works correctly in all browsers in which it has been tested.

The Zope Book (2.6 Edition)

494

Appendix D: Zope Resources

At the time of this writing there is a multitude of sources for Zope information on the Internet and in print. We've
collected a number of the most important links which you can use to find out more about Zope.

Zope Web Sites

Zope.org is the official Zope web site. It has downloads, documentation, news, and lots of community resources.

ZopeZen is a Zope community site that features news and a Zope job board. The site is run by noted Zope community
member Andy McKay.

ZopeLabs "//www.zopelabs.com is a website dedicated to gathering "recipe-like" snippets of Zope programming logic. It
is run by Adam Kendall.

My-Zope is a weblog about Zope run by noted community member "kedai".

Zope Newbies is a weblog that features Zope news and related information. Zope Newbies is one of the oldest and
best Zope web sites. Jeff Shelton started Zope Newbies, and the site is currently run by Luke Tymowski.

Zope Documentation

Zope.org has lots of documentation including official documentation projects and contributed community
documentation.

Zope Documentation Project is a community-run Zope documentation web site. It hosts original documentation and has
links to other sources of documentation.

Zope Developer's Guide teaches you how to write Zope products.

(Other) Zope Books

The Zope Bible by Scott Robertson and Michael Bernstein.

The Book of Zope by Beehive.

The Zope Web Application Construction Kit edited by Martina Brockman, et. al.

Zope: Web Application Development and Content Management edited by Steve Spicklemire et al.

Mailing Lists

Zope.org maintains a collection of the many Zope mailing lists.

Python Information

Python.org has lots of information about Python including a tutorial and reference documentation.

The Zope Book (2.6 Edition)

495

DTML Name Lookup Rules

These are the rules which DTML uses to resolve names mentioned in name= and expr= tags. The rules are in order
from first to last in the search path.

The DTML call signature is as follows:

def __call__(client=None, mapping={}, **kw)

The client argument is typically unreferenced in the body of DTML text, but typically resolves to the "context" in
which the method was called (for example, in the simplest case, its client is the folder in which it lives).

The mapping argument is typically referred to as _ in the body of DTML text.

The keyword arguments (ie **kw) are referred to by their respective names in the body of DTML text.

1. The keyword arguments are searched.

2. The mapping object is searched.

3. Attributes of the client, including inherited and acquired attributes, are searched.

4. If DTML is used in a Zope DTML Method or Document object and the variable name is document_id or
document_title , then the id or title of the document or method is used.

5. Attributes of the folder containing the DTML object (its container) are searched. Attributes include objects in the
contents of the folder, properties of the folder, and other attributes defined by Zope, such as ZopeTime . Folder
attributes include the attributes of folders containing the folder, with contained folders taking precedence over
containing folders.

6. User-defined Web-request variables (ie. in the REQUEST.other namespace) are searched.

7. Form-defined Web-request variables (ie. in the REQUEST.form namespace) are searched.

8. Cookie-defined Web-request variables (ie. in the REQUEST.cookies namespace) are searched.

9. CGI-defined Web-request variables (ie. in the REQUEST.environ namespace) are searched.

	Preface
	How the Book Is Organized
	Conventions Used in This Book
	Contributors to This Book
	Introducing Zope
	What Is A Web Application?
	How You Can Benefit From Using An Application Server
	Zope History
	Why Use Zope Instead of Another Application Server
	Zope Audiences and What Zope Isn't
	Zope's Terms of Use and License and an Introduction to The Zope Community

	Zope Concepts and Architecture
	Fundamental Zope Concepts
	Zope Is A Framework
	Object Orientation
	Object Publishing
	Through-The-Web Management
	Security and Safe Delegation
	Native Object Persistence and Transactions
	Acquisition
	Zope Is Extensible

	Fundamental Zope Components

	Installing and Starting Zope
	Downloading Zope
	Installing Zope
	Installing Zope for Windows With Binaries from Zope.org
	Installing Zope on Linux and Solaris With Binaries from Zope.org
	Compiling and Installing Zope from Source Code

	Starting Zope
	Using Zope With An Existing Webserver
	Starting Zope On Windows
	Starting Zope on UNIX
	Starting Zope As The Root User

