The Zope Book (2.6 Edition)

Amos Latteier, Michel Pelletier, Chris McDonough, Peter Sabaini

The Zope Book (2.6 Edition)

Preface
How the Book Is Organized
Conventions Used in This Book
Contributors to This Book
Introducing Zope
What 1s A Web Application?
How Y ou Can Benefit From Using An Application Server
Zope History
Why Use Zope Instead of Another Application Server
Zope Audiences and What Zope Isn't
Zope's Terms of Use and License and an Introduction to The Zope Community
Zope Concepts and Architecture
Fundamenta Zope Concepts
Zope Is A Framework
Object Orientation
Object Publishing
Through-The-Web Management
Security and Safe Delegation
Native Object Persistence and Transactions
Acquisition
Zope |Is Extensible
Fundamental Zope Components
Installing and Starting Zope
Downloading Zope
Installing Zope
Installing Zope for Windows With Binaries from Zope.org
Installing Zope on Linux and Solaris With Binaries from Zope.org
Compiling and Installing Zope from Source Code
Starting Zope
Using Zope With An Existing Webserver
Starting Zope On Windows
Starting Zope on UNIX
Starting Zope As The Root User
Your Zope Installation
Logging In
Controlling the Zope Process With the Control Panel

The Zope Book (2.6 Edition)

Controlling the Zope Process From the Command Line

Troubleshooting

Options To The Zope start or start.bat Script
Environment Variables that Effect Zope at Runtime

When All Else Fails
Object Orientation
Objects
Attributes
Methods
Messages
Classes and Instances
Inheritance
Object Lifetimes
Summary
Using The Zope Management Interface
Introduction

How The Zope Management Interface Relates to Objects

ZMI Frames
The Navigator Frame
The Workspace Frame
The Status Frame
Creating Objects
Moving and Renaming Objects
Transactions and Undoing Mistakes
Undo Details and Gotchas
Reviewing Change History
Importing and Exporting Objects
Using Object Properties
Using the Help System
Browsing and Searching Help
Logging Out

Using Basic Zope Objects
Basic Zope Objects

Content Objects: Folders, Files, and Images

Folders
Files
Creating and Editing Files

57
58
58
61
65
66
66
67
67
67
68
68
69
69
70
70
70
70
70
71
72
72
73
75
76
76
77

FRRXRERREIYIIRNRE

The Zope Book (2.6 Edition)

Editing File Contents 86
Viewing Files 86
Images 87
Presentation Objects. Zope Page Templates and DTML Objects 87
ZPT vs. DTML: Same Purpose, Different Audiences 88

Zope Page Templates 89
Creating A Page Template 89
Editing A Page Template 89
Uploading A Page Template 89
Viewing A Page Template 90
DTML Objects: DTML Documents and DTML Methods 90
Creating DTML Methods 91
Editing DTML Methods 91
ViewingaDTML Method 92
Uploading an HTML File as Content foraDTML Method 92

Logic Objects: Script (Python) Objects and External Methods 93
Script (Python) Objects 93
Creating A Script (Python) 94
Editing A Script (Python) 94
Testing A Script (Python) 94
Uploading A Script (Python) 95
External Methods 96
Creating and Editing An External Method File 96
Creating an External Method Object 96
Testing An External Method Object 96

SQL Methods: Another Kind of Logic Object 97
Creating a Basic Zope Application Using Page Templates and Scripts 97
Creating a Data Collection Form 98
Creatng A Script To Calculate Interest Rates 98
Creating A Page Template To Display Results 99
Deadling With Errors 99

Using The Application 100

The Zope Tutoria 100
Acquisition 102
Acquisition vs. Inheritance 102
Acquisition is about Containment 103

Say What? 103

The Zope Book (2.6 Edition)

Providing Services
Getting Deeper with Multiple Levels
Summary
Basic DTML
How DTML Relatesto Similar Languages and Templating Facilities
When To Use DTML
When Not To Use DTML
The Difference Between DTML Documents and DTML Methods
Details
DTML Tag Syntax
DTML Tag Names, Targets, and Attributes
Creating a"Sandbox" for the Examplesin This Chapter
Examples of Using DTML for Common Tasks
Inserting Text into HTML with DTML
Formatting and Displaying Sequences
Processing Input from Forms
Dedling With Errors
Dynamically Acquiring Content
Using Python Expressions from DTML
DTML Expression Gotchas
will call the method. However,
Common DTML Tags
TheVar Tag
Var Tag Attributes
Var Tag Entity Syntax
Thelf Tag
Here's an example condition:
Name and Expression Syntax Differences
Else and Elif Tags
Using Cookies with the If Tag
Theln Tag
Iterating over Folder Contents
In Tag Special Variables
Summary
Using Zope Page Templates
Zope Page Templates versus DTML
How Page Templates Work

104
104
104
106
106
106
106
107
107
108
108
109
109
109
111
112
115
115
117
119
119
120
120
120
121
121
121
122
122
123
124
124
125
127
128
128
128

The Zope Book (2.6 Edition)

Creating a Page Template 129
Simple Expressions 130
Inserting Text 130
Repeating Structures 131
Conditional Elements 132
Changing Attributes 133
Creating a File Library with Page Templates 133
Remote Editing with FTP and WebDAV 136
Debugging and Testing 137
XML Templates 138
Using Templates with Content 138
Creating Basic Zope Applications 140
Building "Instance-Space" Applications 140
Instance-Space Applications vs. Products 140
Using A Folder as A Container For Y our Intstance-Space Application 140
Using Objects as Methods Of Folders ViaURLSs 141

Using Acquisition In Instance-Space Applications 141

The Specia Folder Object index_html 141
Building the Zope Zoo Website 142
Navigating the Zoo 142
Adding a Front Page to the Zoo 144
Improving Navigation 145
Factoring out Style Sheets 147
Creating aFile Library 148

148

Building a Guest Book 150
Extending the Guest Book to Generate XML 153

The Next Step 154
Users and Security 155
Introduction to Zope Security 155
Review: Logging In and Logging Out of the Zope Management Interface 155
Zope's "Stock” Security Setup 155
| dentification and Authentication 156
Authorization, Roles, and Permissions 156
Managing Users 157
Creating Usersin User Folders 157

Editing Users 159

The Zope Book (2.6 Edition)

Defining a User's Location 159
Working with Alternative User Folders 160
Special User Accounts 160

Zope Anonymous User 161

Zope Emergency User 161
Creating an Emergency User 162

Zope Initial Manager 163
Protecting Against Password Snooping 163
Managing Custom Security Policies 164
Working with Roles 164
Defining Global Roles 164
Understanding Local Roles 165
Understanding Permissions 165
Defining Security Policies 166
Security Policy Acquisition 167
Security Usage Patterns 168
Security Rules of Thumb 168
Global and Local Policies 168
Delegating Control to Local Managers 168
Different Levels of Accesswith Roles 169
Controlling Access to Locations with Roles 170
Performing Security Checks 170
Advanced Security Issues: Ownership and Executable Content 172
The Problem: Trojan Horse Attacks 172
Managing Ownership 172

Roles of Executable Content 173

Proxy Roles 174
Summary 174
Advanced DTML 176
How Variables are Looked up 177
DTML Namespaces 178
DTML Client Object 179
DTML Method vs. DTML Document 180
DTML Reqguest Object 180
Rendering Variables 181
Modifying the DTML Namespace 181

In Tag Namespace Modifications 181

The Zope Book (2.6 Edition)

Additional Notes 182

The With Tag 182
ThelLet Tag 183
DTML Namespace Utility Functions 184
DTML Security 185
Safe Scripting Limits 186
Advanced DTML Tags 186
The Call Tag 186
The Comment Tag 187
The Tree Tag 188
The Return Tag 190
The Sendmail Tag 190
The Mime Tag 191
The Unless Tag 192
Batch Processing With TheIn Tag 193
Exception Handling Tags 195
The Raise Tag 195

The Try Tag 195

The Try Tag Optional Else Block 197

The Try Tag Optional Finally Block 197

Other useful examples 198
Forwarding a REQUEST 198
Sorting with the tag 198
Calling aDTML object from a Python Script 199
Explicit Lookups 199
Conclusion 199
Advanced Page Templates 200
Advanced TAL 200
Advanced Content Insertion 200
Inserting Structure 200
Dummy Elements 200
Default Content 201
Advanced Repetition 201
Repeat Variables 201
Repetition Tips 202
Advanced Attribute Control 203

Defining Variables 203

The Zope Book (2.6 Edition)

Omitting Tags 204

Error Handling 204
Interactions Between TAL Statements 205

Form Processing 207
Expressions 208
Built-in Page Template Variables 208
String Expressions 209

Path Expressions 210
Alternate Paths 210

Not Expressions 211

Nocall Expressions 211

Exists Expressions 211
Python Expressions 212
Comparisons 212

Using other Expression Types 212
Getting at Zope Objects 213

Using Scripts 214
Calling DTML 214
Python Modules 215
Macros 215
Using Macros 216

Macro Details 216

Using Slots 217
Customizing Default Presentation 218
Combining METAL and TAL 219
Whole Page Macros 219
Caching Templates 220
Page Template Utilities 221
Batching Large Sets of Information 221
Miscellaneous Utilities 223
Conclusion 223
Advanced Zope Scripting 224
Zope Scripts 224
Hereisan overview of Zope's scripts. 224
Calling Scripts 224
Context 225

Calling Scripts From the Web 225

The Zope Book (2.6 Edition)

URL Traversal and Acquisition 226
Passing Arguments with an HTTP Query String 226
Calling Scripts from Other Objects 226
Calling Scriptsfrom DTML 226
Calling scripts from Python and Perl 227
Calling Scripts from Page Templates 228
Calling Scripts: Summary and Comparison 229
Using Python-based Scripts 230
The Python Language 230
Creating Python-based Scripts 230
Binding Variables 232
Accessing the HTTP Reguest 233
String Processing in Python 234
Doing Math 234
Print Statement Support 235
Built-in Functions 236
Using External Methods 236
Processing XML with External Methods 241
External Method Gotchas 242
Using Perl-based Scripts 242
The Perl Language 243
Creating Perl-based Scripts 243
Perl-based Script Security 244
Advanced Acquisition 244
Context Acquisition Gotchas 246
Containment before context 246
Oneat atime 246
Readability 246
Fragility 247
Calling DTML from Scripts 247
Calling ZPT from Scripts 248
Passing Parameters to Scripts 249
Returning Values from Scripts 253
Script Security 254
Security Restrictions of Script (Python) 254
The Zope AP 255

Get all objectsin afolder 255

10

The Zope Book (2.6 Edition)

Get theid of an object 256

Get the Zope root folder 256

Get the physical path to an object 256

Get an object by path 256
Change the content of an DTML Method or Document 256
Change properties of an object 256

Get a property 256
Change properties of an object 257
Execute aDTML Method or DTML Document 257
Traverse to an object and add a new property 257

Add a new object to the context 257

DTML versus Python versus Perl versus Page Templates 258
Remote Scripting and Network Services 258
Using XML-RPC 259
Remote Scripting with HTTP 260
Conclusion 261
Zope Services 262
Access Rule Services 262
Temporary Storage Services 263
Version Services 263
Caveat: Versions and ZCatalog 265
Caching Services 265
Adding a Cache Manager 266
Caching an Object 267
Outbound Mail Services 268
Error Logging Services 268
Virtual Hosting Services 269
Searching and Indexing Services 269
Sessioning Services 269
Internationalization Services 269
Searching and Categorizing Content 270
Getting started with Mass Cataloging 270
Creating a ZCatalog 270
Creating Indexes 271
Finding and Cataloging Objects 273
Search and Report Forms 273

Configuring ZCatalogs 274

11

The Zope Book (2.6 Edition)

Defining Indexes
Defining Meta Data
Searching ZCatalogs
Searching with Forms
Searching from Python
Searching and Indexing Details
Searching ZCTextIndexes
Boolean expressions
Parentheses
Wild cards
Phrase search
Lexicons
Lexicons can:
Searching Field Indexes
Searching Keyword Indexes
Searching Path Indexes
Searching Datel ndexes
Searching DateRangel ndexes
Searching Topiclndexes
Advanced Searching with Records
Keyword Index Record Attributes
Fieldindex Record Attributes
Allowed values:
Path Index Record Attributes
Datelndex Record Attributes
Allowed values:
DateRangel ndex Record Attributes
Topiclndex Record Attributes
ZCTextIndex Record Attributes
Creating Recordsin HTML
Automatic Cataloging
Conclusion
Relational Database Connectivity
Common Relational Databases
Database Adapters
Setting up a Database Connection
Z SQL Methods

12

274
276
276
277
278
278
279
279
279
279
279
280
280
280
282
283
283
283
283
284
284
284
285
285
286
287
287
287
287
287
288
294
296
296
297
297
300

The Zope Book (2.6 Edition)

Examples of ZSQL Methods 300
Displaying Results from Z SQL Methods 303
Providing Argumentsto Z SQL Methods 304
Dynamic SQL Queries 305
Inserting Arguments with the Sglvar Tag 306
Equality Comparisons with the sqltest Tag 306
Creating Complex Queries with the sglgroup Tag 307
Advanced Techniques 309
Calling Z SQL Methods with Explicit Arguments 309
Acquiring Arguments from other Objects 309
Traversing to Result Objects 310

Other Result Object Methods 311
Binding Classes to Result Objects 312
Caching Results 314
Transactions 315
Further help 316
Summary 316
Virtual Hosting Services 317
Virtual Host Monster 317
Where to Put aVirtual Host Monster And What To Name It 317
Special VHM Path Elements VirtualHostBase and VirtualHostRoot 317
Virtua HostBase 318
VirtualHostRoot 318

Using VirtualHostRoot and VirtualHostBase Together 319
Testing aVirtual Host Monster 319
Arranginging for Incoming URLs to be Rewritten 320
Virtual Host Monster Mappings Tab 320
Apache Rewrite Rules 321
"Inside-Out" Virtual Hosting 322
Sessions 323
Introduction 323
Session Configuration 323

Using Session Data 324
Details 325
Terminology 326
Default Configuration 326

Advanced Development Using Sessioning 326

13

The Zope Book (2.6 Edition)

Overview 326
Obtaining A Session Data Object 327
Modifying A Session Data Object 327
Manually Invalidating A Session Data Object 327
Manually Invalidating A Browser |d Cookie 328
An Example Of Using Session Datafrom DTML 328
Using the mapping Keyword With A Session Data Object in a dtml-with 328
Using Session Data From Python 329
Interacting with Browser Id Data 329
Determining Which Namespace Holds The Browser 1d 330
Obtaining the Browser Id Name/VVaue Pair and Embedding It Into A Form 330
Determining Whether A Browser Idis"New" 331
Determining Whether A Session Data Object Exists For The Browser |d Associated With This 331
Request
Embedding A Browser Id Into An HTML Link 331
Using Session onAdd and onDelete Events 332
Writing onAdd and onDelete Methods 333
Configuration and Operation 334
Setting Initial Transient Object Container Parameters 334
Instantiating Multiple Browser |d Managers (Optional) 334
Instantiating A Session Data Manager (Optional) 336
Instantiating a Transient Object Container 336
Configuring Sessioning Permissions 337
Permissions related to browser id managers. 337
Permissions related to session data managers: 337
Permissions related to transient object containers: 338
Concepts and Cavesats 338
Security Considerations 338
Browser Id (Non-)Expiration 338
Session Data Object Expiration Considerations 339
Sessioning and Transactions 339
Mutable Data Stored Within Session Data Objects 339
Session Data Object Keys 340
In-Memory Session Data Container RAM Utilization 340
Mounted Transient Object Container Caveats 340
Conflict Errors 340
Zope Versions and Sessioning 341

14

The Zope Book (2.6 Edition)

Further Documentation
Scalability and ZEO
What is ZEO?
When you should use ZEO
Installing and Running ZEO
How to Run Multiple ZEO Clients
How to Distribute Load
User Chooses aMirror
Using Round-robin DNS to Distribute Load
Using Layer 4 Switching to Distribute Load
Dealing with the Storage Server as A Single Point of Failure
ZEO Server Details
ZEQO Cavests
Conclusion
Managing Zope Objects Using External Tools
Genera Caveats
FTP and WebDAV
Using FTP to Manage Zope Content
Determining Y our Zope's FTP Port
Transferring Fileswith WS _FTP
Remote Editing with FTP/DAV-Aware Editors
Editing Zope Objects with Emacs FTP Modes
Caveats With FTP
Editing Zope Objects with WebDAV
Note
Using aPUT _factory to Specify the Type of Objects Created With FTP and DAV
Using The External Editor Product
Other Integration Facilities
Chapter 14: Extending Zope
Creating Zope Products
Creating A Simple Product
Creating ZClasses

Creating Views of Your ZClass
Creating Properties on Y our ZClass
Creating Methods on your ZClass

15

341
342
342
343

345
346
346
348
348
349
350
351
352
353
353
354
354
354
355
355
356
357
357
357
358
359
360
361
361
362
365
365
367
368
369
371

The Zope Book (2.6 Edition)

ObjectManager ZClasses 373
ZClass Security Controls 373
Controlling access to Methods and Property Sheets 374
Controlling Access to instances of Y our ZClass 375
Providing Context-Sensitive Help for your ZClass 375

Using Python Base Classes 376
Distributing Products 377
Maintaining Zope 379
Starting Zope Automatically at Boot Time 379
Debug Mode and Automatic Startup 379

Linux 379
Distributions with Prepackaged Zope 379
Automatic Startup for Custom-Built Zopes 380

This script lets you perform start / stop / restart operations: 384

Mac OS X 384

MS Windows 384
Installing New Products 384
Server Settings 385
Database Cache 385
Interpreter Check Intervals 386
ZServer Threads 386
Database Connections 387
Signals (POSIX only) 387
Monitoring 388
Monitor the Event Log and the Access Log 388
Monitor the HTTP Service 388

Log Files 389
AccessLog 389

Event Log 389

Log Rotation 389
Packing and Backing Up the FileStorage Database 390
Database Recovery Tools 391
Appendix A: DTML Reference 393
cal: Call amethod 393
Syntax 393
Examples 393

See Also 393

16

The Zope Book (2.6 Edition)

comment: Comments DTML 393
Syntax 393
Examples 393

functions: DTML Functions 394
Functions 394
Attributes 397
See Also 397
string module 397
random module 397
math module 397
sequence module 397
Built-in Python Functions 397

if: Tests Conditions 397
Syntax 397
Examples 397
See Also 398

in: Loops over sequences 398
Syntax 398
Attributes 398
Tag Variables 399
Current Item Variables 399
Summary Variables 400
Grouping Variables 400
Batch Variables 400
Examples 401

let: DefinesDTML variables 402
Syntax 402
Examples 402
See Also 403

mime: Formats datawith MIME 403
Syntax 403
Attributes 403
Examples 404
See Also 404

raise: Raises an exception 404
Syntax 404

Examples 404

17

The Zope Book (2.6 Edition)

See Also
return: Returns data
Syntax
Examples
sendmail: Sends email with SMTP
Syntax
Attributes
Examples
See Also
sglgroup: Formats complex SQL expressions
Syntax
Attributes
Examples
See Also
sgltest: Formats SQL condition tests
Syntax
Attributes
Examples
See Also
sglvar: Inserts SQL variables
Syntax
Attributes
Examples
See Also
tree: Inserts atree widget
Syntax
Attributes
Tag Variables
Tag Control Variables
Examples
try: Handles exceptions
Syntax
Attributes
Tag Variables
Examples
See Also
unless; Tests a condition

18

404
405
405
405
405
405
405
406
406
406
406
406
406
407
407
408
408
408
409
409
409
409
409
409
409
409
410
411
411
411
411
411
412
412
412
413
413

The Zope Book (2.6 Edition)

Syntax
Examples
See Also
var: Inserts avariable
Syntax
Attributes
Examples
with: Controls DTML variable look up
Syntax
Attributes
Examples
See Also
Appendix B: APl Reference
module AccessControl
AccessControl: Security functions and classes
class SecurityManager
calledByExecutable(self)
validate(accessed=None, container=None, name=None, value=None, roles=None)
checkPermission(self, permission, object)
getUser(self)
validateValue(salf, value, roles=None)
def getSecurityManager()
Returns the security manager. See the SecurityManager class.
module AuthenticatedUser
class AuthenticatedUser
getUserName()
getld()
has role(roles, object=None)
getRoles()
has_permission(permission, object)
getRolesInContext(object)
getDomains()
module DTML Document
class DTML Document(ObjectM anagerltem, PropertyM anager)
manage_edit(data, title)
document_src()
_cal__(client=None, REQUEST={}, RESPONSE=None, **kw)

19

413
413
413
413
414
414
415
415
416
416
416
416
417
417
417
417
417
417
417
417
418
418
418
418
418
418
418
418
418
418
419
419
419
419
419
419
419

The Zope Book (2.6 Edition)

From DTML 420

From Python 420

By the Publisher 420
get_size() 420
ObjectManager Constructor 420
manage_addDocument(id, title) 420
module DTMLMethod 421
class DTML M ethod(ObjectManager|tem) 421
manage_edit(data, title) 421
document_src() 421
__call__(client=None, REQUEST={}, **kw) 421

From DTML 422

From Python 422

By the Publisher 422
get_size() 422
ObjectManager Constructor 422
manage_addDTMLMethod(id, title) 422
module DateTime 422
class DateTime 422
strftime(format) 425

Return date time string formatted according to format 425

dow() 425
aCommon() 425

h 12() 495
Mon_() 425
HTML4() 425
greaterThanEqual To(t) 425
dayOfY ear() 426
lessThan(t) 426
AMPM() 426
isCurrentHour() 426
Month() 426

mm() 426
ampm() 426

hour() 427
aCommonZ() 427

Day () 427

20

pCommon()
minute()

day()
earliestTime()
Date()

Time()
isFuture()
greaterThan(t)
TimeMinutes()
yy0
isCurrentDay()
dd()

rfc822()
isLeapY ear()
fCommon()
isPast()
fCommonZ()
timeTime()
toZone(z)
lessThanEqual To(t)
Mon()

parts()
isCurrentY ear()
PreciseAMPM()
AMPMMinutes()
equalTo(t)
pDay()

notEqual To(t)
h_24()
pCommonZ()
isCurrentMonth()
DayOfWeek()
latestTime()
dow_1()
timezone()
year()
PreciseTime()

The Zope Book (2.6 Edition)

21

427
427
427
427
427
427
428
428
428
428
428
428
428
429
429
429
429
429
429
429
429
430
430
430
430
430
430
430
430
431
431
431
431
431
431
431
431

The Zope Book (2.6 Edition)

1SO()

millis()

second()

month()

pMonth()
aMonth()
isCurrentMinute()

Day()

aDay()
module ExternalM ethod

class External M ethod
manage_edit(title, module, function, REQUEST=None)
__cal__(*args, **kw)
ObjectManager Constructor
manage_addExternalMethod(id, title, module, function)

module File

class File(ObjectManagerltem, PropertyManager)
getContentType()
update_data(data, content_type=None, size=None)
getSize()
ObjectManager Constructor

manage _addFile(id, file="", title="", precondition="", content_type="")
Creates anew File object id with the contents of file
module Folder
class Folder(ObjectM anagerltem, ObjectManager, PropertyManager)
ObjectManager Constructor
manage_addFolder(id, title)
module Image
class Image(File)
tag(height=None, width=None, alt=None, scale=0, xscale=0, yscale=0, ** args)
ObjectManager Constructor
manage_addImage(id, file, title="", precondition="", content_type="")
module MailHost
class MailHost
send(messageText, mto=None, mfrom=None, subject=None, encode=None)
simple_send(self, mto, mfrom, subject, body)
MailHost Constructor

22

432
432
432
432
432
432
432
432
433
433
433
433
433
433
433

434

435
435
435
435
435
435
435
435
435
435
436
436
436
436
436
436
437
437

The Zope Book (2.6 Edition)

manage_addMailHost(id, title="", smtp_host=None, localhost=localhost, smtp_port=25, 437
timeout=1.0)

modul e ObjectM anager 437
class ObjectManager 437
objectltems(type=None) 438

superV alues(type) 438
objectValues(type=None) 438
objectlds(type=None) 439

modul e ObjectManageritem 439
class ObjectManagerltem 439
title_or_id() 439
getPhysicalRoot() 439
manage_workspace() 440

getPhysical Path() 440
unrestrictedTraverse(path, default=None) 440

getld() 440
absolute_url(relative=None) 440

this() 440
restrictedTraverse(path, default=None) 441

title_and_id() 41

module PropertyManager 441
class PropertyManager 441
propertyltems() 441
propertyVaues() 441
propertyMap() 441

propertylds() 442

getProperty Type(id) 442
getProperty(id, d=None) 442
hasProperty(id) 442

modul e Property Sheet 442
class Property Sheet 442
xml_namespace() 442
propertyltems() 442
propertyVaues() 442

getProperty Type(id) 443
propertylnfo() 443

getProperty(id, d=None) 443

23

The Zope Book (2.6 Edition)

manage_del Properties(ids=None, REQUEST=None)
manage_changeProperties(REQUEST=None, ** kw)
manage_addProperty(id, value, type, REQUEST=None)
propertyMap()
propertylds()
hasProperty(id)
modul e Property Sheets
class Property Sheets
get(name, default=None)
values()
items()
module PythonScript
class PythonScript(Script)
document_src(REQUEST=None, RESPONSE=None)
ZPythonScript_edit(params, body)
ZPythonScript_setTitle(title)
ZPythonScriptHTML_upload(REQUEST, file="")
write(text)
ZScriptHTML _tryParams()
read()
ZPythonScriptHTML _editAction(REQUEST, title, params, body)
ObjectManager Constructor
manage_addPythonScript(id, REQUEST=None)
modul e Request
class Request
get_header(name, default=None)
items()
keys()
setVirtual Root(path, hard=0)
values()
set(name, value)
has_key(key)
setServerURL (protocol=None, hostname=None, port=None)
module Response
class Response
setHeader(name, value)
setCookie(name, value, **kw)

24

443
443

445
445
445
445
445
445
445
445
447
447
448
448
448
448
448
448
448
448
448
449
450
450
450
450
451
451
451
451
451
451
451
451

The Zope Book (2.6 Edition)

addHeader(name, value) 452
appendHeader(name, value, delimiter=,) 452
write(data) 452
setStatus(status, reason=None) 452
setBase(base) 452
expireCookie(name, **kw) 452
appendCookie(name, value) 453
redirect(location, lock=0) 453

class Script 453
ZScriptHTML_tryAction(REQUEST, argvars) 453
modul e Sessionlnterfaces 453
Session API 453
class SessionDataM anagerErr 453
class BrowserldManagerInterface 454
getBrowserld(self, create=1) 454
isBrowserldFromCookie(self) 454
isBrowserldNew(self) 454
encodeUrl(self, url) 454
flushBrowserldCookie(self) 454
getBrowserldName(self) 455
isBrowserldFromForm(self) 455
hasBrowserld(self) 455
setBrowserldCookieByForce(self, bid) 455

class BrowserldManagerErr 455
class SessionDataM anagerinterface 455
getSessionDataByK ey(self, key) 456
getSessionData(self, create=1) 456
getBrowserldM anager(self) 456
hasSessionData(self) 456
module Transiencel nterfaces 456
class TransientObject 456
delete(sdlf, k) 457

setl astAccessed(self) 457
getCreated(self) 457
values(self) 457
has_key(self, k) 457

getL astAccessed(self) 457

25

The Zope Book (2.6 Edition)

getld(self) 457
update(self, d) 457
clear(self) 458
items(self) 458
keys(self) 458
get(self, k, default=marker) 458
set(sdlf, k, v) 458
getContainerK ey(self) 458
invalidate(self) 458

class MaxTransi entObjectsExceeded 458
class TransientObjectContainer 459
new(self, k) 459
setDelNotificationTarget(self, f) 459
getTimeoutMinutes(self) 459
has_key(sdlf, k) 459
setAddNotificationTarget(self, f) 459
getld(self) 460
setTimeoutMinutes(self, timeout_mins) 460
new_or_existing(self, k) 460
get(self, k, default=None) 460
getAddNotificationTarget(self) 460

getDel NotificationTarget(self) 460
module UserFolder 460
class UserFolder 461
userFolderEditUser(name, password, roles, domains, **kw) 461
userFolderDel Users(names) 461
userFolderAddUser(name, password, roles, domains, **kw) 461
getUsers() 461
getUserNames() 461
getUser(name) 461
module V ocabulary 461
class Vocabulary 461
words() 462
insert(word) 462
guery(pattern) 462
ObjectManager Constructor 462

manage_addV ocabulary(id, title, globbing=None, REQUEST=None) 462

26

The Zope Book (2.6 Edition)

module ZCatalog
class ZCatalog
schema()
__cal__(REQUEST=None, **kw)
uncatalog_object(uid)
getobject(rid, REQUEST=None)
indexes()
getpath(rid)
index_objects()
searchResults(REQUEST=None, **kw)
There are some rules to consider when querying this method:
uniqueV aluesFor(name)
catalog_object(obj, uid)
ObjectManager Constructor
manage_addZCatalog(id, title, vocab_id=None)
module ZSQL Method
class ZSQL Method
manage_edit(title, connection _id, arguments, template)
__call__(REQUEST=None, **kw)
ObjectManager Constructor
manage_addZSQL Method(id, title, connection_id, arguments, template)
module ZTUtils
ZTUtils: Page Template Utilities
class Batch
__init__ (sef, sequence, size, start=0, end=0, orphan=0, overlap=0)
module math
math: Python math module
See Also
module random
random: Python random module
See Also
modul e sequence
seguence: Sequence sorting module
def sort(seq, sort)
DTML Examples
Page Template Examples
See Also

27

462
462
462
463
463
463
463
463
463
463
464
464
464
464
464
464
464
465
465
465
465
466
466
466
466
467
467
467
467
467
467
467
467
467
468
468
468

The Zope Book (2.6 Edition)

module standard 468
Products.PythonScripts.standard: Utility functions and classes 468
def structured_text(s) 469

See Also 469
def html_quote(s) 469
See Also 469
def url_quote_plus(s) 469
See Also 469
def dollars_and_cents(number) 469
def sgl_quote(s) 469
def whole_dollars(number) 469
def url_quote(s) 469
See Also 469
classDTML 470
__init__(source, **kw) 470
call(client=None, REQUEST={}, **kw) 470
def thousand_commas(number) 470
def newline _to_br(s) 470

module string 470

string: Python string module 470
See Also 470
Appendix C: Zope Page Templates Reference 472
TAL Overview 472
TAL Namespace 472
TAL Statements 472
Order of Operations 473
See Also 473
attributes: Replace element attributes 474
Syntax 474
Description 474
Examples 474
condition: Conditionally insert or remove an element 474
Syntax 475
Description 475
Examples 475
content: Replace the content of an element 475

Syntax 475

28

The Zope Book (2.6 Edition)

Description 475
Examples 475
See Also 476
define: Define variables 476
Syntax 476
Description 476
Examples 476
omit-tag: Remove an element, leaving its contents 476
Syntax 476
Description 477
Examples 477
on-error: Handle errors 477
Syntax 477
Description a77
Examples 478
See Also 478
repeat: Repeat an element 478
Syntax 478
Description 478
Repeat Variables 479
The following information is available from the repeat variable: 479
Examples 480
replace; Replace an element 480
Syntax 480
Description 480
Examples 481
See Also 481
TALES Overview 481
TALES Expression Types 481
Built-in Names 482
See Also 482
TALES Exists expressions 483
Syntax 483
Description 483
Examples 483
TALES Nocall expressions 483

Syntax 483

29

The Zope Book (2.6 Edition)

Description 483
Examples 484
TALES Not expressions 484
Syntax 484
Description 484
Examples 484
TALES Path expressions 484
Syntax 485
Description 485
Examples 485
TALES Python expressions 486
Syntax 486
Description 486
Security Restrictions 486
Built-in Functions 486
Python Modules 487
Examples 487
TALES String expressions 487
Syntax 488
Description 488
Examples 488
METAL Overview 488
METAL Namespace 488
METAL Statements 488
See Also 489
define-macro: Define a macro 4389
Syntax 489
Description 489
Examples 489
See Also 490
define-dlot: Define a macro customization point 490
Syntax 490
Description 490
Examples 490
See Also 490
fill-slot: Customize amacro 490

Syntax 490

30

Description
Examples
See Also
use-macro: Use a macro
Syntax
Description
Examples
See Also
ZPT-specific Behaviors
HTML Support Features
Appendix D: Zope Resources
Zope Web Sites
Zope Documentation
(Other) Zope Books
Mailing Lists
Python Information
DTML Name Lookup Rules

The Zope Book (2.6 Edition)

31

490
491
491
491
491
491
491
492
492
492
494
494
494
494
494
494
495

The Zope Book (2.6 Edition)

Preface

Welcome to The Zope Book . This book is designed to introduce you to Zope, the open source web application server.
To make effective use of the book, you should know how to use a web browser and you should have a basic
understanding of HTML (Hyper Text Markup Language) and URLs (Uniform Resource Locators). You don't need to be

a highly-skilled programmer in order to use Zope, but some programming background (particularly object-oriented
programming) will be extremely helpful.

How the Book Is Organized

A brief summary of each chapter is presented below.
1. Introducing Zope

This chapter explains what Zope is and what it can do for you. You also learn about the differences between Zope and
other web application servers.

2. Zope Concepts and Architecture
This chapter explains fundamental Zope concepts and describes some of Zope's architecture.
3. Installing and Starting Zope

This chapter explains how to install and start Zope for the first time. By the end of this chapter, you should have Zope
installed and working.

4. Object Orientation

This chapter explains the concept of object orientation , which is the development methodology most often used to
create Zope applications.

5. Using The Zope Management Interface

This chapter explains how to use Zope's web-based management interface. By the end of this chapter you should be
able to navigate around the Zope object space, copy and move objects, and use other basic Zope features.

6. Using Basic Zope Objects

This chapter introduces objects , which are the most important elements of Zope. We introduce the basic Zope objects:
content objects, presentation objects, and logic objects, and we build a simple application using these objects.

7. Acquisition

This chapter introduces acquisition , which is Zope's mechanism for sharing site behavior and content via
“containment".

8. Basic DTML
This chapter introduces DTML , Zope's tag-based scripting language. We describe how to use DTML's templating and

scripting facilities. We cover DTML syntax and the three most basic tags, var , if and in . After reading this chapter you'll

32

The Zope Book (2.6 Edition)

be able to create dynamic web pages.

9. Using Zope Page Templates

This chapter introduces Zope Page Templates, another Zope tool used to create dynamic web pages. This chapter
shows you how to create and edit page templates. It also introduces basic template statements that let you insert
dynamic content.

10. Creating Basic Zope Applications

This chapter walks the reader through several real-world examples of building a Zope application. It explains how to
use basic Zope objects and how they can work together to form basic applications.

11. Users and Security

This chapter looks at how Zope handles users, authentication, authorization, and other security-related matters.

12. Advanced DTML

This chapter takes a closer look at DTML. It covers DTML security and the tricky issue of how variables are looked up
in DTML. It also covers advanced uses of the basic tags covered in Chapter 3 and the myriad special purpose tags.
This chapter will turn you into a DTML wizard.

13. Advanced Page Templates

This chapter goes into more depth with templates. This chapter teaches you all the template statements and
expression types. It also covers macros which let you reuse presentation elements.

14. Advanced Zope Scripting

This chapter covers scripting Zope with Python and Perl. It explains how to write business logic in Zope using tools
more powerful than DTML. It discusses the idea of scripts in Zope, and focuses on Python and Perl-based Scripts. This
chapter shows you how to add industrial-strength scripting to your site.

15. Zope Services

This chapter covers Zope objects which are "services" that don't readily fit into any of the basic "content", "presentation”
or "logic" object groups.

16. Searching and Categorizing Content

This chapter shows you how to index and search objects with Zope's built-in search engine, the Catalog . It introduces
indexing concepts and discusses different patterns for indexing and searching. Finally it discusses metadata and
search results.

17. Relational Database Connectivity

This chapter describes how Zope connects to external relational databases. It also covers features which allow you to
treat relational data as though it were Zope objects. Finally, the chapter covers security and performance

considerations.

18. Virtual Hosting Services

33

The Zope Book (2.6 Edition)

This chapter explains how to set up Zope in a "virtual-hosted" environment where Zope subfolders can be served as
"top-level" hostnames. It includes examples that allow virtual hosting to be performed "natively" or using Apache's
nod _rewite facility.

19. Sessions

This chapter describes Zope's "sessioning" services, which allow Zope developers to "keep state" between HTTP
requests.

20. Scalability and ZEO

This chapter covers issues and solutions for building and maintaining large web applications, and focuses on issues of
management and scalability. In particular, the Zope Enterprise Option (ZEO) is covered in detail. This chapter shows
you the tools and techniques you need to turn a small site into a large-scale site, servicing many simultaneous visitors.
21. Managing Zope Objects Using External Tools

This chapter explains how to use tools other than your web browser to manipulate Zope objects.

22. Extending Zope

This chapter covers extending Zope by creating your own classes of objects. It discusses ZClasses , and how
instances are built from classes. It describes how to build a ZClass and its attendant security and design issues.
Finally, it discusses creating Python base classes for ZClasses and describes the base classes that ship with Zope.
23. Maintaining Zope

This chapter covers Zope maintenance and administration tasks such as database "packing” and Product installation.
24. Appendix A: DTML Reference

Reference of DTML syntax and commands.

25. Appendix B: API Reference

Reference of Zope object APIs.

26. Appendix C: Page Template Reference

Reference of Zope Page Template syntax and commands.

27. Appendix D: Zope Resources

Reference of "resources" which can be used to further enhance your Zope learning experience.

28. Appendix E: DTML Name Lookup Rules

Describes DTML's name lookup rules.

Conventions Used in This Book

This book uses the following typographical conventions:

34

The Zope Book (2.6 Edition)

Italic — Italics indicate variables and names and is also used to introduce new terms.

Fi xed w dt h — Fixed width text indicates objects, commands, hyperlinks, and code listings.

Contributors to This Book

Contributors to this book include Amos Latteier, Michel Pelletier, Chris McDonough, Evan Simpson, Tom Deprez, Paul
Everitt, Bakhtiar A. Hamid, Geir Baekholt, Paul Winkler, Peter Sabaini, Andrew Veitch, Kevin Carlson and the Zope
Community.

Amos and Michel wrote the entirety of the first edition of this book, and kept the online version of the book current up
until Zope 2.5.1.

Tom Deprez provided much-needed editing assistance on the first book edition.
Evan Simpson edited the chapters related to ZPT for the 2.6 edition.

Paul Everitt contributed to the first few chapters of the first edition, edited the first few chapters of the second edition for
sanity and contributed some "Maintaining Zope" content for the 2.6 edition.

Bakhtiar Hamid edited the ZEO chapter for the 2.6 edition.
Geir edited and extended the Users and Security chapter for the 2.6 edition.

Paul Winkler with help from Peter Sabaini expertly massaged the Advanced Scripting chapter into coherency for the
2.6 edition.

Peter Sabaini greatly fleshed out and extended the "Maintaining Zope" chapter for the 2.6 Edition.

Andrew Veitch cheerfully performed the thankless task of editing and extending the Relational Database Connectivity
chapter for the 2.6 edition.

Kevin Carlson masterfully edited and expanded the Advanced DTML chapter.
Chris McDonough edited the entirety of the book for the 2.6 edition, entirely rewrote a few chapters and added new
material related to object orientation, using the Zope management interface, acquisition, installation, services, virtual

hosting, sessions, and DTML name lookup rules.

Anyone who added a comment to the online BackTalk edition of the first online edition of this book contributed greatly.
Thank you!

35

The Zope Book (2.6 Edition)

Introducing Zope

Zope is a framework that allows developers of varying skill levels to build web applications . This chapter explains
Zope's purpose and audience in greater detail. It also describes what makes Zope different from similar applications.

What Is A Web Application?

It is often important that visitors to a website see content that is timely and up-to-date. A time-dependent site's content

needs to change continually. For example, if a commercial website helps its visitors sell and buy used automobiles, it is
usually required that the site run advertisements only for cars that have not yet been sold. It is also important that new

ads be posted at most a day or two after they've been placed by a seller. If either of these requirements is not met, the

website will likely not be very successful.

The layout of text and images that show up in a user's web browser when the user visits a website are often composed
using a simple language known as Hyper Text Markup Language (HTML). When a user visits a typical website, a
chunk of text that is "marked-up" with HTML is transferred between the website and the user's browser. The browser
interprets the chunk of text, showing text and images to the user. The chunk of text which is transferred is typically
referred to as a page . Many website visitors think about navigation in terms of moving "from page-to-page" within a
website. When they click on a hyperlink, their browser transports them to a new page. When they hit their browser's
Back button, it takes them to the last page they've visited.

Some websites are static . Static websites require a person with a privileged level of access (sometimes termed the
webmaster) to manually "freshen"” the site's content. Freshening the content requires the person to manually visit and
update the HTML that makes up each page that needs to change. Typically, this is done by editing a set of files on the
web server (the machine that runs the website), where each file represents a single page.

Site-wide changes to the "look-and-feel" of a static website require that the webmaster visit and update each and every
file that comprises the website. Websites can typically grow to encompass thousands of files, so this can become a
non-trivial task. The webmaster responsible for our automobile advertising website has the additional responsibility of
keeping the ads themselves fresh. If each page in the website represents an ad for a particular automobile, he needs to
delete the pages representing ads which have expired and create new pages for ads which have been recently sold.
He then needs to make sure that no hyperlinks on other pages point to missing pages.

This becomes a lot of work very quickly. As you can imagine, with any more than a few pages to update every day, this
can become pretty dull. The webmaster also understandably makes mistakes (he's human, after all), and forgets to
update or remove critical pages.

Somewhere down the line smart webmasters begin to think to themselves, "Wow, this is a lot of work. It's tedious and
complicated, and | seem to be making a lot of mistakes. Computers are really good at doing tedious and complicated
tasks, and they don't make very many mistakes. | bet my webserver computer can automatically do a lot of the work |
now do manually." At this point, the webmaster is ready to be introduced to web applications .

A web application is a computer program that users invoke by using a web browser to contact a web server via the
Internet. Users and browsers are typically unaware of the difference between contacting a web server which fronts for a
statically-built website and a web server which fronts for a web application. But unlike a static website, a web
application creates its "pages" dynamically . A website that is dynamically-constructed uses an a computer program to
provide the dynamism. These kinds of dynamic capplications can be written in any number of computer languages.

In a dynamically-constructed website, the webmaster is not required to visit the site "page-by-page" in order to update

content or style. Instead, he is able to create a "common look and feel" for the set of pages that make up his website.
He is also able to instruct the webserver to generate an HTML page on the fly that includes certain unique bits of

36

The Zope Book (2.6 Edition)

content. If our auto-classified-ad webmaster chose to construct a web application to maintain his classifieds system, he
could maintain a list of "current" ads separate from the HTML layout (perhaps stored in a database of some kind). He
could then instruct his web application to query this database and generate a particular chunk of HTML that
represented an ad or an index of ads when a user visited a page in his website.

Web applications are everywhere. Common examples of web applications are those that let you search the web, like
Google ; collaborate on projects, like SourceForge ; buy items at an auction like eBay ; communicate with other people
over e-mail, like Hotmail ; or view the latest news ala CNN.com .

A framework which allows people to construct a web application is often called a web application server , or sometimes
just an application server . Zope is a web application server, as are competing products like BEA WebLogic ,
Macromedia ColdFusion and (to some extent) Vignette StoryServer . A web application server typically allows a
developer to create a web application using some common computer programming language. But it also provides
services beyond the basic capabilities of the language such as templating, a common security model, data persistence,
sessions, and other features that people find useful when constructing a typical web application.

How You Can Benefit From Using An Application Server

If you are considering writing even a moderately-sized web application, it is typically a good idea to start your project
using an application server framework unless your application requirements are extremely specialized. By starting a
web application project using an application server framework (as opposed to a "raw" computer language such as Perl,
Python, TCL, or C), you are able to utilize the services of the framework that have already been written, and you avoid
needing to write the functionality yourself "from scratch" in a "raw" language.

Many application servers allow you perform some of the below-mentioned tasks.

Present Dynamic Content — You may tailor your web site's presentation to its users and provide users with search
features. Application servers allow you to serve dynamic content. Application servers typically come with facilities for
personalization, database integration and content indexing and search.

Manage Your Web Site — A small web site is easy to manage, but a web site that serves thousands of documents,
images and files requires heavy-duty management tools. It is useful to be able to manage your site's data, business
logic and presentation from a single place. An application server can typically help manage your content and
presentation in this way.

Build a Content Management System — A fairly new breed of application, a content management system allows
nontechnical editors to create and manage content for your website. Application servers provide the tools with which
you can build a content management system.

Build an E-Commerce Application — Application servers provide a framework in which sophisticated e-commerce
applications can be created.

Securely Manage Contributor Responsibility — When you deal with more than a handful of web users, security
becomes very important. It is important to be able to safely delegate tasks to different classes of system users. For
example, folks in your engineering department may need to be able to manage their web pages and business logic,
designers may need to update site templates, and database administrators need to manage database queries.
Application servers typically provide a mechanism for access control and delegation.

Provide Network Services — You may want to produce or consume network services . A network service-enabled
web site will need to be able to accept requests from other computer programs. For example, if your website is a news
site, you may wish to share your news stories with another website; you can do this by making the news feed a network
service. Or perhaps you want to make products for sale on your site automatically searchable from a product
comparison site. Application servers are beginning to offer methods of enabling these kinds of network services.

37

The Zope Book (2.6 Edition)

Integrate Diverse Systems — Your existing content may be contained in many places: relational databases, files,
separate web sites, and so on. Application servers typically allow you to present a unified view of your existing data by
integrating diverse third-party systems.

Provide Scalability — Application servers allow your web applications to scale across as many systems as necessary
to handle the load demands of your websites.

The Zope application server allows you to perform all of these tasks.
Zope History

In 1996 Jim Fulton (the current CTO of Zope Corporation, the distributors of Zope) was drafted to teach a class on CGI
programming, despite not knowing very much about the subject. CGI or common gateway interface programming is a
commonly-used web development model that allows developers to construct dynamic websites. Jim studied all of the
existing documentation on CGI on his way to the class. On the way back from the class, Jim considered what he didn't
like about traditional CGI based programming environments. From these initial musings, the core of Zope was written
on the plane flight back from the class.

Zope Corporation (then known as Digital Creations) went on to release three open source software packages to
support web publishing, Bobo , Document Template , and BoboPOS . These package were written in a language called
Python, and respectively provided a web publishing facility, text templating, and an object database. Digital Creations
had developed a commercial application server based on their three open source components. This product was called
Principia . In Novermber of 1998, investor Hadar Pedhazur convinced Digital Creations to open source Principia. These
components have evolved into core components of Zope.

The moniker "Zope" stands for the Z Object Publishing Environment (the "Z" doesn't really mean anything in particular).
Most of Zope is written in the Python scripting language, with performance-critical pieces written in C.

Why Use Zope Instead of Another Application Server

If you're in the business of creating web applications, Zope can potentially help you create them at less cost and at a
faster rate than you could by using another competing web application server. This claim is backed up by a number of
Zope features:

e Zope is free of cost and is distributed under an open-source license. There are many non-free commercial
application servers that are relatively expensive.

e Zope itself is an inclusive platform. It ships with all the necessary components to begin developing an application.
You don't need to license extra software to support Zope (e.g. a relational database) in order to develop your
application. This also makes Zope very easy to install. Many other application servers have "hidden" costs by
requiring that you license expensive software or to configure complex third-party infrastructure software before
you can begin to develop your application.

e Zope allows and encourages third-party developers to package and distribute ready-made applications. Due to
this, Zope has a wide variety of integrated services and add-on products available for immediate use. Most of
these components, like Zope itself, are free and open source. Zope's popularity has bred a large community of
application developers. Many other application servers do not have a large base of third-party support or a means
for so neatly packaging plug-ins.

« Applications created in Zope can scale almost linearly using Zope's Zope Enterprise Objects (ZEO) clustering
solution. Using ZEO, you can deploy a Zope application across many physical computers without needing to

38

The Zope Book (2.6 Edition)

change much (if any) of your application code. Many application servers don't scale quite as transparently or as
predictably.

Zope allows developers to create web applications using only a web browser. The Internet Explorer, Mozilla,
Netscape, OmniWeb, Konqueror, and Opera browsers are all known to be able to be used to display and
manipulate Zope's development environment (the Zope Management Interface also known as the ZMl). Zope
also allows developers to safely delegate application development duties to other developers "through the web
using the same interface. Very few other application servers, if any, deliver the same level of functionality.

Zope provides a granular and extensible security framework. You can easily integrate Zope with diverse
authentication and authorization systems such as LDAP, Windows NT, and RADIUS simultaneously, using
prebuilt modules. Many other application servers lack support for some important authentication and authorization
systems.

Zope allows teams of developers to collaborate effectively. Collaborative environments require tools to allow
users to work without interfering with each other, so Zope has Undo , Versions , History and other tools to help
people work safely together and recover from mistakes. Many other application servers do not provide these
kinds of features.