	Your Zope Installation
	Logging In
	Controlling the Zope Process With the Control Panel
	Controlling the Zope Process From the Command Line
	Troubleshooting
	Options To The Zope start or start.bat Script
	Environment Variables that Effect Zope at Runtime
	When All Else Fails

	Object Orientation
	Objects
	Attributes
	Methods
	Messages
	Classes and Instances
	Inheritance
	Object Lifetimes
	Summary

	Using The Zope Management Interface
	Introduction
	How The Zope Management Interface Relates to Objects
	ZMI Frames
	The Navigator Frame
	The Workspace Frame
	The Status Frame
	Creating Objects
	Moving and Renaming Objects
	Transactions and Undoing Mistakes
	Undo Details and Gotchas
	Reviewing Change History
	Importing and Exporting Objects
	Using Object Properties
	Using the Help System
	Browsing and Searching Help
	Logging Out

	Using Basic Zope Objects
	Basic Zope Objects
	Content Objects: Folders, Files, and Images
	Folders
	Files
	Creating and Editing Files
	Editing File Contents
	Viewing Files
	Images

	Presentation Objects: Zope Page Templates and DTML Objects
	ZPT vs. DTML: Same Purpose, Different Audiences
	Zope Page Templates
	Creating A Page Template
	Editing A Page Template
	Uploading A Page Template
	Viewing A Page Template
	DTML Objects: DTML Documents and DTML Methods
	Creating DTML Methods
	Editing DTML Methods
	Viewing a DTML Method
	Uploading an HTML File as Content for a DTML Method

	Logic Objects: Script (Python) Objects and External Methods
	Script (Python) Objects
	Creating A Script (Python)
	Editing A Script (Python)
	Testing A Script (Python)
	Uploading A Script (Python)
	External Methods
	Creating and Editing An External Method File
	Creating an External Method Object
	Testing An External Method Object

	SQL Methods: Another Kind of Logic Object
	Creating a Basic Zope Application Using Page Templates and Scripts
	Creating a Data Collection Form
	Creatng A Script To Calculate Interest Rates
	Creating A Page Template To Display Results
	Dealing With Errors
	Using The Application

	The Zope Tutorial

	Acquisition
	Acquisition vs. Inheritance
	Acquisition is about Containment
	Say What?
	Providing Services
	Getting Deeper with Multiple Levels
	Summary

	Basic DTML
	How DTML Relates to Similar Languages and Templating Facilities
	When To Use DTML
	When Not To Use DTML
	The Difference Between DTML Documents and DTML Methods
	Details

	DTML Tag Syntax
	DTML Tag Names, Targets, and Attributes

	Creating a "Sandbox" for the Examples in This Chapter
	Examples of Using DTML for Common Tasks
	Inserting Text into HTML with DTML
	Formatting and Displaying Sequences
	Processing Input from Forms

	Dealing With Errors
	Dynamically Acquiring Content
	Using Python Expressions from DTML
	DTML Expression Gotchas
	will call the method. However,

	Common DTML Tags
	The Var Tag
	 Var Tag Attributes
	 Var Tag Entity Syntax
	The If Tag
	Here's an example condition:
	Name and Expression Syntax Differences
	 Else and Elif Tags
	Using Cookies with the If Tag
	The In Tag
	Iterating over Folder Contents
	 In Tag Special Variables
	Summary

	Using Zope Page Templates
	Zope Page Templates versus DTML
	How Page Templates Work
	Creating a Page Template
	Simple Expressions
	Inserting Text
	Repeating Structures
	Conditional Elements
	Changing Attributes
	Creating a File Library with Page Templates
	Remote Editing with FTP and WebDAV
	Debugging and Testing
	XML Templates
	Using Templates with Content

	Creating Basic Zope Applications
	Building "Instance-Space" Applications
	Instance-Space Applications vs. Products
	Using A Folder as A Container For Your Intstance-Space Application
	Using Objects as Methods Of Folders Via URLs
	Using Acquisition In Instance-Space Applications
	The Special Folder Object index_html

	Building the Zope Zoo Website
	Navigating the Zoo
	Adding a Front Page to the Zoo
	Improving Navigation
	Factoring out Style Sheets
	Creating a File Library
	
	Building a Guest Book
	Extending the Guest Book to Generate XML

	The Next Step

	Users and Security
	Introduction to Zope Security
	Review: Logging In and Logging Out of the Zope Management Interface
	Zope's "Stock" Security Setup
	Identification and Authentication
	Authorization, Roles, and Permissions
	Managing Users
	Creating Users in User Folders
	Editing Users
	Defining a User's Location
	Working with Alternative User Folders
	Special User Accounts
	Zope Anonymous User
	Zope Emergency User
	Creating an Emergency User
	Zope Initial Manager

	Protecting Against Password Snooping
	Managing Custom Security Policies
	Working with Roles
	Defining Global Roles
	Understanding Local Roles
	Understanding Permissions
	Defining Security Policies
	Security Policy Acquisition

	Security Usage Patterns
	Security Rules of Thumb
	Global and Local Policies
	Delegating Control to Local Managers
	Different Levels of Access with Roles
	Controlling Access to Locations with Roles

	Performing Security Checks
	Advanced Security Issues: Ownership and Executable Content
	The Problem: Trojan Horse Attacks
	Managing Ownership
	Roles of Executable Content
	Proxy Roles

	Summary

	Advanced DTML
	How Variables are Looked up
	DTML Namespaces
	DTML Client Object
	DTML Method vs. DTML Document
	DTML Request Object
	Rendering Variables

	Modifying the DTML Namespace
	 In Tag Namespace Modifications
	Additional Notes
	The With Tag
	The Let Tag

	DTML Namespace Utility Functions
	DTML Security
	Safe Scripting Limits
	Advanced DTML Tags
	The Call Tag
	The Comment Tag
	The Tree Tag
	The Return Tag
	The Sendmail Tag
	The Mime Tag
	The Unless Tag
	Batch Processing With The In Tag
	Exception Handling Tags
	The Raise Tag
	The Try Tag
	The Try Tag Optional Else Block
	The Try Tag Optional Finally Block

	Other useful examples
	Forwarding a REQUEST
	Sorting with the <dtml-in> tag
	Calling a DTML object from a Python Script
	Explicit Lookups

	Conclusion

	Advanced Page Templates
	Advanced TAL
	Advanced Content Insertion
	Inserting Structure
	Dummy Elements
	Default Content
	Advanced Repetition
	Repeat Variables
	Repetition Tips
	Advanced Attribute Control
	Defining Variables
	Omitting Tags
	Error Handling
	Interactions Between TAL Statements
	Form Processing

	Expressions
	Built-in Page Template Variables
	String Expressions
	Path Expressions
	Alternate Paths
	Not Expressions
	Nocall Expressions
	Exists Expressions
	Python Expressions
	Comparisons
	Using other Expression Types
	Getting at Zope Objects
	Using Scripts
	Calling DTML
	Python Modules

	Macros
	Using Macros
	Macro Details
	Using Slots
	Customizing Default Presentation
	Combining METAL and TAL
	Whole Page Macros

	Caching Templates
	Page Template Utilities
	Batching Large Sets of Information
	Miscellaneous Utilities

	Conclusion

	Advanced Zope Scripting
	Zope Scripts
	Here is an overview of Zope's scripts:

	Calling Scripts
	Context
	Calling Scripts From the Web
	URL Traversal and Acquisition
	Passing Arguments with an HTTP Query String
	Calling Scripts from Other Objects
	Calling Scripts from DTML
	Calling scripts from Python and Perl
	Calling Scripts from Page Templates
	Calling Scripts: Summary and Comparison

	Using Python-based Scripts
	The Python Language
	Creating Python-based Scripts
	Binding Variables
	Accessing the HTTP Request
	String Processing in Python
	Doing Math
	Print Statement Support
	Built-in Functions

	Using External Methods
	Processing XML with External Methods
	External Method Gotchas

	Using Perl-based Scripts
	The Perl Language
	Creating Perl-based Scripts
	Perl-based Script Security

	Advanced Acquisition
	Context Acquisition Gotchas
	Containment before context
	One at a time
	Readability
	Fragility

	Calling DTML from Scripts
	Calling ZPT from Scripts
	Passing Parameters to Scripts
	Returning Values from Scripts
	Script Security
	Security Restrictions of Script (Python)