Zope runs on most popular microcomputer operating system platforms: Linux, Windows NT/2000/XP, Solaris,
FreeBSD, NetBSD, OpenBSD, and Mac OS X. Zope even runs on Windows 98/ME (recommended only for
development purposes, however). Many other application server platforms require that you run an operating
system of their licensor's choosing.

Zope can be extended using the interpreted Python scripting lanuage. Python is popular and easy to learn, and it
promotes rapid development. Many libraries are available for Python which can be used when creating your own
application. Many other application servers must be extended using compiled languages such as Java, which cuts
down on development speed. Many other application servers use less popular languages for which there are not
as many ready-to-use library features.

For examples of applications that have already been created using Zope, please see Zope Corporation's case studies
page online at Zope.com.

Zope Audiences and What Zope Isn't

Managing the development process of a large-scale site can be a difficult task. It often takes many people working
together to create, deploy, and manage a web application.

Information Architects make platform decisions and keep track of the "big picture".
Component Developers create software intended for reuse and distribution.

Site Developers integrate the software written by component developers and native application server services,
building an application in the process.

Site Designers create the site's look and feel.
Content Managers create and manage the site's content.

Administrators keep the software and environment running.

39

The Zope Book (2.6 Edition)

* Consumers use the site to locate and work with useful content.

Of the patrties listed above, Zope is most useful for component developers , site developers , and site designers .
These three groups of people can collaborate to produce an application using Zope's native services and third-party
Zope Products . They will typically produce applications useful to content managers and consumers under the guide of
the information architect . Administrators will deploy the application and tend to the application after it is has been
created.

Note that Zope is a web application construction framework that programmers of varying skill levels may use to create
web-based applications. It is not itself an application that is ready to use "out of the box" for any given application. For
example, Zope itself is not a weblog, a content management system, or a "e-shop-in-a-box" application.

However, freely available Products built on top of Zope offer these kinds of services. At the time of this writing, the
Zope.org website catalogs roughly 500 Products that you can browse and hopefully reuse in your own application.
There are Products for weblogging, content management, and ecommerce among these.

Zope is not a visual design tool. Tools like Macromedia Dreamweaver or Adobe GolLive allow designers to create "look
and feel". You may use these tools to manage Zope-based web sites, but Zope itself does not replace them. You can
edit content "through the web" using Zope but the limitations of current cross-platform browser technology prevents
Zope from doing as good of a job as these kinds of tools to design web presentation.

Zope's Terms of Use and License and an Introduction to The Zope Community

Zope is free of cost. You are permitted to use Zope to create and run your web applications without paying licensing or
usage fees. You may also include Zope in your own products and applications without paying royalty fees to Zope's
licensor, Zope Corporation .

Zope is distributed under an open source license, the Zope Public License or ZPL . The terms of the ZPL license
stipulate that you will be able to obtain and modify the source code for Zope.

The ZPL is different than another popular open source license, the GNU Public License . The licensing terms of the
GPL require that if you intend to redistribute a GPL-licensed application, and you modify or extend the application in a
meaningful way, that you contribute your modifications back to the licensor. This is not required for ZPL-licensed
applications, however. You may modify and restribute Zope without contributing your modifications back to Zope
Corporation as long as you follow the other terms of the license faithfully.

Note that the ZPL has been certified as OSD compliant by the Open Source Initiative and is listed as GPL compliant by
the Free Software Foundation .

A community of developers is responsible for maintaining and extending the Zope application server. Many community
members are professional consultants, developers and web masters who develop applications using Zope for their own
gain. Others are students and curious amateur site developers. Zope Corporation is a member of this community. Zope
Corporation controls the distribution of the defacto "canonical" Zope version and permits its developers as well as other
selected developers to modify this distribution's source code.

The Zope community gets together occasionally at conferences but spends most of its time discussing Zope on the
many Zope mailing lists and web sites. You can find out more about Zope-related mailing lists at Zope.org's mailing list

page .

Zope Corporation makes revenues by using Zope to create web applications for its paying customers, by training
prospective Zope developers, by selling support contracts to companies who use Zope, and by hosting Zope-powered
websites; it does not make any direct revenues from the distribution of the Zope application server itself.

40

The Zope Book (2.6 Edition)

Zope Concepts and Architecture

Fundamental Zope Concepts

The Zope framework has several fundamental underlying concepts, each of which you should understand to make the
most of your Zope experience.

Zope Is A Framework

Zope relieves the developer of most of the onerous details of Web application development such as data persistence,
data integrity and access control, allowing you to focus on the problem at hand. It allows you to utilize the services it
provides to build web applications more quickly than other languages or frameworks. Zope allows you to write web
application logic in the Python language, and provides add-on support for Perl. Zope also comes with two solutions that
allow you to "template" text, XML, and HTML: Document Template Markup Language (DTML), and Zope Page
Templates (ZPT).

Object Orientation

Unlike common file-based Web templating systems such as ASP or PHP, Zope is a highly "object-oriented" Web
development platform. Object orientation is a concept that is shared between many different programming languages,
including the Python language in which Zope is implemented. The concept of object orientation may take a little
"getting-used-to" if you're an old hand at primarily procedural languages typically used for web scripting such as Perl or
PHP, but you should be able to get a grasp on the concepts by reading the Object Orientation chapter and by
"learning-by-doing" with respect to the examples in the book.

Object Publishing

The technology that would become Zope was founded on the realization that the Web is fundamentally object-oriented.
A URL to a Web resource is really just a path to an object in a set of containers, and the HTTP protocol provides a way
to send messages to that object and receive its response.

Zope's object structure is hierarchical, which means that a typical Zope site is composed of objects which contain other
objects (which may contain other objects, ad infinitum). URLs map naturally to objects in the hierarchical Zope
environment based on their names. For example, the URL "/Marketing/index.html" could be used to access the
Document object named "index.html" located in the Folder object named "Marketing".

Zope's seminal duty is to "publish” the objects you create. The way it does this is conceptually straightforward.

1. Your web browser sends a request to the Zope server. The request specifies a URL in the form
protocol ://host: port/pat h?querystring” ,e.g.
http://ww. zope. or g: 8080/ Resour ces?bat ch_start=100 .

2. Zope separates the URL into its component "host", "port" "path" and "query string" portions (
http://ww. zope. org , 8080 ,/Resources and ?batch_start=100 , respectively).

3. Zope locates the object in its object database corresponding to the "path” (/ Resour ces).

4. Zope "executes" the object using the "query string" as a source of parameters that can modify the behavior of the
object. This means that the object may behave differently depending on the values passed in the query string.

41

The Zope Book (2.6 Edition)

5. If the act of executing the object returns a value, the value is sent back to your browser. Typically a given Zope
object returns HTML, file data, or image data.

6. The data is interpreted by the browser and shown to you.

Mapping URLSs to objects isn't a new idea. Web servers like Apache and Microsoft's IS do the same thing. They
translate URLSs to files and directories on a filesystem. Zope similarly maps URLs on to objects in its object database.

A Zope object's URL is based on its "path". It is composed of the i ds of its containing Folders and the object'si d
separated by slash characters. For example, if you have a Zope "Folder" object in the root folder called Bob , then its
path would be / Bob . If Bob is in a sub-folder called Uncles then its URL would be / Uncl es/ Bob .

There could also be other Folders in the Uncles folder called Rick , Danny and Louis . You access them through the
web similarly:

/ Uncl es/ Ri ck
/ Uncl es/ Danny
/ Uncl es/ Loui s

The URL of an object is most simply composed of its host , port , and path . So for the Zope object with the path
/ Bob onthe Zope serverathttp://1 ocal host: 8080 ,the URL would be http://1 ocal host: 8080/ Bob .
Visting a URL of a Zope object directly is termed calling the object through the web . This causes the object to be
evaluated and the result of the evauluation is returned to your web browser.

For a more detailed explanation of how Zope performs object publishing, see the Object Publishing chapter of the Zope
Developer's Guide .

Through-The-Web Management

To create and work with Zope objects, you use your Web browser to access the Zope management interface. All
management and application development can be done completely through the Web using only a browser. The Zope
management interface provides a familiar Windows Explorer-like view of the Zope object system. Through the
management interface a developer can create and script Zope objects or even define new kinds of objects, without
requiring access to the file system of the web server.

Objects can be dropped in anywhere in the object hierarchy. Site managers can work with their objects by clicking on
tabs that represent different "views" of an object. These views vary depending on the type of object. A "DTML Method"
Zope object, for example, has an "Edit" tab which allows you to edit the document's source, while a "Database
Connection" Zope object provides views that let you modify the connection string or caching parameters for the object.
All objects also have a "Security" view that allows you to manage access control settings for that object.

Security and Safe Delegation

One of the things that sets Zope apart from other application servers is that it was designed from the start to be tightly
coupled not only with the Web object model, but also the Web development model. Today's successful Web
applications require the participation of many people across an organization who have different areas of expertise.
Zope is specifically designed to accommodate this model, allowing site managers to safely delegate control to design
experts, database experts and content managers.

A successful Web site requires the collaboration of many people people in an organization: application developers,
SQL experts, content managers and often even the end users of the application. On a conventional Web site,
maintenance and security can quickly become problematic. How much control do you give to the content manager?
How does giving the content manager a login affect your security? What about that SQL code embedded in the ASP
files he'll be working on - code that probably exposes your database login?

42

The Zope Book (2.6 Edition)

Objects in Zope provide a much richer set of possible permissions than a conventional file-based system. Permissions
vary by object type based on the capabilities of that object. This makes it possible to implement fine-grained access
control. For example, you can set access control so that content managers can use "SQL Method" objects, but not
change them or even view their source. You can also set restrictions so that a user can only create certain kinds of
objects, for instance "Folders" and "DTML Documents” but not "SQL Methods" or other objects.

Zope provides the capability to manage users through the web via "User Folders", which are special folders that
contain user information. Several Zope add-ons are available that provide extended types of User Folders that get their
user data from external sources such as relational databases or LDAP directories. The ability to add new User Folders
can be delegated to users within a subfolder, essentially allowing you to delegate the creation and user management of
subsections of your website to semi-trusted users without worrying about those users changing the objects "above"
their folder.

Native Object Persistence and Transactions

Zope objects are stored in a high-performance transactional object database known as the Zope Object Database
(ZODB). Each Web request is treated as a separate transaction by the object database. If an error occurs in your
application during a request, any changes made during the request will be automatically rolled back. The object
database also provides multi-level undo, allowing a site manager to "undo" changes to the site with the click of a
button. The Zope framework makes all of the details of persistence and transactions totally transparent to the
application developer. Relational databases which are used with Zope can also play in Zope's transaction framework.

Acquisition

One of the most powerful aspects of Zope is "Acquisition”, and the core concept is simply that:
e Zope objects are contained inside other objects (such as Folders).

e Objects can "acquire" attributes and behavior from their containers.

The concept of acquisition works with all Zope objects, and provides an extremely powerful way to centralize common
resources. A commonly used SQL query or snippet of HTML, for example, can be defined in one Folder and objects in
subfolders can use it automatically through acquisition. If the query needs to be changed, you can change it in one
place without worrying about all of the subobjects that use the query.

Because objects are acquired by starting at the current level in the containment hierarchy and searching upward, it is
easy to specialize areas of your site with a minimum of work. If, for example, you had a Folder named "Sports" on your
site containing sports-related content, you could create a new header and footer document in the Sports Folder that
use a sports-related theme. Content in the Sports folder and its subfolders will then use the specialized sports header
and footer found in the "Sports" folder rather than the header and footer from the top-level folder on the site.

Acquisition is explained further in the chapter entitled Acquisition .

Zope Is Extensible

Zope is highly extensible, and advanced users can create new kinds of Zope objects, either by writing new Zope
add-ons in Python or by building them completely through the Web. The Zope software provides a number of useful
built-in components to help extension authors, including a robust set of framework classes that take care of most of the
details of implementing new Zope objects.

43

The Zope Book (2.6 Edition)

A number of Zope add-on products are available that provide features like drop-in Web discussion topics, desktop data
publishing, XML tools and e-commerce integration. Many of these products have been written by the highly active
members of the Zope community, and most are also open source.

Fundamental Zope Components

Zope consists of several different components that work together to help you build web applications. Zope's
fundamental components are shown in the figure below, and explained following the figure.

Wik Client
- HITP ——————
HML-RPC Cliert HTTR Web Server
HTTP —————]
WiehDaY Client
—FastCGIPCG!

HTTP FTP Client
HTTP

FTP

Zope
| Z5erver 5
Zope Core
C
e I
Object Database J
(Z0ODB)
saL
ODBC
S

e ==

o
Database

Figure 2-1 Zope Architecture

ZServer — Zope comes with a built in web server that serves content to you and your users. This web server also
serves Zope content via FTP, WebDAV, and XML-RPC (a remote procedure call facility).

Web Server — Of course, you may already have an existing web server, such as Apache or Microsoft IIS and you may
not want to use Zope's. Zope works with these web servers also, and any other web server that supports the Common
Gateway Interface (CGI).

Zope Core — This is the engine which coordinates the show, driving the management interface and object database.

Object Database — When you work with Zope, you are usually working with objects that are stored in Zope's object
database.

Relational database — You don't have to store your information in Zope's object database if you don't want to. Zope
works with other relational databases such as Oracle , PostgreSQL , Sybase , MySQL and others.

File System — Zope can of course work with documents and other files stored on your server's file system.

ZClasses — Zope allows site managers to add new object types to Zope using the Zope Management Interface.
ZClasses are these kinds of objects.

Products — Zope also allows site managers to add new object types to Zope by installing "Product" files on their Zope
server's filesystem.

44

The Zope Book (2.6 Edition)

Installing and Starting Zope

By the end of this chapter you should be able to install and start Zope. It's fairly easy to install Zope on most platforms,
and it should typically take you no longer than ten minutes.

Downloading Zope

Zope Corporation makes "binaries" which are available on Zope.org for the Windows, Linux and Solaris operating
systems. These binaries are "ready-to-run" releases of the Zope application server that do not require compilation.

There are typically two types of Zope releases: a "stable" release and a "development" release. The "stable" Zope
release is always available as a binary distribution for supported platforms. The "development" Zope release may or
may not be distributed as a binary for any given platform. If you are new to Zope, you almost certainly want to use the
"stable" Zope release.

You may download Zope from the Zope.org web site. The most recent stable and development versions are always
available from the Download area of the Zope.org website.

For platforms for which there is no binary release, you must download the Zope source and compile it. Zope may be
compiled on almost any Unix-like operating system. Zope has reportedly been successfully compiled on Linux,
FreeBSD, NetBSD, OpenBSD, Mac OS X, HPUX, IRIX, DEC OFS/1, and even Cygwin (the UNIX emulation platform
for Windows). As a general rule of thumb, if Python is available for your operating system, and you have a C compiler
and associated development utilities, then you can probably compile Zope. A notable exception is Mac OS 7/8/9. Zope
does not run at all on these platforms.

Installing Zope

Zope requires different installation steps depending on your operating system platform. The sections below detail
installing the binary version of Zope on Windows on Intel platforms, Solaris on SPARC platforms, and Linux on Intel
platforms. We also detail a installation from source for platforms for which Zope Corporation does not provide a binary
distribution.

Various binary Zope packages exist that are not distributed by Zope Corporation, but instead are distributed by third
parties. Provided here is a list of URLSs to these below for convenience's sake. Tthese packages are not directly
supported by Zope Corporation, although Zope Corporation encourages alternate binary distributions for unsupported
platforms by third parties.

SPVI's Mac OS X binary distro

Jeff Rush's Zope RPMs for Linux

Adam Manock's Zope RPMs for Linux

FreeBSD Zope port

Debian Linux Zope package

Zope is also available from many Linux distributors as a "native" package. For example, RedHat often ships Zope on its

"PowerTools" CD as an RPM. Check with your Linux operating system vendor to see if there are native Zope packages
available for your platform.

45

The Zope Book (2.6 Edition)

Installing Zope for Windows With Binaries from Zope.org

The "Win32" version of Zope works under Windows 95, Windows 98, and Windows ME, Windows NT, Windows 2000,
and Windows XP. Zope for Windows comes as a self-installing .exe file. To install Zope, first, download the Win32
executable installer from the Download area on Zope.org. It is typically named something like
"Zope-2.X.X-win32-x86.exe" where the "X"'s refer to the current Zope version number.

Important note: Do not try to use the file named "Zope-2.X.X-t0-2.X.X-win32.x86.tgz" to install Zope for the first
time. This is an upgrade package which upgrades an older version of Zope to a newer one instead of an
installable Zope distribution.

Download Docs Rg

fope Corp Search

»

-
Community

Created by zopematt.

Join Zope.org
Log in .
Download Zope-2.5.1-win32-x86.exe (5501265 bytes)

Date: 2002/04/23
Version: 2.5.1 {Stable)
Platform: win32, x86
Contact: zopeizope.org
Changes

License

Installation Instructions

Figure 2-1 Current stable Windows Zope Release

Download the current stable release installer for Windows from Zope.org using your web browser. Place the file in a
temporary directory on your hard disk or on your Desktop. Once the installer file has been downloaded, navigate to the
folder in which you downloaded the file to, and double-click on the file's icon. The installer then begins to walk you
through the installation process.

46

The Zope Book (2.6 Edition)

Zope 2.5.1 Installation |

Welcome!

Thig installation program will install £ope 2.5.1.

Press the Mext button to start the installation. 'r'ou can press
the Cancel buttan now if you do not want to install Zope 2.5.1
at thiz bime.

Figure 2-2 Beginning the installer

Click Next . You are asked to accept the Zope Public License before installing the product. After you read and accept
the license, click Next again. Since you can install more than one Zope instance on on any given machine, you are
asked to pick a unique "site name" for your Zope instance. The default name is "WebSite". It's recommended that you
change this value. "Zope" is a reasonable hame, although you are of course free to pick any name you choose.

Click Next after choosing your site's name. You are then asked to choose a directory in which to install Zope. A
reasonable choice for a destination directory is "c:\Program Files\Zope". After filling in the directory name, click Next .
You will be prompted to create a new Zope user account. This is not an operating system account. It is a user account
that is only meaningful to Zope. The account that you specify is called the initial user (or "superuser") and is used to log
into Zope for the first time. It is also given Zope administrative privileges. You can change this user name and
password later if you wish. A reasonable choice for the initial user name is "admin".

47

The Zope Book (2.6 Edition)

Zope 2.5.1 Installation

Select Site Name

affecting other inztallations.

punctuation characters.

Pleaze enter a name to identify this installation. This name will
make it eazy ta remove thiz inztallation in the future without

The zite name pou enter may not contain spaces or

Site M ame

< Back | Mest » I

Cancel

Figure 2-3 Selecting a Site Name

Zope 2.5.1 Installation

inztalled.

Select Destination Directory

Pleaze select the directom where Zope 2.5.7 files are to be

x|

C:%Frogram FileshZope Browsze. . |

Current Free Disk Space:
Free Dizk Space After Inztall:

15753892 k
15743156 k

< Back

Cancel |

Figure 2-4 Selecting a Destination Directory

48

The Zope Book (2.6 Edition)

Zope 2.5.1 Installation |

Security

Pleaze enter the "'superuser’ name and password for this
inztallation.

zermame a-:lrnir

Pazzword I ““““““

< Back | Mest » I Cancel

Figure 2-5 Provide an initial username and password

Click Next after choosing the initial user name and password. The installer presents a dialog indicating that it is ready to
install files. Click Next again to begin installing the files.

Installing x|

Copying Application files:
C:\Program Filesheoped 5 TAbinhibwinZ2hdbn. dll

-

Cancel

Figure 2-6 Installing files

Once the file copy is finished, if you are using Windows NT, Windows 2000, or Windows XP, you will see a dialog that
indicates that you may choose to run Zope as a service. If you are just running Zope for personal use, don't bother
running it as a service. If you are running Windows 95, Windows 98, or Windows ME, you cannot run Zope as a service
(it is not offered as an option). It is recommended that if you are installing Zope for the first time that you don't choose
to run the server manually.

49

The Zope Book (2.6 Edition)

Zope 2.5.1 Installation |

Server Options

Thiz application comes with a built-in web zerver which you
zan start manually to get started with the product immediately.

Onwindows T, you can alzo choose to iun Zope as a win3z2
zervice, which allows you to make sure that Zope iz restarted
automatically in the event of emorz.

¥ Fun the server marualy

= Run as a win32 service

< Back

Lancel |

Figure 2-7 Server Options

After you click "Next", the installer informs you that the installation was successful. Click "Finish". If you decide to
uninstall Zope later you can use the Unwise.exe program that resides in the directory in which you chose to install
Zope.

Note that the Zope installer does not add a program folder entry to your "Start" menu. You will see how to start Zope in
an upcoming section.

Installing Zope on Linux and Solaris With Binaries from Zope.org

The binary installations of Zope on Linux and Solaris are very similar. The binary distribution of Zope for Linux and
Solaris comes as a .tgz file which must be uncompressed before you are able to begin the installation.

Important note: Do not try to use the file named "Zope-2.X.X-to-2.X.X-platform.tgz" to install Zope for the first
time. This is an upgrade package which upgrades an older version of Zope to a newer one instead of an
installable Zope distribution.

This paragraph has material that only applies to Solaris users. Before attempting to install Zope on Solaris for the first
time, you need to install "GNUtar" and "gunzip". Both packages are available from the Solaris Package Archive .
GNUtar is a "tape archive" program which, unlike the standard Solaris "tar" program is able to handle long file paths.
Although Solaris comes with its own "tar" program, it is unable to handle unpacking Zope because it has a lame
filepath-length limit that is exceeded by the length of some of the paths in the install package. "gunzip" is the GNU
Lempel-Ziv encoding "unzip" program. Most, if not all, Linux versions come with GNUtar as the default "tar" program
and already have gunzip installed, so if you run Linux, don't worry about this.

To begin a Zope installation, ownload the required installation archive from the Download area on Zope.org. It is
typically named something like "Zope-2.X.X-solaris-sparc.tgz" (for Solaris) or "Zope-2.X.X-linux2-x86.tgz" (for Linux)
where the "X"'s refer to the current Zope version number.

After you download the installation archive for your platform, but before you install Zope, it is important that you decide
where you'd like to install Zope and which user will be used to run it. It is suggested that Zope be unpacked and run as

50

The Zope Book (2.6 Edition)

a "normal" user (any user except the root user). Though you may of course create a "dedicated" Zope user account,
we're going to assume you want to install it in a subdirectory of your own personal "home" directory for the purpose of
these instructions.

Download the most recent stable binary installation archive for your platform into your user's "home" directory. Below
we show a user using "wget" for this purpose, but you may download it via any web browser:

chri sm@ai nts: ~$ wget http://ww. zope. or g/ Product s/ Zope/ 2. 5. 1/ Zope-2. 5. 1-| i nux2-x86. t gz
--20:27:56-- http://ww. zope. or g: 80/ Product s/ Zope/ 2. 5. 1/ Zope-2. 5. 1-1 i nux2- x86. t gz
=> " Zope-2.5.1-1inux2-x86.tgz. 1
Connecting to www. zope. org: 80... connected
HTTP request sent, awaiting response... 200 K
Lengt h: 5,979, 458 [application/x-gzi p]

BOK - > e e e e [19
(..and so on..)

Note that unlike most other UNIX programs, the Zope installer does not distinguish between a "build" directory and a
“install" directory. The "build" directory is the "install" directory and vice versa. This means that the place where you
unpack Zope and in which you run the installer should be the place where you want it to ultimately live. In our exampe
case below, we're choosing to both unpack and install Zope into /home/chrism/Zope-2.5.1-linux2-x86.

"cd" to your home directory and, using gunzip and GNUtar, extract the files from the .tgz archive you downloaded in the
last step:

chri sm@®ai nts: ~$ gunzip -c Zope-2.5.1-1inux2-x86.tgz | tar xvf -
Zope-2.5.1-11inux2-x86/

Zope-2.5.1-11i nux2- x86/ Ext ensi ons/

Zope- 2. 5. 1-1i nux2- x86/ Ext ensi ons/ READVE. t xt
Zope-2.5.1-11inux2-x86/ LI CENSE. t xt

Zope- 2. 5. 1-1i nux2- x86/ README. t xt

(.. and so on..)

This will unpack Zope into a new directory named "Zope-2.X.X-osname-platformname" where the X's represent the
current Zope version numbers, "osname" represents your OS name, and "platformname” represents your hardware
platform name. "cd" to this Zope directory and run the Zope installer script. The command and output are shown below:

chri sm&aints: ~$ cd Zope-2.5.1-1i nux2-x86
chri sm@ai nts: ~/ Zope-2.5.1-1i nux2-x86% ./instal

creating default inituser file

Not e
The initial user name and password are 'admn
and 'tnLQGIi mMA' .

You can change the name and password through the web
interface or using the 'zpasswd. py' script.

chnod 0600 /hone/ chri snl Zope-2.5.1-1i nux2-x86/ini tuser
chnod 0711 /hone/ chri sm Zope-2.5. 1-1i nux2-x86/ var

creating default database

chrmod 0600 /home/ chri sm Zope-2.5.1-1i nux2-x86/var/Data.fs

Witing the pcgi resource file (ie cgi script), /home/chrism Zope-2.5.1-1inux2-x86/Zope. cg
chrmod 0755 /hone/ chri sm Zope-2.5. 1-1i nux2- x86/ Zope. cg

Creating start script, start

chrmod 0711 /homne/ chri sl Zope-2.5.1-11i nux2-x86/start

51

The Zope Book (2.6 Edition)

Creating stop script, stop
chnod 0711 /hone/ chrism Zope-2.5. 1-1i nux2-x86/ st op

Done!
chri sm&ai nts: ~/ Zope-2.5. 1- | i nux2- x86%

Note that the installer, among other things, will create an "initial" Zope user account with an autogenerated password.
Write this username and password down temporarily. You will use this information to log in to Zope for the first time.
You can change the initial user name and password later with the zpasswd.py script (see the chapter entitled Users
and Security).

You have now successfully installed the Zope binary distribution. For more information on installing the binary
distribution of Zope in alternate configurations on UNIX, see the installation instructions in the INSTALL.txt file inside
the doc directory of the binary release package. You may additionally find out more about the installer script by running
it with the - h (help) switch:

$./install -h

Compiling and Installing Zope from Source Code

If binaries aren't available for your platform, chances are good that you will be able to compile Zope from its source
code. To do this, however, you first must:

* ensure you have a "C" compiler on your system (GNU gcc is preferred)
e ensure you have a recent "make" on your system (GNU make is preferred)

» install the Python language on your system from source.

Zope is written primarily in the Python language, and Zope requires Python to be able to run at all. Though binary
versions of Zope ship with a recent Python, the source Zope distribution does not. Although we try to use the most
recent Python for Zope, often the latest Python version is more recent than the version we "officially" support for Zope.
For the most recent information on which version of Python you need to compile Zope with, see the release notes on
the Web page for each version. Zope versions 2.5 and 2.6 require a Python 2.1 version equal to or greater than 2.1.3.
Zope 2.3 and earlier versions require Python 1.5.2. No version of Zope is yet officially compatible with any version
of Python 2.2.

You can obtain instructions for downloading, compiling and installing Python from source at the Python.org web site.
Some Linux distributions ship with a preinstalled Python 2.1, but you need to be careful when attempting to use a
vendor-installed Python to compile Zope. Some of these vendor-supplied Python distributions do not ship the
necessary Python development files needed to compile Zope from source. Sometimes these development files are
included in a separate "python-devel" package that you may install and use, but sometimes they are not. We
recommend, to avoid headaches like this, that you compile and install Python from source if you wish to compile and
install Zope from source.

After downloading, compiling, and installing Python from source, download the current Zope source distribution. See
the Zope.org Downloads area for the latest Zope source release. Below we use "wget" for the purpose of downloading
the source release, although you may of course use any browser or file retrieval utility:

chri sm@ai nts: ~$ wget http://ww. zope. or g/ Product s/ Zope/ 2. 5. 1/ Zope-2.5. 1-src. tgz
--20:49:34-- http://ww. zope. or g: 80/ Product s/ Zope/ 2. 5. 1/ Zope-2. 5. 1-src. tgz
=> "Zope-2.5.1-src.tgz’
Connecting to ww. zope. org: 80... connect ed!
HTTP request sent, awaiting response... 200 OK
Length: 2,165, 141 [application/ x-gzip]
OK - > e [29

52

The Zope Book (2.6 Edition)

Then extract the resulting .tgz archive into the place where you want Zope to be installed. Zope has no "build" directory,
the "install" directory is the build directory. In the below example, we extract the .tgz directly into our home directory.
This is recommended for purposes of this example:

chri sm&aints: ~$ gunzip -c Zope-2.5.1-src.tgz | tar xvf -

After extracting the .tgz file, "cd" to the resulting directory and, using the Python binary you compiled beforehand,

invoke the Python script which compiles Zope. This script is cryptically named "wo_pcgi.py". "wo_pcgi" stands for
"without PCGI", an artifact of Zope's web server integration roots, the meaning of which is largely unimportant today.:

chrism@aints: ~$ cd Zope-2.5.1-src
chri sm&ai nts: ~/ Zope-2.5.1-src$ python2.1 wo_pcgi . py

Deleting '.pyc' and '.pyo' files recursively under /hone/chrism Zope-2.5.1-src..
Done

Bui | di ng ext ensi on nodul es
cp ./lib/python/ Setup20 ./1ib/python/ Setup

Conpi | i ng extensions in |ib/python

cp /home/ chrismlib/python2. 1/ config/ Makefile.pre.in

make -f Makefile.pre.in boot PYTHON=

rm-f *.0 *~

rm-f *. a tags TAGS config.c Makefile.pre python sedscript
rm-f *.so *.s|l so_locations

VERSI ON=" -c¢ "inport sys; print sys.version[:3]""; \

(..and so on until...)

creating default inituser file

Not e
The initial user name and password are 'admn
and 'w Yzl sDT" .

You can change the nane and password through the web
interface or using the 'zpasswd. py' script.

chnod 0600 /hone/ chrisnl Zope-2.5. 1-src/inituser

You've now successfully installed Zope from source code. Note that the compile script, among other things, has
created an "initial" Zope user account with an autogenerated password. Write this username and password down. You
will use this information to log in to Zope for the first time. You can change the initial user name and password later with
the zpasswd.py script (see the chapter entitled Users and Security). The initial user has "administrator" privileges
within this Zope instance.

Starting Zope

Zope is managed via a web browser, and Zope contains its own web server (named "ZServer"). A successful Zope
startup implies that its web server starts, allowing you to access the Zope management interface via your web browser.
You can access Zope's management interface from the same machine on which Zope runs, or you can access it from a

53

The Zope Book (2.6 Edition)

remote machine that is connected to the same network as your Zope server.

Zope's ZServer will "listen" for HTTP (web browser, or Hypertext Transfer Protocol) requests on TCP port 8080. If your
Zope instance fails to start, make sure you don't have another application running which is already using TCP port
8080.

Zope also has the capability to listen on other TCP ports. Zope supports separate TCP ports for FTP (File Transfer
Protocol), "monitor” (internal debugging), WebDAV (Web Distributed Authoring and Versioning), and ICP (Internet
Cache Protocol) access. If you see messages which indicate that Zope is listening on ports other than the default 8080
HTTP, don't panic, it's likely normal.

Using Zope With An Existing Webserver

If you wish, you can configure your existing web server to serve Zope content. Zope interfaces with Microsoft IIS,
Apache, and other popular webservers.

The Virtual Hosting Services chapter of this book provides rudimentary setup information for configuring Zope behind
Apache. However, configuring Zope for use behind an existing webserver can be a complicated task, and there is more
than one way to get it done. In the interest of completeness, here are some additional resources which should get you
started:

» Apache: see the excellent DevShed article entitled Using Zope With Apache .

* lIS: see brianh's HowTo on using IIS with Zope. Also of interest may be the WEBSERVER. t xt file in your Zope
installation's doc directory, and andym's Zope Behind IS HowTo .

If you are just "getting started" with Zope, note that it is not necessary to configure Apache or IS (or any other
webserver) to serve your Zope pages, as Zope comes with its own webserver. You typically only need to configure your
existing webserver if you want to use it to serve Zope pages in a production environment.

Starting Zope On Windows

If you installed Zope to "run manually" (as opposed to installing Zope as a "service"), use Windows Explorer to navigate
to the directory into which you installed the Zope instance (typically c: \ Progr am Fi | es\ Zope orc:\ Program

Fi | es\ WebSi t e). Within this directory, find a file called start.bat . Double-click the start.bat icon. A console window
will be opened. It will display process startup information.

If chose to run Zope as a "service" on Windows NT/2000/XP, you can start Zope via the standard Windows "Services"
control panel application. A Zope started as a service writes events to the standard Windows Event Log; you can keep
track of when your service starts and stops by reviewing your system's Event Log. A Zope instance which has been
installed as a "service" can also be run manually by invoking the start.bat file in the Zope installation directory as
described above.

Starting Zope on UNIX

Important note: If you installed Zope from an RPM or a another "vendor distribution” instead of installing a
Zope Corporation-distributed binary or source release, the instructions below may be not be applicable. Under
these circumstances, please read the documentation supplied by the vendor to determine how to start your
Zope instance instead of relying on the instructions below.

To start Zope, "cd" into to the directory in which you installed Zope and invoke the shell script named " start ". Here is
an example of this invocation and its typical output:

54

The Zope Book (2.6 Edition)

chri sm&aints: ~$ cd Zope-2.5. 1-1i nux2-x86
chri sm@aints: ~/ Zope-2.5. 1-1i nux2-x86% ./start

2002- 06- 28T03: 17: 02 | NFQ(0) ZODB Openi ng dat abase for nounting: '142168464_1025234222. 179125’

2002- 06- 28T03: 17: 02 | NFQ(0) ZODB Mdunt ed dat abase ' 142168464_1025234222. 179125"' at /tenp_fol der

2002- 06- 28T03: 17: 17 | NFO(0) Zope New di sk product detected, determning if we need to fix up any ZCd asses.

2002-06-28T03: 17: 17 | NFO(0) ZServer HTTP server started at Thu Jun 27 23:17:17 2002
Host nane: saints
Port: 8080

2002- 06- 28T03: 17: 17 | NFO(0) ZServer FTP server started at Thu Jun 27 23:17:17 2002
Host nane: saints
Port: 8021

2002- 06- 28T03: 17: 17 I NFO(0) ZServer PCGE Server started at Thu Jun 27 23:17:17 2002
Uni x socket: /hone/chrism Zope-2.5.1-1inux2-x86/var/pcgi.soc

Starting Zope As The Root User

ZServer (Zope's server) supports set ui d() on POSIX systems in order to be able to listen on low ports such as 21
(FTP) and 80 (HTTP) but drop root privileges when running; on most POSIX systems only the r oot user can do this.
Versions of Zope prior to 2.6 had less robust versions of this support. Several problems were corrected for the 2.6
release.

The most important thing to remember about this support is that you don't have to start ZServer as root unless you
want to listen for requests on "low" ports. In fact, if you don't have this need, you are much better off just starting
ZServer as a user account dedicated to running Zope. nobody is not a good idea for this user account; see below.

If you do need to have ZServer listening on low ports, you will need to start z2. py as the r oot user, and also specify
what user ZServer should set ui d() to. Do this by specifying the - u option followed by a username or UID, either in
the st art script or onthe z2. py command line. The default used to be 'nobody’; however if any other daemon on a
system that ran as nobody was compromised, this would have opened up your Zope object data to compromise.

You must also make sure the "var" directory is owned by root, and that it has the sticky bit set. This is done by the
command chnod o+t var on most systems. When the sticky bit is set on a directory, anyone can write files, but
nobody can delete others' files in order to rewrite them. This is necessary to keep others from overwriting the PID file,
tricking root into killing processes when st op is run.

Your Zope Installation

To use and manage Zope, you'll need a web browser. Zope's management interface is written entirely in HTML,
therefore any browser that understands modern HTML allows you to manage a Zope installation. Mozilla, and any 3.0+
version of Microsoft Internet Explorer or Netscape Navigator will do. Other browsers that are known to work with Zope
include Opera, Galeon, Konqueror, OmniWeb, Lynx, and W3M.

Start a web browser on the same machine on which you installed Zope and visit the URL http://localhost:8080/ . If your
Zope is properly installed and you're visiting the correct URL, you will be presented with the Zope "QuickStart" screen.

55

The Zope Book (2.6 Edition)

Zope Quick Start

Welcome to Zope, a high-performance object-oriented platform for building dynamic Web applications. Here
are some quick pointers to get you started:

¢ Read The Fine Manual, This document guides you through the whaole process of learning Zope, from
logging in for the first time to creating your own web applications,

*

There is a built-in interactive Zope Tutorial which gets you started with some simple tasks using the
Zope managment interface. To use the tutorial, go to any Folder and select Zope Tutorial from the add
list and click the Add button. Provide a name for the tutorial and click 434 to begin working with the
tutarial,

¢ Check out the new example Zope applications. These examples show you simple working Zope
applications that you can copy and modify.

¢ 5o to the main Documentation Overview on Zope.org. Here you will find pointers to official and
community contributed documentation.

*

Look at the wvarious Mailing Lists about Zope. The Mailing Lists are where you can get quick, accurate,
friendly help from a large community of Zope users from around the world,

+ Browse and search the integrated, Online Help System which contains documentation on the various
kinds of components you'll find in Zope.

*

Go directly to the Zope Management Interface if you'd like to start working with Zope right away.
NOTE: Some versions of Microsoft Internet Explorer, (specifically IE 5.01 and early versions of

Figure 2-8 Zope QuickStart

If you see this screen, congratulations! You've installed Zope successfully. If you don't, see the Troubleshooting section
below.

Logging In

To do anything remotely interesting with Zope, you need to use its "management interface". Zope is completely
web-manageable. To log into the Zope management interface, use your web browser to navigate to Zope's
management URL. Assuming you have Zope installed on the same machine from which you are running your web
browser, the Zope management URL will be http://localhost:8080/manage .

Successful contact with Zope using this URL will result in an authentication dialog. In this dialog enter the "initial"
username and password you chose when you installed Zope. You will be presented with the Zope Management
Interface (ZMl).

| Zope Quick Start ': Go

Root Folder Contents View Properties Security Undo Ownership Find

6] Control_Panel

[Examples [J Folder at / Help!
acl_users
£ gl temp_folder IAcceIerated HTTP Cache Manager j Add |
© Zope Corporation
Refresh Type Name Size Last Modified
[~ [88) Contral_Panel {Control Panel) 2002-06-29 17;:39
[~ [JExamples {(Example Applications) 2002-06-29 17:30
5 acl_users {User Folder) 1998-12-29 21:23

[~ @b browser_id_manager (Browser Id
Manager)

[~ “%index_html 1 Kb 2001-01-20 16:39

2002-06-29 17:39

[~ +W session_data_manager {Session Data 2002-06-20 17: 30

Manager)
<
[~ *% standard_error_message (Standard Error 1 kh 2001-01-20 16: 39
Message)
<
[~ *% standard_html_footer (Standard Html 1 kh 2001-01-20 16: 39
Footer)

56

The Zope Book (2.6 Edition)

Figure 2-9 The Zope management interface.

If you do not see an authentication dialog and the Zope Management interface, refer to the Troubleshooting section of
this chapter.

Controlling the Zope Process With the Control Panel

When you are using the ZMlI, you can use the Zope Control Panel to control the Zope process. Find and click the
Control_Panel object in ZMI.

| Zope Quick Start j
Root Folder - Contents I Undo I

(3 Examples 8 control Panel at /caontrol_panel Help!
acl_users The Control Panel provides access to system information and management functions
T temp_folder such as datahase and product mansgement.
© Zope Corporation
Refresh Zope Yersion {unreleased version, python 2.1.3, linux2)

Python Yersion 2.1.3 (#1, Jun 27 2002, 22:28:26) [GCC 2.95.2 20000220 (Debian
GHU/Linu)]

System Platform linux2

SOFTWARE_HOME /home/chrism/sandboxes/ZopeTrunk/lib/python
INSTANCE _HOME /home/chrism/sandboxes/ZBE=ample
CLIENT_HOME Fhome/chrism/sandboxes/ZBExample/var

Process Id 1153 {1026)
Running For 26 min 46 sec
Restart Shutdown

@ Database Management
&% ersion Management
[#) Product Management
& Debug Information
wWebhDaV Lock Manager

Figure 2-17 The Control Panel

The Control Panel displays information about your Zope, such as the Zope version you're running, the Python version
that Zope is using, the system platform, the "SOFTWARE_HOME" (your Zope directory), the "INSTANCE_HOME"
(typically the same as your zope home), your "CLIENT_HOME" directory (the "var" directory of your Zope), Zope's
process id, and how long Zope has been running for. Several buttons and links will also be shown.

If you are running Zope on UNIX or as a service on Windows, you will see a button in the Control Panel named Restart
. If you click the Restart button, Zope will shut down and then immediately start up again. It may take Zope a few
seconds to come back up and start handling requests. You needn't shut your web browser down and restart it to
resume using Zope after pressing Restart , just wait for the Control Panel display to reappear.

To shut Zope down from the ZMl, click the Shutdown button. Shutting Zope down will cause the server to stop handling
requests and exit. You will have to manually start Zope to resume using it. Shut Zope down only if you are finished
using it and you have the ability to access the server on which Zope is running, so that you can manually restart it later.
If you see a "strange" message appear in your web browser when you shut Zope down, don't panic. This is normal. A
normal shutdown presents the user with a web page that states:

An error was encountered while publishing this resource

exceptions. Syst enExi t

Zope has exited normally
(.. nmore output ..)

Controlling the Zope Process From the Command Line

57

The Zope Book (2.6 Edition)

To stop a manually-run Zope on Windows press "Ctrl-C" while the console window under which Zope is running is
selected. To stop a Zope on Windows that was run as a service, find the service with the name you assigned to your
Zope installed in the Services Control Panel application and stop the service.

To stop Zope on UNIX, press "Ctrl-C" in the terminal window from which you started Zope or use the UNIX "kill"
command against the lowest-numbered Zope process id. Zope processes under UNIX will be listed in "ps" output as
"python z2.py [options]". This process id can also be found in the "var/Z2.pid" file inside of your Zope directory.

Troubleshooting

If your browser fails to connect with anything on TCP port 8080, your Zope may be running on a nonstandard TCP port
(for example, some versions of Debian Linux ship with Zope's TCP port as 9673). To find out exactly which URL to use,
look at the logging information Zope prints as it starts up. For example:

2000- 08-07T23: 00: 53 I NFO(0) ZServer Medusa (V1.18) started at Mon Aug 7 16:00:53 2000
Host nane: peanut
Port: 9673

2000-08-07T23: 00: 53 | NFO(0) ZServer FTP server started at Mon Aug 7 16:00:53 2000
Aut hori zer: None
Host nane: peanut
Port: 8021

2000-08-07T23: 00: 53 | NFO(0) ZServer Mnitor Server (V1.9) started on port 8099

The first log entry indicates that Zope's web server is listening on port 9673. This means that the management URL is
http://peanut:9673/manage .

Certain versions of Microsoft Internet Explorer 5.0.1 and 5.5 have issues with the Zope management interface which
manifest themselves as an inability to properly log in. If you have troubles logging in with IE 5.0.1 or IE 5.5, try a
different browser or upgrade to IE 6.

If you forget or lose the initial user name and password, shut Zope down and change the initial user password with the
zpasswd.py script and restart Zope. See the chapter entitled Users and Security for more information about configuring
the initial user account.

Options To The Zope start orstart. bat Script

The Zope startup script named st art (or start. bat on Windows) has many command-line switch options. They
are the same for UNIX and Windows (although some only work on one or the other). These command-line switches are
detailed below:

-h
Qut put hel p text.
-z path

The | ocation of the Zope installation.
The default is the location of the "z2.py" script.

-Z path
Uni x only! This option is ignored on wi ndows.

If this option is specified, a separate nanagemmt process will
be created that restarts Zope after a shutdown (or crash).

58

The Zope Book (2.6 Edition)

The path nmust point to a pid file that the process will record its
process id in. The path may be relative, in which case it will be
relative to the Zope | ocation.

To prevent use of a separate nmanagenent process, provide an
enpty string: -Z=""

-t n
The number of threads to use. The default is 4.

-in
Set the interpreter check interval. This integer value
determ nes how often the interpreter checks for periodic things
such as thread sw tches and signal handl ers. The Zope default
is 500, but you may want to experiment with other val ues that
may i ncrease performance in your particular environnment.

-D
Run in Zope debug node. This causes the Zope process not to
detach fromthe controlling termnal, and is equivalent to
suppl yi ng the environment variable setting Z_DEBUG MODE=1

-a ipaddress

The I P address to listen on. |[If this is an enpty string
(e.g. -a''), then all addresses on the machine are used.

-d i paddress
| P address of your DNS server. If this is an enpty string
(e.g. -d '), then IP addresses will not be |ogged. |If you have
DNS service on your |ocal nachine then you can set this to
127.0.0. 1.
-u usernane or uid nunber
The usernane to run Zope as. You nmay want to run Zope as
a dedi cated user. This only works under Unix. |If Zope
is started as root, it is a required paraneter.
-P [i paddress:] nunber
Set the web, ftp and nonitor port nunbers sinultaneously
as offsets fromthe nunber. The web port nunmber will be nunber+80.
The FTP port nunber will be nunber+21. The nonitor port nurmber wll
be nunber +99.
The nunber can be preeceeded by an ip address follwed by a col on
to specify an address to listen on. This allows different servers
to listen on different addresses.
Mul tiple -P options can be provided to run nmultiple sets of servers.
-w port

The Web server (HTTP) port. This defaults to 8080. If this
is a dash (e.g. -w-), then HITP is disabl ed.

The nunber can be preeceeded by an ip address follwed by a colon
to specify an address to listen on. This allows different servers
to listen on different addresses.
Miul tiple -w options can be provided to run nultiple servers.

- W port
The "WebDAV source" port. |If this is a dash (e.g. -w-), then

"WebDAV source" is disabled. The default is disabled. Note that
this feature is a workaround for the |ack of "source-link" support

59

The Zope Book (2.6 Edition)

in standard WebDAV clients.

The port can be preeceeded by an ip address follwed by a col on
to specify an address to listen on. This allows different servers
to listen on different addresses.

Mil tiple -Woptions can be provided to run nultiple servers.

-C
--force-http-connection-cl ose

If present, this option causes Zope to close all HTTP connecti ons,
regardl ess of the 'Connection:' header (or lack of one) sent by
the client.

-f port

The FTP port. |If this is a dash (e.g. -f -), then FTP
is disabled. The standard port for FTP services is 21. The
default is 8021.

The port can be preeceeded by an ip address follwed by a col on
to specify an address to listen on. This allows different servers
to listen on different addresses.

Mul tiple -f options can be provided to run nultiple servers.
-p path

Path to the PCA resource file. The default value is
var/pcgi.soc, relative to the Zope location. If this is a dash
(-p -) or the file does not exist, then PCA is disabled.

-F path_or_port

Ei ther a port nunber (for inet sockets) or a path nane (for unix
donmai n sockets) for the FastCA Server. |If the flag and value are
not specified then the FastCd Server is disabled.

-m port

The secure nonitor server port. If this is a dash

(-m-), then the nonitor server is disabled. The nonitor server
allows interactive Python style access to a running ZServer. To
access the server see nedusa/nonitor_client.py or

medusa/ noni tor_client_w n32. py. The nonitor server password is the
sane as the Zope energency user password set in the 'access'

file. The default is to not start up a nonitor server.

The port can be preeceeded by an ip address follwed by a col on
to specify an address to listen on. This allows different servers
to listen on different addresses.
Miul tiple -moptions can be provided to run nultiple servers.
--icp port
The ICP port. ICP can be used to distribute | oad between back-end
zope servers, if you are using an | CP-aware front-end proxy such
as Squi d.
The port can be preeceeded by an ip address follwed by a col on
to specify an address to listen on. This allows different servers
to listen on different addresses.
Miltiple --icp options can be provided to run nultiple servers.
-1 path
Path to the ZServer log file. If this is arelative path then the

log file will be witten to the '"var' directory. The default is
"var/ Z2.10g'.

The Zope Book (2.6 Edition)

Run ZServer is read-only node. ZServer won't wite anything to disk.
No log files, no pid files, nothing. This neans that you can't do a
lot of stuff like use PCA, and zdaenon. ZServer will log hits to
STDOUT and zLOG will log to STDERR

-L

Enabl e | ocal e (internationalization) support. The val ue passed for
this option should be the name of the |locale to be used (see your
operating system docunentation for |locale information specific to
your system). If an enpty string is passed for this option (-L ''),
Zope will set the locale to the user's default setting (typically
specified in the $LANG environnent variable). If your Python
installation does not support the |ocale nodule, the requested
locale is not supported by your systemor an enpty string was
passed but no default |ocale can be found, an error will be raised
and Zope will not start.

-X

Di sabl e servers. This might be used to effectively disable all
default server settings or previous server settings in the option
list before providing new settings. For exanple to provide just a
web server:

./start -X -w80
-Mfile

Save detailed | ogging information to the given file.
This |l og includes separate entries for:

- The start of a request,

- The start of processing the request in an application thread,
- The start of response output, and
- The end of the request.

Environment Variables that Effect Zope at Runtime

Zope behavior is also effected by the presence and value of operating system environment variables that are available
in the shell from which Zope is started.

To set an OS environment variable under UNIX in the bash shell, use the "export" command e.g. export
EVENT_LOG FI LE=/ hone/ chri snf Zope/ var/ event. | og . To setan OS environment variable under Windows
NT/2000, use the Control Panel -> System applet or use the DOS-mode "set" command e.g. set

EVENT_LOG FI LE=c:\ chri sm Zope\var\event.| og . The "set" command can also be used in Windows 98/ME.
Below are the environment variables that effect Zope runtime behavior, inlcluding descriptions of each:

Zope library paths

PYTHONPATH

Effects the library | oad path used by Python. See "The
Pyt hon Tutorial Modul es

Chapter": http://ww. pyt hon. org/ doc/ current/tut/node8. ht m
for nore infornation about PYTHONPATH.

| NSTANCE_HOVE

If an I NSTANCE_HOME is defined and has a 'lib/python' sub
directory, it will be added to the front of the PYTHONPATH.
I NSTANCE_HOME is usually used to separate the Zope core
installation fromapplication code and third-party

nodul es/ product s.

See al so: SOFTWARE_HOVE

61

The Zope Book (2.6 Edition)

SOFTWARE_HOVE

The SOFTWARE_HOMVE usual |y keeps the directory name of the
Zope core installation.

See al so: | NSTANCE_HOVE
ZOPE_HOVE
ZOPE_HOMVE is the root of the Zope software, where the
ZServer package, z2.py, and the default inport directory
may be found.
Profiling
PROFI LE_PUBLI SHER

If set, Zope is forced profile every request of the
ZPubl i sher. The profiling information is witten to the
val ue of the PROFILE_PUBLI SHER.
Access Rules and Site Roots
SUPPRESS_ACCESSRULE
If set, all SiteRoot behaviors are suppressed.
SUPPRESS_SI TEROOT
If set, all access rules behaviors are suppressed.
ZEO-rel ated
CLI ENT_HOMVE

CLI ENT_HOMVE al l ows ZEO clients to easily keep distinct
pid and log files. This is currently an *experinental *
feature.

ZEO CLI ENT

If you want a persistent client cache which retains
cache contents across CientStorage restarts, you need
to define the environnent variable, ZEO CLIENT, to a

uni que nane for the client. This is needed so that

uni que cache nanme files can be conputed. Oherw se, the
client cache is stored in tenporary files which are
renoved when the CientStorage shuts down.

Debuggi ng and Loggi ng
EVENT_LOG _FORMAT or STUPI D_LOG FORVAT
Set this variable if you |like to custom ze the output
format of Zope event |ogger. EVENT_LOG FORMAT is the
preferred envvar but STUPI D LOG FORMAT al so worKks.
EVENT_LOG FI LE="path" or STUPI D_LOG FI LE="pat h"
The event file |l ogger wites Zope logging information to a file.
It is not very smart about it - it just dunps it to a file and the
format is not very configurable - hence the nane STUPI D LOG FI LE.
EVENT_LOG FILE is the preferred envvar but STUPID LOG FILE
al so works.
See al so: LOGA NG txt in top-level Zope "doc" directory.
EVENT_LOG _SEVERI TY <nunber> or STUPI D_LOG SEVERI TY <nunber >
If set, Zope logs only nmessages whose severity is level is

hi gher than the specified one. EVENT_LOG SEVERITY is the
preferred envvar but STUPI D LOG SEVERI TY al so works.

The Zope Book (2.6 Edition)

ZSYSLOG="/ dev/ | og"

Setting this environnment variable will cause Zope to try
and wite the event log to the nanmed UNI X donai n socket
(usually '"/dev/log'). This will only work on UN X

See al so: LOGGE NG t xt
ZSYSLOG FACI LI TY="faci | i tynanme"

Setting this environment variable will cause Zope to use
the syslog logger with the given facility. This
environment variable is optional and overrides the
default facility "user". This will only work on UN X

See also: LOGA NG txt in top-level Zope "doc" directory.
ZSYSLOG_SERVER="nmmachi ne. nane: port"

Setting this environment variable tells Zope to connect
a UDP socket to machine.name (which can be a nane or |P
address) and 'port' which nust be an integer. The
default syslogd port is '514' but Zope does not pick a
sane default, you nust specify a port. This may change,
so check back here in future Zope rel eases.

See al so: LOGA NG txt in top-level Zope "doc" directory.

ZSYSLOG _ACCESS="/ dev/ | og"
ZSYSLOG _ACCESS FACI LI TY="faci |l itynanme"
ZSYSLOG _ACCESS_SERVER="nmachi ne. nane: port"

Li ke ZSYSLOG, ZSYSLOG FACILITY, and ZSYSLOG SERVER, but
controlling the sending of access information to syslog
(rather than controlling the sending of the event | og)

Z_DEBUG_MODE "yes" or "no"
BOBO DEBUG MODE "yes" or "no" (obsolete)

Run Zope in "debug node" if set. Same as -D option
to 'z2.py' or 'start'.

M sc.

Z_REALM "your real nf
BOBO_REALM "your realnl (obsolete)

Real mto be used when send HTTP aut hentication requests
to a web client. The real string is displayed when the
web browser pops up the usernane/ password requester

Security related
ZOPE_SECURI TY_POLI CY

If this variable is set to "PYTHON', Zope will use the
traditional Python based AccessControl

i npl enmentation. By default and for performance reasons
Zope will use the cAccessControl nodul e.

ZSP_OMWNERQUS_SKI P

If set, will cause the Zope Security Policy to skip
checks relating to ownership, for servers on which
ownership is not inportant.

ZSP_AUTHENTI CATED_SKI P

If set, will cause the Zope Security Policy to skip
checks relating to authentication, for servers which
serve only anonynous content.

ZOPE_DTM._ REQUEST_AUTOQUOTE

The Zope Book (2.6 Edition)

Set this variable to one of 'no', '0" or 'disabled to
di sabl e autoquoting of inplicitly retrieved REQUEST data
that contain a '<' when used in a dtm-var

construction. Wien *not* set to one of these values, all
data inmplicitly taken fromthe REQUEST (as oposed to
addr essi ng REQUEST. varnane directly), that contain a
"<', will be HTML quoted when interpolated with a

<dtm -var> or &dtm -; construct.

ZODB rel ated
ZOPE_DATABASE_QUOTA

If this variable is set, it should be set to an integer
nunber of bytes. Additions to the database are not
allowed if the database size exceeds the quota.

ZOPE_READ_ONLY

If this variable is set, then the database is opened in
read only node. |If this variable is set to a string
parsabl e by DateTi ne. DateTi ne, then the database is
opened read-only as of the tine given. Note that
changes made by another process after the database has
been opened are not visible.

Session rel ated

ZSESSI ON_ADD_NOTI FY
An optional full Zope path nane of a callable object to
be set as the "script to call on object addition" of the
sessi on_data transi ent object container created in
tenp_folder at startup.

ZSESSI ON_DEL_NOTI FY
An optional full Zope path nanme of a callable object to
be set as the "script to call on object deletion" of the
session_data transi ent object container created in
tenp_fol der at startup.

ZSESSI ON_TI MEQUT_M NS
The nunber of mnutes to be used as the "data object
timeout" of the "/tenp_fol der/session_data" transient
obj ect contai ner.

ZSESS|I ON_OBJECT_LIM T
The number of itens to use as a "maxi num nunber of
subobj ect s" value of the "/tenp_folder" session data
transi ent object container.

WebDAV

WEBDAV_SOURCE_PORT_CLI ENTS
Setting this variable enables the retrieval of the
docunent source through the standard HTTP port instead
of the WebDAV port. The value of this variable is a
regul ar expression that is matched agai nst the
user-agent string of the client.
Exanpl e: :

WEBDAV_SOURCE_PORT_CLI ENTS="cadaver . *" enabl es retrieval
of the docunent source for the Cadaver WbDAV client

Structured Text

STX_DEFAULT_LEVEL

The Zope Book (2.6 Edition)

Set this variable to change the default level for <Hx>
el ements. The default level is 3.

Esoteric
Z_MAX_STACK_SI ZE

This variable allows you to custom ze the size of the
Zope stack used by the SecurityManager (default 100).

When All Else Fails

If there's a problem with your installation that you just can't seem to solve, don't despair. You have many places to turn
for help, including the Zope maillists and the #zope IRC channel.

If you are new to open source software, please realize that, for the most part, participants in the various "free" Zope
support forums are volunteers. Though they are typically friendly and helpful, they are not obligated to answer your
guestions. Therefore, it's in your own self-interest to exercise your best manners in these forums in order to get your
problem resolved quickly.

The most reliable way to get installation help is to send a message to the general Zope maillist detailing your
installation problem. For more information on the available Zope mailing lists, see the Resources section of Zope.org.
Typically someone on the "zope@zope.org" list will be willing to help you solve the problem.

For even more immediate help, you may choose to visit the #zope channel on the OpenProjects IRC (Internet Relay
Chat) network. See the OpenProjects website for more information on how to connect to the OpenProjects IRC
network.

If you are truly desperate and under a time constraint that prohibits you from utilizing "free" support channels, Zope

Corporation provides for-fee service contracts which you can use for Zope installation help. See Zope.com for more
information about Zope Corporation service contracts.

65

The Zope Book (2.6 Edition)

Object Orientation

To make best use of Zope, you will need to have a grasp of the concept of object orientation . Object orientation is a
software development pattern that is used in many programming languages (C++, Java, Python, Eiffel, Modula-2,
others) and computer systems which simulate "real-world" behavior. It stipulates that you should design an application
in terms of objects . This chapter provides a broad overview of the fundamentals of object orientation from the
perspective of a Zope developer.

Objects

In an object-oriented system (such as Zope), your application is designhed around objects . Objects are self-contained
"bundles"” of data and logic. It is easiest to describe them by comparing them to other programming concepts.

In a typical non-object-oriented application, you will have two things:

e Code. For example, you may have a bit of logic in the form of a Perl script in a typical CGl-based web application
which sucks employee data from a database and displays a table to a user.

» Data. For example, you may have employee data stored in a database such as MySQL or Oracle that your code
operates upon by reading or changing it. This data exists almost solely for the purposes of the code that operates
upon it; it has almost no value without the code.

In a typical object-oriented application, however, you will have one thing, and one thing only:

» Objects. Objects are collections of code and data wrapped up together. For example, you may have an
"Employee" object that represents an employee. It will contain data about the employee, such as a phone
number, name, and address, much like the information that would be stored in a database like MySQL or Oracle.
However, the object will also contain "logic" (code) that can manipulate and display this data.

In a non-object-oriented application, your data is separate from your code. But in an object oriented application, both
your data and your code is stored in one or more objects, each of which represents a particular "thing". Objects can
represent just about anything. In Zope, the Control_Panel is an object, Folders which you create are objects, even the
Zope "root folder" is an object. When you use the Zope "add list" to create a new item in the Zope Management
Interface, you are creating an object. People who extend Zope by creating Products define their own types of objects
which are then entered in to the Zope "add list", allowing you to create objects from them. A product author might
define a "Form" object or a "Weblog" object. Basically, anything which can be described using a noun can be modelled
as an object.

Object-orientation as a programming methodology allows software developers to design and create programs in terms
of "real-world" things like Folders, Control_Panels, Forms, and Employees instead of designing programs based
around more "computerish" concepts like bits, streams, and integers. Instead of teaching the computer about our
problem by descending to its basic vocabulary (bits and bytes), we use an abstraction to teach the computer about the
problem in terms of a vocabulary which is more natural to humans. The core purpose of object orientation is to allow
developers to create, to the largest extent possible, a system based on abstractions of the natural language of a
computer (bits and bytes) into real-world things (Employees and Forms) that we can understand more quickly and more
readily.

This idea of abstraction also encourages programmers to break up a larger problem by addressing the problem as

smaller, more independent "sub-problems". This allows developers to define solutions in terms of these
"sub-problems". When you design an application in terms of objects, the pieces which eventually come to define the

66

The Zope Book (2.6 Edition)

solution to all the "sub-problems" of a particular "big" problem are objects.

Attributes

An object's data is defined by its attributes . For example, an attribute of an Employee object might be named
"phone_number". This attribute will likely contain a series of characters which represent the employee's phone number.
Other attributes of an Employee object might be "first_name" and "last_name", which are respectively, series of
characters which represent the employee's first name and the employee's last name. Another attribute of an employee
object mightbetitl e , which would be a series of characters representing the employee's job description.

An object typically uses attributes to store elements that describe itself. For example, "phone_number", "first_name",
"last_name" and "title" describe an employee in a particular way. It may help to think of the set of attributes belonging to
an object as a sort of "mini-database" which contains information representing the "real-world thing" that the object is
attempting to describe. The complete collection of attributes assigned to an object defines the object's state . When one
or more of an object's attributes are modified, the object is said to have changed its state .

Special kinds of web-editable object attributes in Zope are sometimes referred to as Properties .

Methods

The set of actions which an object may perform is defined by its methods . Methods are code definitions attached to an
object which typically perform an action based on the attributes belonging to the object on which the method is defined.
For example, a method of an Employee object named "getFirstName" may return the value of the object's "first_name"
attribute, while a method of an Employee object named "setFirstName" might change the value of the object's
"first_name" attribute. The "getTitle" method of an Employee object may return "Vice President" or "Janitor".

Methods are similar to functions in procedural languages like C . The key difference between a method and a function
is that a method is "bound" to (attached to) an object, so instead of operating solely on "external" data that is passed in
to it via arguments, it may also operate on the attributes of the object to which is bound.

Some objects in Zope are actually called "methods". For example, there are DTML Methods , SQL Methods , and
External Methods . This is because these objects are meant to be used in a "methodish” way. They are "bound" to their
containing Folder object by default when called, and the logic that they contain typically makes reference to their
containing Folder. Script (Python) objects in Zope act similarly through their concept of "Bindings".

Messages

In an object-oriented system, to do any useful work, an object is required to communicate with other objects in the
same system. For example, it wouldn't be particularly useful to have a single Employee object just sitting around in
"object-land" with no way to communicate with it. It would then just be as "dumb" as a regular old relational database
row, just storing some data. We want the capability to ask the object to do something useful. More precisely, we want
the capability for other objects to ask our Employee object to do something useful. For instance, if we create an object
named "EmployeeSummary", which has the responsibility for collecting the names of all of our employees for later
display, we want the EmployeeSummary object to be able to ask a set of Employee objects for their first and last
names.

When one object communicates with another, it is said to send a message to another object. Messages are sent to
objects by way of the object's methods . For example, our EmployeeSummary object may send a message to our
Employee object by way of "calling" its "getFirstName" method. Our Employee object would receive the message and
return the value of its "first_name" attribute. Messages are sent from one object to another when a "sender" object calls
a method of a "receiver" object.

67

The Zope Book (2.6 Edition)

When you access a URL that "points to" a Zope object, you are almost always sending that Zope object a message.
When you request a response from Zope by way of invoking a Zope URL with a web browser, the Zope object
publisher receives the request from your browser. It then sends a Zope object a message on your browser's behalf by
"calling a method" on the Zope object specified by the URL. The Zope object responds to the object publisher with a
return value, and the object publisher returns the value to your browser.

Classes and Instances

A class defines an object's behavior and acts as a constructor for an object. When we talk about a "kind" of object, like
an "Employee" object, we actually mean "objects constructed using the Employee class" or, more likely, just "objects of
the Employee class". Most objects are members of a class.

It is typical to find many objects in a system that are essentially similar to one another save for the values of their
attributes. For instance, you may have many Employee objects in your system, each with "first_name" and "last_name"
attributes. The only difference between these Employee objects is the values contained within their attributes. For
example, the "first_name" of one Employee object might be "Fred" while another might be "Jim". It is likely that each of
these objects should be members of the same class .

A class is to an object as a set of blueprints is to a house. Many houses can be constructed using the same set of
blueprints; likewise many objects can be constructed using the same class. Objects that share a class typically behave
identically to each other. If you visit two houses that share the same set of blueprints, you will likely notice striking
similaries: the layout will be the same, the light switches will probably be in the same place, and the fireplace will almost
certainly be in the same location. The shower curtains might be different in each house, but this is an attribute of each
particular house which doesn't change its essential similarity with the other. It is much the same with instances of a
class. If you "visit" two instance of a class, you will interact with both instances in essentially the same way: by calling
the same set of methods on each. The data kept in the instance (by way of its attributes) might be different, but these
instances behave in the same way.

The behavior of two objects constructed from the same class is similar because they both share the same methods .
Methods of an object are not typically defined by the object itself, but instead are defined by the object's class . For
instance, the Employee class defines the get Fi r st Name method, and all objects that are members of that class
share that method definition. The set of methods that are assigned to a class define the behavior of an object.

The objects which are constructed by a class are called instances of the class or (more often) just instances . For
example, the Zope Exanpl es folder is an instance of the Fol der class. The Exanpl es folder has ani d attribute
of Exanpl es , while another folder may have ani d attribute of MyFol der , but they are both instances of the same
class, and behave identically. All of the objects that you deal with using the Zope management interface are instances
of a class. Typically, the classes from which these objects are constructed are defined in Zope Products , which are
created by Zope developers and community members.

Inheritance

Sometimes it is desirable for objects to share the same essential behavior, except for small deviations from each other.
For example, you may want a ContractedEmployee object to have all the behavior of a "normal” Employee object
except that you must keep track of a tax identification number on instances of the ContractedEmployee class that is
irrelevant for "normal” instances of the Employee class.

Inhertitance is the mechanism that allows you to share essential behavior between two objects, while customizing one
with a slightly modified set of behaviors that differ from or extend the other.

Inheritance is specified at the class level . As we learned above, classes define behavior , and if we want to change
object behavior, we almost always need to change its class.

68

The Zope Book (2.6 Edition)

If we base our "ContractedEmployee"” class on the Employee class, but add a method to it named "getTaxldNumber"
and an attribute named "tax_id_number", the ContractedEmployee class would be said to inherit from the Employee
class. In the jargon of object orientation, the ContractedEmployee class would be said to subclass from the Employee
class and the Employee class would be said to be a superclass of the ContractedEmployee class.

When a subclass inherits behavior from another class, it doesn't need to sit by and accept the method definitions of its
superclass. It can override the method definitions of its superclass. For instance, we may want to cause our
ContractedEmployee class to return a different "title" than instances of our Employee class. In our ContractedEmployee
class, we might cause the get Ti t | e method of the Employee class to be overridden by creating a method within
ContractedEmployee which has a different implementation. For example, it may always return "Contractor" instead of a
job-specific title.

In Zope, inheritance is used extensively. For example, the Zope "Image" class inherits its behavior from the Zope "File"
class, because images are really just another kind of file, and they share many behavior requirements. But the "Image"
class adds a bit of behavior which allows it to "render itself" by printing an HTML tag instead of causing a file download.
It does this by overriding the i ndex_ht Ml method of the File class.

Object Lifetimes

Object instances have a specific lifetime . This lifetime is controlled typically conrolled by either a programmer or a user
of the system in which the objects "live".

Instances of web-manageable objects in Zope like Files, Folders, DTML Methods, and such have a lifetime of "from
when a user creates them until he or she deletes them." You will often hear these kinds of objects described as
persistent objects. These objects are stored in Zope's object database (the ZODB).

Other object instances have different lifetimes. There are object instances in Zope which last for a
"programmer-controlled” period of time. For instance, the object that represents a web request in Zope (often called
REQUEST), has a well-defined lifetime. Its lifetime lasts from the moment that the object publisher receives the request
from a remote browser until the response is sent back to that browser. It is then destroyed automatically. Zope "session
data" objects have another well-defined lifetime. These objects last from the time that a programmer creates one on
behalf of the user via his code until such time that the system (on behalf of the programmer or site administrator)
deems it necessary to throw away the object in order to conserve space or indicate an "end" to the user's session. This
is defined by default as 20 minutes of "inactivity" by the user for whom the object was created.

Summary

Zope is an object-oriented development environment. Understanding Zope fully requires that you grasp the basic
concepts of object orientation. You should attempt to understand attributes, methods, classes, and inheritance before
setting out on a "for-production” Zope development project.

For a more lighthearted description of what object orientation is and how it relates to Zope, see Chris McDonough's
Gain Zope Enlightenment by Grokking Object Orientation . For a more comprehensive treatment on the subject of
object orientation, buy and read The Object Primer by Scott Ambler. There are also excellent object orientation tutorials
available on he Internet. See The Essence of Objects chapter of the book "The Essence of Object Oriented
Programming with Java and UML". There is an extensive Object FAQ available at Cyberdyne Object Systems.

69

The Zope Book (2.6 Edition)

Using The Zope Management Interface

Introduction

When you log in to Zope, you are presented with the Zope Management Interface (ZMl). The ZMl is a management
and development environment that allows you to control Zope, manipulate Zope objects, and develop web applications.

The Zope Management Interface represents a view into the Zope object hierarchy . Almost every link or button in the
ZMI represents an action that is taken against an object . When you build web applications with Zope, you typically
spend most of your time creating and managing objects.

Don't be frightened if you don't understand the word "object" just yet. For the purposes of this chapter, the definition of
an "object" is any discrete item that is manageable through the Zope Management Interface. In fact, for the purposes of
this chapter, you can safely mentally replace the word "object" with the word "thing" with no ill effect. If you get
confused, however, you may want to review the Object Orientation chapter for more background on objects.

How The Zope Management Interface Relates to Objects

Unlike a webserver like Apache or Microsoft IS, Zope does not "serve up" HTML files that it finds on your server's hard
drive. The objects that Zope creates are not stored in files that have an ".html" extension on your server's hard drive.
There is no file hierarchy on your server's computer that contains all of your Zope objects.

Instead, the objects that Zope creates are stored in a database known as the ZODB, which stands for (unsurprisingly)
the "Zope Object DataBase". "Out of the box", the ZODB creates a file named "Data.fs" in which Zope stores its
objects. The Zope Management Interface is the primary way that you interact with Zope objects that are stored in this
database. Note that there are other methods of interacting with objects stored in the ZODB, including FTP and
WebDAYV, which are detailed in the chapter in this book entitled Managing Zope Using External Tools , but the ZMl is
the primary management tool.

ZMI Frames

The ZMI uses three browser frames. The left frame is called the Navigator Frame , and using it you may expand and
contract a view into the Zope object hierarchy much like you would expand and contract a view of files using a file tree
widget like the one in Windows Explorer. The right frame is called the Workspace Frame , and it displays a particular
view of the object you're currently managing. The top frame is called the Status Frame , and it displays the name of the
user who you are currently logged in as as well as a select list that allows you to perform various actions. We'll look
more closely at these frames next.

The Navigator Frame

The left frame is the Navigator. In this frame you have a view into the root folder and all of its subfolders. The root
folder* is in the upper left corner of the tree. The root folder is the "topmost" container of Zope objects. Almost
everything meaningful in your Zope instance lives inside the root folder.

70

The Zope Book (2.6 Edition)

B root Folder

B Control _Panel
B 3 Examples

acl_users

- temp_folder

© Zope Corporation
Refresh

Figure 3-1 The Navigator Frame

Some of the folders in the Navigator are displayed with "plus mark" icons to their left. These icons let you expand the
folders to see the sub-folders that are inside.

When you click on an object icon or name in the Navigator, the Workspace frame will refresh with a view of that object.

The Workspace Frame

The right-hand frame of the management interface shows the object you are currently managing. When you first log
into Zope the current object is the root folder. The workspace gives you information about the current object, and lets
you manage it.

- Contents T View T Properties T Security T Undo T Dwnership TFind1

[Folder at Help!

IAcceIerated HTTP Cache Manager x| A_ddl

Type Name Size Last Modified

I~ Control_Panel {Control Panel) 2002-06-29 17:39
[~ [0 Examples (Example applications) 2002-06-20 17:39
I~ acl_users (User Folder) 1998-12-29 21:23

[@ browser_id_manager (Browser Id 5002-06-29 17:39

Manager)
[~ “%index_htmi 1 Kb 2001-01-20 16:39
[+# session_data_manager {Session Data 5002-06-29 17:39
Manager)
<
[~ *% standard_error_message (Standard Error 1 Kb 5001-01-20 16:39
Message)
<
%% ?.;E.I;.nti?)rd_html_fmter (Standard Html 1 kb 5001-01-20 16:39

Figure 3-2 The Workspace Frame
Across the top of the screen are a number of tabs. The currently selected tab is highlighted in a lighter color. Each tab

takes you to a different view of the current object. Each view lets you perform a different management function on that
object.

71

The Zope Book (2.6 Edition)

When you first log in to Zope, you are looking at the Contents view of the root folder object.

At the top of the workspace, just below the tabs, is a description of the current object's type and URL. On the left is an
icon representing the current object's type, and to the right of that is the object's URL.

At the top of the page, Fol der at / tells you that the current object is a folder and that its path is "/". Note that this
path is the object's place relative to Zope's "root" folder. The root folder's path is expressed as "/" , and since you are
looking at the root when you first log in, the path displayed at the the top of the workspace is simply "/".

Zope object paths are typically mirrored in the URLSs that you use to access a Zope object. For instance, if the main
URL of your Zope site was htt p: // mysi t e. exanpl e. com 8080 , then the URL of the root folder would be
http://nysite. exanpl e.com 8080/ andthe URL of Fol der at /myFol der would be

http://nysite. exanpl e. com 8080/ nyFol der

As you explore different Zope objects, you find that the links displayed at the top of the workspace frame can be used
to navigate between objects' management views. For example, if you are managing a folder at /Zoo/Reptiles/Snakes
you can return to the folder at /Zoo by clicking on the word Zoo in the folder's URL.

The Status Frame

In the "status frame" at the top of the management interface, your current login name is displayed, along with a
pull-down box that lets you select:

Preferences — By selecting this menu item, you can set default preferences for your Zope management interface
experience. You can choose to turn off the status frame. You can also choose whether or not you want the
management interface to try to use style sheets. Additionally, you can change the default height and width of textareas
displayed in the ZMI. This information is associated with your browser via a cookie. It is not associated in any way with
your Zope user account.

Logout — Selecting this menu item will log you out of Zope. Due to the way that the HTTP "basic authentication”
protocol works, this may not work properly on all browsers. If you experience problems logging out using this facility, try
closing and reopening your browser to log out.

Quick Start Links — Selecting this menu item presents the "QuickStart" page which has links to Zope documentation
and community resources.

JZDp__e Quick Start j? Go I

Figure 3-3 The Status Frame

Creating Objects

The Zope Management Interface allows you to create new objects in your Zope instance. To add a new object, select
an entry from the pull-down menu in the Workspace labeled "Select type to add...". This pull-down menu is called the
add list .

The first kind of object you'll want to add in order to "try out" Zope is a "Folder". To create a Zope Folder object,

navigate to the root folder and select Folder from the add list. At this point, you'll be taken to an add form that collects
information about the new folder, as shown in the figure below.

72

The Zope Book (2.6 Edition)

Zope Quick Start Go

Add Folder Help!

E Zont pavel & Folder contains other objects. Use Folders to organize your web objects in to logical
Examnples graups. The create public interface option creates an index document inside the Faolder
acl_users to give the Folder a2 default HTML representation. The create user folder option
1 temp_folder creates a User Folder inside the Folder to hold authorization information for the Folder,

© Zope Corporation d
Refresh IZDD

Titie IZope Zoo

[T create public interface
[create user folder
Add

Figure 3-4 Folder add form.
Type "zoo" in the Id field, and "Zope Zoo" in the Title field. Then click the Add button.

Zope will create a new Folder object in the current folder named zoo . You can verify this by noting that there is now a
new folder named zoo inside the root folder.

Click on zoo to "enter" it. The Workspace frame will switch to the contents view of zoo (which is currently an "empty"
folder: it has no subobjects). Notice that the URL of the zoo folder is based on the folder's id . You can create more
folders inside your new folder if you wish. For example, create a folder inside the zoo folder with an id of arctic . Enter
to the zoo folder and choose Folder from the pull-down menu. Then type in "arctic" for the folder id, and "Arctic Exhibit"
for the title. Now click the Add button.

When you use Zope, you create new objects by following these steps:

1. Enter to the folder where you want to add a new object.

2. Choose the type of object you want to add from the add list.

3. Fill out the resulting add form and submit it.

4. Zope will create a new object in the folder.

Notice that every Zope object has an id that you need to specify in the add form when you create the object. The id is
how Zope names objects. Objects also use their ids as a part of their URL . The URL of any given Zope object is
typically a URL consisting of the folders in which the object lives plus its name. For example, we created a folder

named "zoo" in the root folder. Its URL consists of "http://your.server.name/zoo" (where "your.server.name" is your
server's name).

Moving and Renaming Objects

Most computer systems let you move files around in directories with cut, copy and paste. The Zope management
interface has a similar system that lets you move objects around in folders by cutting or copying them, and then pasting
them to a new location.

73

The Zope Book (2.6 Edition)

NOTE: Zope move and rename options require that you have cookies enabled in your browser.

To experiment with copy and paste, create a new folder in the root folder with an id of bears . Then select bears by
checking the check box just to the left of the folder. Then click the Cut button. Cut selects the selected objects from the
folder and places them on Zope's "clipboard". The object will not , however, disappear from its location until it is pasted
somewhere else.

Now enter the zoo folder by clicking on it. Now, click the Paste button to paste cut object(s) into the zoo folder. You
should see the bears folder appear in its new location. You can verify that the folder has been moved by going to the
root folder and noting that bears is no longer there.

Copy works similarly to cut. When you paste copied objects, the original objects are not removed. Select the object(s)
you want to copy and click the Copy button. Then navigate to another folder and click the Paste button.

You can cut and copy folders that contain other objects and move many objects at one time with a single cut and paste.
For example, go to the root folder copy the zoo folder. Now paste it into the root folder. You will now have two folders
inside the root folder, zoo and copy_of zoo . If you paste an object into the same folder where you copied it, Zope will
change the id of the pasted object. This is a necessary step, as you cannot have two objects with the same id in the
same folder.

To rename the copy_of _zoo folder, select the folder by checking the check box to the left of the folder. Then click the
Rename button. This will take you to the rename form.

] Zope Quick Start _. Go |

B Root Folder Rename Items Help!

E [§@8 Contral_Panel

] copy_of_zoo to IZDD:2

® [Examples
acl_uiers O—kl CLCB'I
@ copy_of_zoo
£ temp_folder
[za0

© Zope Corporation
Refresh

Figure 3-5 Renaming an Object

Type in a new id "zoo2" and click OK . Zope ids can consist of letters, numbers, spaces, dashes underscores and
periods, and are case-sensitive. Here are some legal Zope ids: index.html , 42 , and Snake-Pit .

Now your root folder contains a zoo and a zoo2 folder. Each of these folders contains a bears folder. This is because

when we made a copy of the zoo folder it also copied the bears folder that it contained. Copying an object also copies
all of the objects it contains.

If you want to delete an object, select it and then click the Delete button. Unlike cut objects, deleted objects are not

placed on the clipboard and cannot be pasted. In the next section we'll see how we can retrieve deleted objects using
Undo.

74

The Zope Book (2.6 Edition)

Zope will not let you cut, delete, or rename a few particular objects in the root folder. These objects include
Control_Panel , browser_id_manager , and temp_folder . These objects are necessary for Zope's operation. It is
possible to delete other root objects, such as index_html , session_data_manager , standard_html|_header ,

standard_html_footer , standard_error_message , and standard_template.pt but it is not recommended unless you
have a good reason to do so.

Transactions and Undoing Mistakes

All objects you create in Zope are stored in Zope's "object database". Unlike other web application servers, Zope
doesn't store its objects in files on a filesystem. Instead, all Zope objects are stored by default in a single special file on
the filesystem named Dat a. f s . This file is stored in the var directory of your Zope instance. Using an object
database rather than using file system files allows operations to Zope objects to be transactional .

A transactional operation is one in which all changes to a set of objects are committed as a single "batch". In Zope, a
single web request initiates a transaction. When the web request is finished, Zope commits the transaction unless there
was an error during the processing of the request. If there was an error, Zope refrains from committing the transaction.
Each transaction describes all of the changes that happen in the course of performing a web request.

Any action in Zope that causes a transaction can be undone, via the Undo tab. You can recover from mistakes by
undoing the transaction that represents the mistake.

Select the zoo folder that we created earlier and click Delete . The folder disappears. You can get it back by undoing
the delete action.

Click the Undo tab, as shown in the figure below.

_I‘ZDpB Quick Start ﬂ Go [|

Fe
M Root Folder Contents View Properties Security uUndo Ownership Find |~

| &8 Caontral_Panel

E
® 3 Examples [J Folder at / Help!
acl_users : sy ; :
G This app_hca_tmn 5 trarjsactmnal feature allows you to easﬂy un_do changes made to

T temp_folder . the application's settings or data. ¥ou can revert the application to a "snapshot" of
© Zope Corporation |it's state at a previous point in time,

Refresh
Select one or more transactions below and then click on the "Undo" button to undo
those transactions, Note that even though a transaction is shown below, you may
not be able to undo it if later transactions modified objects that were modified by a
selected transaction,

[~ /manage_delObjects by admin 2002-06-29 06:28:32 PM
[~ /manage_addFolder by admin 2002-06-29 06:28:11 PM
[~ /standard_template.pt/pt_editAction by admin 2002-06-29 06:27:35 PM [
[~ /manage_addPageTemplate by admin 2002-06-29 06:27:30 PM
[~ /standard_error_message/manage_edit by admin 2002-06-29 06:26:32 PM
[~ faddDTMLMethod by admin 2002-06-29 06:26:27 PM

— o B Pt A e A R |

P o B P T B T = T PO O 1 .

Figure 3-6 The Undo view.

Transactions are named after the Zope action (also known as a "method") that initiated them. In this case, the initiating
action was one named "/manage_delObjects" (the action which deletes a Zope object).

Select the first transaction labeled /manage_delObjects , and click the Undo button at the bottom of the form,
instructing Zope to undo the last transaction. You can verify that the task has been completed by visiting the root folder

75

The Zope Book (2.6 Edition)

to make sure that the zoo folder has returned. You may need to refresh your browser window to see the effect if you
just use the "Back" button to revisit the root folder. To see the effect in the Navigator pane, click the "Refresh" link
within the pane.

You may undo an undo (or in other words, perform a "redo"). You can undo and redo as many times as you like. When
you perform a "redo", Zope inserts a transaction into the undo log describing the redo.

The Undo tab is available on most Zope objects. When viewing the Undo tab of a particular object, the list of undoable
transactions is filtered down to the transactions that have recently effected the current object and its subobjects.

Undo Details and Gotchas

You cannot undo a transaction that a later transaction depends upon. For example, if you paste an object into a folder
and then delete an object in the same folder you might wonder whether or not you can undo the earlier paste. Both
transactions change the same folder so you can not simply undo the earlier transaction. The solution is to undo both
transactions. You can undo more than one transaction at a time by selecting multiple transactions on the Undo tab and
then clicking Undo .

Only changes to objects stored in Zope's object database can be undone. If you have integrated data in a relational
database server such as Oracle or MySQL (as discussed in Chapter 12, "Relational Database Connectivity"), changes
to data stored there cannot be undone.

Reviewing Change History

The Undo tab will provide you with enough information to know that a change has occurred. It, however, will not tell you
much about the effect of the transaction on the objects that were changed during the transaction. "Presentation" and
"logic" objects like DTML Methods, DTML Documents, Zope Page Templates, and Script (Python) objects support
History for this purpose. If you know a transaction has effected one of these objects, you can go to that object's History
View and look at the previous states of the object, as shown in the figure below.

Zope Quick Start x|l Go

3 Control_Panel

] Examples “% DTML Method at /Sales/SalesStaff Help!
[sales
acl users r 2002-07-15 00: 46 { admin)
Oh N work /Sales/SalesStaff/manage_edit
D . BmEEr ~ 2002-07-15 00:25 { admin)
s import_example /Sales/addDTMLMethod
!
temp_folder Copy to present | Compare |
[za0

© Zope Corporation
Refresh

Figure 3-7 The History View

The History view of an object supports comparison of revisions, allowing you to track their changes over time. You may
select two revisions from an object's History and compare them to one another. To perform a comparison between two

76

The Zope Book (2.6 Edition)

object revisions, select two revisions using the checkboxes next to the transaction identifiers, and click the Compare
button.

The resulting comparison format is often called a diff . The diff format shows you the lines that have been added to the
new document (via a plus), which lines have been subtracted from the old document (via a minus), and which lines
have been replaced or changed (via an exclamation point).

Zope Quick Start x|l Go

Edit T Yiew T Proxy T History T Security T Undo T Ownership 1

3 Control_Panel
] Examples
[sales
acl_users
(3 homework
] import_example

£ temp_folder

(0 za0
© Zope Corporation
Refresh

1D

“% DTML Method at /Sales/SalesStaff Help!
Changes to SalesStaff as of 2002-07-15 00:25
to get to SalesStaff as of 2002-07-15 00:46

<dtul-var standard htul_headers
“hZ=<dtml-var title_or_idr <dtml-war document title=</hZ:>
<pr

This is the <dtml-war document_ids Document

in the <dtml-wvar title_and_id» Folder.

<fpE

<dtul-var standard htul_footers

“html=

“body=

“hZ=Jungle Sales Staff</hi-

“ul=
“li=Tarzan</1i=
“lirCheetah</1ix
“li=Jane</1i=

< ul=

“</bodys

</html=

+ + + + + + + + + + + + L1

1]

Figure 3-8 Comparing Revisions Via The History View

To revert to an older object revision, click the checkbox next to the transaction identifier, then click the Copy to present
button.

Importing and Exporting Objects

You can move objects from one Zope system to another using export and import . You can export all types of Zope
objects to an export file . This file can then be imported into any other Zope system.

You can think of exporting an object as cloning a piece of your Zope system into a file that you can then move around
from machine to machine. You can take this file and graft the clone onto any other Zope server.

Suppose you have a folder for home work that you want to export from your school Zope server, and take home with
you to work on in your home Zope server. Create a folder in your root folder called "homeWork". After creating the
folder, click the checkbox next to the homeWork folder you just created. Then click the Import/Export button. You
should now be working in the Import/Export folder view, as shown in be figure below.

77

The Zope Book (2.6 Edition)

Zope Quick Start =

B Root Folder Contents Yiew Properties Security Unde Ownership Find |F
H i@ control_Parnel
(3 Examples (D Folder at / Help!
acl_users You can export Zope objects to a file in order to transfer them to a different Zope
[homework installation. You can either choose to download the export file to your local machine,
£ temp_folder ar save it in the "var" directory of your Zope installation an the server,
0 za0 =
Export object id =|
© Zope Corporation P 1 ItheWork
Refresh Export to ® Download to local machine

" Save to file an server
7 =ML format?

Export |

You may import Zope objects which have been previously exported to a file, by
placing the file in the "import" directory of your Zope installation on the server, You
should create the "import" directory in the root of your Zope installation if it does not
yet exist,

1K1

Mote that by default, you will become the owner of the objects that vou are

Figure 3-9 Exporting homeWork.zexp

There are two sections to this screen. The upper half is the export section and the lower half is the import section. To
export an object from this screen, type the id of the object into the first form element, Export object id. In our case Zope
already filled this field in for us, since we selected the homeWork folder on the last screen.

The next form option lets you choose between downloading the export file to your computer or leaving it on the server.
If you check Download to local machine , and click the Export button, your web browser will prompt you to download
the export file. If you check Save to file on server , then Zope will save the file on the same machine on which Zope is
running, and you must fetch the file from that location yourself. The export file will be written to Zope's var directory on
your server. By default, export files have the file extension .zexp .

In general it's handier to download the export file to your local machine. Sometimes it's more convenient to save the file
to the server instead, for example if you are on a slow link and the export file is very large, or if you are just trying to
move the exported object to another Zope instance on the same computer.

The final export form element is the XML format? checkbox. Checking this box exports the object in the eXtensible
Markup Language (XML) format. Leaving this box unchecked exports the file in Zope's binary format. XML format
exports are is much larger but are (mostly) human-readable. For now, the only tool that understands this XML format is
Zope itself, but in the future there may be other tools that can understand Zope's XML format. In general you should
leave this box unchecked unless you're curious about what the XML export format looks like and want to examine it by
hand.

While you're viewing the export form for homeWork , Ensure "download to local machine" is selected, "XML format?" is
not selected, and click the Export button. Your browser will present a file save dialog. Save the file to a temporary
location on your local computer (it will be named homeWork.zexp).

Now suppose that you've gone home and want to import the file into your home Zope server. First, you must copy the
export file into Zope's import directory on your Zope server's filesystem. Here is an example of doing so. We are
copying the homeWork.zexp file that's in a directory named /tmp on the local computer to a remote ("home") computer
running Zope using the scp facility on Linux. We copy the .zexp file into our Zope directory's "import" directory. In this
example, the Zope installation directory on the remote computer is named "/home/chrism/sandboxes/ZBExample":
chrism@aints:/tnp$ |'s -al honmeWrk. zexp

SPW-r--rF-- 1 chrism chrism 182 Jul 13 15: 44 homeWrk. zexp
chrism&@aints:/tnmp$ scp homeWr k. zexp sai nts. homeuni x. com / hone/ chri sm sandboxes/ ZBExanpl e/ i nport

78

The Zope Book (2.6 Edition)

chri sm@&ai nts. honeuni x. conl s passwor d:
hOI’l’BV\DI’kzeXp loo%l*****************************| 182 0000
chri sm&@ai nts:/tnp$

In the above example, the export file was copied from the local computer's / t np directory to the remote computer's
/ hone/ chri snl sandboxes/ ZBExanpl e/ i nport/ honeWr k. zexp file. Your local directory and your Zope's
installation directory will be different. For purposes of this example, copy the export file you downloaded to your Zope
installation's "import" directory using whatever facility you're most comfortable with (you needn't use scp).

Now, go back to your Zope's management interface. Create a Folder named i nport _exanpl e . Visit the
newly-created i mport _exanpl e folder by clicking on it in the management interface. Then click on Import/Export
button in the i nport _exanpl e folder and scroll to the bottom of the Workspace frame. Note that Zope gives you the
option to either Take ownership of imported objects or Retain existing ownership information . Ownership will be
discussed more in the chapter entitled "Users and Security". For now, just leave the Take ownership of imported
objects option selected and, enter the name of the export file (homeWor k. zexp) in the Import file name form element
and click Import .

2| Zope Quick Start x| Go

1r

- - T

8 Root Folder
Export to " Download to local machine
Control_Panel

& Save to file an server
@ Examples

7 =ML format?
acl_users

(3 homewark MI

] import_example e
£ temp_folder
& 200 You may import Zope objects which have been previously exported to a file, by
placing the file in the "import" directory of your Zope installation on the server, You
should create the "import" directory in the root of your Zope installation if it does not
yet exist,

© Zope Corporation
Refresh

Mote that by default, you will become the owner of the objects that you are
importing. If you wish the imported objects to retain their existing ownership =
information, select "retain existing ownership information",

Import file name IhomeWork.zexp

Ownership & Take ownership of imported objects
" Retain existing awnership information

Import |

4

Figure 3-10 Importing homeWork.zexp

After you've clicked import, you will have a new object in the i nport _exanpl e folder named honeWor k . Note that
Zope informs you of the success of the import in a status message.

79

The Zope Book (2.6 Edition)

| Zope Quick Start

Root Folder Contents Yiew Properties Security Undo Ownership Find

& contral_Panel
3 Examples [J Folder at Jimport_example Help!
i sucessiully importe -07- ¥
acl_users fully Imported (2002-07-13 16:05
(3 homework
@ import_example
= Asccelerated HTTP Cache Manager = Add |
£ temp_folder I g J
[za0 Type Mame Size Last Modified
© Zope Corporation | — M pomework 2002-07-13 16:05
Refresh
Renarme | Cutl Copy | Delete | Import/Export | Select All
21| I]

Figure 3-11 Success Importing homeWork.zexp

There are a few caveats to importing and exporting. In order to successfully perform an import of a Zope export file,
you need to make sure that the Zope into which you're importing has the same Products installed. If an import fails, it's
likely that you don't have the same Products installed in your Zope as the Products installed in the Zope from whence
the export file came. Our example above works because we are exporting an object which is very common and which
comes with all Zopes (a Folder). Check with the distributor of the export file to see what Products are necessary for
proper import if you have problems importing a given export file.

Note that you cannot import an object into a folder that has an existing object with the same i d . Therefore, when you
import an export file, you need to ensure it does not want to install an object that has the same name as an existing
object in the folder in which you wish to import it. In our example above, in order to bring your homework back to
school, you'll either need to import it into a folder that doesn't already have a homeWork folder in it, or you'll need to
delete the existing homeWork folder before importing the new one.

Using Object Properties

Properties are ways of associating information with objects in Zope. Many Zope objects, including folders, support
properties. Properties can label an object in order to identify its contents For example, many Zope content objects have
a content type property. Another use for properties is to provide meta-data for an object such as its author, title, status,
etc.

Properties can be more complex than strings; they can also be numbers, lists, or other data structures. All properties

are managed via the Properties view. Click on the Properties tab of the "root" object and you will be taken to the
properties management view, as seen in the figure below.

80

The Zope Book (2.6 Edition)

Zope Quick Start : co B

i Root Folder Contents Yiew Properties Security Undo Owmnership Find
&) control_Ppanel
(3 Examples (O Folder at / Help!
0 sales Properties allow you to assign simple values to Zope objects. To change property
acl_users values, edit the values and click "Save Changes".
(3 homewark
] import_example Bigsalue bype
B8 tomp. foldar title [Zope string
8 z00 Save Changes Delete
© Zope Corporation
Refresh To add a new property, enter a3 name, type and value for the new property and click

the "add" button,

Name | Type | stiing =l
value | add

Figure 3-12 The Properties Management View
A property consists of a hname, a value, and a type. A property's type defines what kind of value or values it can have.
In the figure above, you can see that the folder has a single string property: title . It has the value Zope . You may
change any predefined property by changing its value in the Value box, clicking Save Changes afterwards. You may

add additional properties to an object by entering a name, value, and type into the bottommaost form on the Properties
view the.

Zope supports a number of property types. Each type is suited to a specific task. This list gives a brief overview of the
kinds of properties you can create from the management interface:

string — A string is an arbitrary length sequence of characters. Strings are the most basic and useful type of property
in Zope.

int — An int property is an integer, which can be any positive or negative number that is not a fraction. An int is
guaranteed at least 32 bits long.

long — A long is like an integer that has no range limitation.

float — A float holds a floating point, or decimal number. Monetary values, for example, often use floats.
lines — A lines property is a sequence of strings.

tokens — A tokens property is list of words separated by spaces.

text — A text property is just like a string property, except that Zope normalizes the line ending characters (different
browsers use different line ending conventions).

selection — A selection property is special, it is used to render an HTML select input widget.

multiple selection — A multiple selection property is special, it is used to render an HTML multiple select form input
widget.

81

The Zope Book (2.6 Edition)

Properties are very useful tools for tagging your Zope objects with little bits of "metadata”. Properties are supported by
most Zope objects, and are often referenced by "dynamic" Zope objects such as "scripts" and "methods" (which we
have not yet discussed) for purposes of data display.

Using the Help System

Zope has a built in help system. Every management screen has a help button in the upper right-hand corner. This
button launches another browser window which exposes the Zope Help System.

To see the help system, go to the root folder and click the Help link to the top far right in the Workspace frame.

W e Y seam || ObjectManager — Contents: Edit contained objects. -
ZopeTutorial
Zope Help Description

Script (Python)
StandardCachel anagers This view displays the contained objects and allows you to add, delete and

SiteAccess change them.
Each contained object is displayed on a line and is identified by an icon, an id
and atitle in parenthesis. Additionally, the size (if applicable) and the date

during which the object was last modified are displayed. You can manage an
object by clicking on its identifying link,

Soxting

“You can sort contained objects by type, name (id), size, or medification date. To
do 5o, click enthe appropriate column heading. Clicking a second time on any
column heading will reverse the sort on that field.

Versions

[f wou are currently working in a version there will be a notice at the top of the
list of objects indicating this.

If there is ared diamond followine the name of an obiect this indicates that the =l

Figure 3-13 The Help System.

The help system has an organization similiar to the two primary panes of the Zope management interface, it has one
frame for navigation and one for displaying the current topic.

Whenever you click the help button from the Zope management screen, the right frame of the help system displays the
help topic for the current management screen. In this case, you see information about the Contents view of a folder.

Browsing and Searching Help

Normally you use the help system to get help on a specific topic. However, you can browse through all of the help
content if you are curious, or simply want to find out about things besides the management screen you are currently
viewing.

The help system lets you browse all of the help topics in the Contents tab of the left-hand help frame. You can expand
and collapse help topics. To view a help topic in the right frame, click on it in the left frame. By default, no topics are
expanded.

Most help pertaining to Zope itself is located in the Zope Help folder. Click on the "plus sign" next to the word Zope
Help in the Contents tab of the left frame. The frame will expand to show help topics (in an apparently random and
somewhat unhelpful order, currently) and further expandable help categories including API Reference , DTML
Reference , and ZPT Reference . These subcategories contain help on scripting Zope, which is explained further in the
chapters named Dynamic Content With DTML , Using Zope Page Templates , and Advanced Zope Scripting .