	The Zope API
	Get all objects in a folder
	Get the id of an object
	Get the Zope root folder
	Get the physical path to an object
	Get an object by path
	Change the content of an DTML Method or Document
	Change properties of an object
	Get a property
	Change properties of an object
	Execute a DTML Method or DTML Document
	Traverse to an object and add a new property
	Add a new object to the context

	DTML versus Python versus Perl versus Page Templates
	Remote Scripting and Network Services
	Using XML-RPC
	Remote Scripting with HTTP

	Conclusion

	Zope Services
	Access Rule Services
	Temporary Storage Services
	Version Services
	Caveat: Versions and ZCatalog

	Caching Services
	Adding a Cache Manager
	Caching an Object

	Outbound Mail Services
	Error Logging Services
	Virtual Hosting Services
	Searching and Indexing Services
	Sessioning Services
	Internationalization Services

	Searching and Categorizing Content
	Getting started with Mass Cataloging
	Creating a ZCatalog
	Creating Indexes
	Finding and Cataloging Objects
	Search and Report Forms

	Configuring ZCatalogs
	Defining Indexes
	Defining Meta Data

	Searching ZCatalogs
	Searching with Forms
	Searching from Python

	Searching and Indexing Details
	Searching ZCTextIndexes
	Boolean expressions
	Parentheses
	Wild cards
	Phrase search
	Lexicons
	Lexicons can:
	Searching Field Indexes
	Searching Keyword Indexes
	Searching Path Indexes
	Searching DateIndexes
	Searching DateRangeIndexes
	Searching TopicIndexes

	Advanced Searching with Records
	Keyword Index Record Attributes
	FieldIndex Record Attributes
	Allowed values:
	Path Index Record Attributes
	DateIndex Record Attributes
	Allowed values:
	DateRangeIndex Record Attributes
	TopicIndex Record Attributes
	ZCTextIndex Record Attributes
	Creating Records in HTML

	Automatic Cataloging
	Conclusion

	Relational Database Connectivity
	Common Relational Databases
	Database Adapters
	Setting up a Database Connection
	Z SQL Methods
	Examples of ZSQL Methods
	Displaying Results from Z SQL Methods
	Providing Arguments to Z SQL Methods
	Dynamic SQL Queries
	Inserting Arguments with the Sqlvar Tag
	Equality Comparisons with the sqltest Tag
	Creating Complex Queries with the sqlgroup Tag

	Advanced Techniques
	Calling Z SQL Methods with Explicit Arguments
	Acquiring Arguments from other Objects
	Traversing to Result Objects
	Other Result Object Methods
	Binding Classes to Result Objects
	Caching Results
	Transactions

	Further help
	Summary

	Virtual Hosting Services
	Virtual Host Monster
	Where to Put a Virtual Host Monster And What To Name It
	Special VHM Path Elements VirtualHostBase and VirtualHostRoot
	 VirtualHostBase
	 VirtualHostRoot
	Using VirtualHostRoot and VirtualHostBase Together
	Testing a Virtual Host Monster
	Arranginging for Incoming URLs to be Rewritten
	Virtual Host Monster Mappings Tab
	Apache Rewrite Rules
	"Inside-Out" Virtual Hosting

	Sessions
	Introduction
	Session Configuration
	Using Session Data

	Details
	Terminology
	Default Configuration
	Advanced Development Using Sessioning
	Overview
	Obtaining A Session Data Object
	Modifying A Session Data Object
	Manually Invalidating A Session Data Object
	Manually Invalidating A Browser Id Cookie
	An Example Of Using Session Data from DTML
	Using the mapping Keyword With A Session Data Object in a dtml-with
	Using Session Data From Python
	Interacting with Browser Id Data
	Determining Which Namespace Holds The Browser Id
	Obtaining the Browser Id Name/Value Pair and Embedding It Into A Form
	Determining Whether A Browser Id is "New"
	Determining Whether A Session Data Object Exists For The Browser Id Associated With This Request
	Embedding A Browser Id Into An HTML Link
	Using Session onAdd and onDelete Events
	Writing onAdd and onDelete Methods