82

The Zope Book (2.6 Edition)

When you install third-party Zope components they may also include help. Each installed component has its own help
folder.

You may search for content in the help system by clicking on the Search tab in the left frame, entering one or more
search terms. For example, to find all of the help topics that mention folders, type "folder" into the search form and click
"Search". This will return a number of help topic links, hopefully most of which pertain to the word "folder".

Logging Out

You may select Logout from the Status Frame dropdown box to attempt to log out of Zope. Doing so will cause your
browser to "pop up" an authentication dialog. Due to the way most web browsers work, in some cases you actually
need to click on the "OK" button with an incorrect user name and password filled in to the authentication dialog to really
become logged out of the management interface. If you do not do so, you may find that even after selecting "Logout”,
that you are still logged in. This is an intrinsinc limitation of the HTTP Basic Authentication protocol which Zope's stock
user folder employs. Alternately, you may close and reopen your browser to log out of Zope.

83

The Zope Book (2.6 Edition)

Using Basic Zope Objects

When building a web application with Zope, you construct the application out of objects . The most fundamental Zope
objects are explained in this chapter.

Basic Zope Objects

Zope ships with objects that help you perform different tasks. By design, different objects handle different parts of your
application. Some objects hold your content data, such as word processor documents, spreadsheets and images.
Some objects handle your application's logic by accepting input from a web form, or executing a script. Some objects
control the way your content is displayed, or presented to your viewer, for example, as a web page, or via email.

In general, basic Zope objects take on one of three types of roles:

Content — Zope objects such as documents, images and files hold different kinds of textual and binary data. In
addition to objects in Zope containing content, Zope can work with content stored externally, for example, in a relational
database.

Presentation — You can control the look and feel of your site with Zope objects that act as web page "templates".
Zope comes with two facilities to help you manage presentation: DTML (which also handles "logic"), and Zope Page
Templates (ZPT). The difference between DTML and ZPT is that DTML allows you to mix presentation and logic, while
ZPT does not.

Logic — Zope has facilities for scripting business logic. Zope allows you to script behavior using three facilities:
Document Template Markup Language (DTML), Python, and Perl (Perl is only available as an add-on). "Logic" is any
kind of programming that does not involve presentation, but rather involves carrying out tasks like changing objects,
sending messages, testing conditions and responding to events.

The lines between these object categories can become slightly fuzzy. For example, some aspects of DTML fit into each
of the three categories. But it's mostly for presentation so we stick it in there. Zope also has other kinds of objects that
fit into none of these categories. These are explored further in the chapter entitled Zope Services . You may also install
"third party" Zope objects to expand Zope's capabilities. These are typically called "Products”. You can browse a list of
available Zope Products at Zope.org .

Content Objects: Folders, Files, and Images

Folders

You've already met one of the fundamental Zope objects: the Folder . Folders are the building blocks of Zope. The
purpose of a folder is simple: a Folder's only job in life is contain other objects.

Folders can contain any other kind of Zope object, including other folders. You can nest folders inside each other to
form a tree of folders. This kind of "folder within a folder" arrangement provides your Zope site with structure . Good
structure is very important, as Zope security and presentation is influenced by your site's folder structure. Folder
structure should be very familiar to anyone who has worked with files and folders on their computer using a file
manager program like Microsoft Windows Explorer or any one of the popular UNIX file managers like xfm , kfm , or the
Gnome file manager.

Files

84

The Zope Book (2.6 Edition)

Zope Files contain raw data, just as the files on your computer do. Software, audio, video and documents are typically
transported around the Internet and the world as files. A Zope File object is an analogue to these kinds of files. You can

use Files to hold any kind of information that Zope doesn't specifically support, such as Flash files, Java applets,
“"tarballs", etc.

Files do not consider their contents to be of any special format, textual or otherwise. Files are good for holding any kind
of binary content which is just raw computer information of some kind. Files are also good for holding textual content if
the content doesn't necessarily need to be edited through the web.

Every File object has a particular content type which is a standard Internet MIME designation for types of content.
Examples of content types are "text/plain” (plain text content), "text/html" (html text content), and "application/pdf"' (an

Adobe Portable Document Format file). When you upload a file into Zope, Zope tries to guess the content type from the
name of the file.

Creating and Editing Files

To create File object in your Zope instance, visit the root folder and select File from Zope's Add list. Before filling out
the "id" or "title" of the File object, click the Browse button from the resulting "Add File" screen. This should cause your
browser to display a dialog box allowing you to choose a "real" file from your local computer which will be uploaded to
Zope when the "Add" button on the "Add File" form is selected. Try choosing a file on your local computer such as a
Word file (.doc) or a Portable Document Format (.pdf) file.

Zope Quick Start x|} Go [

8 Root Folder Add File Help!
5] Control_Panel

Select a file to upload from your local computer by clicking the Browse button,
5] Examples

acl_users id |
3 homework Tit.fe|
i .
g import_example File IE:\Program Files\Adobehde - Browse... |
T temp_folder
D Zoo A_ddl File Upload I
© Zope Corporation ; = :
Refresh Laak ir: IaENU j - i

@ACROBAT‘PDF
IEDocBox.pdf
IEMiniReal:Ier.m:lF
IEReal:Ier.de

Iy Documents

3]
Figure 4-1 Adding a PDF File Object

Zope attempts to use the filename of the file your choose to upload as the File object'sid andtitl e ,thusyou don't
needtosupplyanid ortitle inthe "Add File" form unless you want the File object to be named differently than the
filename of the file on your local computer. After selecting a file to upload, click Add . Depending on the size of the file
you want to upload, it may take a few minutes to add the file to Zope.

After you add the File, a File object with the name of the file on your local computer will appear in the Workspace pane.
Look at its Edit view. Here you will see that Zope has guessed the content type as shown in the figure below.

85

The Zope Book (2.6 Edition)

| zape Quick Start ~|f Go |

Root Folder Edit Yiew Properties Security Undo Ownership

&8 control_panel
88 Examples Bl File at /Reader.pdf Help!
acl_users You can update the data for this file object using the form below. Select a data file
[homewark from your local computer by clicking the frowse button and click upload to update the
@ import_example contents of the file. You may also edit the file content directly if the cantent is a text
3] frip ;Dlder type and small enough to be edited in a text area.
D zZoo Title IFleader pdf
© Zope Corporation —
Bifaah Content Type |app||c:at|0n.-"pdf
Precondition |
Last Modified 2002-07-13 17:20
File Size 1,004,634 bytes
Save Changes |
File Data | Browse... |
Upload |

Figure 4-2 Editing an Uploaded PDF File Object

If you add a Word document, the content type is application/msword . If you add a PDF file, the content type is
application/pdf . If Zope does not recognize the file type, it chooses the default, generic content type of
application/octet-stream . Zope doesn't always guess correctly, so the ability to change the content type of a File object
is provided in the editing interface. To change the content type of a File object, type the new content type into the
Content Type form field and click the Save Changes button.

You can specify a precondition for a file. A precondition is the name of an executable Zope object (such as a DTML
Method, a Script (Python), or an external method) which is executed before the File is viewed or downloaded. If the
precondition raises an exception (an error), the file cannot be viewed. This is a seldom-used feature of Files.

You can change the contents of an existing File object by selecting a new file from your local filesystem in the File Data
form element, clicking Upload when the file has been selected.

Editing File Contents

If your File holds only text and is smaller than 64 kilobytes, Zope will allow you to edit its contents in a textarea within
the Edit view of the management interface. A text file is one that has a content-type that starts with text/ , such as
text/html , or text/plain .

Viewing Files

You can view a file in the Workspace frame by clicking the View tab from a File's management screen.

86

8 Root Folder

The Zope Book (2.6 Edition)

. | Zope Quick Start x|} Go

BS@-| -8 &B0BME]|K <> e s»][oa-B-&1
Control_Panel | SOk - @ | 0 @ o .
@ Examples e »
acl usars Bookmark ~ ackob Rcro bt R aderHalp UsingHelp j
_| - Lslng Halp | Contants | Inds. Eack o 1 B
(3 homewark &[] Using Help -
[import_example @-[] Contents
£ temp_folder LJIndex) Using Help
#-[] Legal Matices
(0 z00
© Zope Corporation it
Refresh B
pwlicp pen.Ifthe
boakmark pan b ot opn chicss Window > Boakmarks,or iype F5. You can regaia
s a by g thec =
Using Bookmarks
being 7ot
= P [watopk.
expanclar 1o show Hesubtopics E contaires
- Tovkw the
o it pan the
o o iy by schacting Highlght Cumant Bookmarkintha ;I
4 A L) i A 1ofs2 v M masxiin | O = w4 ;

Figure 4-3 Viewing an Uploaded PDF File Object

You can also view a File by visiting its Zope URL. For example, if you have a file in your Zope root folder called
Reader.pdf then you can view that file in your web browser by going to the URL http://localhost:8080/Reader.pdf .
Depending on the type of the file and your web browser's configuration, your web browser may choose to display the
file or download it.

Images

Image objects contain the data from image files such as GIF, JPEG, and PNG files. In Zope, Images are very similar to
File objects, but include extra behavior for managing graphic content.

Image objects have the same management interface as file objects. Everything in the previous section about using file
objects also applies to images. However, Image objects show you a preview of the image when you upload them.

Presentation Objects: Zope Page Templates and DTML Objects

Zope encourages you to keep your presentation and logic separate by providing different objects that are intended to
be used expressly for for "presentation”. "Presentation” is defined as the task of dynamically defining layout of web
pages and other user-visible data. Presentation objects typically render HTML (and sometimes XML or WML).

Zope has two "presentation” facilities: Zope Page Templates (ZPT) and Document Template Markup Language
(DTML). ZPT and DTML are similar to one another but they have slight differences in scope and audience, which are
explained in a succeeding section.

Zope Page Templates are objects which allow you to define dynamic presentation for a web page. The HTML in your
template is made dynamic by inserting special XML namespace elements into your HTML which define the dynamic
behavior for that page.

Document Template Markup Language objects are object which also allow you to define presentation for a web page.

The HTML in your template is made dynamic by inserting special "tags" (directives surrounded by angle brackets,
typically) into your HTML with define the dynamic behavior for that page.

87

The Zope Book (2.6 Edition)

Both ZPT and DTML are "server-side" scripting languages, like SSI, PHP, embperl, or JSP. This means that DTML and
ZPT commands are executed by Zope on the server, and the result of that execution is sent to your web browser. By
contrast, client-side scripting languages like Javascript are not processed by the server, but are rather sent to and
executed by your web browser.

ZPT vs. DTML: Same Purpose, Different Audiences

There is a major problem with many languages designed for the purpose of creating dynamic HTML content: they don't
allow for "separation of presentation and logic" very well. For example, "tag-based" scripting languages like DTML, SSI,
PHP, and JSP encourage programmers to embed special tags into HTML that are, at best, mysterious to graphics
designers who "just want to make the page look good" and don't know (or want to know!) a lot about creating an
application around the HTML which they generate. Worse, these tags can sometimes cause the HTML on which the
designer has been working to become "invalid" HTML, unrecognizable by any of his or her tools.

Typically when using these kinds of technologies, an HTML designer will "mock up" a page in a tool like Macromedia
Dreamweaver or Adobe GolLive. He will then hand it off to a web programmer who will decorate the page with special
tags to insert dynamic content. However, using tag-based scripting languages, this is a "one way" function. If the
presentation ever needs to change, the programmer cannot just hand back the page that has been "decorated" with the
special tags, because these tags will often be ignored or stripped out by the designer's tools. One of several things
needs to happen at this point to enact the presentation changes: 1) the designer mocks up a new page and the
programmer re-embeds the dynamic tags "from scratch" or 2) the designer hand-edits the HTML, working around the
dynamic tags, or 3) the programmer does the presentation himself. Clearly, none of these options are desirable
situation, because neither the programmer nor the designer are doing the things that they are best at in the most
efficient way.

Zope's original dynamic presentation language was DTML. It soon became apparent that DTML was great at allowing
programmers to quickly generate dynamic web pages, but many times failed at allowing programmers to work
effectively together with nontechnical graphics designers. Thus, ZPT was born. ZPT is an "attribute-based"
presentation language that tries to allow for the "round-trippping" of templates between programmers and nontechnical
designers.

Both ZPT and DTML are fully supported in Zope, for now and in the future. Because ZPT and DTML have an
overlapping scope, many people are confused about whether to choose one or the other for a given task. A set of
“"rules of thumb" are appropriate here:

» ZPT is the "tool of choice" if you have a mixed team of programmers and nontechnical designers. Design tools
like Macromedia Dreamweaver do not "stomp on" ZPT embedded in a page template, while these tools do
"stomp on" DTML tags embedded in an HTML page. Additionally, any given ZPT page template is typically
viewable in a browser with "default” (static) content even if it has commands embedded in it, which makes it
easier for both programmers and designers to preview their work "on the fly". Dynamic DTML content, on the
other hand may not be "previewable" in any meaningful way until it is rendered.

* Use DTML when you need to generate non-XML, non-HTML, or non-XHTML-compliant HTML text. ZPT
requires that you create pages that are XHTML and/or XML-compliant. ZPT cannot add dynamicism to CSS
style sheets, SQL statements, or other non-XML-ish text. DTML excels at it.

« DTML may be easier for some programmers to write because it provides greater control over "conditionals" ("if
this, do this, else, do that") than does ZPT. In this respect, it more closely resembles languages such as PHP
and ASP-based scripting languages than does ZPT, so it's typically a good "starting place" for programmers
coming from these kinds of technologies.

88

The Zope Book (2.6 Edition)

« DTML code can become "logic-heavy" because it does not enforce the "separation of presentation from logic"
as strictly as does ZPT. Embedding too much logic in presentation is almost always a bad thing, but is
particularly bad when you are working on a "mixed" team of programmers and designers. If you're a
"separation of presentation from logic" purist, you will almost certainly prefer ZPT.

Zope Page Templates

Zope Page Templates (ZPTs) are typically used to create dynamic HTML pages.

Creating A Page Template

Create a Folder called Sales in the root folder. Enter the Sales folder by clicking on it, then select Page Template from
the Add list. The add form for a page template will be displayed. Specify the i d "SalesPage" and click Add . You have
successfully created a page template. Its content is standard "boilerplate" text at this point.

Editing A Page Template

The easiest way to edit a page template is by clicking on its name or icon in the Zope management interface. When
you click on either one of those items, you are taken to the Edit view of the page template which gives you a textarea
where you can edit the template. Click on the "SalesPage" template. You will see something like:

Zope Quick Start =] Go |

a3 Control_Panel

B 3 Examples 3 Page Template at /Sales/SalesPage Help!
(0 sales Titie | Content-Type [rest/himi
3] Browse HTML source
& acl_users Last Modified 2002-07-14 05:30 PM N
[hamewark [Expand macros when editing |
] import_example <html= =
r.r' “heads=
= temp_folder “title tal:content="template/title"=>The title</titlex
(3 za0 </head>

i <haodys

© Zope Corporation 25

Refresh <hZr<span tal:replace="here/title_or_id"rcontent title or id</span=

<span tal:condition="template/citle"]
tal:replace="template/citle">optional template id</span=<;/hix

This is Page Template <em tal:content="templatesid"rtemplate id</em:.
“/bodys
< /html=

4]

Figure 4-4 Default Page Template Content

Replace the original content that comes with the page template with the following HTML:
<htmi >
<body>
<h1>This is ny first page tenplate!</hl>

</ body>
</htm >

Then click Save Changes at the bottom of the edit form.

Uploading A Page Template

89

The Zope Book (2.6 Edition)

If you'd prefer not to edit your HTML templates in a web browser, or you have some existing HTML pages that you'd
like to bring into Zope, Zope allows you to upload your existing html files and convert them to page templates.

Create a text file on your local computer named "test.html". Populate it with the following content:

<htm >
<body>
<h1>This is ny second page tenplate! </ hl>
</ body>
</htm >

While visiting the Sales folder, select Page Template from the add menu, which will cause the page template add form
to be displayed. The last form element on the add form is the Browse button. Click this button. Your browser will then
pop up a file selection dialog box. Select the "test.html" file, type in an Id of "test" for the new Page Template and click
Add and Edit . After clicking Add and Edit , you will be taken back to the Edit form of your uploaded page template.

Viewing A Page Template

You can view a Page Template in the Workspace frame by clicking the Test tab from the template's management
screen. Click the Test tab of the SalesPage template, and you will see something like the following figure.

Zaope Quick Start »|] Go

This is my first page template!

3 Control_Panel
] Examples
(0 sales
acl_users
[homewark
] import_example

£ temp_folder

(0 za0
© Zope Corporation
Refresh

Figure 4-5 Viewing a Page Template
You can also view a Page Template by visiting its Zope URL directly.

DTML Objects: DTML Documents and DTML Methods

DTML is the "other" Zope facility for the creation of presentation in Zope. Two kinds of DTML objects are addable from
the Zope Management Interface: DTML Documents and DTML Methods . Both kinds of objects allow you to perform
security-constrained presentation logic. The code placed into DTML objects is constrained by Zope's security policy ,
which means, for the most part, that they are unable to import all but a set of restricted Python "modules", and they
cannot directly access files on your filesystem. This is actually a "feature", as it allows site administrators to safely
delegate the ability to create DTML to "untrusted"” or "semi-trusted" users. For more information about Zope's security
features, see Users and Security .

90

The Zope Book (2.6 Edition)

A source of frequent confusion for DTML beginners is the question of when to use a DTML Document versus when to
use a DTML Method. On the surface, these two options seem identical. They both hold DTML and other content, they
both execute DTML code, and they both have a similar user interface and a similar API, so what's the difference?

DTML Methods are meant to hold bits of dynamic content that are to be displayed by other DTML Methods and other
kinds of Zope objects. For instance, you might create a DTML Method that rendered the content of a navigation bar or
a DTML Method that represented a "standard" header for all of your HTML pages. On the other hand, DTML
Documents are meant to hold "document-like" content that can stand on its own. DTML Documents also support
properties, while DTML Methods do not. The distinction between DTML Methods and DTML Documents is subtle, and
if Zope Corporation had it to do "all over again”, DTML Documents would likely not exist. (Editor's aside: Believe me, |
almost certainly enjoy writing about the difference less than you like reading about it. ;-) There is more information on
this topic in the chapters entitled Basic DTML and Variables and Advanced DTML .

As a general rule, you should use a DTML Method to hold DTML content unless you have a really good reason for
using a DTML Document, such as a requirement that the container of your DTML content support object properties.

Creating DTML Methods

Click on the Sales folder and then select DTML Method from the add list. This process will take you to the add form for
a DTML Method. Specify the id "SalesStaff" and the title "The Jungle Sales Staff" and click Add . An entry for the new
DTML Method object will be displayed in the Contents view of the Workspace pane.

Editing DTML Methods

The easiest and quickest way to edit your newly-created DTML Method is through the management interface. To select
your method, click on its name or icon, which will bring up the form shown in the figure below.

I3

8 Root Folder Fith
itle ungle Sales Staff
5] Control_Panel p
D Examples <dtml-var standard html_header>
“hZ=<dtml-wvar title_or_id> <dtml-wvar document title=<;/hZ>
(0 sales <pr
Sl usars This is the <dtml-var document_ids Document _
o in the <dtml-var title_and id» Folder.
[homewark < p
D impart_sxample <dtml-var standard html_ footer>
£ temp_folder
(0 za0
© Zope Corporation
Refresh =
Save Changes | Taller | Sharter | Wider | Narrawer
w

Figure 4-6 Editing a DTML Method

This view shows a text area in which you can edit the content of your document. If you click the Save Changes button
you make effective any changes you have made in the text area. You can control the size of the text area with the
Taller , Shorter , Wider , and Narrower buttons. You can also upload a new file into the document with a the File text
box and the Upload File button.

91

The Zope Book (2.6 Edition)

Delete the default content that is automatically inside the current DTML Method. Then add the following HTML content
to the textarea:

<htm >
<body>
<h2>Jungl e Sal es Staff</h2>

Tarzan
<l i >Cheet ah</1i >
Jane

</ ul >

</ body>

</htm >

Note that the example provided above doesn't do anything "dynamic", it's just some HTML. We will explore the creation

of dynamic content with DTML in a later chapter. For now, we're just getting used to using a DTML Method object via
the ZMI.

After you have completed the changes to your method, click the Change button. Zope returns with a message telling
you that your changes have taken effect.

Viewing a DTML Method

You can view a "rendered" DTML Method in the Workspace frame by clicking its View tab. Click the View tab of the
SalesStaff DTML method, and you will be presented with something like the following:

Zaope Quick Start »|| Go [

Jungle Sales Staff
5] Control_Panel
6] Examples : g;r:;:;h
[sales * Jane
acl_users
3 homewark
] import_example

£ temp_folder

0200
© Zope Corporation
Refresh

Figure 4-7 Viewing a Rendered DTML Method
You can also view a DTML Method by visiting its Zope URL directly.

Uploading an HTML File as Content for a DTML Method

Suppose you'd prefer not to edit your HTML files in a web browser, or you have some existing HTML pages that you'd
like to bring into Zope. Zope allows you to upload your existing text files and convert them to DTML Methods.

Create a text file on your local computer named "test.html". Populate it with the following content:

92

The Zope Book (2.6 Edition)

<htm >
<body>
<h1>This is ny first upl oaded DTM. Docunent!</hil>
</ body>
</htm >

While visiting the Sales folder, select DTML Method from the add menu, which will cause the DTML Method add form
to be displayed. The last form element on the add form is the Browse button. Click this button. Your browser will then
pop up a file selection dialog box. Select the "test.html" file, type in an Id of "test" for the new DTML Method and click
Add and Edit . After clicking Add and Edit , you will be taken back to the Edit form of your uploaded DTML Method.

Logic Objects: Script (Python) Objects and External Methods

"Logic" objects in Zope are objects which typically perform some sort of "heavy lifting" or "number crunching" in support
of presentation objects. When they are executed, they typically do not return HTML or any other sort of structured
presentation text. Instead, they typically return values that are easy for a presentation object to format for display. For
example, a logic object may return a "list" of "strings". Then, a presentation object may "call in" to the logic object and
format the results of the call into a one-column HTML table, where the rows of the table are populated by the strings.
Instead of embedding "logic" in a presentation object, you can (and often should) elect to move the logic into a logic
object, using a presentation object only to format the result for display. In this manner, you can change or replace the
presentation object without needing to "re-code" or replace the logic.

Note that logic objects, like presentation and content objects, are also addressable directly via a URL, and may elect to
return HTML, which can be displayed in a browser meaningfully. However, the return value of a logic object can almost
always be displayed in a browser, even if the logic object does not return HTML.

There are two kinds of logic objects supported by "stock" Zope: Script (Python) objects and External Methods . An
add-on product allows you to code logic in Perl . Several community-contributed Products exist which allow you to use
Zope to manage your PHP and JSP scripts, as well, but they are not integrated as tightly as the Python- or Perl-based
logic objects. They are PHParser , PHPObject , and ZopeJSP .

The "stock" logic objects, External Methods and Script (Python) objects are written in the syntax of the Python scripting
language. Python is a general-purpose programming language. You are encouraged to read the Python Tutorial in
order to understand the syntax and semantics of the example Script (Python) objects and Exernal Methods shown
throughout this chapter and throughout this book.

One important Python feature that must be mentioned here, however: Pyhon uses whitespace in the form of
indentation to denote block structure. Where other languages, such as C, Perl, and PHP might use "curly braces" to
express a block of code, Python determines code blocks by examining the indentation of your code text. If you're used
to other programming languages, this may take some "getting-used-to" (typically consisting of a few hours of unsavory
spoken language ;-). If you have problems saving or executing Script or External Method objects, make sure to check
your Script's indentation.

Script (Python) Objects

Script (Python) objects are one kind of logic object. Note that the torturous form of their name (as opposed to "Python
Script") is unfortunate: a legal issue prevents Zope Corporation from naming them "Python Scripts”, but most folks at
Zope Corporation and in the Zope community refer to them in conversation as just that.

Script (Python) objects are "security-constrained" web-editable pieces of code that are written in a subset of the Python
scripting language. Not all Python code is executable via a Script (Python) object. Script (Python) objects are
constrained by Zope's security policy , which means, for the most part, that they are unable to import all but a set of
restricted Python "modules”, and they cannot directly access files on your filesystem. This is actually a "feature”, as it

93

The Zope Book (2.6 Edition)
allows site administrators to safely delegate the ability to create logic in Python to "untrusted" or "semi-trusted" users.
For more information about Zope's security features, see Users and Security .

Creating A Script (Python)

Enter the Sales folder you created earlier by clicking on it, then select Script (Python) from the Add list. The add form
for the object will be displayed. Specify the i d "SalesScript" and click Add . You will see an entry in the Sales folder
Content view representing the "SalesScript" Script (Python) object. Its content is standard "boilerplate” text at this point.

Editing A Script (Python)

The easiest way to edit a Script (Python) is by clicking on its name or icon in the Zope management interface. When
you click on either one of those items, you are taken to the Edit view of the Script (Python) which gives you a textarea
where you can edit the template. Click on the "SalesScript" icon. You will see something like:

Zope Quick Start x|l Go

8 Root Folder
3 Control_Panel
(3 Examples 2L Script (Python) at /Sales/SalesScript Help!
[sales Title I
acl_users Parameter List |
3 homework Bound Names context, container, script, traverse_subpath =
] import_example Last Modified 2002-07-17 00:04
£ temp_folder # Example code:
[za0) .
. # Import a standard function, and get the HTML recuest and response objects.
© ZD[JE Curpuratlun from Products. PythonScripts.standard import html cquote
Refresh recquest = container. REQUEST
RESPONSE = request.RESPONSE
Return a string identifying this script.
print "This is the", script.meta type, '"$s"' % script.getId(),

if script.title:

print "(%s)" % html gquote(script.titlel,
print "in", container.abhsolute_url()
return printed

4

Figure 4-8 Default Script Content
In the Parameter List form element, type nane="Chri s"

Replace the original content that comes in the "body" (the big TEXTAREA) of the Script (Python) object with the
following text:

return 'Hello, % fromthe % script' % (nane, script.id)

Then click Save Changes at the bottom of the edit form.

Testing A Script (Python)

You can "test" a Script (Python) in the Workspace frame by clicking the Test tab from the Script's management screen.
When you test a script, the output of the script will be displayed in your browser. Script testing may require that you

provide values for the script's parameters before you can view the results. Click the Test tab of the SalesScript object,
and you will see something like the following figure.

94

The Zope Book (2.6 Edition)

Zope Quick Start x|l Go

Control_Panel
(3 Examples 2 Script (Python) at /Sales/SalesScript Help!
O sales Enter variable values to pass to the script in the form below and click run script to
acl_users view the result of the call,
(3 homework
& import_example Parameter Yalue
£ temp_folder Iname I
[z00 Run Script |
© Zope Corporation
Refresh

Figure 4-9 Testing a Script

In the Value box next to the nane parameter, type your name. Then click "Run Script". You will be presented with
output in the Workspace frame not unlike:

Hel l o, [yournane] fromthe Sal esScript script

If a Script does not require parameters or has defaults for its parameters (as does the example above), you may visit its
URL directly to see its output. In our case, visiting the URL of SalesScript directly in your browser will produce:

Hello, Chris fromthe Sal esScript script

If a Script does require or accept parameters, you may also influence its execution by visiting its URL directly with a
"query string". In our case, visiting the URL htt p: / /| ocal host : 8080/ Sal esScri pt ?name=Fr ed will produce the
following output:

Hel l o, Fred fromthe Sal esScript script

Zope maps query string argument values to their corresponding parameters automatically, as you can see by this
output.

Uploading A Script (Python)

Uploading the body of a Script (Python) is much like uploading the body of a DTML Method or Page Template. One
significant difference is that Script (Python) objects interpret text that is offset by "double-pound” (##) at the beginning
of the text as data about their parameters, title, and "bindings". For example, if you entered the following in a text editor
and uploaded it, the lines that start with "double-pound"” signs would be interpreted as parameter data, and the only text
in the "body" would be the r et ur n line. It would appear exactly as our SalesScript did:

Script (Python) "SalesScript”

##bi nd cont ai ner =cont ai ner

##bi nd cont ext =cont ext

##bi nd namespace=

##bi nd script=script

##bi nd subpat h=traver se_subpat h

##par anet er s=nanme="Chri s"

#H#titl e=

#H

return "Hello, % fromthe % script' % (name, script.id)

95

The Zope Book (2.6 Edition)

You may see this view of a Script (Python) object by clicking on the vi ew or downl oad link in the description
beneath the "body" textarea.

You may also type the "double-pound” quoted text into the "body" textarea along with the actual script lines and the
"double-pound" quoted text will be "automagically” turned into bindings and parameters for the Script.

External Methods

External Methods objects are another kind of logic object. They are very similar to Script (Python) objects. They are
scripted in the Python programming language, and they are used for the same purpose. The have a few important
differences:

e They are not editable using the Zope Management Interface. Instead, External Methods "modules"” need to be
created on the filesystem of your Zope server in a special subdirectory of your Zope directory named
Ext ensi ons .

« Because they are not editable via the Zope Management Interface, their execution is not constrained by the
Zope "security machinery". This means that unlike Script (Python) objects, they can import and execute
essentially arbitrary Python code and access files on your Zope server's file system.

e They do not support the concept of "bindings" (which we have not discussed much, but please just make note
for now).

External methods are often useful as an "escape hatch" when Zope's security policy prevents you from using a Script
(Python) or DTML to do a particular job that requires more access than is "safe" in through-the-web-editable scripts.
For example, a Script (Python) cannot write to files on your server's filesystem, while an External Method may.

Creating and Editing An External Method File

Minimize the browser you're using to access the Zope Management Interface. Open a "shell" console on the machine
which you're using as a Zope server. Navigate to the Zope installation folder. You will encounter a subfolder in the
Zope installation folder named Ext ensi ons . Navigate into this folder and create a text file there with the name

Sal eseM py . Within this file, save the following content:

def Sal esEM sel f, name="Chris"):

id=self.id
return 'Hello, % fromthe % external nmethod' % (nane, id)

Creating an External Method Object

Before you can use an External Method from within Zope, you need to create an External Method object in your Zope
Management Interface that "refers to" the function in the file that you just created. Reopen your browser window and
visit the Zope Management Interface. Navigate to the Sales folder and select External Method from the Add list. The
Add Form for an Exernal Method will appear. Provide an | d of Sal esEM ,aTitl e of Sal es External Method ,
a Modul e Name of Sal eseEM and a Functi on Name of Sal esEM .

Then click Add at the bottom of the add form.

Testing An External Method Object

You can "test" an External Method in the Workspace frame by clicking the Test tab from the External Method's
management screen. When you test an external method, the output of the external method will be displayed in your

96

The Zope Book (2.6 Edition)

browser. Unlike Script (Python) objects, External Methods provide no mechanism for specifying parameter values
during testing. However, like Script (Python) objects, their output is influenced by values in a query string when you visit
them directly.

Click the Test tab of the SalesEM object, and you will see something like the following figure.

Zope Quick Start x|l Go

. Root Folder Hello, Chris from the S5ales external method

3 Control_Panel
] Examples
[sales
acl_users
(3 homework
] import_example

£ temp_folder

(0 za0
© Zope Corporation
Refresh

Figure 4-9 Testing an External Method

If an External Method does not require parameters (or has defaults for its parameters, as in the example above), you
may visit its URL directly to see its output.

Provide alternate values via a query string to influence the execution of the External Method. For example, visiting the
SaleseM external Method via htt p: / /1 ocal host : 8080/ Sal es/ Sal esEM?name=Fr ed will display the following
output:

Hell o, Fred fromthe Sal es external nethod

Alert readers will note that the i d provided by the output is not the i d of the External Method (Sal esEM). Itis
instead the i d of the "containing" folder, which is named Sal es ! This is a demonstration of the fact that External
Methods (as well as Script (Python) objects are mostly meant to be used in the "context" of another object, which is
often a Folder. This is why they are named methods . Typically, you don't often want to access information about the
External Method or Script itself; all the "interesting" information is usually kept in other objects (like Folders). An
External Method or Script "knows about" its context and can display information about the context without much fuss.

SQL Methods: Another Kind of Logic Object

SQL Methods are logic objects used to store and execute database queries that you can reuse in your web
applications. We don't explain them in this chapter, because we haven't yet explained how to interface Zope with a
relational database. SQL Methods are explained in the chapter entitled Relational Database Connectivity , where an
example of creating a web application using a relational database is given.

Creating a Basic Zope Application Using Page Templates and Scripts

97

The Zope Book (2.6 Edition)

Here is a simple example of using Zope's logic and content objects to build an online web form to help your users
calculate the amount of compound interest on their debts. This kind of calculation involves the following procedure:

1. You need the following information: your current account balance (or debt) called the "principal”, the annual interest
rate expressed as a decimal (like 0.095) called the "interest_rate", the number of times during the year interest in
compounded (usually monthly), called the "periods" and the number of years from now you want to calculate, called the
"years" .

2. Divide your "interest_rate" by "periods” (usually 12). We'll call this result
3. Take "periods" and multiply it by "years". We'll call this result "n".

4. Raise (1 + "i") to the power "n".

5. Multiply the result by your "principal”. This is the new balance (or debt).
We will use Page Template and Script objects to construct an application that will perform this task.

For this example, you will need two Page Templates with the ids interestRateForm and interestRateDisplay ,
respectively to collect the information from the user and display it. You will also need a Script (Python) with an id of
calculateCompoundinglnterest that will do the actual calculation.

The first step is to create a folder in which to hold the application. In your Zope's root folder, create a folder named
"Interest". You will create all of the objects which follow within this folder.

Creating a Data Collection Form

Visit the Interest folder by clicking on it within the Zope Management Interface. Within the Interest folder, create a Page
Template with the id interestRateForm that collects "principal”, "interest_rate", "periods" and "years" from your users.
Use this text as the body of your interestRateForm page template:
<htm >

<body>

<form acti on="interestRateDi spl ay" met hod="POST" >
<p>Pl ease enter the follow ng i nformation: </p>

Your current bal ance (or debt): <input nane="principal:float">

Your annual interest rate: <input name="interest_rate:float">

Nunmber of periods in a year: <input nane="periods:int">

Nunber of years: <input nane="years:int">

<input type="submit" value=" Cal cul ate ">

</forne

</ body>
</htm >

This form collects information and, when it is submitted, calls the interestRateDisplay template (which we have not yet
created).

Creatng A Script To Calculate Interest Rates

Now, revisit the Contents view of the Interest folder and create a Script (Python) object with the id
calculateCompoundinglnterest that accepts four parameters: pri nci pal ,interest _rate ,periods andyears
. Provide it with the following "body":

Cal cul at e conpoundi ng i nterest.

98

The Zope Book (2.6 Edition)

i interest_rate / periods
n periods * years
return ((1 + i) ** n) * principa

Remember: you enter the parameter names, separated by commas, into the Parameters List field, and the body into
the body text area. Remember also that when you're creating a Script (Python) object, you're actually programming in
the Python programming language which is indentation-sensitive. Make sure each of the lines above line up along the
very left side of the text area, or you may get an error when you attempt to save it.

Creating A Page Template To Display Results

Next, go back to the Contents view of the Interest folder and create a Page Template with the id interestRateDisplay .
This Page Template is called by interestRateForm and calls calculateCompoundinginterest . It also renders and
returns the results:

<htm >
<body>
Your total balance (or debt) including conpounded interest over
<span tal:define="years request/years
princi pal request/principal
interest_rate request/interest_rate
peri ods request/periods">
2 years is:

$
<span tal:content="python: here. cal cul at eConpoundi ngl nt erest (princi pal
interest_rate
peri ods,
years)" >1.00
</ b>
</ span>
</ body>
</htm >

Dealing With Errors

In any programming venue, you will need to deal with errors. Nobody's perfect! You may have already encountered
some as you've entered these scripts. Let's explore errors a bit by way of an example. In our case, we cannot use the
Page Template Test tab to test the interestRateDisplay without receiving an error, because it depends on the
interestRateForm to supply it with the variables "years, "principal”, "interest_rate" and "periods". It is not directly
"testable". For the sake of "seeing the problem before it happens for real”, click the Test tab. Zope will present an error

page with text not unlike the text below:
Zope Error
Zope has encountered an error while publishing this resource

Error Type: KeyError
Error Val ue: years

This error message is telling you that your Page Template makes a reference to a variable "years" that it can't find. If
you've created a Site Error Log object in your root folder (it will be named error_log), you can view the full error by
visiting the error_log object and clicking the topmost error log entry link which will be name KeyError: years on the Log
tab. The error log entry will be displayed. It contains information about the error, including the time, the user who
received the error, the URL which caused the error to happen, the exception type, the exception value, and a
"Traceback" which typically gives you enough information to understand what happened. In our case, the part of the
traceback that is interesting to us is:

* Modul e Products. PageTenpl at es. TALES, line 217, in evaluate

URL: /Interest/interestRateD splay
Line 4, Colum 8

99

The Zope Book (2.6 Edition)

Expression: standard:'request/years'

This tells us that the failure occured when the Page Template attempted to access the variable r equest/years . We
know why: there is no variable r equest / year s , because that variable is only "filled in" as a result of posting via our
interestRateForm , which calls in to our interestRateDisplay Page Template, which has the effect of inserting the

variables pri nci pal ,interest_rate ,periods andyears intorequest "namespace". We'll cover Page
Template namespaces in a succeeding chapter, but for now, let's move on.

Using The Application

Let's use the application you've just created. Visit the interestRateForm Page Template and click the Test tab.

Type in 20000 for balance or debt, . 06 for interest rate, 4 for periods in a year, and 20 for number of years and
click Calculate . This will cause interestRateForm to submit the collect information to interestRateDisplay , which calls

the Script (Python) named calculateCompoundinglinterest . The display method uses the value returned by the script in
the resulting display. You will see the following result.

Zope Quick Start x|l Go
[} Root Folder Your total balance {or debt) including corpounded interest over 20 wears is:

Cantral_Panel $ 65813.2557308
] Examples
D Interest
(0 sales
acl_users
(3 homework
] import_example

£ temp_folder

(0 za0
© Zope Corporation
Refresh

Figure 4-10 Result of the Interest Application

If you see something close to this, it calls for congratulations, because you've just built your first Zope application
successfully. If you are having troubles, try to troubleshoot the application by using the tips in the section above
"Dealing With Errors." If you're stuck entirely, it's advisable that you send a message to the Zope mailing list detailing
the problem that you're having in as concise and clear a form as possible. It is likely that someone there will be able to
help you. It is polite to subscribe to the maillist itself if you want to receive replies. See the Mailing list section of
Zope.org for information about how to subscribe to the Zope (zope@zope.org) maillist.

The Zope Tutorial

Zope comes with a built-in tutorial which reinforces some of the concepts you've learned here. As an extension of this
book, we recommend that you run the tutorial to get a feel for using basic Zope objects (particularly DTML objects). To
use the tutorial properly, your browser should support JavaScript and cookies .

To launch the tutorial, navigate to the root folder and add a Zope Tutorial object by selecting Zope Tutorial from the add
list. When the add form asks for an "id" for the object, give it the id tutorial and click "Add". You will be directed to a

100

The Zope Book (2.6 Edition)

screen with a "Begin Tutorial" button. When you click the "Begin Tutorial" button, a new browser window resembling the
help system will be opened with the tutorial. If another window does not appear, either your browser does not support
JavaScript or it is configured to disallow the opening of new windows. This will prevent you from being able to use the
tutorial, so you may want to try a different browser.

If you start the tutorial and want to stop using it before you have completed all the lessons, you can later return to the

tutorial. Just go to the help system and find the lesson you'd like to continue with by visiting the help system and
navigating to the Zope Tutorial help category. There is no need to re-install the tutorial.

101

The Zope Book (2.6 Edition)

Acquisition

Acquisition is the technology that allows dynamic behavior to be shared between Zope objects via containment .

Acquisition's flavor permeates Zope. It can be used almost everywhere within Zope: in DTML, in Zope Page Templates,
in Script (Python) objects, and even in Zope URLSs. Because of its ubiquity in Zope, a basic understanding of
acquisition is important.

Acquisition vs. Inheritance

The chapter entitled Object Orientation describes a concept called inheritance . Using inheritance, an object can inherit
some of the behaviors of a specific class, overriding or adding other behaviors as necessary. Behaviors of a class are
nearly always defined by its methods , although attributes can be inherited as well.

In a typical object-oriented language, there are rules to the way a subclass inherits behavior from its superclasses . For
example, in Python (a multiple-inheritance language), a class may have more than one superclass, and rules are used
to determine which of a class' superclasses is used to define behavior in any given circumstance. We'll define a few
Python classes here to demonstrate. You don't really need to know Python inside and out to understand these
examples. Just know that a cl ass statement defines a class and a def statement inside of a class statement defines
a method. A class statement followed by one or more words inside (Parenthesis) causes that class to inherit behavior
from the classes named in the parenthesis.:

cl ass SuperA:
def amethod(sel f):
print "I amthe 'anethod' nethod of the SuperA cl ass"

def anot hernet hod(sel f):
print "I amthe 'anothernethod nethod of the SuperA cl ass"

cl ass SuperB:
def amethod(sel f):
print "I amthe 'anethod" nethod of the SuperB cl ass"

def anot hernet hod(sel f):
print "I amthe 'anothernethod" nmnethod of the SuperB cl ass"

def athirdmethod(sel f):
print "I amthe 'anothernethod nmnethod of the SuperB cl ass"

cl ass Sub(SuperA, SuperB):
def amet hod(sel f):
print "I amthe 'anethod' nethod of the Sub cl ass"

If we make an instance of the "Sub" class, and attempt to call one of its methods, there are rules in place to determine
whether the behavior of the method will be defined by the Sub class itself, its SuperA superclass, or its SuperB
superclass. The rules are fairly simple. If the Sub class has itself defined the named method, that method definition will
be used. Otherwise, the inheritance hierarchy will be searched for a method definition.

The inheritance hierarchy is defined by the class' superclass definitions. In the case of the Sub class above, it has a
simple inheritance hierarchy: it inherits first from the SuperA superclass, then it inherits from the SuperB superclass.
This means that if you call a method on an instance of the Sub class, and that method is not defined as part of the Sub
class' definition, it will first search for the method in the SuperA class and if it doesn't find it there, it will search in the
SuperB class.

Here is an example of calling methods on an instance of the above-defined Sub class using the Python interpreter:

>>> jnstance = Sub()

102

The Zope Book (2.6 Edition)

>>> j nstance. anmet hod()

| amthe 'amethod' nethod of the Sub cl ass

>>> j nst ance. anot her net hod()

| am the 'anothernmethod' nethod of the SuperA class
>>> jnstance. at hi rdmet hod()

| amthe 'anot hernethod' nethod of the SuperB cl ass

Note that when we called the anot her met hod method on the Sub instance, we got the return value of SuperA's
method definition for that method, even though both SuperA and SuperB defined that method. This is because the
inheritance hierarchy specifies that the first superclass (SuperA) is searched first.

The point of this example is that instances of objects use their inheritance hierarchy to determine their behavior. In
non-Zope applications, this is the only way that object instances know about their set of behaviors. However, in Zope,
objects make use of another facility to search for their behaviors: acquisition .

Acquisition is about Containment

The concept behind acquisition is simple:

» Objects are situated inside other objects. These objects act as their "containers". For example, the container of a
DTML Method named "amethod" inside the DTML_Example folder is the DTML_Example folder.

» Objects may acquire behavior from their containers.

Inheritance stipulates that an object can learn about its behavior from its superclasses via an inheritance hierarchy .
Acquisition , on the other hand, stipulates that an object can additionally learn about its behavior its through its
containment hierarchy . In Zope, an object's inheritance hierarchy is always searched for behavior before its acquisition
hierarchy. If the method or attribute is not found in the object's inheritance hierarchy, the acquisition hierarchy is
searched.

Say What?

Let's toss aside the formal explanations. Acquisition can be best explained with a simple example.

Place a DTML Method named acqusi ti on_t est inyour Zope root folder. Give it the following body:

<htm >
<body>
<p>
| ambeing called fromw thin the <dtnl-var id> Fol der
</ p>
</ body>
</htm >

Save it and then use the DTML Method "View" tab to see the result of the DTML method in your Workspace frame. You
will see something not unlike the following:

| ambeing called fromw thin the Zope Fol der

The i d of the Zope root folder is Zope , so this makes sense. Now create a Folder inside your Zope root folder
named Acqui si ti onTest Fol der . We're going to invoke the acqui si ti on_t est method in the context of the
AcquisitionTestFolder folder. To do this, assuming your Zope is running on your local machine on port 8080, visit the

URL http:/ /1 ocal host: 8080/ Acqui siti onTest Fol der/acqui sition_test .You will see something not
unlike the following:

| am being called fromwi thin the AcquisitionTestFol der Fol der

103

The Zope Book (2.6 Edition)

Note that even though an object named acqui si ti on_t est does not "live" inside the AcquisitionTestFolder folder,
Zope found the method and displayed a result anyway! Not only did Zope display a result, instead of inserting the i d
of the Zope root folder, it inserted the i d of the AcquisitionTestFolder folder! This is an example of acquisition in
action. The concept is simple: if a named object is not found as an attribute of the object you're searching, its
containers are searched until the object is found. In this way, acquisition can add behavior to objects. In this case, we
added a behavior to the AcqusitionTestFolder folder that it didn't have before (by way of giving it an

acqui sition_test method).

Providing Services

It can be said that acquisition allows objects to acquire services by way of containment. For example, our
AcquisitionTestFolder folder acquired the services of the acqui si ti on_t est method.

Not only do objects acquire services, they also provide them. For example, adding a Mail Host object to a Folder
named AFol der provides other objects in that folder with the ability to send mail. But it also provides objects
contained in subfolders of that folder with the capability to send mail. If you create subfolders of AFol der named
Anot her Fol der and AThi r dFol der , you can be assured that objects placed in these folders will also be able to
send mail in exactly the same way as objects placed in AFol der

Acquisition "goes both ways". When you create an object in Zope, it has the capability to automatically acquire
services. Additionally, it automatically provides services that other objects can acquire. This makes reuse of services
very easy since you don't have to do anything special to make services available to other objects.

Getting Deeper with Multiple Levels

If you place a method in the root folder, and create a subfolder in the root folder, you can acquires the method's
behaviors. So what happens if things get more complex? Perhaps you have a method that needs to be acquired from
withinside a couple of folders. Is it acquired from its parent, or its parent's parent, or what?

The answer is that acquisition works on the entire object hierarchy. If for example you have a DTML Method in the root
folder. Also in the root folder you have three nested Folders named "Users", "Barney" and "Songs". You may call this
URL:

/ User s/ Bar ney/ Songs/ HappySong

The HappySong method is found in the root folder unless one of the other folders "Users", "Barney" or "Songs"
happens to also have a method named "HappySong", in which case that method is used. The HappySong method is
searched for first directly in the "Songs" folder. If it is not found, the acquisition hierarchy is searched starting at the first
container in the hierarchy: "Barney". If it is not found in "Barney", the "Users" folder is searched. If it is not found in the
"Users" folder, the root folder is searched. This search is called searching the acquisition path or alternately searching
the containment hierarchy .

Aquisition is not limited to searching a containment hierarchy: it can also search a context hierarchy . Acquisition by

context is terribly difficult to explain, and you should avoid it if possible. However, if you want more information about
aquiring via a context and you are ready to have your brain explode, please see the presentation named Acquisition
Algebra .

Summary

Acquisition allows behavior to be distributed throughout the system. When you add a new object to Zope, you don't
need to specify all its behavior, only the part of its behavior that is unique to it. For the rest of its behavior it relies on
other objects. This means that you can change an object's behavior by changing where it is located in the object

104

The Zope Book (2.6 Edition)

hierarchy. This is a very powerful function which gives your Zope applications flexibility.

Acquisition is useful for providing objects with behavior that doesn't need to be specified by their own methods or
methods found in their inheritance hierarchies. Acquisition is particularly useful for sharing information (such as
headers and footers) between objects in different folders as well. You will see how you can make use of acquisition
within different Zope technologies in upcoming chapters.

A more exhaustive technical explanation of the underpinnings of Zope's acquisition technology is available in the Zope
Developer's Guide .

105

The Zope Book (2.6 Edition)

Basic DTML

DTML (Document Template Markup Language) is a templating facility which supports the creation of dynamic HTML
and text. It is typically used in Zope to create dynamic web pages. For example, you might use DTML to create a web
page which "fills in" rows and cells of an HTML table contained within the page from data fetched out of a database.

DTML is a tag-based presentation and scripting language. This means that tags (e.g. & t; dtnl -var nane>)
embedded in your HTML cause parts of your page to be replaced with "computed" content.

DTML is a "server-side" scripting language. This means that DTML commands are executed by Zope at the server, and
the result of that execution is sent to your web browser. By contrast, "client-side" scripting languages like JavaScript
are not processed by the server, but are rather sent to and executed by your web browser.

How DTML Relates to Similar Languages and Templating Facilities

DTML is similar in function to "HTML-embedded" scripting languages such as JSP, PHP, or mod_perl. It differs from
these facilities inasmuch as it will not allow you to create "inline" Python statements (if... then.. else..) in the way that
JSP, mod_perl or PHP will allow you to embed a block of their respective language's code into an HTML page. DTML
does allow you to embed Python expressions (a == 1) into HTML-like tags. It provides flow control and conditional logic
by way of "special* HTML tags. It is more similar to Perl's HTM.: : Tenpl at e package than it is to mod_perl in this
way. It can also be compared to the web server facility of Server Side Includes (SSI), but with far more features and
flexibility.

When To Use DTML

If you want to make a set of dynamic web pages that share bits of content with each other, and you aren't working on a
project that calls for a tremendous amount of collaboration between programmers and tool-wielding designers, DTML
works well. Likewise, if you want to dynamically create non-HTML text (like CSS stylesheets or email messages),
DTML can help.

When Not To Use DTML

If you want code which expresses a set of complex algorithms to be maintainable (as "logic" programming should be),
you shouldn't write it in DTML. DTML is not a general purpose programming language, it instead is a special language
designed for formatting and displaying content. While it may be possible to implement complex algorithms in DTML, it is
often painful.

For example, let's suppose you want to write a web page which displays a representation of the famous Fibonacci
sequence . You would not want to write the program that actually makes the calculation of the Fibonacci numbers by
writing DTML. It could be done in DTML, but the result would be difficult to understand and maintain. However, DTML is
perfect for describing the page that the results of the Fibonnacci calculations are inserted into. You can "call out" from
DTML to Script (Python) objects as necessary and process the results of the call in DTML. For example, it is trivial in
Python (search for the word Fibonacci on this page) to implement a Fibonacci sequence generator, and trivial in DTML
to create a dynamic web page which shows these numbers in a readable format. If you find yourself creating complex
and hard-to-understand logic in DTML, it's likely time to explore the the Zope features which allow you to script "logic"
in Python, while letting DTML do the presentation "dirty work".

String processing is another area where DTML is likely not the best choice. If you want to manipulate input from a user

in a complex way, but using functions that manipulate strings, you are better off doing it in Python, which has more
more powerful string processing capabilities than DTML.

106

The Zope Book (2.6 Edition)

Zope has a technology named Zope Presentation Templates which has purpose similar to DTML. DTML and ZPT are
both facilities which allow you to create dynamic HTML. However, DTML is capable of creating dynamic text which is
not HTML, while ZPT is limited to creating text which is HTML (or XML). DTML also allows users to embed more
extensive "logic" in the form of conditionals and flow-control than does ZPT. While the source to a ZPT page is almost
always "well-formed" HTML through its lifetime, the source to DTML pages are not guaranteed to be "well-formed"
HTML, and thus don't play well in many cases with external editing tools such as Dreamweaver.

Both ZPT and DTML are fully supported technologies in Zope, and neither is "going away" any time soon. A discussion
about when to use one instead of the other is available in the chapter entitled Using Basic Zope Objects in the section
entitled "ZPT vs. DTML: Same Purpose, Different Audiences", but the choice is sometimes subjective.

The Difference Between DTML Documents and DTML Methods

You can use DTML scripting commands in two types of Zope objects, DTML Documents and DTML Methods . These
two types of DTML objects are subtly different from one another, and their differences cause many would-be DTML
programmers to become confused when deciding to use one versus the other. So what is the difference?

DTML Methods are used to carry out actions. They are presentation objects (as used in the vernacular of the Using
Basic Zope Objects chapter). If you want to render the properties or attributes of another object like a DTML Document
or a Folder, you will use a DTML Method. DTML Methods do not have their own properties.

DTML Documents are content objects (in the vernacular used in the chapter entitled Using Basic Zope Objects). If you
want to create a "stand-alone" HTML or text document, you might create a DTML Document object to hold the HTML or
text. DTML Document objects have their own properties (attributes), unlike DTML Methods.

In almost all cases, you will want to use a DTML Method object to perform DTML scripting. DTML Document objects
are an artifact of Zope's history that is somewhat unfortunate. In Zope's earlier days, a consensus came about that it
was important to have objects in Zope that could perform DTML commands but have properties of their own. At the
time, the other content objects in Zope, such as Files and Images were either nonexistent or had limitations in
functionality that made the concept of a DTML Document attractive. That attraction has waned as Zope's other built-in
content objects have become more functional. DTML Documents remain in Zope almost solely as a
backwards-compatibility measure. If you never use a DTML Document in your work with Zope, you won't miss out on
much!

Details

DTML Methods are method objects. The chapter named Object Orientation discusses the concept of a "method".
DTML Methods are methods of the folder that contains them, and thus they do not have regard for their own identity as
a Zope object when they are used. For example, if you had a folder called Folder and a DTML method in that folder
called Method:

AFol der/
AMet hod

AMethod is a method of AFolder. This means that AMethod does not have any of it's own attributes or properties.
Instead it uses those of AFolder. Suppose you put the following DTML string in AMethod:

<dtm -var id>

When you view the AMethod DTML Method, you will see the string AFol der , whichisthei d of AMethod's

containing Folder (AFolder). When this DTML method is viewed, it resolves the name i d to the string which is the
value of AFolder'si d property.

107

The Zope Book (2.6 Edition)

DTML Documents, on the other hand, are not methods. They are "aware" of their own identity as Zope objects. For
example, if you created a DTML Document in the folder AFolder called ADocument, and you put the above DTML
string into ADocument and viewed it, it would render to the string ADocunent . It resolves the name i d to the string
which is the value of its own id, not the id of its containing folder.

For this chapter, unless stated otherwise, use DTML Methods to hold the example DTML text, as opposed to
DTML Documents!

DTML Tag Syntax

DTML contains two kinds of tags, singleton and block tags. Singleton tags consist of one tag enclosed by less-than
(<) and greater-than (>) symbols. The var tag is an example of a singleton tag:

<dtnml -var parrot>
There's no need to close the var tag with a </ dt m - var > tag because it is a singleton tag.
Block tags consist of two tags, one that opens the block and one that closes the block, and content that goes between
them:
<dtm -i n nmySequence>
<l-- this is an HTM. comment inside the in tag block -->
</dtm-in>

The opening tag starts the block and the closing tag ends it. The closing tag has the same name as the opening tag
with a slash preceding it. This is the same convention that HTML and XML use.

DTML Tag Names, Targets, and Attributes

All DTML tags have names . The name is simply the word which follows dt m - . For instance, the name of the DTML
tagdt m -var isvar ,andthe name ofthe DTMLtagdtm -in isin .

Most DTML tags have targets . The target of a DTML tag is just the word or expression that, after a space, follows the
tag name. For example, the target of the DTML tag <dtm -var standard_htm _header> is

standard_hm _header . Thetargetofthe DTMLtag <dtnl -in foo> isfoo . The target of the DTML tag
'<dtml-var "objectlds()"> is the expression "objectlds()". The target typically refers to the name of an object (or a Python
expression that resolves to an object) that you wish the tag to operate upon.

All DTML tags have attributes . An attribute provides information about how the tag is supposed to work. Some
attributes are optional. For example, the var tag inserts the value of its target. It has an optional missing attribute that
specifies a default value in case the variable can't be found:

<dtm -var wi ngspan m ssi ng="unknown wi ngspan">
If the wingspan variable is not found then unknown w ngspan is inserted instead.

Some attributes don't have values. For example, you can convert an inserted variable to upper case with the upper
attribute:

<dtml -var excl amati on upper >

Here we are referencing the exclamation target, modifying it with the attribute upper . Notice that the upper attribute,
unlike the missing attribute doesn't need a value.

108

The Zope Book (2.6 Edition)

See the DTML Reference appendix for more information on the syntax of different DTML tags.

Creating a "Sandbox" for the Examples in This Chapter

You should create a Folder in your Zope's root folder named "DTML_Examples" if you intend on creating objects from
examples in this chapter. Create the example objects within this "sandbox". This prevents you from littering your Zope
root folder with DTML examples.

Examples of Using DTML for Common Tasks

Below, we show how to use DTML to complete three common tasks: inserting text into a web page, displaying results
by iterating over a sequence, and processing form results.

Inserting Text into HTML with DTML

DTML commands are written as tags that begin with dtml- . You create dynamic content in DTML by mixing HTML tags
and DTML tags together. Inserting the value of a variable (a variable is also known as a "target") into HTML is the most
basic task that you can perform with DTML. Many DTML tags insert variable values, and they all do it in a similar way.
Let's look more closely at how Zope inserts variable values.

Create a folder in your sandbox with the id "Feedbags" and the title "Bob's Fancy Feedbags". While inside the
Feedbags folder, create a DTML Method with an id of "pricelist". Then change the contents of the DTML Method to the
following:

<dtm -var standard_htm _header>
<hl>Price list for <dtm-var title></hl>

<p>Henp Bag $2.50</p>
<p>Si | k Bag $5.00</p>

<dtnml -var standard_htm _footer>
Now view the DTML Method by clicking the View tab. When you view the DTML method this way, it will be rendered ,
which means that you will not necessarily see a straight representation of the HTML that you typed in to the form.

Instead you will see the rendered version of the page, which will include the extra text provided by DTML by way of the
tags you've inserted. You should see something like the figure below::

109

The Zope Book (2.6 Edition)

Zope Quick Start x|l Go

Price list for

&) control_Ppanel

(0 pTML_Example Herap Bag $2.50

] Examples Sill Bag $5.00
D Interest
(0 sales Powered by
acl_users ZOPE
(3 homework

] import_example

£ temp_folder

D duln)

© Zope Corporation
Refresh

Figure 9-1 Viewing the pricelist method

If you tell your browser to view the HTML source of the Workspace frame, you will see something not unlike the below:
<ht ml ><head><tit| e>Feedbags</titl| e></ head><body bgcol or =" #FFFFFF" >
<hl>Price list for </hl>

<p>Henp Bag $2.50</ p>
<p>Si | k Bag $5.00</p>

<p>
<img src="http://Iocal host: 8080/ p_/ ZopeBut t on"
wi dt h="115" hei ght ="50" border="0" alt="Powered by Zope" />
</ a>
</ p>
</ body>
</htm >

That's certainly not what you typed in, is it?

DTML makes the reuse of content and layout possible. In the example above, we've made use of the

standard_ht ml _header DTML Method and the st andard_ht ml _f oot er DTML Method, both of which live in the
root folder, to insert HTML text into our page. These DTML methods (and any other DTML method) can be used by
other DTML methods to insert text into our rendered output.

We've seen that DTML inserts an HTML header, an HTML footer, and a title into the web page. But how does the "var"
tag find the values that it inserts in place of "standard_html_header", "title" and "standard_html_footer"?

DTML name lookup is somewhat "magical”, because you don't need to explicitly tell DTML where to find a variable.
Instead, it tries to guess what you mean by following a preordained set of search rules. DTML gets the values for
variable names by searching an environment which includes the current object, the containment path, and request
variables like values submitted by a form and cookies. The DTML Name Lookup Rules represent the namespaces
searched and their relative precedence. As an example, let's follow the pri cel i st DTML code step-by-step. In our
pricelist method, we've asked DTML to look up three names: "standard_html_header", "title", and
"standard_html_footer". It searches for these variables in the order that they are mentioned in the page.

DTML looks first for "standard_html_header". It looks in the "current object” first, which is its container, the Feedbags
folder. The Feedbags folder doesn't have any methods or properties or sub-objects by that name. Next Zope tries to

110

The Zope Book (2.6 Edition)

acquire the object from its containers. It examines the Feedbags folder's container (your sandbox folder, likely named
"DTML_Examples"), which also doesn't turn up anything. It continues searching through any intermediate containters,
which also don't have a method or property named "standard_html_header" unless you've put one there. It keeps going
until it gets to the root folder. The root folder does have a sub-object named "standard_html_header", which comes as
a default object in every Zope. The st andard_ht Ml _header objectis a DTML Method. So Zope calls the
standard_htm _header method in the root folder and inserts the results into the page. Note that once DTML finds a
property or variable, if it is callable (as in the case of a DTML Method, an External Method, a SQL Method, or a Script
(Python) object), it is called and the results of the call are inserted into the page.

Next DTML looks for the name "title". Here, the search is a shorter. On its first try, DTML finds the Feedbags folder's
title property andinsertsit. Thetitl e property is not a method or a script, so DTML doesn't need to call it. It just
renders it into the output.

Finally DTML looks for the name standard_html_footer . It has to search all the way up to the root folder to find it, just
like it looked for standard_html_header . It calls the standard_html_footer in the root and inserts the text result.

The resulting page is fully assembled (rendered) at this point, and is sent to your browser.

Understanding how DTML looks up variables is important. We will explore the DTML name lookup mechanism further
in the chapter entitled Advanced DTML . It is also documented in Appendix E .

Formatting and Displaying Sequences

It is common that people want to use DTML to format and display sequences . A sequence is just a list of items, like
"Fred, Joe, Jim". Often, you want to create an HTML table or a bulleted list that contains elements in a sequence. Let's
use DTML to call out to an object which returns a sequence and render its result.

Create a Script (Python) object in your sandbox folder named "actors". Give the script the following body and save it:

Script (Python) "actors"

##bi nd cont ai ner =cont ai ner

##bi nd cont ext =cont ext

##bi nd namespace=

##bi nd script=script

##bi nd subpat h=traverse_subpat h

##par anet er s=

#Htitl e=

#it

return ['Jack Lemmon', 'Ed Harris','A Pacino', 'Kevin Spacey', 'Alan Arkin']

Make sure that all of the lines of this script line up along the left-hand side of the textarea to avoid receiving an error
when you attempt to save the script, since Python is sensitive to indentation. This Script (Python) object returns a
Python data structure which is a list of strings . A list is a kind of sequence , which means that DTML can iterate over it
using the dtml-in tag. Now create a DTML Method named "showActors" in your sandbox, give it this body, and save it:

<htm >
<body>
<hl>Actors in the novie G engarry G en Ross</hl>
<tabl e border="1">
<t h>Name</t h>
<dtm -in actors>
<tr>
<td><dtm -var sequence-itenp</td>
</[tr>
</dtm-in>
</t abl e>
</ body>
</htm >

111

The Zope Book (2.6 Edition)

The DTML in tag iterates over the results of the actors script and inserts a table row into a table for each of the actors
mentioned in the script. Note that inside the table cell, we use a special name sequence-item . sequence-item is a
special name that is meaningful within a dtml-in tag. It refers to the "current item" (in this case, the actor name string)
during processing. The HTML source of the Workspace frame when you click the View tab on the showAct or s
method will look something like:

<htm >
<body>
<hl>Actors in the novie G engarry G en Ross</hl>
<tabl e border="1">
<t h>Name</t h>
<tr>
<td>Jack Lemmon</td>

</tr>

<tr>
<td>Ed Harris</td>
</tr>

<tr>
<t d>Al Paci no</td>
</tr>

<tr>

<t d>Kevi n Spacey</td>
</[tr>
<tr>
<td>Al an Arkin</td>
</[tr>
</t abl e>
</ body>
</htm >

Note that you didn't have to specifically tell DTML that you are querying a Script (Python) object. You just tell it the
name of the object to call (in this case act or s), and it does the work of figuring out how to call the object and pass it
appropriate arguments. If you replace the act or s Script with some other kind of object that does exactly the same
thing, like another DTML Method, you won't have to change your showAct or s DTML Method. It will "just work".

Processing Input from Forms

You can use DTML to perform actions based on the information contained in the submission of an HTML form.

Create a DTML Method named "infoForm" with the following body:
<dtnml -var standard_htm _header>

<p>Pl ease send me infornmati on on your aardvark adoption
program </ p>

<form action="inf oActi on">
nanme: <input type="text" nanme="user_nane">

emai | : <input type="text" nane="enmil _addr">

<input type="subnmit" nane="submt" value=" Submt ">
</forne

<dtm -var standard_htm _footer>

This is a web form that asks the user for information, specifically his user name and email address. Note that you refer
to the name "infoAction" as the action of the HTML form. This really has nothing to do with DTML, it's an attribute of the
HTML form tag. But the name specified in the form action tag can name another Zope object which will receive and
process the results of the form when it is submitted.

Create a DTML Method named infoAction in the same folder as the i nf oFor m method. This is the target of the
i nf oFor m form action. This method will display a bland "thanks" message which includes the name and email

112

The Zope Book (2.6 Edition)

information that was gathered from the web form. Provide the infoAction method with the following body and save it:
<dtml -var standard_htm _header>

<h1>Thanks <dtml -var user_nane></hl>

<p>We received your request for information and will send you

emai|l at <dtm -var emmil_addr> describing our aardvark adoption

program as soon as it receives final governnental approval.

</ p>

<dtml -var standard_htm _footer>

Navigate back to the i nf oFor m method and use the View tab to execute it. Fill out the form and click the Submit

button. If all goes well you should see a thank you message that includes your name and email address, much like the
figure below::

Zope Quick Start x|} Go

Thanks chris

Control_Panel

6] DTML_Example We recemved your request for information and will send you ermail at chrisr@zope com describing our aardark adoption
@ Examples Pprograt as s00h as it recefves final governonental approvval.

D Interest Powered by

[sales ZOPE

acl_users

[homework
6] import_example

n temp_folder

(3 za0

© Zope Corporation
Refresh

Figure 9-2 Result of submitting the infoForm method

The Zope object named REQUEST contains information about the current web request. This object is in the DTML
name lookup path. The i nf oAct i on method found the form information from the web request that happened when
you clicked the submit button on the rendering of i nf oFor m . DTML looks for variables in the current web request, so
you can just refer to the form variable names in the target method by name. In our case, we were able to display the
values of the form elements user_name and email_addr in the i nf 0Acti on method just by referring to them by name
in their respective dtml-var tags. DTML used its lookup rules to search for the variable names. It found the names in the
"REQUEST.form" namespace and displayed them. If it had found an object with either name email_addr or user_name
earlier in the lookup (if perhaps there was a Zope object in your acquisition path named user _nane) it would have
found this object first and rendered its results. But, mostly by chance, it didn't, and found the name in REQUEST
instead.

Let's examine the contents of the Zope REQUEST object in order to shed more light on the situation. Create a new
DTML Method object named show_r equest in your sandbox folder. Give it the the following body:

<dt ml -var REQUEST>

The show _r equest method will render a human-readable representation of Zope's REQUEST object when you click
submit on the i nf oFor m rendering. Visit the i nf oFor m method, and change it to the following:

<dtm -var standard_htm _header>

113

The Zope Book (2.6 Edition)

<p>Pl ease send nme informati on on your aardvark adoption
program </ p>

<f orm acti on="show_r equest ">
name: <input type="text" name="user_nane">

emai |l : <input type="text" name="emmil _addr">

<input type="submit" name="subnmit" val ue=" Submit ">
</form

<dtml -var standard_htm _footer>

We changed the form action of the i nf oFor m method to show_request . Now click the View tab of the new
i nf oFor m method. Fill in some information in the form elements, and click Submit . You will see something like the
following:

form
submt ' Submt '
enmmi | _addr ' chri sm@ope. com
user _nane ' Chris'

cooki es
tree-s 'eJzTi FZ3hANPW VYHUOALI YEI A’

lazy itens
SESSI ON <bound net hod Sessi onDat aManager . get Sessi onDat a of <Sessi onDat aManager instance at 897d020>

ot her
AUTHENTI| CATI ON_PATH "'
user _nane ' Chris'
PUBLI SHED <DTM_Met hod i nstance at 8a62670>
submt ' Submt
SERVER URL ' http://|ocal sai nts: 8084’
emai | _addr ' chri sm@ope. com
tree-s 'eJzTi FZ3hANPW VYHUOALI YEI A’
URL ' http://I|ocal saints: 8084/ DTM._Exanpl e/ show_r equest’
AUTHENT| CATED_USER admi n
Traver sal Request NameSt ack []
URLO http://Iocal sai nts: 8084/ DTM._Exanpl e/ show_r equest
URL1 http://local saints: 8084/ DTM__Exanpl e
URL2 http://Ilocal saints: 8084
BASEO http://Ilocal sai nts: 8084
BASE1 http://I|ocal saints: 8084
BASE2 http://I|ocal sai nts: 8084/ DTM__Exanpl e
BASE3 http://Ilocal sai nts: 8084/ DTM._Exanpl e/ show_r equest

environ
SCRI PT_NAME "'
HTTP_ACCEPT_ENCODI NG ' gzi p, defl ate, conpress;g=0.9'
SERVER_PORT ' 8084'
PATH_TRANSLATED ' / DTM._Exanpl e/ show_r equest’
HTTP_ACCEPT 'text/xm ...'
GATEWAY_I NTERFACE 'Cd /1.1’
HTTP_COCKI E 'tree-s="eJzTi FZ3hANPW VYHUOALI YEI A"’
HTTP_ACCEPT_LANGUAGCE ' en-us, en;g=0.50'
REMOTE_ADDR ' 192. 168. 1. 3'
SERVER NAME ' saints'
HTTP_USER AGENT ' Mozilla/5.0 (Wndows; U, Wndows NT 5.0; en-US; rv:1. 1la+) Gecko/ 20020629
HTTP_ACCEPT_CHARSET ' | SO 8859-1, utf-8;qg=0.66, *;q=0.66'
CONNECT!I ON_TYPE ' keep-al i ve'
channel . creation_time 1027876407
QUERY_STRI NG ' user _nane=Chri s&emai | _addr =chri sn?40zope. com&subni t =+Submi t +'
SERVER_PROTOCOL ' HTTP/ 1.1
HTTP_KEEP_ALI VE ' 300’
HTTP_HOST ' | ocal sai nt s: 8084'
REQUEST_METHOD ' GET'
PATH_I NFO ' / DTM__Exanpl e/ show_r equest"’
SERVER _SOFTWARE ' Zope/ (unrel eased version, python 2.1.3, |inux2) ZServer/1.1bl'
HTTP_REFERER ' http://I| ocal sai nts: 8084/ DTM._Exanpl e/ i nf oFor m

114

The Zope Book (2.6 Edition)

You have instructed the show_r equest method to render the contents of the web request initiated by the i nf oFor m
method. Note that each section (form, cookies, lazy items, other, and environ) represents a namespace inside the
REQUEST. DTML searches all of these namespaces for the names you refer to in your i nf oFor m form. Note that
email_addr and user_name are in the "form" namespace of the REQUEST. There is lots of information in the rendering
of the REQUEST, but for us, this is the most pertinent. For more information on the REQUEST object, visit the Zope
Help system, and choose Zope Help -> API Reference -> Request.

Dealing With Errors

Let's perform an experiment. What happens if you try to view the i nf oAct i on method you created in the last section
directly, as opposed to getting to it by submitting the i nf oFor m method? Click on the i nf oActi on method and then
click the View tab. You will see results not unlike those in the figure below.

Zope Quick Start x|} Go

B Rroot Folder Zope Error
Control_Panel _ S
] DTML_Example Zope has encountered an ervor while publishing this resource.
] Examples Exror Type: KeyError
[1nterest Error Value: user_name
(O sales
acl_users
- Troubleshooting Suggestions
(3 hamewark
@ import_example * This resource maybe trying to reference a nonexistent object or varishle user name.
G fald ® The URL may be incorrect.
D temp_folder ® The parameters passed to this resource may be incorrect.
Zoo

® & resource that this resowrce relies on may be encountering an error.
© Zope Corporation o . .
Refresh For more detailed information about the error, please refer to the HTIWIL source for this page.

If the error persists please contact the site maintainer. Thank you for wour patience.
Q5

Figure 9-3 DTML error resulting from a failed variable lookup.

Zope couldn't find the user_name variable since it was not in the current object, its containers or the web request. This
is an error that you're likely to see frequently as you learn Zope. Don't fear, it just means that you've tried to insert a
variable that Zope can't find. You can examine the error by visiting the error_log object in your root folder. In this case,
we know why the error occurred, so visiting the error in the error_log isn't really necessary. In this example, you need to
either insert a variable that Zope can find, or use the nmi ssi ng attribute on the var tag as described above:

<h1>Thanks <dtm -var user_name m ssi ng="Anonynous User"></hl>
Understanding where DTML looks for variables will help you figure out how to fix this kind of problem. In this case, you

have viewed a method that needs to be called from an HTML form like infoForm in order to provide variables to be
inserted in the output.

Dynamically Acquiring Content

Zope looks for DTML variables in the current object's containers (its parent folders) if it can't find the variable first in the
current object. This behavior allows your objects to find and use content and behavior defined in their parents. Zope
uses the term acquisition to refer to this dynamic use of content and behavior.

115

The Zope Book (2.6 Edition)

An example of acquisition that you've already seen is how web pages use standard headers and footers. To acquire
the standard header just ask Zope to insert it with the var tag:

<dtm -var standard_htm _header>

It doesn't matter where the st andard_ht m _net hod object or property is located. Zope will search upwards in the
object database until it finds the st andar d_ht ml _header that is defined in the root folder.

You can take advantage of how Zope looks up variables to customize your header in different parts of your site. Just

create a new st andard_ht ml _header in a folder and it will override global header for all web pages in your folder
and below it.

Create a new folder in your "sandbox" folder with an id of "Green". Enter the Gr een folder and create a DTML Method
with an id of "welcome". Edit the wel cone DTML Method to have these contents:

<dtm -var standard_htm _header>
<p>Wel cone</ p>

<dtnml -var standard_htm _footer>

Now view the wel cone method. It should look like a simple web page with the word welcome , as shown in the figure
below.

Zope Quick Start x|} Go
8 rRoot Folder Weleome

3 Control_Panel é Powered by
6] DTML_Example
] Examples ZOPE
D Interest
[sales
acl_users
[homework
] import_example

£ temp_folder

[zo0
© Zope Corporation
Refresh

Figure 9-4 Welcome method.

Now let's customize the header for the Green folder. Create a DTML Method in the Green folder with an id of
"standard_html_header". Give it the following body:

<htm >

<head>
<style type="text/css">
body {col or: #00FFOQO; }
p {font-famly: sans-serif;}
</styl e>

</ head>

<body>

116

The Zope Book (2.6 Edition)

Notice that this is not a complete web page. For example, it does not have an ending </ ht ml > tag. This is just a
fragment of HTML that will be used as a header, meant to be included into other pages. This header uses CSS
(Cascading Style Sheets) to make some changes to the look and feel of web pages.

Now revisit the wel come method and click its View tab again. You will see something like the figure below::

Zope Quick Start x|l Go
8 Root Folder Welcome

3 Control_Panel Powered by
] DTML_Example ZOPE
[Examples

D Interest
(0 sales
acl_users
(3 homework
] import_example

£ temp_folder

([zo0
© Zope Corporation
Refresh

Figure 9-5 Welcome method with custom header.

The rendering now looks quite different. This is because it is now using the new header we introduced in the Gr een
folder. This header will be used by all web pages in the Gr een folder and its sub-folders.

You can continue this process of overriding default content by creating another folder inside the G- een folder and
creating a st andard_ht ml _header DTML Method there. Now web pages in the sub-folder will use their local header

rather than the Gr een folder's header. You can of course also create a st andar d_ht ml _f oot er , providing it with
local content as well.

Using this pattern you can quickly change the look and feel of different parts of your web site. If you later decide that an
area of the site needs a different header, just create one. You don't have to change the DTML in any of the web pages;
they'll automatically find the closest header and use it.

Using Python Expressions from DTML

So far we've looked at simple DTML tags. Here's an example:

<dtm -var get Hi ppo>

This will insert the value of the variable named getHippo , whatever that may be. DTML will automatically take care of
the details, like finding the object which represents the variable and calling it if necessary. We call this basic tag syntax
name syntax to differentiate it from expression syntax.

When you use DTML name syntax, DTML tries to do the right thing to insert the results of the object looked up by the
variable name, no matter what that object may be. In general this means that if the variable is another DTML Method or
DTML Document, it will be called with appropriate arguments. However, if the variable is not another DTML Method or
DTML Document, and it requires parameters, you need to explicitly pass the arguments along using an expression.

117

The Zope Book (2.6 Edition)

Expressions used in DTML allow you to be more explicit about how to find and call variables. Expressions are tag
attributes that contain small snippets of code in the Python programming language. These are typically referred to as
Python expressions .

A Python expression is essentially any bit of code that is not a Python statement . For example, the Python statement

a = 1 assigns "1"to the "a" variable. You cannot use this statement in DTML expressions. Likewise, you cannot use
the statement pri nt "x" in DTML. It is not an expression. Essentially, an expression must be a combination of
values, variables, and Python operators . To find out more about Python's expression syntax, see the Python Tutorial at
the Python.org web site. For more information specifically about the differences between Python expressions and
statements, see the Variables, expressions, and statements chapter of How To Think Like a Computer Scientist Using
Python .

An expression always results in a return value. For example, the Python expression "a == 5" returns the integer 1 if "a"
is equal to the integer 5 or the integer O if "a" is not equal to the integer 5. The return value of an expression is used by
DTML as the target of the DTML command.

The primary difference in DTML between using expressions as targets and names as targets is that DTML does some
magic after it locates a named targets that it does not do after it finds an expression targets. For example, after finding
object with the name st andar d_ht mi _header in the root folder via the name-syntax DTML command <dt i - var
standard_htm _header> , DTML calls the st andard_ht Ml _header object, inserting the results into the page.
However, when you use an expression-syntax DTML command, like <dtm - var

expr="standard_htm _header"> , DTML will not call the st andard_ht ml _header object. Instead it will return a
representation of the object as a string. In order to call the st andard_ht ml _header object in an expression-syntax
DTML tag, you need to do it explicitly by passing along arguments. When you delve into the realm of DTML expression
syntax, DTML "magic" goes away, and you need to become aware of the arguments accepted by the target (if any) and
pass them along.

Let's create a Script (Python) object named get Hi ppo that must be called in DTML with expression syntax, because it
takes a non-optional argument that named DTML syntax cannot provide.

Create a Script (Python) in your sandbox folder named getHippo . Provide it with the following body:

Script (Python) "getH ppo"

##bi nd cont ai ner =cont ai ner

##bi nd cont ext =cont ext

##bi nd nanespace=

##bi nd script=script

##bi nd subpat h=t raver se_subpat h

##par anet er s=trap

#Htitl e=

it

return ' The hi ppo was captured with a %.' %trap

Note that this Script (Python) object takes a single parameter named "trap”. It is not an optional parameter, so we need
to pass a value in to this script for it to do anything useful.

Now let's make a DTML method to call get Hi ppo . Instead of letting DTML find and call getHippo , we can use an
expression to explicitly pass arguments. Create a DTML method named showHippo and give it the following body:

<dtm -var expr="getHi ppo('large net')">

Here we've used a Python expression to explicitly call the get Hi ppo method with the string argument, | ar ge net
View the showHi ppo DTML Method. It will return a result not unlike the following:

The hi ppo was captured with a | arge net.

To see why we need to use expression syntax to call this script, let's modify the showH ppo method to use DTML
name syntax:

118

The Zope Book (2.6 Edition)

<dtm -var get Hi ppo>

View the method. You will receive an error not unlike the following:

Error Type: TypeError
Error Val ue: getHi ppo() takes exactly 1 argunent (O given)

The get Hi ppo method requires that you pass in an argument, t r ap , that cannot be provided using DTML name
syntax. Thus, you receive an error when you try to view the showH ppo method.

Expressions make DTML pretty powerful. For example, using Python expressions, you can easily test conditions:
<dtm -if expr="foo < bar">

Foo is | ess than bar.
</dtm-if>

Without expressions, this very simple task would have to be broken out into a separate method and would add a lot of
overhead for something this trivial.

Before you get carried away with expressions, take care. Expressions can make your DTML hard to understand. Code
that is hard to understand is more likely to contain errors and is harder to maintain. Expressions can also lead to mixing
logic in your presentation. If you find yourself staring blankly at an expression for more than five seconds, stop. Rewrite
the DTML without the expression and use a Script to do your logic. Just because you can do complex things with
DTML doesn't mean you should.

DTML Expression Gotchas

Using Python expressions can be tricky. One common mistake is to confuse expressions with basic tag syntax. For
example:

<dtml -var obj ect Val ues>

and:

<dt ml -var expr="o0bj ect Val ues">

These two examples if you are to put them in a DTML Method will end up giving you two completely different results.
The first example of the DTML var tag will automatically call the object which is represented by objectValues .

In an expression, you have complete control over the variable rendering. In the case of our example, objectValues is a
method implemented in Python which returns the values of the objects in the current folder. It has no required
arguments. So:

<dtml -var obj ect Val ues>

will call the method. However,

<dtml-var expr="objectValues">

... will not call the method, it will just try to insert it. The result will be not a list of objects but a string such as <Pyt hon
Met hod obj ect at 8681298> . If you ever see results like this, there is a good chance that you're returning a
method, rather than calling it.

To call a Python method which requires no arguments from an expression, you must use standard Python calling
syntax by using parenthesis:

<dtm -var expr="obj ect Val ues()">

119

The Zope Book (2.6 Edition)

The lesson is that if you use Python expressions you must know what kind of variable you are inserting and must use
the proper Python syntax to appropriately render the variable.

Before we leave the subject of variable expressions we should mention that there is a deprecated form of the
expression syntax. You can leave out the "expr=" part on a variable expression tag. But please don't do this. It is far too
easy to confuse:

<dt nl -var aNane>
with:

<dtm -var "aNane">

and get two completely different results. These "shortcuts" were built into DTML long ago, but we do not encourage you
to use them now unless you are prepared to accept the confusion and debugging problems that come from this subtle
difference in syntax.

Common DTML Tags

Below, we discuss the most common DTML tags: the var tag, the if tag, the else tag, the elif tag, and the in tag,
providing examples for the usage of each.

The Var Tag

The var tag inserts variables into DTML Methods and Documents. We've already seen many examples of how the var
tag can be used to insert strings into web pages.

As you've seen, the var tag looks up variables first in the current object, then in its containers and finally in the web
request.

The var tag can also use Python expressions to provide more control in locating and calling variables.

Var Tag Attributes

You can control the behavior of the var tag using its attributes. The var tag has many attributes that help you in
common formatting situations. The attributes are summarized in Appendix A. Here's a sampling of var tag attributes.

html_quote — This attribute causes the inserted values to be HTML quoted. This means that '<’, '> and &' are
escaped. Note that as of Zope 2.6, all string values which are retrieved from the REQUEST namespace are
HTML-quoted by default. This helps to prevent "cross-site scripting” security holes present in earlier Zope versions,
where a user could insert some clever JavaScript into a page in order to possibly make you divulge information to him
which could be private. For more information, see the CERT advisory on the topic.

missing — The missing attribute allows you to specify a default value to use in case Zope can't find the variable. For
example:

<dtm -var bananas m ssi ng="We have no bananas">

fmt — The fmt attribute allows you to control the format of the var tags output. There are many possible formats which
are detailed in Appendix A .

One use of the fmt attribute is to format monetary values. For example, create a float property in your root folder called
adult_rate . This property will represent the cost for one adult to visit the Zoo. Give this property the value 2. 2 .

120

The Zope Book (2.6 Edition)

You can display this cost in a DTML Document or Method like so:

One Adult pass: <dtm-var adult_rate fnt=doll ars-and-cents>
This will correctly print "$2.20". It will round more precise decimal numbers to the nearest penny.

Var Tag Entity Syntax

Zope provides a shortcut DTML syntax just for the simple var tag. Because the var tag is a singleton, it can be
represented with an HTML entity like syntax:

&dt m - cockati el ;

This is equivalent to:

<dtm -var nanme="cockatiel" htm _quote>

Entity-syntax-based DTML tags always "html quote" their renderings. The main reason to use the entity syntax is to
avoid putting DTML tags inside HTML tags. For example, instead of writing:

<input type="text" value="<dtm -var nanme="defaul t Val ue" html _quote>">

You can use the entity syntax to make things more readable for you and your text editor:

<input type="text" val ue="&dtnl - def aul t Val ue; ">

The var tag entity syntax is very limited. You can't use Python expressions within entity-based DTML syntax and many
DTML attributes won't work with it. See Appendix A for more information on var tag entity syntax.

The If Tag

One of DTML's important benefits is to let you customize your web pages. Often customization means testing
conditions and responding appropriately. This if tag lets you evaluate a condition and carry out different actions based
on the result.

What is a condition? A condition is either a true or false value. In general all objects are considered true unless they are
0, None, an empty sequence or an empty string.

Here's an example condition:

objectValues — True if the variable objectValues exists and is true. That is to say, when found and rendered
objectValues is not 0, None, an empty sequence, or an empty string.

As with the var tag, you can use both name syntax and expression syntax. Here are some conditions expressed as
DTML expressions.

expr="1" — Always true.
expr="rhino" — True if the rhino variable is true.
expr="x < 5" — True if x is less than 5.

expr="objectValues(Fi | e)" — True if calling the objectValues method with an argument of File returns a true value.
This method is explained in more detail in this chapter.

121

The Zope Book (2.6 Edition)

The if tag is a block tag. The block inside the if tag is executed if the condition is true.

Here's how you might use a variable expression with the if tag to test a condition:
<p>How many nonkeys are there?</p>

<dtm -if expr="nonkeys > nonkey_limt">
<p>There are too nmany nonkeys! </ p>
</dtm-if>

In the above example, if the Python expression nonkeys > nonkey |imt istrue then you will see the first and the
second paragraphs of HTML. If the condition is false, you will only see the first.

If tags be nested to any depth, for example, you could have:
<p>Are there too many bl ue nobnkeys?</p>

<dtm -if "nonkeys.color == "'blue' ">
<dtm -if expr="nonkeys > nonkey_limt">
<p>There are too nany bl ue nonkeys! </ p>
</dtm-if>
</dtm -if>

Nested if tags work by evaluating the first condition, and if that condition is true, then evaluating the second. In general,
DTML if tags work very much like Python if statements..

Name and Expression Syntax Differences

The name syntax checks for the existence of a name, as well as its value. For example:

<dtm -if nonkey_house>
<p>There <enpi s</enr a nonkey house, Mnl </ p>
</dtm-if>

If the monkey_house variable does not exist, then this condition is false. If there is a monkey_house variable but it is
false, then this condition is also false. The condition is only true is there is a monkey_house variable and it is not 0,
None, an empty sequence or an empty string.

The Python expression syntax does not check for variable existence. This is because the expression must be valid
Python. For example:
<dtm -if expr="nonkey_house">

<p>Ther e <enpi s</ent a nonkey house, Mnl </ p>
</dtm-if>

This will work as expected as long as monkey_house exists. If the monkey house variable does not exist, Zope will
raise a KeyError exception when it tries to find the variable.

Else and Elif Tags

The if tag only lets you take an action if a condition is true. You may also want to take a different action if the condition
is false. This can be done with the DTML else tag. The if block can also contain an else singleton tag. For example:

<dtm -if expr="nonkeys > nonkey_limt">
<p>There are too nmany nonkeys! </ p>
<dtm - el se>
<p>The nonkeys are happy! </ p>
</fdtm-if>

122

The Zope Book (2.6 Edition)

The else tag splits the if tag block into two blocks, the first is executed if the condition is true, the second is executed if
the condition is not true.

A if tag block can also contain a elif singleton tag. The elif tag specifies another condition just like an addition if tag.
This lets you specify multiple conditions in one block:
<dtm -if expr="nmonkeys > nonkey_limt">
<p>There are too many nonkeys!</p>
<dtm -elif expr="nonkeys < m ni mrum nonkeys" >
<p>There aren't enough nonkeys! </ p>
<dtnl - el se>

<p>There are just enough nonkeys. </ p>
</dtm-if>

An if tag block can contain any number of elif tags but only one else tag. The else tag must always come after the elif
tags. Elif tags can test for condition using either the name or expression syntax.

Using Cookies with the If Tag

Let's look at a more meaty if tag example. Often when you have visitors to your site you want to give them a cookie to
identify them with some kind of special value. Cookies are used frequently all over the Internet, and when they are
used properly they are quite useful.

Suppose we want to differentiate new visitors from folks who have already been to our site. When a user visits the site
we can set a cookie. Then we can test for the cookie when displaying pages. If the user has already been to the site
they will have the cookie. If they don't have the cookie yet, it means that they're new.

Suppose we're running a special. First time zoo visitors get in for half price. Here's a DTML fragment that tests for a
cookie using the hasVisitedZoo variable and displays the price according to whether a user is new or a repeat visitor:

<dtm -if hasVisitedZoo>
<p>Zoo admi ssion <dtm -var adult_rate fnt="dollars-and-cents">. </p>
<dtm - el se>
Zoo admission for first time visitors
<dtm -var expr="adult_rate/2" fnt="dollars-and-cents"></p>
</dtm -if>

This fragment tests for the hasVisitedZoo variable. If the user has visited the zoo before it displays the normal price for
admission. If the visitor is here for the first time they get in for half-price.

Just for completeness sake, here's an implementation of the hasVisitedZoo method as a Python-based Script that has
no parameters.:

Script(Python) "hasVisitedZoo"
#it

Returns true if the user has previously visited
the Zoo. Uses cookies to keep track of zoo visits.

request = context. REQUEST

response = request. RESPONSE

if request.has_key('zooVisitCookie'):
return 1

el se:
response. set Cooki e(' zooVi si t Cookie', '1'")
return O

In the chapter entitled Advanced Zope Scripting , we'll look more closely at how to script business logic with Python.
For now it is sufficient to see that the method looks for a cookie and returns a true or false value depending on whether
the cookie is found or not. Notice how Python uses if and else statements just like DTML uses if and else tags. DTML's
if and else tags are based on Python's. In fact Python also has an elif statement, just like DTML.

123

The Zope Book (2.6 Edition)

The In Tag

The DTML in tag iterates over a sequence of objects, carrying out one block of execution for each item in the
sequence. In programming, this is often called iteration , or looping .

The in tag is a block tag like the if tag. The content of the in tag block is executed once for every iteration in the in tag
loop. For example:
<dtm -in todo_list>

<p><dtm -var descripti on></p>
</dtm -in>

This example loops over a list of objects named todo_list . For each item, it inserts an HTML paragraph with a
description of the to do item.

Iteration is very useful in many web tasks. Consider a site that display houses for sale. Users will search your site for
houses that match certain criteria. You will want to format all of those results in a consistent way on the page,
therefore, you will need to iterate over each result one at a time and render a similar block of HTML for each result.

In a way, the contents of an in tag block is a kind of template that is applied once for each item in a sequence.

Iterating over Folder Contents

Here's an example of how to iterate over the contents of a folder. This DTML will loop over all the files in a folder and
display a link to each one. This example shows you how to display all the "File" objects in a folder, so in order to run
this example you will need to upload some files into Zope as explained in the chapter entitled Basic Zope Objects .
Create a DTML Method with the following body:

<dtnml -var standard_htm _header>

<dtm -in expr="objectValues('File)">
<dtm -var title_or_id>
</dtm-in>
</ ul >
<dtnml -var standard_htm _footer>

This code displayed the following file listing, as shown in the figure below.

124

The Zope Book (2.6 Edition)

[Zope ek st] G |

8% Root Folder * Core

Cartral_Panel : [stfa?.élt?ontentl:’roposal.stx
(O Exhiits £LEE
D Green
acl_users

Digital Creations
Refresh

Figure 9-6 Iterating over a list of files.

Let's look at this DTML example step by step. First, the var tag is used to insert your common header into the method.
Next, to indicate that you want the browser to draw an HTML bulleted list, you have the ul HTML tag.

Then there is the in tag. The tag has an expression that is calling the Zope APl method called objectValues . This
method returns a sequence of objects in the current folder that match a given criteria. In this case, the objects must be
files. This method call will return a list of files in the current folder.

The in tag will loop over every item in this sequence. If there are four file objects in the current folder, then the in tag will
execute the code in its block four times; once for each object in the sequence.

During each iteration, the in tag looks for variables in the current object, first. In the chapter entitled Variables and
Advanced DTML we'll look more closely at how DTML looks up variables.

For example, this in tag iterates over a collection of File objects and uses the var tag to look up variables in each file:
<dtm -in expr="objectValues('File)">

<dtm -var title_or_id>
</dtm -in>

The first var tag is an entity and the second is a normal DTML var tag. When the in tag loops over the first object its
absolute_url and title_or_id variables will be inserted in the first bulleted list item:

FirstFile

During the second iteration the second object's absolute_url and title_or_id variables are inserted in the output:

FirstFile
SecondFi | e</1i >

This process will continue until the in tag has iterated over every file in the current folder. After the in tag you finally
close your HTML bulleted list with a closing ul HTML tag and the standard_html_footer is inserted.

In Tag Special Variables

125

The Zope Book (2.6 Edition)

The in tag provides you with some useful information that lets you customize your HTML while you are iterating over a
sequence. For example, you can make your file library easier to read by putting it in an HTML table and making every
other table row an alternating color, like this, as shown in the figure below.

7 Zope Quick Start_=|| Go |

&8 contral_Panel DefaultContentProposal stz
D Green

acl_users
Digital Creations
Refresh

Figure 9-7 File listing with alternating row colors.

The in tag makes this easy. Change your file library method a bit to look like this:
<dtnml -var standard_htm _header>

<t abl e>
<dtm -in expr="objectValues('File)">
<dtm -if sequence-even>
<tr bgcol or="grey">
<dtm - el se>
<tr>
</fdtm -if>
<t d>
<dtnm -var title_or_id>
</td></tr>
</dtm-in>
</tabl e>

<dtnml -var standard_htm _footer>

Here an if tag is used to test for a special variable called sequence- even . The in tag sets this variable to a true or
false value each time through the loop. If the current iteration number is even, then the value is true, if the iteration
number is odd, it is false.

The result of this test is that a tr tag with either a gray background or no background is inserted for every other object in
the sequence. As you might expect, there is a sequence- odd that always has the opposite value of
sequence-even .

There are many special variables that the in tag defines for you. Here are the most common and useful:
sequence-item — This special variable is the current item in the iteration.

In the case of the file library example, each time through the loop the current file of the iteration is assigned to
sequence-item. It is often useful to have a reference to the current object in the iteration.

126

The Zope Book (2.6 Edition)
sequence-index — the current number, starting from 0, of iterations completed so far. If this number is even,
sequence- even is true and sequence- odd is false.
sequence-number — The current number, starting from 1, of iterations completed so far. This can be thought of as the
cardinal position (first, second, third, etc.) of the current object in the loop. If this number is even, sequence- even is
false and sequence- odd is true.
sequence-start — This variable is true for the very first iteration.
sequence-end — This variable is true for the very last iteration.

These special variables are detailed more thoroughly in Appendix A .

Summary

DTML is a powerful tool for creating dynamic content. It allows you to perform fairly complex calculations. In the chapter
entitled Variables and Advanced DTML , you'll find out about many more DTML tags, and more powerful ways to use
the tags you already have seen. Despite its power, you should resist the temptation to use DTML for complex scripting.
In the chapter entitled Advanced Zope Scripting you'll find out about how to use Python for scripting business logic.

127

The Zope Book (2.6 Edition)

Using Zope Page Templates

Page Templates are a web page generation tool. They help programmers and designers collaborate in producing
dynamic web pages for Zope web applications. Designers can use them to maintain pages without having to abandon
their tools, while preserving the work required to embed those pages in an application. In this chapter, you'll learn the
basics features of Page Templates, including how you can use them in your web site to create dynamic web pages
easily. In the chapter entitled Advanced Page Templates , you'll learn about advanced Page Template features.

The goal of Page Templates is to allow designers and programmers to work together easily. A designer can use a
WYSIWYG HTML editor to create a template, then a programmer can edit it to make it part of an application. If
required, the designer can load the template back into his editor and make further changes to its structure and
appearance. By taking reasonable steps to preserve the changes made by the programmer, the designer will not
disrupt the application.

Page Templates aim at this goal by adopting three principles:
1. Play nicely with editing tools.

2. What you see is very similar to what you get.

3. Keep code out of templates, except for structural logic.

A Page Template is like a model of the pages that it will generate. In particular, it is a valid HTML page.

Zope Page Templates versus DTML

Zope already has DTML, so you may wonder why we need another template language. First of all, DTML is not aimed
at HTML designers. Once an HTML page has been "dynamicized" by inserting DTML into it, the resulting page typically
becomes invalid HTML, making it difficult to work with outside Zope. Secondly, DTML suffers from a failure to separate
presentation, logic, and content (data). This decreases the scalability of content management and website
development efforts that use these systems. Finally, DTML's namespace model adds too much "magic" to object
lookup, without allowing enough control.

DTML can do things that Page Templates can't, such as dynamically generate email messages (Page Templates can
only generate HTML and XML), so DTML is not a "dead end". However, it is probable that Page Templates will be used
for almost all HTML/XML presentation by Zope Corporation and many members of the Zope community.

How Page Templates Work

Page Templates use the Template Attribute Language (TAL). TAL consists of special tag attributes. For example, a
dynamic page title might look like this:

<title tal:content="here/title">Page Title</title>
The t al : cont ent attribute is a TAL statement. Since it has an XML namespace (the t al : part) most editing tools
will not complain that they don't understand it, and will not remove it. It will not change the structure or appearance of

the template when loaded into a WYSIWYG editor or a web browser. The name cont ent indicates that it will set the
text contained by the ti t | e tag, and the value "here/title" is an expression providing the text to insert into the tag.

All TAL statements consist of tag attributes whose name starts with t al : and all TAL statements have values
associated with them. The value of a TAL statement is shown inside quotes. See Appendix C, "Zope Page Templates

128

The Zope Book (2.6 Edition)

Reference", for more information on TAL.