	Configuration and Operation
	Setting Initial Transient Object Container Parameters
	Instantiating Multiple Browser Id Managers (Optional)
	Instantiating A Session Data Manager (Optional)
	Instantiating a Transient Object Container
	Configuring Sessioning Permissions
	Permissions related to browser id managers:
	Permissions related to session data managers:
	Permissions related to transient object containers:

	Concepts and Caveats
	Security Considerations
	Browser Id (Non-)Expiration
	Session Data Object Expiration Considerations
	Sessioning and Transactions
	Mutable Data Stored Within Session Data Objects
	Session Data Object Keys
	In-Memory Session Data Container RAM Utilization
	Mounted Transient Object Container Caveats
	Conflict Errors
	Zope Versions and Sessioning

	Further Documentation

	Scalability and ZEO
	What is ZEO?
	When you should use ZEO
	Installing and Running ZEO
	How to Run Multiple ZEO Clients
	How to Distribute Load
	User Chooses a Mirror
	Using Round-robin DNS to Distribute Load
	Using Layer 4 Switching to Distribute Load
	Dealing with the Storage Server as A Single Point of Failure
	ZEO Server Details

	ZEO Caveats
	Conclusion

	Managing Zope Objects Using External Tools
	General Caveats
	FTP and WebDAV
	Using FTP to Manage Zope Content
	Determining Your Zope's FTP Port
	Transferring Files with WS_FTP
	Remote Editing with FTP/DAV-Aware Editors
	Editing Zope Objects with Emacs FTP Modes
	Caveats With FTP
	Editing Zope Objects with WebDAV
	Note
	Using a PUT_factory to Specify the Type of Objects Created With FTP and DAV

	Using The External Editor Product
	Other Integration Facilities

	Chapter 14: Extending Zope
	Creating Zope Products
	Creating A Simple Product
	Creating ZClasses
	
	
	Creating Views of Your ZClass
	Creating Properties on Your ZClass
	Creating Methods on your ZClass
	 ObjectManager ZClasses
	ZClass Security Controls
	Controlling access to Methods and Property Sheets
	Controlling Access to instances of Your ZClass
	Providing Context-Sensitive Help for your ZClass

	Using Python Base Classes
	Distributing Products

	Maintaining Zope
	Starting Zope Automatically at Boot Time
	Debug Mode and Automatic Startup
	Linux
	Distributions with Prepackaged Zope
	Automatic Startup for Custom-Built Zopes
	This script lets you perform start / stop / restart operations:
	Mac OS X
	MS Windows

	Installing New Products
	Server Settings
	Database Cache
	Interpreter Check Intervals
	ZServer Threads
	Database Connections

	Signals (POSIX only)
	Monitoring
	Monitor the Event Log and the Access Log
	Monitor the HTTP Service

	Log Files
	Access Log
	Event Log
	Log Rotation

	Packing and Backing Up the FileStorage Database
	Database Recovery Tools

	Appendix A: DTML Reference
	call: Call a method
	Syntax
	Examples
	See Also

	comment: Comments DTML
	Syntax
	Examples

	functions: DTML Functions
	Functions
	Attributes
	See Also
	 string module
	 random module
	 math module
	 sequence module
	 Built-in Python Functions

	if: Tests Conditions
	Syntax
	Examples
	See Also

	in: Loops over sequences
	Syntax
	Attributes
	Tag Variables
	Current Item Variables
	Summary Variables
	Grouping Variables
	Batch Variables
	Examples

	let: Defines DTML variables
	Syntax
	Examples
	See Also

	mime: Formats data with MIME
	Syntax
	Attributes
	Examples
	See Also

	raise: Raises an exception
	Syntax
	Examples
	See Also

	return: Returns data
	Syntax
	Examples

	sendmail: Sends email with SMTP
	Syntax
	Attributes
	Examples
	See Also

	sqlgroup: Formats complex SQL expressions
	Syntax
	Attributes
	Examples
	See Also

	sqltest: Formats SQL condition tests
	Syntax
	Attributes
	Examples
	See Also

	sqlvar: Inserts SQL variables
	Syntax
	Attributes
	Examples
	See Also

	tree: Inserts a tree widget
	Syntax
	Attributes
	Tag Variables
	Tag Control Variables
	Examples

	try: Handles exceptions
	Syntax
	Attributes
	Tag Variables
	Examples
	See Also

	unless: Tests a condition
	Syntax
	Examples
	See Also

	var: Inserts a variable
	Syntax
	Attributes
	Examples

	with: Controls DTML variable look up
	Syntax
	Attributes
	Examples
	See Also

	Appendix B: API Reference
	module AccessControl
	AccessControl: Security functions and classes
	class SecurityManager
	 calledByExecutable(self)
	 validate(accessed=None, container=None, name=None, value=None, roles=None)
	 checkPermission(self, permission, object)
	 getUser(self)
	 validateValue(self, value, roles=None)

	 def getSecurityManager()
	Returns the security manager. See the SecurityManager class.

	module AuthenticatedUser
	class AuthenticatedUser
	 getUserName()
	 getId()
	 has_role(roles, object=None)
	 getRoles()
	 has_permission(permission, object)
	 getRolesInContext(object)
	 getDomains()

	module DTMLDocument
	class DTMLDocument(ObjectManagerItem, PropertyManager)
	 manage_edit(data, title)
	 document_src()
	 __call__(client=None, REQUEST={}, RESPONSE=None, **kw)
	From DTML
	From Python
	By the Publisher
	 get_size()
	ObjectManager Constructor
	 manage_addDocument(id, title)

	module DTMLMethod
	class DTMLMethod(ObjectManagerItem)
	 manage_edit(data, title)
	 document_src()
	 __call__(client=None, REQUEST={}, **kw)
	From DTML
	From Python
	By the Publisher
	 get_size()
	ObjectManager Constructor
	 manage_addDTMLMethod(id, title)

	module DateTime
	class DateTime
	 strftime(format)
	Return date time string formatted according to format
	 dow()
	 aCommon()
	 h_12()
	 Mon_()
	 HTML4()
	 greaterThanEqualTo(t)
	 dayOfYear()
	 lessThan(t)
	 AMPM()
	 isCurrentHour()
	 Month()
	 mm()
	 ampm()
	 hour()
	 aCommonZ()
	 Day_()
	 pCommon()
	 minute()
	 day()
	 earliestTime()
	 Date()
	 Time()
	 isFuture()
	 greaterThan(t)
	 TimeMinutes()
	 yy()
	 isCurrentDay()
	 dd()
	 rfc822()
	 isLeapYear()
	 fCommon()
	 isPast()
	 fCommonZ()
	 timeTime()
	 toZone(z)
	 lessThanEqualTo(t)
	 Mon()
	 parts()
	 isCurrentYear()
	 PreciseAMPM()
	 AMPMMinutes()
	 equalTo(t)
	 pDay()
	 notEqualTo(t)
	 h_24()
	 pCommonZ()
	 isCurrentMonth()
	 DayOfWeek()
	 latestTime()
	 dow_1()
	 timezone()
	 year()
	 PreciseTime()
	 ISO()
	 millis()
	 second()
	 month()
	 pMonth()
	 aMonth()
	 isCurrentMinute()
	 Day()
	 aDay()

	module ExternalMethod
	class ExternalMethod
	 manage_edit(title, module, function, REQUEST=None)
	 __call__(*args, **kw)
	ObjectManager Constructor
	 manage_addExternalMethod(id, title, module, function)

	module File
	class File(ObjectManagerItem, PropertyManager)
	 getContentType()
	 update_data(data, content_type=None, size=None)
	 getSize()
	ObjectManager Constructor
	 manage_addFile(id, file="", title="", precondition="", content_type="")
	Creates a new File object id with the contents of file

	module Folder
	class Folder(ObjectManagerItem, ObjectManager, PropertyManager)
	ObjectManager Constructor
	 manage_addFolder(id, title)

	module Image
	class Image(File)
	 tag(height=None, width=None, alt=None, scale=0, xscale=0, yscale=0, **args)
	ObjectManager Constructor
	 manage_addImage(id, file, title="", precondition="", content_type="")

	module MailHost
	class MailHost
	 send(messageText, mto=None, mfrom=None, subject=None, encode=None)
	 simple_send(self, mto, mfrom, subject, body)
	MailHost Constructor
	 manage_addMailHost(id, title="", smtp_host=None, localhost=localhost, smtp_port=25, timeout=1.0)