To the HTML designer using a WYSIWYG tool, the dynamic title example is perfectly valid HTML, and shows up in their
editor looking like a title should look like. In other words, Page Templates play nicely with editing tools.

This example also demonstrates the principle that "What you see is very similar to what you get". When you view the
template in an editor, the title text will act as a placeholder for the dynamic title text. The template provides an example
of how generated documents will look.

When this template is saved in Zope and viewed by a user, Zope turns the dummy content into dynamic content,
replacing "Page Title" with whatever "hereftitle" resolves to. In this case, "hereltitle" resolves to the title of the object to
which the template is applied. This substitution is done dynamically, when the template is viewed.

There are template statements for replacing entire tags, their contents, or just some of their attributes. You can repeat
a tag several times or omit it entirely. You can join parts of several templates together, and specify simple error
handling. All of these capabilities are used to generate document structures. Despite these capabilities, you can't
create subroutines or classes, perform complex flow control, or easily express complex algorithms using a Page
Template. For these tasks, you should use Python-based Scripts or application components.

The Page Template language is deliberately not as powerful and general-purpose as it could be. It is meant to be used
inside of a framework (such as Zope) in which other objects handle business logic and tasks unrelated to page layout.

For instance, template language would be useful for rendering an invoice page, generating one row for each line item,
and inserting the description, quantity, price, and so on into the text for each row. It would not be used to create the
invoice record in a database or to interact with a credit card processing facility.

Creating a Page Template

If you design pages, you will probably use FTP or WebDAYV instead of the Zope Management Interface (ZMl) to edit
Page Templates. See the later section in this chapter named "Remote Editing With FTP and WebDAV" for information
on editing Page Templates remotely. For the small examples in this chapter, it is easier to use the ZMl.

Use your web browser to log into the Zope Management Interface as a manager. Create a Folder to work in named
"template_test" in the root of your Zope. Visit this folder and choose "Page Template" from Zope's add list (do NOT
choose DTML Method or DTML Document, the following examples only work inside a Page Template). Type
"simple_page" in the add form's Id field, then push the "Add and Edit" button.

You should now see the main editing page for the new Page Template. The title is blank, the content-type is
text/htm ,and the default template text is in the editing area.

Now let's create a simple dynamic page. Type the words "a Simple Page" in the Title field. Then, edit the template text
to look like this:

<htm >
<body>
<p>
This is <b tal:replace="tenplate/title">the Title.
</ p>
</ body>
</htm >

Now push the Save Changes button. Zope should show a message confirming that your changes have been saved.
If an HTML comment starting with Page Tenpl at e Di agnosti cs is added to the template text, then check to make

sure you typed the example correctly and save it again. This comment is an error message telling you that something is

129

The Zope Book (2.6 Edition)

wrong. You don't need to erase the error comment; once the error is corrected it will go away.

Click on the Test tab. You should see a page with, "This is a Simple Page." at the top. Notice that the text is plain;
nothing is in bold. This is because the t al : r epl ace statement replaces the entire tag.

Back up, then click on the Browse HTML source link under the content-type field. This will show you the unrendered
source of the template. You should see, "This is the Title ." The bold text acts as a placeholder for the dynamic title
text. Back up again, so that you are ready to edit the example further.

The Content-Type field allows you to specify the content type of your page. Generally you'll use a content type of
text/htm HTMLortext/xm for XML.

If you set the content-type tot ext / ht M then Zope parses your template using HTML compatiblity mode which
allows HTML's "loose" markup. In this mode, it's possible to enter "non-well-formed" HTML into a Page Template.
However, if you set your content-type to something other thant ext / ht m then Zope assumes that your template is
well formed XML. Zope also requires an explicit TAL and METAL XML namespace declarations in order to emit XML.
For example, if you wish to emit XHTML, you might put your namespace declarations on the ht M tag:

<htm xmns:tal="http://xm .zope. org/ namespaces/tal "
xm ns: metal ="http://xm . zope. or g/ nanmespaces/ net al " >

For our purposes, we want to emit "loose" HTML, so we leave the Content-Type form field ast ext / ht M and we do
not use any XML namespace declarations.

The Expand macros with editing control is explained in the chapter entitled Advanced Page Templates .

Simple Expressions

The expression, "template/title” in your simple Page Template is a path expression . This the most common type of
expression. There are several other types of expressions defined by the TAL Expression Syntax (TALES) specification.
For more information on TALES see the Zope Page Templates Reference Appendix .

The "template/title” path expression fetches the ti t | e property of the template. Here are some other common path
expressions:

* 'request/URL" The URL of the current web request.
» 'user/getUserName'": The authenticated user's login name.

» ‘container/objectlds': A list of Ids of the objects in the same Folder as the template.
Every path starts with a variable name. If the variable contains the value you want, you stop there. Otherwise, you add
a slash (/) and the name of a sub-object or property. You may need to work your way through several sub-objects to
get to the value you're looking for.

Zope defines a small set of built-in variables such as r equest and user , which are described in the chapter entitled
Advanced Page Templates . You will also learn how to define your own variables in that chapter.

Inserting Text

In your "simple_page" template, you used the t al : r epl ace statement on a bold tag. When you tested it, Zope
replaced the entire tag with the title of the template. When you browsed the source, you saw the template text in bold.
We used a bold tag in order to highlight the difference.

130

The Zope Book (2.6 Edition)

In order to place dynamic text inside of other text, you typically use t al : repl ace on aspan tag rather than on a
bold tag. For example, add the following lines to your example:

The URL is http://ww. exanpl e. conk/ span>.

The span tag is structural, not visual, so this looks like "The URL is http://www.example.com." when you view the
source in an editor or browser. When you view the rendered version, however, it may look something like:

The URL is http://1ocal host: 8080/ tenpl ate_test/sinpl e_page.

If you want to insert text into a tag but leave the tag itself alone, you use the t al : cont ent statement. To set the title
of your example page to the template's title property, add the following lines between the ht M and the body tags:

<head>
<title tal:content="tenplate/title">The Title</title>
</ head>

If you open the "Test" tab in a new browser window, the window's title will be "a Simple Page". If you view the source of
the page you'll see something like this:

<htm >
<head>
<title>a Sinple Page</title>
</ head>

Zope inserted the title of your template into the ti t| e tag.

Repeating Structures

Now let's add some context to your si npl e_page template, in the form of a list of the objects that are in the same
Folder as the template. You will make a table that has a numbered row for each object, and columns for the id,
meta-type, and title. Add these lines to the bottom of your example template:

<tabl e border="1" wi dt h="100% >
<tr>
<t h>Nunber </ t h>
<t h>l d</th>
<t h>Met a- Type</t h>
<th>Title</th>
</tr>
<tr tal:repeat="item container/objectVal ues">
<td tal:content="repeat/itenl nunber">#</td>
<td tal:content="itenl getld">ld</td>
<td tal:content="itenl meta_type">Meta- Type</td>
<td tal:content="itemtitle">Title</td>
</tr>
</t abl e>

The t al : repeat statement on the table row means "repeat this row for each item in my container's list of object
values". The repeat statement puts the objects from the list into the i t em variable one at a time (this is called the
repeat variable), and makes a copy of the row using that variable. The value of "item/getld" in each row is the Id of the
object for that row, and likewise with "item/meta_type" and "item/title".

You can use any nhame you like for the repeat variable ("item" is only an example), as long as it starts with a letter and

contains only letters, numbers, and underscores (_). The repeat variable is only defined in the repeat tag. If you try to
use it above or below the t r tag you will get an error.

131

The Zope Book (2.6 Edition)

You can also use the repeat variable name to get information about the current repetition. By placing it after the built-in
variable r epeat in a path, you can access the repetition count from zero (i ndex), from one (nunber), from "A" (
Letter), and in several other ways. So, the expressionr epeat /it em nunber is 1 in the firstrow, 2 inthe second
row, and so on.

Since atal : repeat loop can be placed inside of another, more than one can be active at the same time. This is why
you must write r epeat /i t eml nunber instead of just r epeat / nunber . You must specify which loop you're
interested in by including the loop name.

Now view the page and notice how it lists all the objects in the same folder as the template. Try adding or deleting
objects from the folder and notice how the page reflects these changes.

Conditional Elements

Using Page Templates you can dynamically query your environment and selectively insert text depending on
conditions. For example, you could display special information in response to a cookie:

<p tal:condition="request/cookies/verbose | nothing">
Here's the extra infornation you requested.
</ p>

This paragraph will be included in the output only if there is a ver bose cookie set. The expression,
request/ cooki es/ verbose | not hi ng is true only when there is a cookie named ver bose set. You'll learn
more about this kind of expression in the chapter entitled Advanced Page Templates .

Using the t al : condi ti on statement you can check all kinds of conditions. At al : condi ti on statement leaves
the tag and its contents in place if its expression has a true value, but removes them if the value is false. Zope
considers the number zero, a blank string, an empty list, and the built-in variable not hi ng to be false values. Nearly
every other value is true, including non-zero numbers, and strings with anything in them (even spaces!).

Another common use of conditions is to test a sequence to see if it is empty before looping over it. For example in the
last section you saw how to draw a table by iterating over a collection of objects. Here's how to add a check to the page
so that if the list of objects is empty no table is drawn. Add this to the end of your si npl e_page Page Template:

<tabl e tal:condition="container/objectVal ues"
border="1" w dt h="100% >
<tr>
<t h>Nunber </ t h>
<th>ld</th>
<t h>Met a- Type</t h>
<th>Title</th>
</[tr>
<tr tal:repeat="item container/objectVal ues">
<td tal:content="repeat/item nunber">#</td>
<td tal:content="itenlgetld">ld</td>
<td tal:content="itenl meta_type">Met a- Type</td>
<td tal:content="itenmtitle">Title</td>
</[tr>
</tabl e>

Go and add three Folders named "1", "2", and "3" to the "template_test" folder in which your si npl e_page template
lives. Revisit the si npl e_page template and view the rendered output via the Test tab. You will see a table that looks
much like the below:

Nunmber Id Met a- Type Title
1 si npl e_page Page Tenpl ate

2 1 Fol der

3 2 Fol der

4 3 Fol der

132

The Zope Book (2.6 Edition)

Note that if the expressions, cont ai ner/ obj ect Val ues is false (for instance if there are no objectValues), the
entire table is omitted.

Changing Attributes

Most, if not all, of the objects listed by your template have an i con property that contains the path to the icon for that
kind of object. In order to show this icon in the meta-type column, you will need to insert this path into the sr ¢ attribute
of ani ng tag. Edit the table cell in the meta-type column of the above example to look like this:

<td><i ng src="/m sc_/ OFSP/ Fol der _i con. gi f"
tal:attributes="src itenficon">
Met a- Type</ span>
</td>

Thetal :attribut es statement replaces the src attribute of the i ng tag with the value of i t en1i con . The
src="/m sc_/ OFSP/ Fol der _i con. gi f" attribute in the template acts as a placeholder.

Notice that we've replaced the t al : cont ent attribute on the table cell with a tal:replace statement on a span tag.
This change allows you to have both an image and text in the table cell.

Creating a File Library with Page Templates

Here's an example of using Page Templates with Zope to create a simple file library with one template, a little bit of
Python code, and some files.

First, create a "temporary” mock up of a file library page using an HTML "WYSIWYG" ("What You See Is What You
Get") editor. Macromedia Dreamweaver, Adobe GolLive, and Netscape Composer are examples of WYSIWYG tools.
While you are creating the mockup, just save it to a file on your hard disk.

This mock-up doesn't need to "overdo it", it just shows some dummy information. Here's a mock-up of a file library that
contains one file:

<I DOCTYPE html PUBLIC "-//WBC//DTD HTM. 4.01 Transitional//EN
"http://ww. w3.org/ TR ht m 4/ oose. dtd" >
<htm >
<head>
<title>File Library</title>
<style type="text/css">
[
. header {
f ont - wei ght: bol d
font-famly: helvetica
background: #DDDDDD;

}
hl {
font-fam ly: helvetica

.filenane {
font-famly: courier
}
-->
</style>
<met a name="GENERATOR' content="amaya 5.1">
</ head>

<body>
<hl>Fil e Library</hl>

<p>Click on a file belowto download it.</p>

<tabl e border="1" cell paddi ng="5" cel | spaci ng="0">
<t body>

133

The Zope Book (2.6 Edition)

<tr>
<td cl ass="header" >Nanme</td>
<td cl ass="header" >Type</td>
<td cl ass="header">Si ze</td>
<td cl ass="header">Last Mdified</td>
</[tr>
<tr>
<td>Sanpl e.tgz</td>
<t d>appl i cati on/ x- gzi p- conpr essed</td>
<td>22 K</td>
<t d>2001/ 09/ 17</t d>
</[tr>
</t body>
</t abl e>
</ body>
</htm >

Now, log into your Zope's management interface with your browser and create a folder called Fi | eLi b . In this folder,
create a Page Template called i ndex_ht m by selecting Page Tenpl at e from the add menu, specifying the | d

i ndex_ht m in the form, and clicking Add . For information on creating a new Page Template via an external tool (as
opposed to creating one in the ZMI and editing it afterwards with an external tool), see PUT_f act ory in the chapter
entitled Using External Tools .

Now, with your HTML editor, using FTP, WebDAV (via the DAV "source port"), or HTTP PUT , save the above HTML to
the URL of the i ndex_ht ml Page Template. For example, you may save to the URL

http://1 ocal host: 8080/ Fil eLi b/i ndex_htm . Different editors have different mechanisms that you can use
to do this. See the chapter entitled 'Using External Tools With Zope':ExternalTools.stx for more information on using
WebDAV, FTP and HTTP PUT to communicate with Zope.

*NOTE: If you're trying to save to Zope via an editor like Netscape Composer or Amaya via HTTP PUT (as opposed to
FTP or DAV), but you're having problems, try saving the file to

http://1 ocal host: 8080/ Fil eLi b/i ndex_htm /source. ht m instead of the URL specified above. Appending
/ source. ht M to the Zope object name is a "hack" which Page Templates support to get around the fact that HTTP
PUT attemtpts to render the page before doing the PUT, but we actually just want to save the unrendered source. If
you're creating an XML file, the "magic" hackaround name is / sour ce. xm instead of / source. ht i **

Now that you've saved the template, you can go back to Zope and click on i ndex_ht m and then click on its Test tab
to view the template. It looks just like it the mock-up, so everything is going well.

Now let's tweak the above HTML and add some dynamic magic. First, we want the title of the template to be dynamic.
In Zope, you'll notice that the Page Template has a title form field that you can fill in. Instead of being static HTML, we
want Zope to dynamically insert the Page Templates title into the rendered version of the template. Here's how:

<head>

<title tal:content="tenplate/title">File Library</title>

<body>
<hl tal:content="tenplate/title">File Library</hl>

Now go to Zope and change the title of the i ndex_ht m page template to "My File Library". After saving that change,
click the Test tab. As you can see, the Page Template dynamically inserted the "My File Library" title of the template
object in the output of the template.

Notice the new cont ent tag attribute. This attribute says to "replace the content of this tag (the text between the h1l
tags) with the variable 'template/title™. In this case, t enpl at e/ ti t | e is the title of the i ndex_ht nl Page Template.

The next bit of magic is to build a dynamic file list that shows you all the File objects in the Fi | eLi b folder.

134

The Zope Book (2.6 Edition)

To start, you need to write just one line of Python. Go to the Fi | eLi b folder and create a Scri pt (Pyt hon) inthat
folder. Give the script the id fi | es and click Add and Edit . Edit the script to contain the following Python code:

Script (Python) "files"
#H#
return container.objectValues(['File'])

This will return a list of any File objects in the FileLib folder. Now, edit your i ndex_ht m Page Template and add
some more t al attributes to your mock-up:

<tr tal:repeat="itemcontainer/files">
<td><a href="Sanpl e.tgz" class="fil enane"
tal:attributes="href item getld"
tal:content="itenf getld">Sanple.tgz</td>
<td tal:content="itenf get Content Type">application/x-gzi p-conpressed</td>
<td tal:content="itenl getSize">22 K</td>
<td tal:content="iten bobobase_nodification_tinme">2001/09/17</td>
</tr>

The interesting partis the t al : repeat attribute onthet r HTML tag. This attribute tells the template to iterate over
the values returned by "container/files", which is the Python script you created in the current folder (the "container"),
which returns a list of Zope objects. The repeat tag causes Zope to create a hew table row with columns representing a
bit of metadata about each of those objects. During each iteration, the current file object being iterated over is assigned
the nameitem .

The cells of each row all have t al : cont ent attributes that describe the data that should go in each cell. During each
iteration through the table row loop, the id, the content type, the size, and modification time replace the dummy data in

the rows. Also notice how the anchor link dynamically points to the current file using t al : att ri but es to rewrite the

hr ef attribute.

This data comes from the i t em object by calling Zope API methods on what we know is a file object. The methods
itemgetld ,itenf getContent Type ,itenigetSize ,iten bobobase nodification_ tine areall
standard API functions that are documented in Zope's online help system as well as in the various appendices to this
book.

Go to Zope and test this script by first uploading some Files into the Fi | eLi b folder. This is done by selecting Fi | e
from the add menu and clicking on the upl oad form button on the next screen. After uploading your file, you can just
click Add . If you do not specify an id, then the filename of the file you are uploading will be used.

After uploading some files, go to the i ndex_ht m Page Template and click the Test tab. Now, you can see the Page
Template has rendered a very simple file library with just a few HTML tag attribute changes.

There are a few cosmetic problems with the file library as it stands. The size and date displays of the default content
are very pretty, but the values returned from Zope don't match the format of the dummy content. Instead, they are "raw"
numbers. You would like the size of the files to be displayed in K or MB rather than bytes. Here's a Python-based script
that you can use for this:

Script (Python) "file_size"
it

Return a string describing the size of a file.

byt es=cont ext . get Si ze()
k=byt es/ 1024. 0
mb=byt es/ 1048576. 0
if mb> 1.

return "% 2f MB" % nb
if k> 1:

135

The Zope Book (2.6 Edition)

return "% K' %Kk
return "%l bytes" % bytes

Create this script with the Idfi |l e_si ze inyour Fi | eLi b folder. It calculates a file's size in kilobytes and megabytes
and returns an appropriate string describing the size of the file. Now you can use the script in place of the
i tenf get Si ze expression:

<td tal:content="itenl file_size">22 K</td>

Replacing this bit of TAL inyourfi |l e_si ze template causes Zope to call the file_size" script on each object,
returning the file's size. When the script runs during the loop, the "context" of the script is "item", which is a File object.
This is an example of Zope's aquisition in action, as the fi | e_si ze script is actually a sibling of the items in the
folder, although it can be used as a method of the items in the folder. The expressionitem fil e_si ze translates to
"find a method of the objecti t em namedfil e_si ze . If the object named fil e_si ze has no "real" method named
file_size ,use acquisition to find a file_size method." Zope finds the Script (Python) fi | e_si ze script and use it
as a method of the i t em object.

You can also fix the date formatting problems with a little Python. Create a script named fi | e_dat e in your
Fi | eLi b folder:

Script (Python) "file_date"
#it

Return nodification date as string YYYY/ MM DD

dat e=cont ext . bobobase_nvodi fi cation_time()
return "%/ %/ %" % (date.year(), date.nonth(), date.day())

Now replace the i t eni bobobase _nodi fi cation_ti me expression with a reference to this script:

<td tal:content="itenl fil e_date">2001/9/17</td>

Congratulations, you've successfully taken a mock-up and turned it into a dynamic Page Template. This example
illustrates how Page Templates work well as the "presentation layer" to your applications. The Page Templates present
the application logic (the Python-based scripts) and the application logic works with the data in your site (the files).

Remote Editing with FTP and WebDAV

You can edit Page Templates remotely with FTP and WebDAV, as well as HTTP PUT publishing. Using these
methods, you can use Page Templates without leaving advanced WYSIWYG editors such as Macromedia
Dreamweaver.

The previous section showed you how to edit a page remotely using Amaya, which uses HTTP PUT to upload pages.
You can do the same thing with FTP and WebDAYV using the same steps.

1. Create a Page Template in the Zope Management interface. You can name it with whatever file extension you wish.
Many folks prefer . ht M, while others prefer . zpt . Note, some names such as i ndex_ht ml have special
meanings to Zope.

2. Edit your file with your editor and then save it. When you save it you should use the same URL you used to retrieve
it.

3. Optionally reload your page after you edit it, to check for error comments. See the next section for more details on
debugging.

136

The Zope Book (2.6 Edition)

You can create new Page Templates without using the Zope Management Interface. See the PUT_f act ory section of
the chapter entitled Using External Tools for more information.

Debugging and Testing

Zope helps you find and correct problems in your Page Templates. Zope notices problem at two different times: when
you're editing a Page Template, and when you're viewing a Page Template. Zope catches different types of problems
when you're editing than when you're viewing a Page Template.

You may have already seen the trouble-shooting comments that Zope inserts into your Page Templates when it runs
into problems. These comments tell you about problems that Zope finds while you're editing your templates. The sorts
of problems that Zope finds when you're editing are mostly errors in your t al statements. For example:

<l-- Page Tenpl ate Di agnostics

Conpi l ation failed

TAL. TALDef s. TALError: bad TAL attribute: 'contents', at line 10, colum 1
-->

This diagnostic message lets you know that you mistakenly used t al : cont ent s ratherthant al : cont ent online
10 of your template. Other diagnostic messages will tell you about problems with your template expressions and
macros.

When you're using the Zope management interface to edit Page Templates it's easy to spot these diagnostic
messages, because they are shown in the "Errors" header of the management interface page when you save the Page
Template. However, if you're using WebDAV or FTP it's easy to miss these messages. For example, if you save a
template to Zope with FTP, you won't get an FTP error telling you about the problem. In fact, you'll have to reload the
template from Zope to see the diagnostic message. When using FTP and WebDAYV it's a good idea to reload templates
after you edit them to make sure that they don't contain diagnostic messages.

If you don't notice the diagnostic message and try to render a template with problems you'll see a message like this:

Error Type: PTRuntineError
Error Value: Page Tenplate hello.html has errors.

That's your signal to reload the template and check out the diagnhostic message.

In addition to diagnostic messages when editing, you'll occasionally get regular Zope errors when viewing a Page
Template. These problems are usually due to problems in your template expressions. For example, you might get an
error if an expression can't locate a variable:

Error Type: Undefined
Error Val ue: "unicorn" not found in "here/unicorn”

This error message tells you that it cannot find the uni cor n variable which is referenced in the expression,

her e/ uni corn . To help you figure out what went wrong, Zope includes information about the environment in the
traceback. This information will be available in your error_log (in your Zope root folder). The traceback will include
information about the environment:

"here': <Application instance at 01736F78>,

" nodul es' : <Products. PageTenpl at es. ZRPyt honExpr. _Secur eModul el nporter instance at 016E77FC>,
"not hing': None,

"options': {'"args': ()},

'request’: ...

"root': <Application instance at 01736F78>,

"tenpl ate': <ZopePageTenpl ate instance at 01732978>,

"traverse_subpath': [],

'user': anos})

137

The Zope Book (2.6 Edition)

This information is a bit cryptic, but with a little detective work it can help you figure out what went wrong. In this case, it
tells us that the her e variable is an "Application instance". This means that it is the top-level Zope folder (notice how

r oot variable is the same "Application instance"). Perhaps the problem is that you wanted to apply the template to a
folder that had a uni cor n property, but the folder to which you uploaded the template hasn't such a property.

XML Templates

Another example of the flexibility of Page Templates is that they can dynamically render XML as well as HTML. For
example, in a chapter within this book entitled Creating Basic Zope Applications , you create the following XML:

<guest book>
<entry>
<comment s>My conment s</ conment s>
</entry>
<entry>
<coments>l |ike your web page</coment s>
</entry>
<entry>
<coment s>Pl ease no blink tags</coments>
</entry>
</ guest book>

This XML is created by looping over all the DTML Documents in a folder and inserting their source into comrent
elements. In this section, we'll show you how to use Page Templates to generate this same XML.

Create a new Page Template called "entries.xml" in your guest book folder with the following contents:

<guest book xm ns:tal ="http://xmnl.zope. org/ nanespaces/tal ">
<entry tal:repeat="entry python: here. objectVal ues(' DTM. Docunent')">
<coments tal:content="entry/docunment _src">Comrent goes here...</coments>
</entry>
</ guest book>

Make sure you set the content type to t ext / xml . Now, click Save Changes and click the Test tab. If you're using
Netscape, it will prompt you to download an XML document, if you are using MSIE 5 or higher, you will be able to view
the XML document in the browser.

Notice how the t al : r epeat statement loops over all the DTML Documents. The t al : cont ent statement inserts
the source of each document into the corment s element. The xm ns: t al attribute is an XML namespace
declaration. It tells Zope that names that start with t al are Page Template commands. See Appendix C, "Zope Page
Templates Reference" for more information about TAL and TALES XML namespaces.

Creating XML with Page Templates is almost exactly like creating HTML. The most important difference is that you
must use "explicit" XML namespace declarations in the template text itself. Another difference is that you should set the
content type tot ext/ xm or whatever the content-type for your XML should be. The final difference is that you can
browse the source of an XML template by going to sour ce. xnm rather than sour ce. ht ni

Using Templates with Content

In general Zope supports content, presentation, and logic components. Page Templates are presentation components
and they can be used to display content components.

Zope 2.5 ships with several content components: ZSQL Methods, Files, and Images. DTML Documents and methods
are not really pure content components since they can hold content and execute DTML code. You can use Files for
textual content since you can edit the contents of Files if the file is less than 64K and contains text. However, the File
object is fairly basic and may not provide all of the features or metadata that you need.

138

The Zope Book (2.6 Edition)

Zope's Content Management Framework (CMF) solves this problem by providing an assortment of rich content
components. The CMF is Zope's content management add on. It introduces all kinds of enhancements including
work-flow, skins, and content objects. The CMF makes a lot of use of Page Templates. A later release of Zope will
probably include technologies from and inspired by the CMF.

139

The Zope Book (2.6 Edition)

Creating Basic Zope Applications

XXX - this chapter is not done. | got to just before "Factoring Out Stylesheets" and quit for now. The material prior to
that needs to be expanded and cleaned up as well. The examples also need to be converted to page templates.
-chrism

In this chapter you'll learn more about building basic web applications in Zope using Folders, Scripts, and Methods.
Another way of terming this is that you'll learn more about creating applications in Zope "instance space".

Building "Instance-Space" Applications

In Zope, there are a few ways to develop a web application. The simplest and fastest way, and the one we've been
concentrating on thus far in this book, is to build an application in instance space . To understand the term "instance
space", we need to once again put on our "object orientation hats".

When you create Zope objects by selecting them from the Zope "Add" list, you are creating instances of a class defined
by someone else (see the Object Orientation chapter if you need to brush up on these terms). For example, when you
add a Script (Python) object to your Zope database, you are creating an instance of the Script (Python) class. The
Script (Python) class was written by a Zope Corporation engineer. When you select "Script (Python)" from the Add list,
and you fill in the form to give an id and title and whatnot, and click the submit button on the form, Zope creates an
instance of that class in the Folder of your choosing. Instances such as these are inserted into your Zope database and
they live there until you delete them.

In the Zope application server, most object instances serve to perform presentation duties, logic duties, or content
duties. You can "glue" these instances together to create basic Zope applications. Since these objects are really
instances of a class, the term "instance space" is commonly used to describe the Zope root folder and all of its
subfolders. "Building an application in instance space"” is defined as the act of creating Zope object instances in this
space and modifying them to act a certain way when they are executed.

Instance-space applications are typically created from common Zope objects. Script (Python) objects, Folders, DTML
Methods, Page Templates, and other Zope services can be glued together to build simple applications.

Instance-Space Applications vs. Products

In contrast to building applications in instance space, you may also build applications in Zope by builing them as
Products . Building an application as a Product differs from creating applications in instance space inasmuch as the act
of creating a Product typically allows you to extend Zope with new "addable" objects that appear in Zope's "Add" list.
Building a Product also typically allows you to more easily distribute an application to other people, and allows you to
build objects that may more closely resemble your "problem space". We explore one way to create Products in the
chapter entitled Extending Zope . Building a Product is typically more complicated than building an "instance-space”
application, so we get started here by describing how to build instance-space applications. When you find that it
becomes difficult to maintain, extend, or distribute an instance-space application you've written, it's probably time to
reconsider rewriting it as a Product.

Using A Folder as A Container For Your Intstance-Space Application

Folders provide containers for your applications. A natural way to build a simple Zope application is to create a Folder
in your Zope root folder to hold objects related to the application. For example, you may have an Invoices folder to hold
an invoice application. You could create "logic" objects inside that folder named addInvoice and editinvoice to allow you
to add and edit the invoices. The actual invoices themselves could be DTML Documents or File objects, which could

140

The Zope Book (2.6 Edition)

also live in the Invoices folder. Your Invoices folder thus becomes a small application.

URLs are used to work with instance-space Zope applications. As you've seen, you can display a Zope object by
visiting its URL in your browser, and in object-orientation terms, when you visit an object in a folder, you are "calling a
method in the context of the folder". So for example, the URL htt p: / /| ocal host : 8080/ | nvoi ces/ addl nvoi ce
calls the addl nvoi ce method of the | nvoi ces folder. This URL would perhaps take you to a screen that allows you
to add an invoice. Likewise, the URL htt p: / /| ocal host : 8080/ | nvoi ces/ edi t | nvoi ce?i nvoi ce_nunber =42
might call the edi t | nvoi ce method of the | nvoi ces folder, passing it the argument i nvoi ce_nunber with a
value of 42. The resulting HTML might allow you to edit invoice nhumber 42.

Using Objects as Methods Of Folders Via URLs

The invoices example demonstrates a powerful Zope feature. You can execute a Zope object in the context of a folder
by visiting a URL that consists of the folder's URL followed by the id of a Zope object. For example, in the URL
http://1 ocal host: 8080/ | nvoi ces/ addl nvoi ce ,the name | nvoi ces refers to a folder. In object-orientation
terms, the "final" object in the URL (addl nvoi ce) is then used as a "method". The object you call which is used as a
method may be a Script (Python) object, a DTML Method, a Page Template, or just about any other kind of Zope
object.

This facility is used throughout Zope and is a very general design pattern. In fact you are not restricted to using a folder
as the context of a method via a URL. You may call objects as methods in the context of many kinds of Zope objects
using the same URL technique.

Using Acquisition In Instance-Space Applications

The Zope facility named Acquisition proves useful when creating instance-space applications. Acquisition allows you to
share behavior between different parts of the same application. A folder is said to acquire an object by searching for
the object in its containers if it cannot find the object by name in itself.

For example, suppose you want to call a method named vi ewfFol der on one of your folders. Perhaps you have many
different vi ewol der objects which can be used as methods, each of which represents a particular view of a folder.
Zope "figures out" which one you want by first looking in the folder which is named by the "rightmost" portion of the
URL. For example, if you invoke the URL htt p: / /| ocal host : 8080/ I nvoi ces/ Jul y/ vi ewFol der , and the
"Invoices" and "July" objects are folders, the invoices object will be searched for a vi ewrol der object first. If Zope
can't find the object there it looks for an object named vi ewFol der in the folder's containing folder (Jul y). If the
object can't be found there, it goes up another level. This process continues until Zope finds the object or gets to the
root folder. If Zope can't find the object in the root it gives up and raises an exception.

The Special Folder Object index_html

If there is an object in a Zope folder named index_html , the return value of this object will be used as the default view
of the folder when the folder's URL is called. This is analogous to how an index.html file provides a default view for a
directory in Apache and other web servers. Instead of explicitly including the name index_html in your URL to show
default content for a folder, you can omit it. For example, if you create an index_html object in your Invoices folder and
view the folder by clicking the View tab or by visiting the URL htt p: / /| ocal host : 8080/ | nvoi ces/ , Zope will call
the index_html object in the Invoices folder and display its results. You can also use the more explicit URL

http://1 ocal host: 8080/ | nvoi ces/i ndex_htnl ,and it will display the same content.

A folder can also acquire an index_html object from its parent folders. You can use this behavior to create a default
view for a set of folders. To do so, create ani ndex_ht m object in a folder which contains another set of folders. This
default view will be used for all the folders in the set. This behavior is already evident in Zope. If you create a set of
empty Folders in the Zope root folder, you will notice that when you view any of the Folders via a URL, the content of

141

The Zope Book (2.6 Edition)

the "root" folder's index_html method is displayed. The index_html in the root folder is acquired. Furthermore, if you
create more empty folders inside the folders you've just created in the root folder, a visit to these folders' URLs will also
show the root folder's index_html . This is acquisition at work. NOTE: We are using the index_html method as an
example here, but this will work with any Zope object which acts as a method, it needs not be named "index_html".

If you want a different default view of a given folder, just create a custom index_html object in that particular folder. This
allows you to override the default view of a particular folder on a case-by-case basis, while allowing other folders
defined at the same level to acquire a common default view.

The index_html object may be a DTML Method, a Page Template, a Script (Python) object, or any other Zope object

that is URL-accessible and which returns browser-renderable content. The content is typically HTML, but Zope doesn't
care. You can spit out XML or text or whatever you like.

Building the Zope Zoo Website

In this section, we'll create a simple web site in instance space for the "Zope Zoo". As the Zoo webmaster, it is your job
to make the web site easy to use and manage. Here are some things you'll need:

e Zoo users must easily move around the site, just as if they were walking through a real Zoo.

» All of your shared web layout tools, like a Cascading Style Sheet (CSS), must be in one easy to manage location.
* You must provide a simple file library of various documents that describe the animals.

* You need a site map so that users can quickly get an idea of the layout of the entire Zoo.

» A Guest book must be created so that Zoo visitors can give you feedback and comments about your site.

A what's new section must be added to the guest book so that you can see any recent comments that have been
added.

Navigating the Zoo

In order for your navigation system to work, you will need to create some basic site structure. We need to create some
folders in your Zope system that represent the structure of your site. Let's use a zoo structure made out of Folders, as
shown in the figure below.

142

The Zope Book (2.6 Edition)

Zope Quick Start x|l Go

¥ g8l Control_Panel -
] DTML_Example
(O examples (J Folder at /ZopeZoo Help!
(3 interest
(O sales IAcceIerated HTTP Cache Manager ¥| Add |

=20 ZopeZoo
3 Fish Type Name Size Last Modified

® 3 mammals I~ (OFish 2002-08-12 10:36
[0 whales [~ [@Mammals 2002-08-12 10:37

= [0 reptiles [~ [JReptiles 2002-08-12 10:37
[Lizards
[snakes

acl_users

(3 homework

] import_example

£ temp_folder

D duln)

© Zope Corporation
Refresh

Contents Yiew Properties Security Undo Dwnership Find

Renarme | Cutl Copyl Delete Import/Export | Select All

4]

Figure 5-1 Zoo folder structure.

You should create a top-level folder named ZopeZoo . Within the ZopeZoo folder, you should create three subfolders,
Reptiles , Mammals and Fish . Within the Mammals folder, you should create a folder named Whales . Within the
Reptiles folder, you should create two folders, Lizards and Snakes .

To navigate your site, users will visit the default view of the ZopeZoo folder (the "front page™) and click on one of the top
level folders to enter that particular part of the Zoo. They should also be able to use a very similar interface to keep
going deeper into the site. For instance, if the user wishes to visit the "Mammals" section, the view of the Mammals
section should have a similar interface to that of the Zoo itself. Also, the user should be able to back out of a section
and go up to the parent section.

To provide navigation facilities, in the ZopeZoo folder, create a DTML Method named navigation :

<dtm -i n expr="objectVal ues(' Fol der')">
<dtm -var title_or_id>
</dtm-in>
</ ul >

When the method you just created is executed, it displays a list of links. Each link targets the default view of a
subfolder. The list of subfolders displayed depends on the context in which the method is executed. For example, if the
method is executed in the context of the "Mammals" folder, it will display a link to the default view of the Whales folder.
If the method is executed in the context of the "ZopeZoo" folder, it will display links to the default views of the
"Mammals", "Fish", and "Reptiles" folders. It's important to notice that this method can be used to display the contents
of any folder, so we can use it for most of our "default" folder views. Furthermore, since we've placed this method in the
ZopeZoo folder, each of the zoo subfolders will acquire and use it.

Now, you need to incorporate the navigation method into the site. Let's create two DTML methods. One will be used as
a standard "header" for all pages within the site, the other a standard "footer". Do this by first creating a DTML Method
named standard_htm|_header in the ZopeZoo folder. We will include the navigation links in the display of this method
by referencing the navigation method via 'dtml-var".

<htm >

<head><title><dtm -var title></title></head>

<body>
<dtm -var navi gati on>

143

The Zope Book (2.6 Edition)

Now create a DTML Method named standard_html_footer in your ZopeZoo folder and provide it with this content:

</ body>
</htm >

We need to add a front page to the Zoo site and then we can view the site and verify that the navigation works
correctly.

Adding a Front Page to the Zoo

In order to display our navigation and standard header and footer, we need a front page that serves as the welcome
screen for Zoo visitors. In order to do so, create a DTML Method in the ZopeZoo folder named index_html with the
following content:

<dtnml -var standard_htm _header>
<h1>Wel come to the Zope Zoo</hl>

<p>Here you will find all kinds of cool animals. You are in
the <dtm -var getld> section.</p>

<dtml -var standard_htm _footer>

Take a look at how your site appears by clicking on the View tab of the ZopeZoo folder. The results of doing so are
shown in the figure below.

Zope Quick Start x|} Go

B g8l Control_Panel - Fish

(0 oTML_Example I: o Mararals

] Examples * Reptiles
D Interest

(3 sales Welcome to the Zope Zoo

=]
D ZopaZoo Here you will find all kinds of cool ardmals. ¥ou are in the ZopeZoo section.

(O Fish
= [mMammals
[0 whales
= Reptiles
[Lizards
[snakes
acl_users
[homework
] import_example

£ temp_folder

0 za0
© Zope Corporation
Refresh

4]

Figure 5-2 Zope Zoo front page.

Here you start to see how things come together. At the top of your main page you see a list of links to the various
subsections. These links are created by the navigation method that is included by the standard_html_header method.

You can use the navigation links to travel through the various sections of the Zoo. Use this navigation interface to find
the reptiles section.

Zope builds this page to display a folder by looking for the default folder view method , index_html . It walks up the zoo

site folder by folder until it finds the index_html method in the ZopeZoo folder. It then calls this method on the Reptiles
folder. The index_html method calls the standard_html_header method which in turn calls the navigation method.

144

The Zope Book (2.6 Edition)

Finally, the index_html method displays a welcome message and calls the standard_html_footer .

What if you want the reptile page to display something besides the welcome message? You can replace the index_html
method in the reptile section with a more appropriate display method and still take advantage of the zoo header and
footer including navigation.

In the Reptile folder create a DTML Method named index_html . Give it some content more appropriate to reptiles:
<dtnml -var standard_htm _header>

<h1>The Reptile House</hl>

<p>Wel conme to the Reptil e House. </ p>

<p>We are open from 6pmto midni ght Mnday through Friday. </p>

<dtm -var standard_htm _footer>
Now take a look at the reptile page by going to the Reptile folder and clicking the View tab.

Since the index_html method in the Reptile folder includes the standard headers and footers, the reptile page still
includes your navigation system.

Click on the Snakes link on the reptile page to see what the Snakes section looks like. The snakes page looks like the
Reptiles page because the Snakes folder acquires its index_html display method from the Reptiles folder instead of
from the ZopeZoo folder.

Improving Navigation

The navigation system for the zoo works pretty well, but it has one big problem. Once you go deeper into the site you
need to use your browser's back button to go back. There are no navigation links to allow you to navigate up the folder
hierarchy. Let's add a navigation link to allow you to go up the hierarchy. Change the navigation method in the
ZopeZoo folder:
Return to parent

<dtm -i n expr="objectVal ues(' Fol der')">

<dtm -var title_or_id>
</1i>

</dtm-in>

Now view the ZopeZoo folder to see how this new link works, as shown in the figure below.

145

The Zope Book (2.6 Edition)

Zope Quick Start x|} Go

Tl Control_Panel Al|Retum to parent
] DTML_Example o Fish

15,
6] Examples o Nlamasls

[interest * Reptiles
[sales
B [zopezoo Welcome to the Zope Zoo
3 Fish
= [mMammals
[0 whales
= Reptiles
[Lizards
[snakes
acl_users
[homework
] import_example

£ temp_folder

0 za0
© Zope Corporation
Refresh

Here you will find all kinds of cool ardmals. ¥ou are in the ZopeZoo section.

4]

Figure 5-3 Improved zoo navigation controls.

As you can see, the Return to parent link allows you to go back up from a section of the site to its parent. However,
some problems remain; when you are at the top level of the site you still get a Return to parent link which leads
nowhere. Let's fix this by changing the navigation method to hide the parent link when you're in the ZopeZoo folder:

<dtm -if expr="id !="'ZopeZoo' ">

Return to parent

</dtm-if>

<dtm -i n expr="objectVal ues(' Fol der')">

<dtm -var title_or_id>
</1i>
</dtm -in>
</ ul >

Now the method tests to see if the current context object is named ZopeZoo and declines to display the "Return to
parent” link if so. View the ZopeZoo folder to see the result.

There are still some things that could be improved about the navigation system. For example, it's pretty hard to tell
what section of the Zoo you're in. You've changed the reptile section, but the rest of the site all looks pretty much the
same with the exception of having different navigation links. It would be nice to have each page tell you what part of the
Zoo you're in.

Let's change the navigation method once again to display where you are in the Zoo:

<dtm -if expr="id !="'ZopeZoo' ">
<h2><dtm -var title_or_id> Section</h2>
Return to parent

</fdtm -if>

<dtm -i n expr="objectVal ues(' Fol der')">
<dtm -var title_or_id>
</1i>
</dtm-in>
</ ul >

Now view the ZopeZoo folder again and navigate into the Reptiles section. Notice that within the Reptiles section, you
see a header which says "Reptiles Section", as shown in the figure below.

146

The Zope Book (2.6 Edition)

Zope Quick Start x|l Go

¥ g8l Control_Panel AllReptiles Section
(] DTML_Example

] Examples Beturn to parent
D Interest o Lizards
(0 sales ® Snakes
=23 ZopeZoo
D Fish The Reptile House
= [mMammals)
D Wwhales Welcome to the Reptile House.
=23 Reptiles || We are open from éprm to midnight Monday through Friday.
[Lizards W
[snakes
acl_users
(3 homework

] import_example

£ temp_folder

(0 za0
© Zope Corporation
Refresh

4]

Figure 5-4 Zoo page with section information.

Factoring out Style Sheets

Z00 pages are built by collections of methods that operate on folders. For example, the header method calls the
navigation method to display navigation links on all pages. In addition to factoring out shared behavior such as
navigation controls, you can use different Zope objects to factor out shared content.

Suppose you'd like to use CSS (Cascading Style Sheets) to tailor the look and feel of the zoo site. One way to do this
would be to include the CSS tags in the standard_html_header method. This way every page of the site would have the
CSS information. This is a good way to reuse content, however, this is not a flexible solution since you may want a
different look and feel in different parts of your site. Suppose you want the background of the snakes page to be green,
while the rest of the site should have a white background. You'd have to override the standard_html_header in the
Snakes folder and make it exactly the same as the normal header with the exception of the style information. This is an
inflexible solution since you can't vary the CSS information without changing the entire header.

You can create a more flexible way to define CSS information by factoring it out into a separate object that the header
will insert. Create a DTML Document in the ZopeZoo folder named style_sheet . Change the contents of the document
to include some style information:

<style type="text/css">
h1{
font-size: 24pt;
font-fam ly: sans-serif;
}

p{
col or: #220000

}
body{
background: #FFFFDD,

</style>

This is a CSS style sheet that defines how to display h1, p and body HTML tags. Now let's include this content into our
web site by inserting it into the standard_html|_header method:

<htmi >

<head>
<dtm -var style_sheet>

147

The Zope Book (2.6 Edition)

</ head>
<body>
<dtm -var navi gation>

Anonynmous User - June 16, 2002 6:47 pm

The title is mssing fromthe standard_htm _header for no obvi ous reason.
It was there in the initial code for standard_htm _header, so it should be present here as well, | MHO

Now, when you look at documents on your site, all of their paragraphs will be dark red, and the headers will be in a
sans-serif font.

To change the style information in a part of the zoo site, just create a new style_sheet document and drop it into a
folder. All the pages in that folder and its sub-folders will use the new style sheet.

Creating a File Library

File libraries are common on web sites since many sites distribute files of some sort. The old fashioned way to create a
file library is to upload your files, then create a web page that contains links to those files. With Zope you can
dynamically create links to files. When you upload, change or delete files, the file library's links can change
automatically.

Create a folder in the ZopeZoo folder called Files . This folder contains all of the file you want to distribute to your web
visitors.

In the Files folder create some empty file objects with names like DogGrooming or HomeScienceExperiments , just to
give you some sample data to work with. Add some descriptive titles to these files.

DTML can help you save time maintaining this library. Create an index_html DTML Method in the Files folder to list all
the files in the library:
<dtnml -var standard_htm _header>
<h1>Fil e Library</hl>

<dtm -in expr="objectValues('File)">
<dtm -var title_or_id>
</dtm-in>

<dtm -var standard_htm _footer>

Now view the Files folder. You should see a list of links to the files in the Files folder as shown in Figure 5-5 .

148

The Zope Book (2.6 Edition)

Zope Guick Sttt *|| Go

File Library

Cantral_Panel

O reen « DogGrooming
[GuestBook « HomeScienceExperiments

6] Images
@ MewsCatalog
(0 sales
=23 ZopeZon
Doeirds
O;
(3 Fisn
D tammals
(0 Reptiles

acl_users
Digital Creations
Refresh

Figure 5-5 File library contents page.

If you add another file, Zope will dynamically adjust the file library page. You may also want to try changing the titles of
the files, uploading new files, or deleting some of the files.

The file library as it stands is functional but Spartan. The library doesn't let you know when a file was created, and it
doesn't let you sort the files in any way. Let's make the library a little fancier.
Most Zope objects have a bobobase maodification_time method that returns the time the object was last modified. We
can use this method in the file library's index_html method:
<dtnml -var standard_htm _header>
<hl>Fil e Library</hl>
<t abl e>
<tr>
<th>Fil e</th>
<t h>Last Modified</th>
</[tr>
<dtm -in expr="objectValues('File)">
<tr>
<td><dtm -var title_or_id></td>
<t d><dtm -var bobobase_nodification_tine fm="aComon"></td>
</[tr>
</dtm-in>
</tabl e>

<dtm -var standard_htm _footer>
The new file library method uses an HTML table to display the files and their modification times.

Finally let's add the ability to sort this list by file name or by modification date. Change the index_html method again:
<dtm -var standard_htm _header>
<hl>Fil e Library</hl>

<t abl e>

149

The Zope Book (2.6 Edition)

<tr>
<t h>Fi | e</ a></t h>
<th>Last Modi fi ed</th>
</tr>

<dtm -if expr="_.has_key('sort') and sort=="date' ">
<dtm -in expr="objectValues('File)"
sort ="bobobase_nodi fication_time" reverse>
<tr>
<td><dtm -var title_ or_id></td>
<t d><dt m - var bobobase_nodification_tinme fnt="aComon"><td>
</[tr>
</dtm-in>
<dtm - el se>
<dtm -in expr="objectValues('File')" sort="id">
<tr>
<td><dtm -var title_or_id></td>
<t d><dtm -var bobobase_nodification_tine fnt="aComon"><td>
</[tr>
</dtm-in>
</dtm-if>

</t abl e>

<dtml -var standard_htm _footer>

Now view the file library and click on the File and Last Modified links to sort the files. This method works with two
sorting loops. One uses the in tag to sort on an object's id . The other does a reverse sort on an object's
bobobase_modification_time method. The index_html method decides which loop to use by looking for the sort
variable. If there is a sort variable and if it has a value of date then the files are sorted by modification time. Otherwise
the files are sorted by id.

Building a Guest Book

A guest book is a common and useful web application that allows visitors to your site to leave messages. Figure Figure
5-6 shows what the guest book you're going to write looks like.

> Zope Guct st =] Go |
GuestBook

ﬁEl Contral_Panel

[Green Sign the guest book
D GuestBook L. .
= NewsCatalog Qn MarIS, Zl]l]ll 5:08 pm, Issabella Rflngmg said:
I'm locking for information on pavlov's dogs.
=23 ZopeZoo
O rish On Mar 8, 2001 5:07 pm, Amanda Huginkiss said:

= [mammals [love snakes.

(3 whal

e On Mar 8, 2001 5:06 pm, Bob Uncle said:

=23 Reptiles HiMom

D Lizards

D Snakes
acl_users

Digital Creations
Refresh

Figure 5-6 Zoo guest book.

Start by creating a folder called GuestBook in the root folder. Give this folder the title The Zope Zoo Guest Book
The GuestBook folder will hold the guest book entries and methods to view and add entries. The folder will hold

150

The Zope Book (2.6 Edition)

everything the guest book needs. After the guest book is done you will be able to copy and paste it elsewhere in your
site to create new guest books.