	module ObjectManager
	class ObjectManager
	 objectItems(type=None)
	 superValues(type)
	 objectValues(type=None)
	 objectIds(type=None)

	module ObjectManagerItem
	class ObjectManagerItem
	 title_or_id()
	 getPhysicalRoot()
	 manage_workspace()
	 getPhysicalPath()
	 unrestrictedTraverse(path, default=None)
	 getId()
	 absolute_url(relative=None)
	 this()
	 restrictedTraverse(path, default=None)
	 title_and_id()

	module PropertyManager
	class PropertyManager
	 propertyItems()
	 propertyValues()
	 propertyMap()
	 propertyIds()
	 getPropertyType(id)
	 getProperty(id, d=None)
	 hasProperty(id)

	module PropertySheet
	class PropertySheet
	 xml_namespace()
	 propertyItems()
	 propertyValues()
	 getPropertyType(id)
	 propertyInfo()
	 getProperty(id, d=None)
	 manage_delProperties(ids=None, REQUEST=None)
	 manage_changeProperties(REQUEST=None, **kw)
	 manage_addProperty(id, value, type, REQUEST=None)
	 propertyMap()
	 propertyIds()
	 hasProperty(id)

	module PropertySheets
	class PropertySheets
	 get(name, default=None)
	 values()
	 items()

	module PythonScript
	class PythonScript(Script)
	 document_src(REQUEST=None, RESPONSE=None)
	 ZPythonScript_edit(params, body)
	 ZPythonScript_setTitle(title)
	 ZPythonScriptHTML_upload(REQUEST, file="")
	 write(text)
	 ZScriptHTML_tryParams()
	 read()
	 ZPythonScriptHTML_editAction(REQUEST, title, params, body)
	ObjectManager Constructor
	 manage_addPythonScript(id, REQUEST=None)

	module Request
	class Request
	 get_header(name, default=None)
	 items()
	 keys()
	 setVirtualRoot(path, hard=0)
	 values()
	 set(name, value)
	 has_key(key)
	 setServerURL(protocol=None, hostname=None, port=None)

	module Response
	class Response
	 setHeader(name, value)
	 setCookie(name, value, **kw)
	 addHeader(name, value)
	 appendHeader(name, value, delimiter=,)
	 write(data)
	 setStatus(status, reason=None)
	 setBase(base)
	 expireCookie(name, **kw)
	 appendCookie(name, value)
	 redirect(location, lock=0)

	class Script
	 ZScriptHTML_tryAction(REQUEST, argvars)

	module SessionInterfaces
	Session API
	class SessionDataManagerErr
	class BrowserIdManagerInterface
	 getBrowserId(self, create=1)
	 isBrowserIdFromCookie(self)
	 isBrowserIdNew(self)
	 encodeUrl(self, url)
	 flushBrowserIdCookie(self)
	 getBrowserIdName(self)
	 isBrowserIdFromForm(self)
	 hasBrowserId(self)
	 setBrowserIdCookieByForce(self, bid)

	class BrowserIdManagerErr
	class SessionDataManagerInterface
	 getSessionDataByKey(self, key)
	 getSessionData(self, create=1)
	 getBrowserIdManager(self)
	 hasSessionData(self)

	module TransienceInterfaces
	class TransientObject
	 delete(self, k)
	 setLastAccessed(self)
	 getCreated(self)
	 values(self)
	 has_key(self, k)
	 getLastAccessed(self)
	 getId(self)
	 update(self, d)
	 clear(self)
	 items(self)
	 keys(self)
	 get(self, k, default=marker)
	 set(self, k, v)
	 getContainerKey(self)
	 invalidate(self)

	class MaxTransientObjectsExceeded
	class TransientObjectContainer
	 new(self, k)
	 setDelNotificationTarget(self, f)
	 getTimeoutMinutes(self)
	 has_key(self, k)
	 setAddNotificationTarget(self, f)
	 getId(self)
	 setTimeoutMinutes(self, timeout_mins)
	 new_or_existing(self, k)
	 get(self, k, default=None)
	 getAddNotificationTarget(self)
	 getDelNotificationTarget(self)

	module UserFolder
	class UserFolder
	 userFolderEditUser(name, password, roles, domains, **kw)
	 userFolderDelUsers(names)
	 userFolderAddUser(name, password, roles, domains, **kw)
	 getUsers()
	 getUserNames()
	 getUser(name)

	module Vocabulary
	class Vocabulary
	 words()
	 insert(word)
	 query(pattern)
	ObjectManager Constructor
	 manage_addVocabulary(id, title, globbing=None, REQUEST=None)

	module ZCatalog
	class ZCatalog
	 schema()
	 __call__(REQUEST=None, **kw)
	 uncatalog_object(uid)
	 getobject(rid, REQUEST=None)
	 indexes()
	 getpath(rid)
	 index_objects()
	 searchResults(REQUEST=None, **kw)
	There are some rules to consider when querying this method:
	 uniqueValuesFor(name)
	 catalog_object(obj, uid)
	ObjectManager Constructor
	 manage_addZCatalog(id, title, vocab_id=None)

	module ZSQLMethod
	class ZSQLMethod
	 manage_edit(title, connection_id, arguments, template)
	 __call__(REQUEST=None, **kw)
	ObjectManager Constructor
	 manage_addZSQLMethod(id, title, connection_id, arguments, template)

	module ZTUtils
	ZTUtils: Page Template Utilities
	class Batch
	 __init__(self, sequence, size, start=0, end=0, orphan=0, overlap=0)

	module math
	math: Python math module
	See Also

	module random
	random: Python random module
	See Also

	module sequence
	sequence: Sequence sorting module
	 def sort(seq, sort)
	DTML Examples
	Page Template Examples
	See Also

	module standard
	Products.PythonScripts.standard: Utility functions and classes
	 def structured_text(s)
	See Also

	 def html_quote(s)
	See Also

	 def url_quote_plus(s)
	See Also

	 def dollars_and_cents(number)
	 def sql_quote(s)
	 def whole_dollars(number)
	 def url_quote(s)
	See Also

	class DTML
	 __init__(source, **kw)
	 call(client=None, REQUEST={}, **kw)

	 def thousand_commas(number)
	 def newline_to_br(s)

	module string
	string: Python string module
	See Also

	Appendix C: Zope Page Templates Reference
	TAL Overview
	TAL Namespace
	TAL Statements
	Order of Operations
	See Also

	attributes: Replace element attributes
	Syntax
	Description
	Examples

	condition: Conditionally insert or remove an element
	Syntax
	Description
	Examples

	content: Replace the content of an element
	Syntax
	Description
	Examples
	See Also

	define: Define variables
	Syntax
	Description
	Examples

	omit-tag: Remove an element, leaving its contents
	Syntax
	Description
	Examples

	on-error: Handle errors
	Syntax
	Description
	Examples
	See Also

	repeat: Repeat an element
	Syntax
	Description
	Repeat Variables
	The following information is available from the repeat variable:
	Examples

	replace: Replace an element
	Syntax
	Description
	Examples
	See Also

	TALES Overview
	TALES Expression Types
	Built-in Names
	See Also

	TALES Exists expressions
	Syntax
	Description
	Examples

	TALES Nocall expressions
	Syntax
	Description
	Examples

	TALES Not expressions
	Syntax
	Description
	Examples

	TALES Path expressions
	Syntax
	Description
	Examples

	TALES Python expressions
	Syntax
	Description
	Security Restrictions
	Built-in Functions
	Python Modules
	Examples

	TALES String expressions
	Syntax
	Description
	Examples

	METAL Overview
	METAL Namespace
	METAL Statements
	See Also

	define-macro: Define a macro
	Syntax
	Description
	Examples
	See Also

	define-slot: Define a macro customization point
	Syntax
	Description
	Examples
	See Also

	fill-slot: Customize a macro
	Syntax
	Description
	Examples
	See Also

	use-macro: Use a macro
	Syntax
	Description
	Examples
	See Also

	ZPT-specific Behaviors
	HTML Support Features

	Appendix D: Zope Resources
	Zope Web Sites
	Zope Documentation
	(Other) Zope Books
	Mailing Lists
	Python Information

	DTML Name Lookup Rules