You can use Zope to create a guest book several ways, but for this example, you'll use one of the simplest. The
GuestBook folder will hold a bunch of Files, one file for each guest book entry. When a new entry is added to the guest
book, a new file is created in the GuestBook folder. To delete an unwanted entry, just go into the GuestBook folder and
delete the unwanted file using the management interface.

Let's create a method that displays all of the entries. Call this method index_html so that it is the default view of the
GuestBook folder:

<dtnml -var standard_htm _header>

<h2><dtm -var title_or_id></h2>

<l-- Provide a link to add a new entry, this link goes to the
addEnt ryFor m met hod - ->

<p>
Si gn the guest book

</ p>

<l-- Iterate over each File in the folder starting with

the newest documents first. -->

<dtm -in expr="objectValues('File)"
sort ="bobobase_nodification_tinme" reverse>

<!-- Display the date, author and contents of each file -->
<p>
On <dtm -var bobobase_nodification_tinme fnt="aCommon">,
<dtm -var guest_nanme htm _quote nul | ="Anonynous"> sai d: </ b>

<dtm -var sequence-item htm _quote newl ine_to_br>

<!-- Make sure we use htnm _quote so the users can't sneak any
HTML onto our page -->

</ p>

</dtm-in>

<dtm -var standard_htm _footer>

This method loops over all the files in the folder and displays each one. Notice that this method assumes that each file
will have a guest_name property. If that property doesn't exist or is empty, then Zope will use Anonymous as the guest
name. When you create a entry file you'll have to make sure to set this property.

Next, let's create a form that your site visitors will use to add new guest book entries. In the index_html| method above
we already created a link to this form. In your GuestBook folder create a new DTML Method named addEntryForm :

<dtm -var standard_htm _header>

<p>Type in your nane and your conments and we'll add it to the
guest book. </ p>

<form acti on="addEnt ryActi on" nethod="POST">
<p> Your nane:

<i nput type="text" nanme="guest_nane" val ue="Anonynous" >
</ p>
<p> Your comments:

<t ext area nanme="comments" rows="10" col s="60"></textarea>
</ p>

<p>

151

The Zope Book (2.6 Edition)

<i nput type="submt" val ue="Send Conments">
</ p>
</forne

<dtm -var standard_htm _footer>

Now when you click on the Sign Guest Book link on the guest book page you'll see a form allowing you to type in your
comments. This form collects the user's name and comments and submits this information to a method named
addEntryAction .

Now create an addEntryAction DTML Method in the GuestBook folder to handle the form. This form will create a new
entry document and return a confirmation message:

<dtm -var standard_htm _header>
<dtm -call expr="addEntry(guest_nanme, conments)">
<h1>Thanks for signing our guest book!</hl>

<p><a href="<dtm -var URL1>">Return
to the guest book. </p>

<dtm -var standard_htm _footer>

Anonynmous User - May 9, 2002 4:48 pm

URL1? Not working for ne!?

Anonymous User - June 3, 2002 2:24 am

I've tried to send sone comments to the guestbook, files of commrents have been created but those comments
didn't list out Iike the above pic.

Anonymous User - June 13, 2002 5:01 am

is it possible to send the formdata straight to the formand then return to the guestbook page with the
val i dated entry?

This method creates a new entry by calling the addEntry method and returns a message letting the user know that their
entry has been added.

The last remaining piece of the puzzle is to write the script that will create a file and sets its contents and properties.
We'll do this in Python since it is much clearer than doing it in DTML. Create a Python-based Script in the GuestBook
folder called addEntry with parameters guest_name and comments :

Script (Python) "addEntry"
##par anet er s=guest _nane, coments
#Ht

Create a guest book entry.
create a unique file id
id="entry_9%' % en(context.objectlds())

create the file
cont ext. manage_addPr oduct[' OFSP'] . manage_addFi | e(i d,
title="", file=conmments)

add a guest_nane string property
doc=getattr(context, id)
doc. manage_addProperty(' guest _nanme', guest_nanme, 'string')

Anonynmous User - May 22, 2002 11:06 am

VWere does the [' OFSP'] cone fron?

After digging around and doing a few searches, | found it's a core part of
Zope, but no expl ai nati ons.

Anonynmous User - June 12, 2002 12: 38 pm

| get an error that states:

Error Type: TypeError

Error Val ue: addEntry() takes no arguments (2 given)

What did | do wong?

Anonymous User - June 15, 2002 9:54 am

152

The Zope Book (2.6 Edition)

You forgot to include the paraneters for the Python script in the Paraneters field when pasting the script
into a new Python Script object. You need to explicitly state what paraneter your python 'function' takes
when creating the script.

This script uses Zope API calls to create a File and to create a property on it. This script performs the same sort of
actions in a script that you could do manually; it creates a file, edits it and sets a property.

The guest book is now almost finished. To use the simple guest book, just visit http://localhost:8080/GuestBook/ .

One final thing is needed to make the guest book complete. More than likely your security policy will not allow
anonymous site visitors to create files. However the guest book application should be able to be used by anonymous
visitors. In Chapter 7, User and Security, we'll explore this scenario more fully. The solution is to grant special
permission to the addEntry method to allow it to do its work of creating a file. You can do this by setting the Proxy role
of the script to Manager . This means that when the script runs it will work as though it was run by a manager
regardless of who is actually running the method. To change the proxy roles go to the Proxy view of the addEntry
script, as shown in Figure 5-7 .

Zope Guick s 1] G |

Owmnership

Ean
ﬁEl Contral_Panel
(JGreen 2 Script (Python) at /GuestBook/addEntry Help!
3 Guestaook Froxy roles allow you to control the access that a script has. Prosy roles replace the roles of the
@ MewsCatalog user who is executing the script. This can be used to both expand and limit access to resources.
=[] ZopeZoo Select the pro=y rales for this object from the list below.
O Fish Proxy Roles
= [mammals
(3 whales
=23 Reptiles
(D Lizards
(J snakes
acl_users

Digital Creations Save Changes |
Refresh

Bindings Test Proxy History Undo Security

Figure 5-7 Setting proxy roles for the addEntry script.
Now select Manager from the list of proxy roles and click Change .

Congratulations, you've just completed a functional web application. The guest book is complete and can be copied to
different sites if you want.

Extending the Guest Book to Generate XML

All Zope objects can create XML. It's fairly easy to create XML with DTML. XML is just a way of describing information.
The power of XML is that it lets you easily exchange information across the network. Here's a simple way that you
could represent your guest book in XML:

<guest book>
<entry>
<comment s>My comment s</ corment s>
</entry>
<entry>
<coments>l |ike your web page</coment s>
</entry>

153

The Zope Book (2.6 Edition)

<entry>
<coment s>Pl ease no blink tags</coment s>
</entry>
</ guest book>

This XML document may not be that complex but it's easy to generate. Create a DTML Method named "entries.xml" in
your guest book folder with the following contents:

<guest book>
<dtm -i n expr="objectVal ues(' DTM. Docunent')">
<entry>
<comment s><dt ml - var docunent_src htnl _quot e></ comment s>
</entry>
</dtm -in>
</ guest book>

Anonynous User - May 4, 2002 1:12 am
The guestbook entries are not 'DTM. Docunent' type objects, but 'File' type objects in the above exanpl es.
Thus, | think the follow ng codes are nore suitable.
<?xm version="1.0" encodi ng="EUC- KR' ?>
<guest book>
<dtm -in expr="objectValues('File)">

<entry>
<aut hor ><dt ml - var guest_nane nul | =" Anonynous" ></ aut hor >
<coment s><dt nl -var sequence-item htnm _quot e></ conment s>
</entry>
</dtm -in>

</ guest book>

As you can see, DTML is equally adept at creating XML as it is at creating HTML. Simply embed DTML tags among
XML tags and you're set. The only tricky thing that you may wish to do is to set the content-type of the response to
text/xml , which can be done with this DTML code:

<dtm -cal | expr="RESPONSE. set Header (' content-type', 'text/xm')">

The whole point of generating XML is producing data in a format that can be understood by other systems. Therefore
you will probably want to create XML in an existing format understood by the systems you want to communicate with. In
the case of the guest book a reasonable format may be the RSS (Rich Site Summary) XML format. RSS is a format

developed by Netscape for its my.netscape.com site, which has since gained popularity among other web logs and
news sites. The Zope.org web site uses DTML to build a dynamic RSS document.

Congratulations! You've XML-enabled your guest book in just a couple minutes. Pat yourself on the back. If you want
extra credit, research RSS enough to figure out how to change entries.xml to generate RSS.

The Next Step

This chapter shows how simple web applications can be made. Zope has many more features in addition to these, but
these simple examples should get you started on create well managed, complex web sites.

In the next chapter, we'll see how the Zope security system lets Zope work with many different users at the same time
and allows them to collaborate together on the same projects.

154

The Zope Book (2.6 Edition)

Users and Security

Introduction to Zope Security

Zope is a multi-user system. However, instead of relying upon the user accounts provided by the operating system
under which it runs, Zope maintains one or more of its own user databases. It is not necessary to create a user account
on the operating system under which Zope runs in order to grant someone a user account which they may use to
access your Zope application or manage Zope via its management interface.

It is important to note that Zope users do not have any of the privileges of a "normal" user on your computer's operating
system. For instance, they do not possess the privilege to change arbitrary files on your computer's filesystem.
Typically, a Zope user may influence the content of databases that are connected to Zope may execute scripts (or
other "logic" objects) based on Zope's security-restricted execution environment. It is also possible to allow users to
create their own scripts and content "through the web" by giving them access to the Zope Management Interface.
However, you can restrict the capability of a user or a class of users to whatever suits your goals. The important
concept to absorb is that Zope's security is entirely divorced from the operating system upon which it runs.

In Zope, users have only the capabilities granted to them by a Zope security policy . As the administrator of a Zope
system, you have the power to change your Zope system's security policies to whatever suits your business
requirements.

Furthermore, using security policies you can provide the capability to "safely" delegate capabilities to users defined
within different parts of a Zope site. "Safe delegation" is one of the important and differentiating features of Zope. It is
possible to grant users the capability in a Zope site to administer users and create scripts and content via the Zope
Management Interface. This is called "safe" delegation because it is relatively "safe" to grant users these kinds of
capabilities within a particular portion of a Zope site, as it does not compromise operating system security nor Zope
security in other portions of the site. Caveats to safe delegation pertain to denial of service and resource exhaustion (it
is not possible to control a user's resource consumption with any true measure of success within Zope), but it is
possible to delegate these capabilities to "semi-trusted" users in order to decentralize control of a web site, allowing it
to grow faster and require less oversight from a central source.

In this chapter we will look more closely at administering users, building roles, mapping roles to permissions, and
creating a security policy for your Zope site.

Review: Logging In and Logging Out of the Zope Management Interface

As we first saw in the chapter entitled Installing Zope , you may log into the Zope Management Interface by visiting a
"management" URL in your web browser, entering a username and password when prompted. We also pointed out in
Using the Zope Management Interface that due to the way many web browsers work, you often must perform an extra
step when an authentication dialog is raised or you must quit your browser to log out of Zope. Review these chapters
for more information about the basics of logging in and out of the Zope Management Interface.

Zope's "Stock" Security Setup

"Out of the box", a vanilla Zope site has two different classes of users: Managers and Anonymous users. You have
already seen via the Installing Zope chapter how you can log into the Zope management interface with the "initial" user
called "admin". The initial "admin" user is a user with the Manager role, which allows him to perform almost any duty
that can be performed within a Zope instance.

155

The Zope Book (2.6 Edition)

By default, in the "stock" Zope setup, Managers have the rights to alter Zope content and logic objects and view the
management interface, while the Anonymous users are only permitted to view rendered content. This may be sufficient
for many simple websites and applications, especially "public-facing” sites which have no requirement for users to "log
in" or compose their own content.

Identification and Authentication

When a user accesses a protected resource (for example, by attempting to view a "protected” DTML Method) Zope will
ask the user to log in by presenting some sort of authentication dialog. Once the dialog has been "filled out" and
submitted, Zope will look for the user account represented by this set of credentials.

Zope identifies a user by examining the username and password provided during the entry into the authentication
dialog. If Zope finds a user within one of its user databases with the username provided, the user is identified.

Once a user has been identified, authentication may or may not happen. Authentication succeeds if the password
provided by the user in the dialog matches the password registered for that user in the database.

Zope will only attempt to identify and authenticate a user if he attempts to perform an action against Zope which an
anonymous user has not been permitted the capability to perform; if a user never attempts to access a protected
resource, Zope will continue to treat the user as an anonymous user.

Zope prompts a user for authentication if the user attempts to access a "protected” resource without an adequate set of
credentials, as determined by the resource's security policy. For example, if a user attempts to access a method of an
object which has a restrictive security policy (like all of Zope's management interface methods) the user will be
prompted for authentication if he is not logged in. You've seen this behavior already if you've ever attempted to log in to
Zope and have been asked for a username and password to access the ZMI. The ZMI is an example of a Zope
application. Zope's security machinery performs security checks on behalf of the ZMI; it "pops up" an authentication
dialog requesting that the user enter a username and password.

Different things can happen with respect to being prompted for authentication credentials in response to a request for a
protected resource depending on the current state of a login session. If the user has not not yet logged in, Zope will
prompt the user for a username and password. If the user is logged in but the account under which he is logged in
does not have sufficient privilege to perform the action he has requested, Zope will prompt him for a different username
and password. If he is logged in and the account under which he has logged in does have sufficient privileges to
perform the requested action, the action will be performed. If a user cannot be authenticated because he provides a
nonexistent username or an incorrect password to an existing authentication dialog, Zope re-prompts the user for
authentication information as necessary until the user either "gets it right" or gives up.

In general, there is ho need for a user to log in to Zope if he only wishes to use public resources. For example, to view
the parts of your Zope website that are publically available, a user should not need to log in.

Authorization, Roles, and Permissions

Once a user has been authenticated, Zope determines whether or not he has access to the resource which is being
protected. This process is called authorization . Remember that the only reason that Zope asked for credentials is
because the user was attempting to view a resource which was not viewable by an anonymous user. The "resource
which is being protected" referred to above is the object which the user requested to perform an action against, which
caused the authentication process to begin.

The process of authorization involves two intermediary layers between the user and the protected resource: roles and
permissions .

156

The Zope Book (2.6 Edition)

Users have roles which describe "what they can do" such as "Author”, "Manager", and "Editor". These roles are
controlled by the Zope system administrator. Users may have more than one role, and may have a different set of roles
in different contexts. Zope objects have permissions which describe "what can be done with them" such as "View",
"Delete objects", and "Manage properties". These permissions are defined either within Zope itself or by Zope Products
, each of which may define its own set of permissions.

A context in Zope is a "place" within the Zope object hierarchy. In relation to security, a context is an object that has a
location within the Zope Object Database. For example, a description of a context could be expressed as "the

Exanpl es Folder object within the Zope root object”. Another example of a context might be "a DTML Method object
named show_css within the Zope root folder". In essence, a context can be thought of as an object's "location" within
the Zope Object Database, described by its "path". Each object that exists in the Zope Object Database which has a
web-manageable interface can be associated with its own security policy. Objects can also "acquire" security policies
from containing objects in order to ease the burden of creating a security policy. In fact, most Zope objects acquire their
security policies from their containers because it makes a given security policy easier to maintain. Only when there are
exceptions to the "master" security policy in a context are individual objects associated with a differing policy.

In essence, security policies map roles to permissions in a context ; in other words they say "who" can do "what", and
"where". For example, the security policy for a Folder (the context) may associate the "Manager" role (the roles) with
the "Delete objects" permission (the permissions). Thus, this security policy allows managers to delete objects in this
folder. If objects created within this folder do not override their parents' security policy, they acquire this policy. So, for
example, if a DTML Method is created within this folder, it may also be deleted by users with the Manager role.
Subobjects within subfolders of the original folder have the same policy unless they override it themselves, ad infinitum.

Managing Users

In the chapter entitled Installing Zope , you were provided with an "initial" account named adni n , which possesses
the Manager role, allowing you to manage the objects in your Zope instance. To allow other people to log into Zope,
and to further understand Zope security, you should create user accounts under which different users may
authenticate.

Creating Users in User Folders

A Zope User object defines a user account. A Zope User has a name, a password, one or more roles , and various
other properties. Roles are granted to a user in order to make it easier to control the scope of what he or she may do
within a Zope site.

To create user accounts in Zope, you create users within User Folders . A user folder contains user objects that define
Zope user accounts. User Folder objects always have a Zope "id" of acl _user s . More than one user folder can exist
within a Zope instance, but more than one user folder may not exist within the same Zope Folder.

To create a new account, visit the root Zope folder. Click on the object named acl_users . Click the Add button to
create a new user.

157

The Zope Book (2.6 Edition)

Zope Quick Start_*|| Go |
B Root Folder Add User Help!
Control_Panel _ _
D To add a new user, enter the name ,password, confirmation and roles for the new user and click
Green "Bdd". Domsies is an optional list of domains from which the user is allowed to login.
D GuestBook
Hame
= MewsCatalag Pmb
= D ZopeZoo F: d I*****
D Fish {Confirm) I*****
=]
D kammals . |
D Whales
= [Reptiles Roles A
[Lizards Qwner
D Snakes
£
Refresh Add

Figure 11-1 Adding a user to a user folder.

The form shown above lets you define the user. Type a username in the Name field (for example, "bob"). The
username can contain letters, spaces, and numbers. The username is case sensitive. Choose a password for your new
user and enter it in the Password and (Confirm) fields. In the next section, we will provide information about allowing a
user to change his or her own password.

The Domains field lets you restrict Internet domains from which the user can log in. This allows you to add another
safety control to your account. For example if you always want your a user to log in from work you could enter your
work's Internet domain name, for example "myjob.com”, in the Domains field. You can specify multiple domains
separated by spaces to allow the user to log in from multiple domains. For example if you decide that your coworker
should be able to manage Zope from their home account too, you could set the domains to "myjob.com myhome.net".
You can also use IP numbers with asterisks to indicate wildcard names instead of domain names to specify domains.
For example, "209.67.167.*" will match all IP addresses that start with "209.67.167".

The Roles multiple select list indicates which roles the user should have. The Zope default roles include Manager and
Owner . In general users who need to perform management tasks using the Zope Management Interface should be
given the Manager role. The Owner role is not appropriate to grant in most cases because a user normally only has the
Owner role in the context of a specific object. Granting the Owner role to a user in the User Folder management
interface grants that user ownership of all objects within the folder in which the user folder is placed as well as all
subfolders and subobijects of that folder. It is unfortunate that the Owner role is present in the list of roles to choose
from in the User Folder management interface, as it is confusing, little-used, and only now exists to service backwards
compatibility. In most cases it can be ignored completely.

You may define your own roles such as Editor and Reviewer . In the section later in this chapter named "Defining
Roles", we will create a new set of roles. For now, we will work with the "stock" Zope roles.

To create the new user click the Add button. You should see a new user object in the user folder.
Zope User accounts defined in the "stock" user folder implementation do not support additional properties like email
addresses and phone numbers. For support of properties like these, you will have to use external User products like

the CMF Membership Component (in the CMF) or exUserFolder .

Users can not be copied and pasted between User Folders. The facility does not exist to perform this.

158

The Zope Book (2.6 Edition)

Editing Users

You can edit existing users by clicking on their name within the User Folder management interface screen. Performing
this action causes a form to be displayed which is very similar to the form you used to create a user. In fact, you may
control most of the same settings that we detailed in the "Adding Users" section from within this form. It is possible to
visit this management screen and change a user's password, his roles, and his domain settings. In the "stock" user
folder implementation, you cannot change a user's name, however, so you will need to delete and recreate a user if
you need to change his name.

It is not possible for someone to find out a user's password by using the management interface. Another manager may
have access to change another user's password, but he may not find out what the current password is from within the
management interface. If a user's password is lost, it is lost forever.

Like all Zope management functions, editing users is protected by the security policy. Users can only change their
password if they have the Manage Users permission in the context of their own user folder, which managers have by
default. It is often desirable to allow users to change their own passwords. One problem is that by giving a user the
Manage Users permission, they are also able to edit other user accounts and add/delete users. This may or may not be
what you want.

To grant the capability for users to change their own passwords without being able to influence other users' information,
set up a script with Proxy Roles to do the work for you. See msx's mini-how-to for more information, or create a script to
do so after reading the section within this chapter entitled "Proxy Roles".

In general, user folders work like normal Zope folders; you can create, edit and delete contained objects. However,
user folders are not as capable as normal folders. You cannot cut and paste users in a user folder, and you can't create
anything besides a user in a user folder.

To delete an existing user from a user folder, select the user and click the Delete button.

Defining a User's Location

Zope can contain multiple user folders at different locations in the object database hierarchy. A Zope user cannot
access protected resources above the user folder in which their account is defined. The location of a user's account
information determines the scope of the user's access.

If an account is defined in a user folder within the root folder, the user may access protected objects defined within the
root folder. This is probably where the account you are using right now is defined. You can however, create user
folders within any Zope folder. If a user folder is defined in a subfolder, the user may only access protected resources
within that subfolder and within subfolders of that subfolder, and so on.

Consider the case of a user folder at /BeautySchool/Hair/acl_users . Suppose the user Ralph Scissorhands is defined
in this user folder. Ralph cannot access protected Zope resources above the folder at /BeautySchool/Hair . Effectively
Ralph's view of protected resources in the Zope site is limited to things in the BeautySchool/Hair folder and below.
Regardless of the roles assigned to Ralph, he cannot access protected resources "above" his location. If Ralph was
defined as having the Manager role, he would be able to go directly to /BeautySchool/Hair/manage to manage his
resources, but could not access /BeautySchool/manage at all.

To access the Zope Management Interface as Manager user who is not defined in the "root" user folder, use the URL
to the folder which contains his user folder plus manage . For example, if Ralph Scissorhands above has the Manager
role as defined within a user folder in the BeautySchool/Hair folder, he would be able to access the Zope Management
Interface by visiting ht t p: / / zopeser ver / Beaut ySchool / Hai r/ manage .

159

The Zope Book (2.6 Edition)

Of course, any user may access any resource which is not protected, so a user's creation location is not at all relevant
with respect to unprotected resources. The user's location only matters when he attempts to use objects in a way that
requires authentication and authorization, such as the objects which compose the Zope Management Interface.

It is straightforward to delegate responsibilities to site managers using this technique. One of the most common Zope
management patterns is to place related objects in a folder together and then create a user folder in that folder to
define people who are responsible for those objects. By doing so, you "safely" delegate the responsibility for these
objects to these users.

For example, suppose people in your organization wear uniforms. You are creating an intranet that provides
information about your organization, including information about uniforms. You might create a uni f or ns folder
somewhere in the intranet Zope site. In that folder you could put objects such as pictures of uniforms and descriptions
for how to wear and clean them. Then you could create a user folder in the uni f or ms folder and create an account for
the head tailor. When a new style of uniform comes out the tailor doesn't have to ask the web master to update the site,
he or she can update their own section of the site without bothering anyone else. Additionally, the head tailor cannot
log into any folder above the uni f or ns folder, which means the head tailor cannot manage any objects other than
those in the uni f or s folder.

Delegation is a very common pattern in Zope applications. By delegating different areas of your Zope site to different
users, you can take the burden of site administration off of a small group of managers and spread that burden around
to different specific groups of users.

Working with Alternative User Folders

It may be that you don't want to manage your user account through the web using Zope's "stock" user folder
implementation. Perhaps you already have a user database, or perhaps you want to use other tools to maintain your
account information. Zope allows you to use alternate sources of data as user information repositories. You can find an
ever-growing list of alternate user folders at the Zope web site Products area . Here is a sampling of some of the more
popular alternative user folders available.

Extensible User Folder — exUserFolder allows for authentication from a choice of sources and separate storage of
user properties. It has been designed to be usable out of the box, and requires very little work to set up. There are
authentication sources for Postgresql, RADIUS and SMB and others as well as normal ZODB storage.
etcUserFolder — This user folder authenticates using standard Unix /etc/password style files.

LDAP User Folder — This user folder allows you to authenticate from an LDAP server.

NTUserFolder — This user folder authenticates from NT user accounts. It only works if you are running Zope under
Windows NT or Windows 2000.

MySQLUserFolder — This user folder authenticates from data within a MySQL database.
Some user folders provide alternate login and logout controls in the form of web pages, rather than relying on Basic
HTTP Authentication controls. Despite this variety, all user folders use the same general log in procedure of prompting

you for credentials when you access a protected resource.

While most users are managed with user folders of one kind or another, Zope has a few special user accounts that are
not managed with user folder.

Special User Accounts

160

The Zope Book (2.6 Edition)

Zope provides three special user accounts which are not defined with user folders, the anonymous user , the
emergency user , and the initial manager . The anonymous user is used frequently, while the emergency user and
initial manager accounts are rarely used but are important to know about.

Zope Anonymous User

Zope has a built-in user account for "guests" who possess no credentials. This is the Anonynous user. If you don't
have a user account on Zope, you'll be considered to be the Anonynous user.

The Anonynous user additionally possesses the Anonynous role . The "stock" Zope security policy restricts users
which possess the Anonynous role from accessing nonpublic resources. You can tailor this policy, but most of the
time you'll find the default anonymous security settings adequate.

As we mentioned earlier in the chapter, you must try to access a protected resource in order for Zope to attempt
authentication. Even if you've got a user account on the system, Zope will consider you the Anonynous user until you
been prompted for login and you've successfully logged in.

Zope Emergency User

Zope has a special user account for emergency use known as the emergency user . We discussed the emergency user
briefly in Chapter 2, "Using Zope". The emergency user is not restricted by normal security settings. However, the
emergency user cannot create any new objects with the exception of new user objects.

The emergency user is typically only useful for two things: fixing broken permissions, and creating and changing user
accounts.

You may use the emergency user account to create or change other user accounts. Typically, you use the emergency
user account to define accounts with the Manager role or change the password of an existing account which already
possesses the Manager role. This is useful in case you lose your management user password or username. Typically,
after you create or change an existing a manager account you will log out as the emergency user and log back in as
the manager.

Another reason to use the emergency user account is to "fix" broken permissions. If you lock yourself out of Zope by
removing permissions you need to manage Zope, you can use the emergency user account to repair the permissions.
In this case log in as the emergency user and make sure that your manager account has the Vi ew managenent
screens and Change perm ssi ons permissions with respect to the object you're attempting to view. Then log out
and log back with your manager account and you should have enough access to fix anything else that is broken.

The emergency user cannot create new "content”, "logic" or "presentation" objects. A common error message seen by
users attempting to use the emergency user account in trying to create a new object is shown below.

161

The Zope Book (2.6 Edition)

Zope Guick Sttt *|| Go

Zope Error g
Cantral_Panel

(O Green Zope has encountered an error while publishing this resource.

[GuestBank

i Images Error Type: EmergencylUserCannotOwn

Error Value: Ohbjects cannot he owned by the emergency user
@ MewsCatalog

(O sales
[0 zopezoa
P Troubleshooting Suggestons
(3 aci_users
Digital Creations # The URL may be incorrect,
Refresh # The parameters passed to this resource may be incorrect.

= A respurce that this resource relies on may be encountering an error.

For more detailed inforrnation about the error, please refer to the HTML source
for this page.

If the error persists please contact the site maintainer, Thank you for your
patience.

Tracehack (irmermost last):
File /home/amos/23Branch/lib/python/EPublisher Fublish. py, line 223, in pukli
1l

Figure 11-2 Error caused by trying to create a new object when logged in as the emergency user.

The error above lets you know that the emergency user cannot create new objects. This is "by design”, and the
reasoning behind this policy may become clearer later in the chapter when we cover ownership.

Creating an Emergency User

Unlike normal user accounts that are defined through the Zope Management Interface, the emergency user account is
defined through a file in the filesystem. You can change the emergency user account by editing or generating the file
named access in the Zope home directory (the main Zope directory). Zope comes with a command line utility in the
Zope home directory named zpasswd. py to manage the emergency user account. On UNIX, run zpasswd. py by
passing it the access file path as its only argument:

$ cd (... where your ZOPE_ HOME is...)
$ python zpasswd. py access

User name: superuser
Passwor d:
Verify password:

Pl ease choose a format from

SHA - SHA-1 hashed password
CRYPT - UNI X-style crypt password
CLEARTEXT - no protection.

Encodi ng: SHA
Domai n restrictions:

Due to pathing differences, Windows users usually need to enter this into a command prompt to invoke zpasswd:

>cd (... where your ZOPE_ HOVE is ...)
> cd bin
> python ..\zpasswd. py ..\access

The zpasswd. py script steps you through the process of creating an emergency user account. Note that when you
type in your password it is not echoed to the screen. You can also run zpasswd. py with no arguments to get a list of
command line options. When setting up or changing the emergency user's details, you need to restart the Zope

162

The Zope Book (2.6 Edition)

process for your changes to come into effect.

Zope Initial Manager

The initial manager account is created by the Zope installer so you can log into Zope the first time. When you first
install Zope you should see a message like this:

creating default inituser file

Not e:
The initial user name and password are 'adm n'
and ' | VX3KAWU .

You can change the nane and password through the web
interface or using the 'zpasswd. py' script.

This lets you know the initial manager's name and password. You can use this information to log in to Zope for the first
time as a manager.

Initial users are defined in a similar way to the emergency user; they are defined in a file on the filesystem named
i nituser .On UNIX, the zpasswd. py program can be used to edit or generate this file the same way it is used to
edit or generate the emergency user access file:

$cd (... were your ZOPE HOME is ...)
$ python zpasswd. py i nituser

User nane: bob
Passwor d:
Verify password:

Pl ease choose a format from

SHA - SHA-1 hashed password
CRYPT - UNI X-style crypt password
CLEARTEXT - no protection.

Encodi ng: SHA
Domai n restrictions:

This will create ani ni t user file which contains a user named "bob" and will set its password. The password is not
echoed back to you when you type it in. The effect of creating an i ni t user file depends on the state of the existing
Zope database.

When Zope starts up, if there are no users in the root user folder (such as when you start Zope with a "fresh" ZODB
database), and an i ni t user file exists, the user defined within i ni t user will be created within the root user folder.
If any users already exist within the root user folder, the existence of the i ni t user file has no effect. Normally, initial
users are created by the Zope installer for you, and you shouldn't have to worry about changing them. Only in cases
where you start a new Zope database (for example, if you delete the var/ Dat a. f s file) should you need to worry
about creating an i ni t user file. Note that if Zope is being used in an INSTANCE_HOME setup, the created "inituser"
file must be copied to the INSTANCE_HOME directory. Most Zope setups are not INSTANCE_HOME setups (unless
you've explicitly made it so), so you typically don't need to worry about this. The i ni t user feature is a convenience
and is rarely used in practice except by the installer.

Protecting Against Password Snooping

The HTTP Basic Authentication protocol that Zope uses as part of its "stock" user folder implementation passes login
information "over the wire" in an easily decryptable way. It is employed, however, because it has the widest browser
support of any available authentication mechanism.

163

The Zope Book (2.6 Edition)

If you're worried about someone "snooping" your username/password combinations, or you wish to manage your Zope
site ultra-securely, you should manage your Zope site via an SSL (Secured Sockets Layer) connection. The easiest
way to do this is to use Apache or another webserver which comes with SSL support and put it "in front" of Zope. Some
(minimalistic) information about setting up Zope behind an SSL server is available at Unfo's member page on Zope.org
, on Zopelabs.com . The chapter of this book entitled Virtual Hosting also provides some background that may be
helpful to set up an SSL server in front of Zope.

Managing Custom Security Policies

Zope security policies control authorization; they define who can do what and where they can do it. Security policies

describe how roles are associated with permissions in the context of a particular object. Roles label classes of users,
and permissions protect objects. Thus, security policies define which classes of users (roles) can take what kinds of

actions (permissions) in a given part of the site.

Rather than stating which specific user can take which specific action on which specific object, Zope allows you to
define which kinds of users can take which kinds of action in which areas of the site. This sort of generalization makes
your security policies simple and more powerful. Of course, you can make exceptions to your policy for specific users,
actions, and objects.

Working with Roles

Zope users have roles that define what kinds of actions they can take. Roles define classes of users such as Manager ,
Anonymous , and Authenticated .

Roles are similar to UNIX groups in that they abstract groups of users. And like UNIX groups, each Zope user can have
one or more roles.

Roles make it easier for administrators to manage security. Instead of forcing an administrator to specifically define the
actions allowed by each user in a context, the administrator can define different security policies for different user roles

in a context. Since roles are classes of users, he needn't associate the policy directly with a user. Instead, he may
associate the policy with one of the user's roles.

Zope comes with four built-in roles:

Manager — This role is used for users who perform standard Zope management functions such as creating and edit
Zope folders and documents.

Anonymous — The Zope Anonynous user has this role. This role should be authorized to view public resources. In
general this role should not be allowed to change Zope objects.

Owner — This role is assigned automatically to users in the context of objects they create. We'll cover ownership later
in this chapter.

Authenticated — This role is assigned automatically to users whom have provided valid authentication credentials.
This role means that Zope "knows" who a particular user is. When Users are logged in they are considered to also
have the Authenticated role, regardless of other roles.

For basic Zope sites you can typically "get by" with only having Manager and Anonynous roles. For more complex
sites you may want to create your own roles to classify your users into different categories.

Defining Global Roles

164

The Zope Book (2.6 Edition)

A "global" role is one that shows up in the "roles" column of the Securi ty tab of your Zope objects. To create a new
"global” role go to the Security tab of your root Zope object (or any other f ol deri sh Zope object) and scroll down to
the bottom of the screen. Type the name of the new role in the User defined role field, and click Add Role . Role names
should be short one or two word descriptions of a type of user such as "Author", "Site Architect”, or "Designer". You
should pick role names that are relevant to your application.

You can verify that your role was created, noticing that there is now a role column for your new role at the top of the
screen. You can delete a role by selecting the role from the select list at the bottom of the security screen and clicking
the Delete Role button. You can only delete your own custom roles, you cannot delete any of the "stock" roles that
come with Zope.

You should notice that roles can be used at the level at which they are defined and "below" in the object hierarchy. For
example, if you create a role in the Exanpl es folder that exists in the Zope root folder, that role cannot be used
outside of the Exanpl es folder and any of its subfolders and subobjects. If you want to create a role that is
appropriate for your entire site, create it in the root folder.

In general, roles should be applicable for large sections of your site. If you find yourself creating roles to limit access to
parts of your site, chances are there are better ways to accomplish the same thing. For example you could simply
change the security settings for existing roles on the folder you want to protect, or you could define users deeper in the
object hierarchy to limit their access.

Understanding Local Roles

Local roles are an advanced feature of Zope security. Specific users can be granted extra roles when working within
the context of a certain object by using a local role. If an object has local roles associated with a user then that user
gets those additional roles while working with that object, without needing to reauthenticate.

For example, if a user creates an object using the Zope Management Interface, they are always given the additional
local role of Owner in the context of that object. A user might not have the ability to edit DTML Methods in general if he
does not possess a set of global roles which allow him to do so, but for DTML Methods he owns, the user may edit the
DTML Method by virtue of possessing the Owner local role.

Local roles are a fairly advanced security control. Zope's automatic control of the Owner local role is likely the only
place you'll encounter local roles unless you create an application which makes use of them. The main reason you
might want to manually control local roles is to give a specific user special access to an object. In general you should
avoid setting security for specific users if possible. It is easier to manage security settings that control groups of users
instead of individuals.

Understanding Permissions

A permissions defines a single action which can be taken upon a Zope object. Just as roles abstract users, permissions
abstract objects. For example, many Zope objects, including DTML Methods and DTML Documents, can be viewed.
This action is protected by the View permission. Permissions are defined by Zope Product developers and the Zope
"core" itself. Products are responsible for creating a set of permissions which are relevant to the types of objects they
expose.

Some permissions are only relevant for one type of object, for example, the Change DTML Methods permission only
protects DTML Methods. Other permissions protect many types of objects, such as the FTP access and WebDAV
access permissions which control whether objects are available via FTP and WebDAYV.

You can find out what permissions are available on a given object by going to the Security management tab.

165

The Zope Book (2.6 Edition)

The default Zope permissions are described in appendix A of the Zope Developer's Guide

7 Zope Guuick Start x| m
B Root Folder Permission Roles

ﬁEl Contral_Panel Acquire
[Green permission Anonymous kanager Chiner

il ?
[GuestBoak setlings?

@ MewsCatalag = Access contents infarmation - F r

2 D zopezoo = Change configuration r F r
DFish 3 Change permissions = - -

B [Mammals = Delete objects r . -
(3 whales = Manage properties r . -

= [Reptiles F Take ownership r B -
[Lizards [Undo changes r P =

[snakes = Use mailhost services r = r

= Wiew - r -

= Wiew management screens r " r

Refresh Save Changes |

You can define new roles by entering a role name and clicking the "Add Role" button.

User defined roles

Figure 11-3 Security settings for a mail host object.

As you can see in the figure above, a mail host has a limited palette of permissions available. Contrast this to the many
permissions that you see when setting security on a folder.

Defining Security Policies

Security policies are where roles meet permissions. Security policies define "who" can do "what" in a given part of the
site.

You can set a security policy on almost any Zope object. To set a security policy on an object, go the object's Security
tab. For example, click on the security tab of the root folder.

[Zope ek st] G |

-

Tanage 2L aialog ENmes
ot Folder

Manage properties
EﬂCDntrol_Panel g (I
kanage users
D Green

Opend/Close Database Connection
(0 GuestBoak

Opend/Close Database Connections
@ MewsCatalog

Cluery Wocahulary

g D ZopeZoo . .
3 Fish Savesdiscard Version changes
Search ZCatalo
=] D kammals X e
Take ownership
5 whates Test Datah © 1i
est Database Connections
=23 Reptiles
Undo changes
D Lizards
Use Database Methods
D Snakes X
Use Factories
acl_users m pr— -
Digital Creations se mailhost services
Refresh Wiew

Wiew History

i T T T T T T T T i e s e B B
RIESESESESESES B RIS RS IS RS IS RS
i e T T T T T T T o e i B B B

Wiew management screens

Save Changes |

Figure 11-4 Security policy for the root folder.

166

The Zope Book (2.6 Edition)

In the figure above, the center of the screen displays a grid of check boxes. The vertical columns of the grid represent
roles, and the horizontal rows of the grid represent permissions. Checking the box at the intersection of a permission
and a role grants users with that role the ability to take actions protected by that permission in the context of the object
being managed. In this case, the context is the root folder.

Many Zope Products add custom security permissions to your site when you install them. This can make the
permissions list grow quite large, and unwieldy. Product authors should take care to re-use suitable existing
permissions if possible, but many times it's not possible, so the permission list grows with each new Product that is
installed.

You'll notice by virtue of visiting the Security tab of the root folder that Zope comes with a default security policy that
allows users which possess the Manager role to perform most tasks, and that allows anonymous users to perform
only a few restricted tasks. The simplest (and most effective) way to tailor this policy to suit your needs is to change the
security settings in the root folder.

For example, you can make your site almost completely "private" by disallowing anonymous users the ability to view
objects. To do this deny all anonymous users View access by unchecking the View Permission where it intersects the
Anonymous role. You can make your entire site private by making this security policy change in the root folder. If you
want to make one part of your site private, you could make this change in the folder you want to make private.

This example points out a very important point about security policies: they control security for a given part of the site
only. The only global security policy is the one on the root folder.

Security Policy Acquisition

How do different security policies interact? We've seen that you can create security policies on different objects, but
what determines which policies control which objects? The answer is that objects use their own policy if they have one,
additionally they acquire their parents' security policies through a process called acquisition . We explored acquisition in
the Acquisition chapter. Zope security makes extensive use of acquisition.

Acquisition is a mechanism in Zope for sharing information among objects contained in a folder and its subfolders. The
Zope security system uses acquisition to share security policies so that access can be controlled from high-level
folders.

You can control security policy acquisition from the Security tab. Notice that there is a column of check boxes to the left
of the screen labeled Acquire permission settings . Every check box in this column is checked by default. This means
that security policy will acquire its parent's setting for each permission to role setting in addition to any settings
specified on this screen. Keep in mind that for the root folder (which has no parent to acquire from) this left most check
box column does not exist.

Suppose you want to make a folder private. As we saw before this merely requires denying the Anonymous role the
View permission in the context of this object. But even though the "View" permission's box may be unchecked the
folder might not be private. Why is this? The answer is that the Acquire permission settings option is checked for the
View permission. This means that the current settings are augmented by the security policies of this folder's parents.
Somewhere above this folder the Anonymous role must be assigned to the View permission. You can verify this by
examining the security policies of this folder's parents. To make the folder private we must uncheck the Acquire
permission settings option. This will ensure that only the settings explicitly in this security policy are in effect.

Each checked checkbox gives a role permission to do an action or a set of actions. With Acqui re per m ssi on
settings checked, these permissions are added to the actions allowed in the parent folder. If Acqui r e

perm ssion settings isunchecked on the other hand, checkboxes must be explicitly set, and the security setting
of the parent folder will have no influence.

167

The Zope Book (2.6 Edition)

In general, you should always acquire security settings unless you have a specific reason to not do so. This will make
managing your security settings much easier as much of the work can be done from the root folder.

Security Usage Patterns

The basic concepts of Zope security are simple: roles and permissions are mapped to one another to create security
policies. Users are granted roles (either global roles or local roles). User actions are restricted by the roles they
possess in the context of an object. These simple tools can be put together in many different ways. This can make
managing security complex. Let's look at some basic patterns for managing security that provide good examples of
how to create an effective and easy to manage security architecture.

Security Rules of Thumb

Here are a few simple guidelines for Zope security management. The security patterns that follow offer more specific
recipes, but these guidelines give you some guidance when you face uncharted territory.

1. Define users at their highest level of control, but no higher.
2. Group objects that should be managed by the same people together in folders.
3. Keep it simple.

Rules one and two are closely related. Both are part of a more general rule for Zope site architecture. In general you
should refactor your site to locate related resources and users near each other. Granted, it's almost never possible to
force resources and users into a strict hierarchy. However, a well considered arrangement of resources and users into
folders and sub-folders helps tremendously.

Regardless of your site architecture, try to keep things simple. The more you complicate your security settings the
harder time you'll have understanding it, managing it and making sure that it's effective. For example, limit the number
of new roles you create, and try to use security policy acquisition to limit the number of places you have to explicitly
define security settings. If you find that your security policies, users, and roles are growing into a complex thicket, you
should rethink what you're doing; there's probably a simpler way.

Global and Local Policies

The most basic Zope security pattern is to define a global security policy on the root folder and acquire this policy
everywhere. Then as needed you can add additional policies deeper in the object hierarchy to augment the global
policy. Try to limit the number of places that you override the global policy. If you find that you have to make changes in
a number of places, consider consolidating the objects in those separate locations into the same folder so that you can
make the security settings in one place.

You should choose to acquire permission settings in your sub-policies unless your sub-policy is more restrictive than
the global policy. In this case you should uncheck this option for the permission that you want to restrict.

This simple pattern will take care of much of your security needs. Its advantages are that it is easy to manage and easy
to understand. These are extremely important characteristics for any security architecture.

Delegating Control to Local Managers

The pattern of delegation is very central to Zope. Zope encourages you to collect like resources in folders together and
then to create user accounts in these folders to manage their contents.

168

The Zope Book (2.6 Edition)

Lets say you want to delegate the management of the Sales folder in your Zope site over to the new sales web
manager, Steve. First, you don't want Steve changing any objects which live outside the Sales folder, so you don't need
to add him to the acl_users folder in the root folder. Instead, you would create a new user folder in the Sales folder.

Now you can add Steve to the user folder in Sales and give him the Role Manager . Steve can now log directly into the
Sales folder to manage his area of control by pointing his browser to http://www.zopezoo.org/Sales/manage .

@ZC)PE Logged in as Steve |Zope Guick Start ~|| Go |
m Contents View Properties Security Undo Ownership Find
acl_users
Digital Creations (L Folder at. /Sales Help!
Refresh
|Se|ect type to add... = s |
Type Hame Size Last Modified
I~ acl_users (User Folder) 2001-03-08 05:23 PM

Rename | Cutl Cupyl Delete | Import’Export Select All

Figure 11-5 Managing the Sales folder.

Notice in the figure above that the navigation tree on the left shows that Sales is the root folder. The local manager
defined in this folder will never have the ability to log into any folders above Sales, so it is shown as the top folder.

This pattern is very powerful since it can be applied recursively. For example, Steve can create a sub-folder for
multi-level marketing sales. Then he can create a user folder in the multi-level marketing sales folder to delegate
control of this folder to the multi-level marketing sales manager. And so on. This allows you to create web sites
managed by thousands of people without centralized control. Higher level managers need not concern themselves too
much with what their underlings do. If they choose they can pay close attention, but they can safely ignore the details
since they know that their delegates cannot make any changes outside their area of control, and they know that their
security settings will be acquired.

Different Levels of Access with Roles

The local manager pattern is powerful and scalable, but it takes a rather coarse view of security. Either you have
access or you don't. Sometimes you need to have more fine grained control. Many times you will have resources that
need to be used by more than one type of person. Roles provides you with a solution to this problem. Roles allow you
to define classes of users and set security policies for them.

Before creating new roles make sure that you really need them. Suppose that you have a web site that publishes
articles. The public reads articles and managers edit and publish articles, but there is a third class of user who can
author articles, but not publish or edit them.

One solution would be to create an authors folder where author accounts are created and given the Manager role. This
folder would be private so it could only be viewed by managers. Articles could be written in this folder and then

169

The Zope Book (2.6 Edition)

managers could move the articles out of this folder to publish them. This is a reasonable solution, but it requires that
authors work only in one part of the site and it requires extra work by managers to move articles out of the authors
folder. Also, consider that problems that result when an author wants to update an article that has been moved out of
the authors folder.

A better solution is to add an Author role. Adding a role helps us because it allows access controls not based on
location. So in our example, by adding an author role we make it possible for articles to be written, edited, and
published anywhere in the site. We can set a global security policy that gives authors the ability to create and write
articles, but doesn't grant them permissions to publish or edit articles.

Roles allow you to control access based on who a user is, not just where they are defined.

Controlling Access to Locations with Roles

Roles can help you overcome a problem with the local manager pattern. The problem is that the local manager pattern
requires a strict hierarchy of control. There is no provision to allow two different groups of people to access the same
resources without one group being the manager of the other group. Put another way, there is no way for users defined
in one part of the site to manage resources in another part of the site.

Let's take an example to illustrate the second limitation of the local manager pattern. Suppose you run a large site for a
pharmaceutical company. You have two classes of users, scientists and salespeople. In general the scientists and the
salespeople manage different web resources. However, suppose that there are some things that both types of people
need to manage, such as advertisements that have to contain complex scientific warnings. If we define our scientists in
the Science folder and the salespeople in the Sales folder, where should we put the AdsWithComplexWarnings folder?
Unless the Science folder is inside the Sales folder or vice versa there is no place that we can put the
AdsWithComplexWarnings folder so that both scientists and salespeople can manage it. It is not a good political or
practical solution to have the salespeople manage the scientists or vice versa; what can be done?

The solution is to use roles. You should create two roles at a level above both the Science and Sales folders, say
Scientist , and SalesPerson . Then instead of defining the scientists and salespeople in their own folders define them
higher in the object hierarchy so that they have access to the AdsWithComplexWarnings folder.

When you create users at this higher level, you should not give them the Manager role, but instead give them Scientist
or SalesPerson as appropriate. Then you should set the security policies using the checkboxes in the Security panel.
On the Science folder the Scientist role should have the equivalent of Manager control. On the Sales folder, the
Salesperson role should have the same permissions as Manager . Finally on the AdsWithComplexWarnings folder you
should give both Scientist and Salesperson roles adequate permissions. This way roles are used not to provide
different levels of access, but to provide access to different locations based on who you are.

Another common situation when you might want to employ this pattern is when you cannot define your managers
locally. For example, you may be using an alternate user folder that requires all users to be defined in the root folder. In
this case you would want to make extensive use of roles to limit access to different locations based on roles.

This wraps up our discussion of security patterns. By now you should have a reasonable grasp of how to use user

folders, roles, and security policies, to shape a reasonable security architecture for your application. Next we'll cover
two advanced security issues, how to perform security checks, and securing executable content.

Performing Security Checks

Most of the time when developing a Zope application, you needn't perform any "manual” security checks. The term for
this type of security which does not require manual effort on the part of the application developer is "declarative". Zope
security is typically declarative. If a user attempts to perform a secured operation, Zope will prompt them to log in. If the

170

The Zope Book (2.6 Edition)

user doesn't have adequate permissions to access a protected resource, Zope will deny them access.

However, sometimes you may wish to manually perform security checks. The main reason to do this is to limit the
choices you offer a user to those for which they are authorized. This doesn't prevent a sneaky user from trying to
access secured actions, but it does reduce user frustration, by not giving to user the option to try something that will not
work.

The most common security query asks whether the current user has a given permission. We use Zope's

checkPer m ssi on API to do this. For example, suppose your application allows some users to upload files. This
action may be protected by the "Add Documents, Images, and Files" standard Zope permission. You can test to see if
the current user has this permission in DTML:

<dtm -if expr="_. SecurityCheckPerm ssi on(
" Add Docunents, Inmges, and Files', this())">

<form acti on="upl oad" >
</ form
</fdtm-if>

The SecurityCheckPermission function takes two arguments, a permission name, and an object. In DTML we pass
t hi s() as the object which is a reference to the "current" object.

For Page Templates the syntax is a bit different, but the behavior is the same:

<f orm acti on="upl oad"
tal:condition="python: nodul es[' AccessControl'].getSecurityManager().checkPerm ssion('Add Docunents, |mages, and Fil e

</ f or np

A Python Script can be employed to perform the same task on behalf of a Page Template. In the below example, we
move the security check out of the Page Template and into a Python Script named check_security , which we call
from the Page Template. Here is the Page template:

<f orm acti on="upl oad"
tal:condition="python: here.check_security(' Add Docunents, |Inmages and Files', here)">

Here is the check_security Python Script which is referenced within the Page Template:

Script (Python) "check_security"

##bi nd cont ai ner =cont ai ner

##bi nd cont ext =cont ext

##bi nd nanespace=

##bi nd script=script

##bi nd subpat h=t raver se_subpat h

##par amet er s=per m ssi on, obj ect

##titl e=Checks security on behalf of a caller

from AccessControl inport getSecurityManager

sec_ngr = get SecurityManager ()
return sec_ngr. checkPer ni ssi on(perm ssion, object)

You can see that permission checking may take place manually in any of Zope's logic objects. Other functions exist in
the Zope API for manually performing security checks, but checkPer mi ssi on is arguably the most useful.

By passing the current object to checkPer ni ssi on , we make sure that local roles are taken into account when
testing whether the current user has a given permission.

You can find out about the current user by accessing the user object. The current user is a Zope object like any other
and you can perform actions on it using methods defined in the APl documentation.

171

The Zope Book (2.6 Edition)

Suppose you wish to display the current user name on a web page to personalize the page. You can do this easily in
DTML:

<dtm -var expr="_. SecurityGetUser().getUserNane()">

You can retrieve the currently logged in user with the SecurityGetUser DTML function or the shortcut user in Page
Templates. This DTML fragment tests the current user by calling the getUserName method on the current user object.
If the user is not logged in, you will get the name of the anonymous user, which is Anonymous User .

You can do the same thing in a Page Template like this:

<p tal:content="user/get User Nane" >user nane</ p>

The Zope security API for Scripts is explained in the Appendix B: API Reference . The Zope security API for DTML is
explained in Appendix A: DTML Reference . The Zope security API for Page Templates is explained in Appendix C:
Zope Page Templates Reference . An even better reference to these functions exists in the Zope help system,
available by clicking on Hel p from any Zope Management Interface page.

Advanced Security Issues: Ownership and Executable Content

You've now covered all the basics of Zope security. What remains are the advanced concepts of ownership and
executable content . Zope uses ownership to associate objects with users who create them, and executable content
refers to objects such as Scripts, DTML Methods and Documents, which execute user code.

For small sites with trusted users you can safely ignore these advanced issues. However for large sites where you
allow untrusted users to create and manage Zope objects, it's important to understand ownership and securing
executable content.

The Problem: Trojan Horse Attacks

The basic scenario that motivates both ownership and executable content controls is a Trojan horse attack. A Trojan
horse is an attack on a system that operates by tricking a user into taking a potentially harmful action. A typical Trojan
horse masquerades as a benign program that causes harm when you unwittingly run it.

All computer systems are vulnerable to this style of attack. For web-based platforms, all that is required is to trick an
authorized, but unsuspecting user to visit a URL that performs a harmful action that the attacker himself is not
authorized to perform.

This kind of attack is very hard to protect against. You can trick someone into clicking a link fairly easily, or you can use
more advanced techniques such as Javascript to cause a user to visit a malicious URL.

Zope offers some protection from this kind of Trojan horse. Zope helps protect your site from server-side Trojan attacks
by limiting the power of web resources based on who authored them. If an untrusted user authors a web page, then the
power of the web pages to do harm to unsuspecting visitors will be limited. For example, suppose an untrusted user
creates a DTML document or Python script that deletes all the pages in your site. If anyone attempt to view the page, it
will fail since the owner of the object does not have adequate permissions. If a manager views the page, it will also fail,
even though the manager does have adequate permissions to perform the dangerous action.

Zope uses ownership information and executable content controls to provide this limited protection.

Managing Ownership

172

The Zope Book (2.6 Edition)

When a user creates a Zope object, the user owns that object. An object that has no owner is referred to as unowned.
Ownership information is stored in the object itself. This is similar to how UNIX keeps track of the owner of a file.

You find out how an object is owned by viewing the Ownership management tab, as shown in the figure below.

[Zope ek st] G |

ﬁEl Contral_Panel
[Green DTML Document at (Salesffoo Help!
3 Guestgook Almost all Zope ohjects can be owned. When you create an ohject you become its owner.

@ MewssCatalog Cryniership matters for method objects since it determines what roles they have when they are
executed. See the Ay Aodes view of method objects for more information.

b1

] ZopeZoo This ohject is owned by Steve (Salesfacl_users).
acl_users
Digital Creations
Refresh If you have the Tafe Swemersinp role you can take ownership of an object. Usually when taking
awnership you should also take ownership of sub-objects as well.
Take Ownership |

" also take ownership of all sub-ohjects

Figure 11-6 Managing ownership settings.

This screen tells you if the object is owned and if so by whom. If the object is owned by someone else, and you have
the Take ownership permission, you can take over the ownership of an object. You also have the option of taking
ownership of all sub-objects by checking the Take ownership of all sub-objects box. Taking ownership is mostly useful
if the owner account has been deleted, or if objects have been turned over to you for continued management.

As we mentioned earlier in the chapter, ownership affects security policies because users will have the local role Owner
on objects they own. However, ownership also affects security because it controls the role's executable content.

Note that due to the way Zope "grew up" that the list of users granted the Owner local role in the context of the object is
not related to its actual "owner". The concepts of the owner "role" and executable content ownership are distinct. Just
because someone has the Owner local role in the context of an executable object does not mean that he is the owner
of the object.

Roles of Executable Content

DTML Documents, DTML Methods, SQL Methods, Python-based Scripts, and Perl-based Scripts are said to be
executable since their content is generated dynamically. Their content is also editable through the web.

When you view an executable object by visiting its URL or calling it from DTML or a script, Zope runs the object's
executable content. The objects actions are restricted by the roles of its owner and your roles. In other words an
executable object can only perform actions that both the owner and the viewer are authorized for. This keeps an
unprivileged user from writing a harmful script and then tricking a powerful user into executing the script. You can't fool
someone else into performing an action that you are not authorized to perform yourself. This is how Zope uses
ownership to protect against server-side Trojan horse attacks.

It is important to note that an "unowned" object is typically no longer executable. If you experience problems running an
executable object, make sure that its ownership settings are correct.

173

The Zope Book (2.6 Edition)

Proxy Roles

Sometimes Zope's system of limiting access to executable objects isn't exactly what you want. Sometimes you may
wish to clamp down security on an executable object despite its ownership as a form of extra security. Other times you
may want to provide an executable object with extra access to allow an unprivileged viewer to perform protected
actions. Proxy roles provide you with a way to tailor the roles of an executable object.

Suppose you want to create a mail form that allows anonymous users to send email to the webmaster of your site.
Sending email is protected by the Use mai | host servi ces permission. Anonymous users don't normally have this
permission and for good reason. You don't want just anyone to be able to anonymously send email with your Zope
server.

The problem with this arrangement is that your DTML Method that sends email will fail for anonymous users. How can
you get around this problem? The answer is to set the proxy roles on the DTML Method that sends email so that when
it executes it has the "Manager" role. Visit the Proxy management tab on your DTML Method, as shown in the figure
below.

Zope Guick s 1] G |

B Root Folder

ﬁEl Contral_Panel
[Green “% DTML Method at fsendEmail Help!
3 Guestaook Proxy roles allow you to control the access that a DTML document or method has. Proxy roles
@ MewssCatalog replace the roles of the user who is viewing the document or method. This can be used to both
& expand and limit access to resources. Select the prosy roles for this object fram the list below.
Sales
] ZopeZoo Proxy Roles | A n-rermong
acl_users

Digital Creations
Refresh

Save Changes |

Figure 11-7 Proxy role management.
Select Manager and click the Change button. This will set the proxy roles of the mail sending method to Manager .
Note you must have the Manager role yourself to set it as a proxy role. Now when anyone, anonymous or not runs your
mail sending method, it will execute with the Manager role, and thus will have authorization to send email.
Proxy roles define a fixed amount of permissions for executable content. Thus you can also use them to restrict
security. For example, if you set the proxy roles of a script to Anonymous role, then the script will never execute as
having any other roles besides Anonymous despite the roles of the owner and viewer.

Use Proxy roles with care, since they can be used to skirt the default security restrictions.

Summary

Security consists of two processes, authentication and authorization. User folders control authentication, and security
policies control authorization. Zope security is intimately tied with the concept of location; users have location, security
policies have location, even roles can have location. Creating an effective security architecture requires attention to

174

The Zope Book (2.6 Edition)

location. When in doubt refer to the security usage patterns discussed in this chapter.

175

The Zope Book (2.6 Edition)

Advanced DTML

DTML is the kind of language that appears to "do what you mean." That is good when it does what you actually want it
to do, but when it does something you don't want to do, well, it's no fun at all. This chapter tells you how to make DTML
do what you really mean. When you're done reading this chapter you will be able to write DTML that will accomplish a
number of complex tasks including:

Inspect and Modify the REQUEST object
Modify the current namespace

Call other scripts from within DTML

Send email with or without MIME attachments

Handle exceptions within DTML

A few of caveats before getting started:

It's a good idea to know something about Python before diving into advanced DTML or any other advanced area of
Zope.

Understand the Zope acquisition model and how it works.

If you are writing very complex functionality in DTML, consider using a Python Script. This will ease maintenance,
not to mention readability.

Understand the difference between a DTML Document and a DTML Method before embarking on building a huge
site. See the explanation included in this chapter.

It's no lie that DTML has a reputation for complexity. While it is true that DTML is really simple if all you want to do is
simple layout, using DTML for more advanced tasks requires an understanding of where DTML variables come from.

Here's a very tricky error that almost all newbies encounter. Imagine you have a DTML Document called zooName .
This document contains an HTML form like the following:
<dtml -var standard_htm _header>
<dtm -if zooNane>
<p><dtm -var zooNane></p>
<dtnm - el se>
<formaction="<dtm -var URL>" nethod="GET">
<i nput nane="zooNane">
<input type="subnmit" val ue="What is zooName?">
</form

</dtm-if>

<dtml -var standard_htm _footer>

This looks simple enough, the idea is, this is an HTML page that calls itself. This is because the HTML action is the
URL variable, which will become the URL of the DTML Document.

176

The Zope Book (2.6 Edition)

If there is a zooNane variable, then the page will print it, if there isn't, it shows a form that asks for it. When you click
submit, the data you enter will make the "if* evaluate to true, and this code should print what was entered in the form.

But unfortunately, this is one of those instances where DTML will not do what you mean, because the name of the
DTML Document that contains this DTML is also named zooName , and it doesn't use the variable out of the request, it
uses itself, which causes it to call itself and call itself, ad infinitum, until you get an "excessive recursion" error. So
instead of doing what you really meant, you got an error. This is what confuses beginners. In the next couple of
sections, we'll show you how to fix this example to do what you mean.

How Variables are Looked up

There are actually two ways to fix the DTML error in the zooName document. The first is that you can rename the
document to something like zopeNameFormOrReply and always remember this special exception and never do it;
never knowing why it happens. The second is to understand how names are looked up, and to be explicit about where
you want the name to come from in the namespace .

The DTML namespace is a collection of objects arranged in a stack . A stack is a list of objects that can be manipulated
by pushing and popping objects on to and off of the stack.

When a DTML Document or DTML Method is executed, Zope creates a DTML namespace to resolve DTML variable
names. It's important to understand the workings of the DTML namespace so that you can accurately predict how Zope
will locate variables. Some of the trickiest problems you will run into with DTML can be resolved by understanding the
DTML namespace.

When Zope looks for names in the DTML namespace stack it first looks at the topmost object in the stack. If the name
can't be found there, then the next item down is introspected. Zope will work its way down the stack, checking each
object in turn until it finds the name that it is looking for.

If Zope gets all the way down to the bottom of the stack and can't find what it is looking for, then an error is generated.
For example, try looking for the non-existent name, unicorn :

<dt ml -var uni corn>

As long as there is no variable named unicorn viewing this DTML will return an error, as shown in the figure below.

@ZOPE LOUet I mansger) Zop: Guick Start ={ Go |
Zope Error =
ﬁEl Contral_Panel
Dareen @ Zope has encountered an error while publishing this resource.
[GuestBook
6 Mews Catalog Error Type: KeyError
[sales Error Value: unicorn
] ZopeZoo
acl_users
Digital Creations Troubleshooting Suggestions
Refresh

= This resource may be trying to reference anonexistent object or
variable unicorn.

» The URL may be incorrect.

» The parameters passed to this resource may be incorrect.

» A resource that this resource relies on may be encountering an
error.

For more detailed information about the error, please refer to the
HTML source for this page.

< | 5]

177

The Zope Book (2.6 Edition)

Figure 7-1 DTML error message indicating that it cannot find a variable.

But the DTML stack is not all there is to names because DTML doesn't start with an empty stack, before you even
begin executing DTML in Zope there are already a number of objects pushed on the namespace stack.

DTML Namespaces

DTML namespaces are built dynamically for every request in Zope. When you call a DTML Method or DTML Document
through the web, the DTML namespace starts with the same first two stack elements; the client object and the request,
as shown in the figure below.

Client object

Eedqueast

MNamsespace stack

Figure 7-2 Initial DTML namespace stack.

The client object is the first object on the top of the DTML namespace stack when entering a transaction (note:
commands exist to push additional parameters onto the namespace stack during a thread of execution). What the
client object is depends on whether you are executing a DTML Method or a DTML Document. In our example above,
this means that the client object is named zooName . Which is why it breaks. The form input that we really wanted
comes from the web request, but the client is looked at first.

The request namespace is always on the bottom of the DTML namespace stack, and is therefore the last namespace
to be looked in for names. This means that we must be explicit in our example about which namespace we want. We
can do this with the DTML wi t h tag:

<dtm -var standard_htm _header>

<dtm -wi th REQUEST only>
<dtm -if zooName>
<p><dtnl -var zooNane></p>
<dtnl - el se>
<form action="<dtm -var URL>" nethod="CET">
<i nput nanme="zooNane">
<input type="subnmit" val ue="What is zooName?">
</ fornp
</dtm-if>
</dtm -with>

<dtml -var standard_htm _footer>

Here, the with tag says to look in the REQUEST namespace, and only the REQUEST namespace, for the name
"zooName".

178

The Zope Book (2.6 Edition)

DTML Client Object

The client object in DTML depends on whether or not you are executing a DTML Method or a DTML Document. In the
case of a Document, the client object is always the document itself, or in other words, a DTML Document is its own
client object.

A DTML Method however can have different kinds of client objects depending on how it is called. For example, if you
had a DTML Method that displayed all of the contents of a folder then the client object would be the folder that is being
displayed. This client object can change depending on which folder the method in question is displaying. For example,
consider the following DTML Method named list in the root folder:

<dtnml -var standard_htm _header>

<dtm -in object Val ues>
<dtm -var title_or_id>
</dtm-in>

<dtm -var standard_htm _footer>

Now, what this method displays depends upon how it is used. If you apply this method to the Reptiles folder with the
URL http://1 ocal host: 8080/ Reptil es/list ,thenyou will get something that looks like the figure below.

= Snakes
o | jzards

Figure 7-3 Applying the list method to the Reptiles folder.

But if you were to apply the method to the Birds folder with the URL http://localhost:8080/Birds/list then you would get
something different, only two items in the list, Parrot and Raptors .

Same DTML Method, different results. In the first example, the client object of the list method was the Reptiles folder.
In the second example, the client object was the Birds folder. When Zope looked up the objectValues variable, in the
first case it called the objectValues method of the Reptiles folder, in the second case it called the objectValues method
of the Birds folder.

In other words, the client object is where variables such as methods, and properties are looked up first.

179

The Zope Book (2.6 Edition)

As you saw in "Dynamic Content with DTML", if Zope cannot find a variable in the client object, it searches through the
object's containers. Zope uses acquisition to automatically inherit variables from the client object's containers. So when
Zope walks up the object hierarchy looking for variables it always starts at the client object, and works its way up from
there.

DTML Method vs. DTML Document

One of the most potentially confusing choices to make for Zope newbies is the choice between a DTML Method and a
DTML Document. Unfortunately, many Zope newbies develop entire sites using one type of object only to discover that
they should have used the other type. In general, keep the following items in mind when deciding upon which type to
use:

» Does the object require properties of it's own? If so, use a DTML Document since DTML Methods have no
inherent properties.

» Does the object need to be called as a "page"? If so, consider using a DTML Document since it will be
easier to control such items as page title by using properties.

» Does the object need transparency to it's context? If so, you should probably use a DTML Method since
these objects act as though they are directly attached to their calling, or containing object.

DTML Request Object

The request object is the bottom object on the DTML namespace stack. The request contains all of the information
specific to the current web request.

Just as the client object uses acquisition to look in a number of places for variables, so too the request looks up
variables in a number of places. When the request looks for a variable it consults these sources in order:

1. The CGI environment. The Common Gateway Interface , or CGl interface defines a standard set of environment
variables to be used by dynamic web scripts. These variables are provided by Zope in the REQUEST namespace.

2. Form data. If the current request is a form action, then any form input data that was submitted with the request can
be found in the REQUEST object.

3. Cookies. If the client of the current request has any cookies these can be found in the current REQUEST object.

4. Additional variables. The REQUEST namespace provides you with lots of other useful information, such as the URL
of the current object and all of its parents.

The request namespace is very useful in Zope since it is the primary way that clients (in this case, web browsers)
communicate with Zope by providing form data, cookies and other information about themselves. For more information
about the request object, see Appendix B.

A very simple and enlightening example is to simply render the REQUEST object in a DTML Document or Method:
<dtnml -var standard_htm _header>

<dt m -var REQUEST>

<dtml -var standard_htm _footer>

Try this yourself, you should get something that looks like the figure below.

180

The Zope Book (2.6 Edition)

o S s =1] 60
form 2
Control_Panel
D Green .
D GuestBook cookies
] Images s) . ,
= NewsCatalog tree-s ‘elyL jIZ3hANPWIUdhWIELItbgK16L BAAATL 1RCHS
D Sales
=23 ZopeZoo other
gﬁ];‘:f AUTHENTICATION PATH "'
(3 Mammals TraversalRequestNameStack []
] Reptiles tree-s ‘elyL jIZ2hANPW AU dhWiEiltbqK16L BAAAT 1RC
acl_users URL ‘httpeipdx:8090blah’
Digital Creations PUBLISHED <DTMLMethod instance af 87{92d8 >
Refresh SERVER_URL “http://pd:8090°
AUTHENTICATED_USER manager
URLOD http://pdx:8090/blah ﬂ
g s e e N

Figure 7-4 Displaying the request.

Since the request comes after the client object, if there are names that exist in both the request and the client object,
DTML will always find them first in the client object. This can be a problem. Next, let's look at some ways to get around
this problem by controlling more directly how DTML looks up variables.

Rendering Variables

When you insert a variable using the var tag, Zope first looks up the variable using the DTML namespace, it then
renders it and inserts the results. Rendering means turning an object or value into a string suitable for inserting into the
output. Zope renders simple variables by using Python's standard method for coercing objects to strings. For complex
objects such as DTML Methods and SQL Methods, Zope will call the object instead of just trying to turn it into a string.
This allows you to insert DTML Methods into other DTML Methods.

In general Zope renders variables in the way you would expect. It's only when you start doing more advanced tricks
that you become aware of the rendering process. Later in this chapter we'll look at some examples of how to control
rendering using the get i t em DTML utility function.

Modifying the DTML Namespace

Now that you know the DTML namespace is a stack, you may be wondering how, or even why, new objects get pushed
onto it.

Some DTML tags modify the DTML namespace while they are executing. A tag may push some object onto the
namespace stack during the course of execution. These tags include the in tag, the with tag, and the let tag.

In Tag Namespace Modifications

When the in tag iterates over a sequence it pushes the current item in the sequence onto the top of the namespace
stack:

<dtm -var getld> <!-- This is the id of the client object -->
<dtm -in object Val ues>

<dtm -var getld> <!-- this is the id of the current itemin the

181

The Zope Book (2.6 Edition)

obj ect Val ues sequence -->
</dtm-in>

You've seen this many times throughout the examples in this book. While the in tag is iterating over a sequence, each
item is pushed onto the namespace stack for the duration of the contents of the in tag block. When the block is finished
executing, the current item in the sequence is popped off the DTML namespace stack and the next item in the
sequence is pushed on.

Additional Notes

To be more accurate, the in tag pushes a number of items onto the namespace stack. These include sequence
variables, grouping variables, and batch variables in addition to the object itself. Some of those variables are:

* sequence-item: The current item within the iteration.

e sequence-start: True if the current item is the first item in the sequence.
* sequence-end: True if the current item is the last item in the sequence.
* sequence-length: The length of the sequence.

* previous-sequence: True on the first iteration if the current batch is not the first one. Batch size is set with the
size attribute.

e next-sequence: True on the last iteration if the current batch is not the last batch.
There are many more variables available when using the in tag. See Appendix A for more detalil.

The With Tag

The with tag pushes an object that you specify onto the namespace stack for the duration of the with block. This allows
you to specify where variables should be looked up first. When the with block closes, the object is popped off the
namespace stack.

Consider a folder that contains a bunch of methods and properties that you are interested in. You could access those
names with Python expressions like this:
<dtnml -var standard_htm _header>

<dtm -var expr="Reptiles.getReptilelnfo()">
<dtm -var expr="Reptiles.reptil eHouseMi nt ai ner">

<dtm -in expr="Reptiles.getReptiles()">
<dtnml -var speci es>
</dtm-in>

<dtml -var standard_htm _footer>

Notice that a lot of complexity is added to the code just to get things out of the Reptiles folder. Using the with tag you
can make this example much easier to read:

<dtnml -var standard_htm _header>
<dtm -with Reptil es>

<dtm -var getReptil el nfo>
<dtm -var reptil eHouseMai nt ai ner >

182

The Zope Book (2.6 Edition)

<dtm -in getReptil es>
<dtm -var speci es>
</dtm -in>

</dtm -wth>

<dtml -var standard_htm _footer>

Another reason you might want to use the with tag is to put the request, or some part of the request on top of the
namespace stack. For example suppose you have a form that includes an input named id . If you try to process this
form by looking up the id variable like so:

<dtml -var id>

You will not get your form's id variable, but the client object's id. One solution is to push the web request's form on to
the top of the DTML namespace stack using the with tag:
<dtm -wi th expr="REQUEST. f or m' >

<dtml -var id>
</dtm-with>

This will ensure that you get the form's id first. See Appendix B for complete APl documentation of the request object.

If you submit your form without supplying a value for the id input, the form on top of the namespace stack will do you no
good, since the form doesn't contain an id variable. You'll still get the client object's id since DTML will search the client
object after failing to find the id variable in the form. The with tag has an attribute that lets you trim the DTML
namespace to only include the object you pushed onto the namespace stack:
<dtm -wi th expr="REQUEST. fornl only>
<dtm-if id>
<dtml -var id>
<dtnl - el se>
<p>The formdidn't contain an "id" variable.</p>
</dtm-if>
</dtm -with>

Using the only attribute allows you to be sure about where your variables are being looked up.

The Let Tag

The let tag lets you push a new nhamespace onto the namespace stack. This namespace is defined by the tag attributes
to the let tag:

<dtml -1 et person="'Bob'" relation=""'uncle' ">
<p><dtm -var person>'s your <dtm-var relation>. </p>
</dtm -let>

This would display:

<p>Bob's your uncle. </p>

The let tag accomplishes much of the same goals as the with tag. The main advantage of the let tag is that you can use
it to define multiple variables to be used in a block. The let tag creates one or more new name-value pairs and pushes
a namespace object containing those variables and their values on to the top of the DTML namespace stack. In
general the with tag is more useful to push existing objects onto the namespace stack, while the let tag is better suited
for defining new variables for a block.

When you find yourself writing complex DTML that requires things like new variables, there's a good chance that you

could do the same thing better with Python or Perl. Advanced scripting is covered in the chapter entitled Advanced
Zope Scripting .

183

The Zope Book (2.6 Edition)

The DTML namespace is a complex place, and this complexity evolved over a lot of time. Although it helps to
understand where names come from, it is much more helpful to always be specific about where you are looking for a
name. Thewi t h and| et tags let you alter the namespace in order to obtain references to the objects you need.

DTML Namespace Utility Functions

Like all things in Zope, the DTML namespace is an object, and it can be accessed directly in DTML with the _
(underscore) object. The _ namespace is often referred to as "the under namespace".

The under namespace provides you with many useful methods for certain programming tasks. Let's look at a few of
them.

Say you wanted to print your name three times. This can be done with the in tag, but how do you explicitly tell the in tag
to loop three times? Just pass it a sequence with three items:

<dtm -var standard_htm _header>

<dtm -in expr="_.range(3)">
<dtm -var sequence-iten>: My nane is Bob.
</dtm-in>
</ ul >

<dtml -var standard_htm _footer>

The _. range(3) Python expression will return a sequence of the first three integers, 0, 1, and 2. The range function
is a standard Python built-in and many of Python's built-in functions can be accessed through the _ namespace,
including:

'range([start,], stop, [step])' -- Returns a list of integers

from'start' to 'stop' counting 'step' integers at a
time. 'start' defaults to O and 'step' defaults to 1. For exanple:

' _.range(3,10,2)' -- gives '[3,5,7,9]".

' _.len(sequence)' -- 'len' returns the size of *sequence* as an integer.

Many of these names come from the Python language, which contains a set of special functions called bui | t - i ns
The Python philosophy is to have a small number of built-in names. The Zope philosophy can be thought of as having a
large, complex array of built-in names.

The under namespace can also be used to explicitly control variable look up. There is a very common usage of this
syntax. As mentioned above the in tag defines a number of special variables, like sequence-item and sequence-key
that you can use inside a loop to help you display and control it. What if you wanted to use one of these variables
inside a Python expression?:

<dtnml -var standard_htm _header>

<h1>The squares of the first three integers:</hl>

<dtm -in expr="_.range(3)">
The square of <dtm -var sequence-iten> is:
<dtm -var expr="sequence-item* sequence-iteni>

</dtm-in>
</ ul >

<dtm -var standard_htm _footer>

Try this, does it work? No! Why not? The problem lies in this var tag:

<dtnml -var expr="sequence-item* sequence-iteni>

184

The Zope Book (2.6 Edition)

Remember, everything inside a Python expression attribute must be a valid Python expression . In DTML,
sequence-item is the name of a variable, but in Python this means "The object sequence minus the object item ". This
is not what you want.

What you really want is to look up the variable sequence-item . One way to solve this problem is to use the in tag prefix
attribute. For example:

<dtnml -var standard_htm _header>

<h1>The squares of the first three integers:</hl>

<dtm -in prefix="lIoop" expr="_.range(3)">

The square of <dtm -var |loop_itenr is:

<dtm -var expr="loop_item* |oop_itent>

</[li>
</dtm-in>
</ ul >

<dtm -var standard_htm _footer>
The prefix attribute causes in tag variables to be renamed using the specified prefix and underscores, rather than using

"sequence" and dashes. So in this example, "sequence-item" becomes "loop_item". See Appendix A for more
information on the prefix attribute.

Another way to look up the variable sequence-item in a DTML expression is to use the getitem utility function to
explicitly look up a variable:
The square of <dtm -var sequence-itenr is:

<dtm -var expr="_.getiten(' sequence-iten) *
_.getiten(' sequence-item)">

The getitem function takes the name to look up as its first argument. Now, the DTML Method will correctly display the
square of the first three integers. The getitem method takes an optional second argument which specifies whether or
not to render the variable. Recall that rendering a DTML variable means turning it into a string. By default the getitem
function does not render a variable.

Here's how to insert a rendered variable named myDoc :

<dtm -var expr="_.getiten(' nyDoc', 1)">

This example is in some ways rather pointless, since it's the functional equivalent to:
<dtm -var nyDoc>
However, suppose you had a form in which a user got to select which document they wanted to see from a list of

choices. Suppose the form had an input named selectedDoc which contained the name of the document. You could
then display the rendered document like so:

<dtm -var expr="_.getiten(sel ectedDoc, 1)">

Notice in the above example that selectedDoc is not in quotes. We don't want to insert the text selectedDoc we want to
insert the value of the variable named selectedDoc . For example, the value of selectedDoc might be chapt er One .
Using this method, you can look up an item using a dynamic value instead of static text.

If you are a python programmer and you begin using the more complex aspects of DTML, consider doing a lot of your
work in Python scripts that you call from DTML. This is explained more in the chapter entitled Advanced Zope Scripting
. Using Python sidesteps many of the issues in DTML.

DTML Security

185

The Zope Book (2.6 Edition)

Zope can be used by many different kinds of users. For example, the Zope site, Zope.org , has over 11,000 community
members at the time of this writing. Each member can log into Zope, add objects and news items, and manage their
own personal area.

Because DTML is a scripting language, it is very flexible about working with objects and their properties. If there were
no security system that constrained DTML then a user could potentially create malicious or privacy-invading DTML
code.

DTML is restricted by standard Zope security settings. So if you don't have permission to access an object by going to
its URL you also don't have permission to access it via DTML. You can't use DTML to trick the Zope security system.

For example, suppose you have a DTML Document named Diary which is private. Anonymous users can't access your
diary via the web. If an anonymous user views DTML that tries to access your diary they will be denied:

<dtm -var Diary>

DTML verifies that the current user is authorized to access all DTML variables. If the user does not have authorization,
then the security system will raise an Unauthorized error and the user will be asked to present more privileged
authentication credentials.

In the chapter entitled Users and Security , you read about security rules for executable content. There are ways to
tailor the roles of a DTML Document or Method to allow it to access restricted variables regardless of the viewer's roles.

Safe Scripting Limits

DTML will not let you gobble up memory or execute infinite loops and recursions. Because the restrictions on looping
and memory use are relatively tight, DTML is not the right language for complex, expensive programming logic. For
example, you cannot create huge lists with the _.range utility function. You also have no way to access the filesystem
directly in DTML.

Keep in mind however that these safety limits are simple and can be outsmarted by a determined user. It's generally
not a good idea to let anyone you don't trust write DTML code on your site.

Advanced DTML Tags

In the rest of this chapter we'll look at the many advanced DTML tags. These tags are summarized in Appendix A.
DTML has a set of built-in tags, as documented in this book, which can be counted on to be present in all Zope
installations and perform the most common kinds of things. However, it is also possible to add new tags to a Zope
installation. Instructions for doing this are provided at the Zope.org web site, along with an interesting set of contributed
DTML tags.

This section covers what could be referred to as Zope miscellaneous tags. These tags don't really fit into any broad

categories except for one group of tags, the exception handling DTML tags which are discussed at the end of this
chapter.

The Call Tag

The var tag can call methods, but it also inserts the return value. Using the call tag you can call methods without
inserting their return value into the output. This is useful if you are more interested in the effect of calling a method
rather than its return value.

186

The Zope Book (2.6 Edition)

For example, when you want to change the value of a property, animalName , you are more interested in the effect of
calling the manage_changeProperties method than the return value the method gives you. Here's an example:
<dtm -if expr="REQUEST. has_key("' ani mal Nanme')" >
<dtm -call expr="nmanage_changeProperti es(ani mal Nane=REQUEST[' ani mal Nane']) ">
<h1>The property 'ani mal Name' has changed</hl>
<dtn - el se>

<h1>No properties were changed</hl>
</dtm -if>

In this example, the page will change a property depending on whether a certain name exists. The result of the
manage_changeProperties method is not important and does not need to be shown to the user.

Another common usage of the call tag is calling methods that affect client behavior, like the RESPONSE. r edi r ect
method. In this example, you make the client redirect to a different page, to change the page that gets redirected,
change the value for the "target" variable defined in the let tag:

<dtnml -var standard_htm _header>

<dtm -let target=""http://exanple.comnew_| ocation.htm"'">
<h1>Thi s page has noved, you will now be redirected to the
correct location. |f your browser does not redirect, click <a
href="<dtm -var target>"><dtnl -var target> </hl>
<dtm -call expr="RESPONSE. redirect(target)">

</dtm -let>

<dtnml -var standard_htm _footer>

In short, the call tag works exactly like the var tag with the exception that it doesn't insert the results of calling the
variable.

Another possibility for use of the call tag would be to call a ZSQL Method or or preprocess the REQUEST. Two
examples of calling a ZSQL method:

<dtm -call "insertLogEntry(REQUEST)">
or:
<dtm -call "insertLogEntry(loglnfo=REQUEST. get (' URLO'), severity=1)">

To call a python script that might do any number of things, including preprocessing the REQUEST:

<dtml -call "preprocess(REQUEST)">

The Comment Tag

DTML can be documented with comments using the comment tag:

<dtnml -var standard_htm _header>

<dt nl - conment >
This is a DTM. comment and will be renoved fromthe DTM. code
before it is returned to the client. This is useful for
docunenting DTM. code. Unlike HTML conmments, DTM. comments
are NEVER sent to the client.

</ dtm - comment >

<l--

This is an HTML comment, this is NOT DTM. and will be treated

187

The Zope Book (2.6 Edition)

as HTM. and |ike any other HTM. code will get sent to the
client. Although it is customary for an HTM. browser to hide

these comments fromthe end user, they still get sent to the
client and can be easily seen by 'Viewing the Source' of a
docunent .

-->

<dtnml -var standard_htm _footer>
The comment block is removed from DTML output.

In addition to documenting DTML you can use the comment tag to temporarily comment out other DTML tags. Later
you can remove the comment tags to re-enable the DTML.

The Tree Tag

The tree tag lets you easily build dynamic trees in HTML to display hierarchical data. A tree is a graphical
representation of data that starts with a "root" object that has objects underneath it often referred to as "branches".
Branches can have their own branches, just like a real tree. This concept should be familiar to anyone who has used a
file manager program like Microsoft Windows Explorer to navigate a file system. And, in fact, the left hand "navigation"
view of the Zope management interface is created using the tree tag.

For example here's a tree that represents a collection of folders and sub-folders.

Zope Gurck 5o] o |
= Reptiles
Control_Panel - M
= = Fish
Green # Birds
D GuestBook
[images Birds
6 MewsCatalog Fish
(O sales = Mammals
i] ‘Whales
Reptiles

D kammals
] Reptiles

acl_users
Digital Creations
Refresh

Figure 7-5 HTML tree generated by the tree tag.

Here's the DTML that generated this tree display:
<dtm -var standard_htm _header>
<dtm -tree>
<dtm -var getld>
</dtm -tree>

<dtml -var standard_htm _footer>

188

The Zope Book (2.6 Edition)

The tree tag queries objects to find their sub-objects and takes care of displaying the results as a tree. The tree tag
block works as a template to display nodes of the tree.

Now, since the basic protocol of the web, HTTP, is stateless, you need to somehow remember what state the tree is in
every time you look at a page. To do this, Zope stores the state of the tree in a cookie . Because this tree state is
stored in a cookie, only one tree can appear on a web page at a time, otherwise they will confusingly use the same
cookie.

You can tailor the behavior of the tree tag quite a bit with tree tag attributes and special variables. Here is a sampling of
tree tag attributes.

branches — The name of the method used to find sub-objects. This defaults to tpValues , which is a method defined
by a number of standard Zope objects.

leaves — The name of a method used to display objects that do not have sub-object branches.

nowrap — Either 0 or 1. If 0, then branch text will wrap to fit in available space, otherwise, text may be truncated. The
default value is O.

sort — Sort branches before text insertion is performed. The attribute value is the name of the attribute that items
should be sorted on.

assume_children — Either 0 or 1. If 1, then all objects are assumed to have sub-objects, and will therefore always
have a plus sign in front of them when they are collapsed. Only when an item is expanded will sub-objects be looked
for. This could be a good option when the retrieval of sub-objects is a costly process. The defalt value is 0.

single — Either 0 or 1. If 1, then only one branch of the tree can be expanded. Any expanded branches will collapse
when a new branch is expanded. The default value is 0.

skip_unauthorized — Either 0 or 1. If 1, then no errors will be raised trying to display sub-objects for which the user
does not have sufficient access. The protected sub-objects are not displayed. The default value is 0.

Suppose you want to use the tree tag to create a dynamic site map. You don't want every page to show up in the site
map. Let's say that you put a property on folders and documents that you want to show up in the site map.
Let's first define a Script with the id of publicObjects that returns public objects:
Script (Python) "publicQbjects”
#
Ret urns sub-fol ders and DTM. docunents that have a
true 'siteMap' property.
resul ts=[]
for object in context.objectValues(['Folder', 'DTM. Docunent']):
if object.hasProperty('siteMap') and object.siteMp:

resul ts. append(obj ect)
return results

Now we can create a DTML Method that uses the tree tag and our Scripts to draw a site map:
<dtnml -var standard_htm _header>
<h1>Site Map</hl>
<p>Expand Al | |
Col | apse All </ a>

</ p>
<dtm -tree branches="publicObjects" skip_unauthorized="1">

189

The Zope Book (2.6 Edition)

<dtm -var title_ or_id>
</dtm -tree>

<dtml -var standard_htm _footer>

This DTML Method draws a link to all public resources and displays them in a tree. Here's what the resulting site map
looks like.

Site Map

Expand Alll Collapse All

Bl ZopeZoo
MMammals

Fish
E Birds
Parrot
Raptors

Figure 7-6 Dynamic site map using the tree tag.
For a summary of the tree tag arguments and special variables see Appendix A.

The Return Tag

In general DTML creates textual output. You can however, make DTML return other values besides text. Using the
return tag you can make a DTML Method return an arbitrary value just like a Python or Perl-based Script.

Here's an example:
<p>This text is ignored.</p>

<dtm -return expr="42">
This DTML Method returns the number 42.
Another upshot of using the return tag is that DTML execution will stop after the return tag.

If you find yourself using the return tag, you almost certainly should be using a Script instead. The return tag was
developed before Scripts, and is largely useless now that you can easily write scripts in Python and Perl.

The Sendmail Tag

The sendmail tag formats and sends a mail messages. You can use the sendmail tag to connect to an existing Mail
Host, or you can manually specify your SMTP host.

Here's an example of how to send an email message with the sendmail tag:

190

The Zope Book (2.6 Edition)

<dtm - sendmai | >

To: <dtm -var recipient>

From <dtm -var sender>

Subj ect: Make Money Fast!!!!

Take advantage of our exciting offer now Using our exclusive method

you can build uninagi nable wealth very quickly. Act now
</ dtm - sendnai | >

Notice that there is an extra blank line separating the mail headers from the body of the message.

A common use of the sendmail tag is to send an email message generated by a feedback form. The sendmail tag can
contain any DTML tags you wish, so it's easy to tailor your message with form data.

The Mime Tag

The mime tag allows you to format data using MIME (Multipurpose Internet Mail Extensions). MIME is an Internet
standard for encoding data in email message. Using the mime tag you can use Zope to send emails with attachments.

Suppose you'd like to upload your resume to Zope and then have Zope email this file to a list of potential employers.

Here's the upload form:

<dtnml -var standard_htm _header>

<p>Send you resune to potential enployers</p>

<f orm nmet hod=post acti on="sendresunme" ENCTYPE="nultipart/formdata">

<p>Resune file: <input type="file" nane="resune_file"></p>

<p>Send to:</p>

<p>

<i nput type="checkbox" name="send_to:list" val ue="jobs@ahoo. coni>
Yahoo

<i nput type="checkbox" name="send_to:list" val ue="jobs@ricrosoft.con>
M crosof t

<i nput type="checkbox" name="send_to:list" val ue="jobs@rmrcdonal ds. conm' >
McDonal ds</ p>

<i nput type=submit val ue="Send Resune">
</forne

<dtm -var standard_htm _footer>
Note: The text :list added to the name of the input fields directs Zope to treat the received information as a list type. For
example if the first two checkboxes were selected in the above upload form, the REQUEST variable send_to would
have the value [jobs@yahoo.com, jobs@microsoft.com]
Create another DTML Method called sendresume to process the form and send the resume file:
<dtm -var standard_htm _header>
<dtm -if send_to>
<dtm -in send_to>

<dtm - sendnmi | snt phost="ny. mai |l server. com' >

To: <dtm -var sequence-iten»

Subj ect: Resune

<dtm -m me type=text/plain encode=7bit>

Hi, please take a | ook at ny resune.

<dt m - boundary type=application/octet-stream di sposition=attachnent

191

The Zope Book (2.6 Edition)

encode=base64><dtm -var expr="resune_file.read()"></dtm -m me>
</dtm -sendmai | >

</dtm-in>

<p>Your resunme was sent.</p>
<dtm - el se>

<p>You didn't select any recipients.</p>
</dtm-if>

<dtm -var standard_htm _footer>
This method iterates over the sendto variable and sends one email for each item.

Notice that there is no blank line between the To: header and the starting mime tag. If a blank line is inserted between
them then the message will not be interpreted as a multipart message by the receiving mail reader.

Also notice that there is no newline between the boundary tag and the var tag, or the end of the var tag and the closing
mime tag. This is important, if you break the tags up with newlines then they will be encoded and included in the MIME
part, which is probably not what you're after.

As per the MIME spec, mime tags may be nested within mime tags arbitrarily.

The Unless Tag

The unless tag executes a block of code unless the given condition is true. The unless tag is the opposite of the if tag.
The DTML code:
<dtm -if expr="not butter">

| can't believe it's not butter.
</dtm-if>

is equivalent to:
<dtm -unl ess expr="butter">

| can't believe it's not butter.
</ dtnm -unl ess>

What is the purpose of the unless tag? It is simply a convenience tag. The unless tag is more limited than the if tag,
since it cannot contain an else or elif tag.

Like the if tag, calling the unless tag by name does existence checking, so:

<dtm - unl ess the_easter_bunny>

The Easter Bunny does not exist or is not true.
</dtm -unl ess>

Checks for the existence of the_easter_bunny as well as its truth. While this example only checks for the truth of
the_easter_bunny :
<dtm -unl ess expr="t he_east er_bunny">

The Easter Bunny is not true.
</dtm -unl ess>

This example will raise an exception if the_easter_bunny does not exist.
Anything that can be done by the unless tag can be done by the if tag. Thus, its use is totally optional and a matter of

style.

192

The Zope Book (2.6 Edition)

Batch Processing With The In Tag

Often you want to present a large list of information but only show it to the user one screen at a time. For example, if a
user queried your database and got 120 results, you will probably only want to show them to the user a small batch,
say 10 or 20 results per page. Breaking up large lists into parts is called batching . Batching has a number of benefits.

e The user only needs to download a reasonably sized document rather than a potentially huge document. This
makes pages load faster since they are smaller.

» Because smaller batches of results are being used, often less memory is consumed by Zope.

» Next and Previous navigation interfaces makes scanning large batches relatively easy.

The in tag provides several variables to facilitate batch processing. Let's look at a complete example that shows how to
display 100 items in batches of 10 at a time:
<dtnml -var standard_htm _header>
<dtm -in expr="_.range(100)" size=10 start=query_start>
<dtm -if sequence-start>
<dtm -if previous-sequence>
<a href="<dtn -var URL><dtnl -var sequence-query
>query_start=<dtnl -var previous-sequence-start-nunber>">
(Previous <dtm -var previous-sequence-size> results)
</ a>
</dtm-if>

<h1>These words are di splayed at the top of a batch: </hl>

</dtm-if>
lteration nunber: <dtm -var sequence-itenp
<dtm -if sequence-end>

</ ul >
<h4>These words are di splayed at the bottom of a batch. </ h4>

<dtm -if next-sequence>
<a href="<dtm -var URL><dtnl -var sequence-query
>query_start=<dtnm -var
next - sequence- st art - nunber >">
(Next <dtm -var next-sequence-size> results)
</ a>

</dtm-if>
</dtm-if>
</dtni-in>
<dtm -var standard_htm _footer>
Let's take a look at the DTML to get an idea of what's going on. First we have an in tag that iterates over 100 numbers

that are generated by the range utility function. The size attribute tells the in tag to display only 10 items at a time. The
start attribute tells the in tag which item number to display first.

Inside the in tag there are two main if tags. The first one tests special variable sequence- st art . This variable is

only true on the first pass through the in block. So the contents of this if tag will only be executed once at the beginning
of the loop. The second if tag tests for the special variable sequence- end . This variable is only true on the last pass

193

The Zope Book (2.6 Edition)

through the in tag. So the second if block will only be executed once at the end. The paragraph between the if tags is
executed each time through the loop.

Inside each if tag there is another if tag that check for the special variables pr evi ous- sequence and

next - sequence . The variables are true when the current batch has previous or further batches respectively. In other
words pr evi ous- sequence is true for all batches except the first, and next - sequence is true for all batches
except the last. So the DTML tests to see if there are additional batches available, and if so it draws navigation links.

The batch navigation consists of links back to the document with a query_start variable set which indicates where the in
tag should start when displaying the batch. To better get a feel for how this works, click the previous and next links a
few times and watch how the URLSs for the navigation links change.

Finally some statistics about the previous and next batches are displayed using the next - sequence- si ze and
previ ous- sequence- si ze special variables. All of this ends up generating the following HTML code:

<ht ml ><head><titl| e>Zope</titl e></ head><body bgcol or =" #FFFFFF" >

<h1>These words are di splayed at the top of a batch:</hl>

lteration nunber: 0</Ii
lteration nunber: 1</Ii
lteration nunber: 2</Ii
lteration nunber: 3</Ii
lteration nunber: 4</Ii
lteration nunber: 5</Ii
lteration nunber: 6</Ii
lteration nunber: 7</Ii
lteration nunber: 8</Ii
lteration nunber: 9</Ii

</ ul >

<h4>These words are di splayed at the bottom of a batch. </ h4>

VVVVVVYVYVVYV

(Next 10 results)
</ a>

</ body></ ht m >

Another example utilizes the commonly accepted navigation scheme of presenting the the user page numbers from
which to select:

<dtm -in "_.range(1, 101) "size=10 start=start>
<dtm -if sequence-start>
<p>Pages:
<dtm -cal | "REQUEST. set (' actual _page',1)">
<dtm -in previous-batches mappi ng>
<a href="<dtm -var URL><dtml -var sequence-query>start=<dtm -var "_['batch-start-index']+1">">
<dtm - var sequence- nunber ></ a>
<dtm -call "REQUEST. set('actual page', ['sequence-nunber']+1)">
</dtm-in>
<dtm -var "_['actual _page']">
</dtm-if>
<dtm -if sequence-end>
<dtm -i n next-batches mappi ng>
<a href="<dtnm -var URL><dtnl -var sequence-query>start=<dtnl-var " _['batch-start-index']+1">">
<dtm -var "_['sequence-nunber']+_['actual _page']">
</dtm -in>
</dtm -if>
</dtm-in>

<dtm -in "_.range(1l,101) "size=10 start=start>

<dtm -var sequence-iten
</dtm -in>

194

The Zope Book (2.6 Edition)

This quick and easy method to display pages is a nice navigational tool for larger batches. It does present the
drawback of having to utilize an additional dtml-in tag to iterate through the actual items, however.

Batch processing can be complex. A good way to work with batches is to use the Searchable Interface object to create
a batching search report for you. You can then modify the DTML to fit your needs. This is explained more in the chapter
entitled Searching and Categorizing Content .

Exception Handling Tags

Zope has extensive exception handling facilities. You can get access to these facilities with the raise and try tags. For
more information on exceptions and how they are raised and handled see a book on Python or you can read the online
Python Tutorial .

The Raise Tag

You can raise exceptions with the raise tag. One reason to raise exceptions is to signal an error. For example you
could check for a problem with the if tag, and in case there was something wrong you could report the error with the
raise tag.

The raise tag has a type attribute for specifying an error type. The error type is a short descriptive name for the error. In
addition, there are some standard error types, like Unauthorized and Redirect that are returned as HTTP errors.
Unauthorized errors cause a log-in prompt to be displayed on the user's browser. You can raise HTTP errors to make
Zope send an HTTP error. For example:

<dtm -rai se type="404">Not Found</dtm -rai se>

This raises an HTTP 404 (Not Found) error. Zope responds by sending the HTTP 404 error back to the client's
browser.

The raise tag is a block tag. The block enclosed by the raise tag is rendered to create an error message. If the
rendered text contains any HTML markup, then Zope will display the text as an error message on the browser,
otherwise a generic error message is displayed.
Here is a raise tag example:
<dtm -if expr="bal ance >= debit_anmount">

<dtml -call expr="debitAccount(account, debit_anount)">

<p><dtm -var debit_anount> has been deducted from your
account <dtmnl-var account>.</p>

<dtm - el se>
<dtm -raise type="Insufficient funds">

<p>There is not enough noney in account <dtnl-account>
to cover the requested debit amount.</p>

</dtm -raise>

</fdtm -if>

There is an important side effect to raising an exception, exceptions cause the current transaction to be rolled back.
This means any changes made by a web request are ignored. So in addition to reporting errors, exceptions allow you
to back out changes if a problem crops up.

The Try Tag

195

The Zope Book (2.6 Edition)

If an exception is raised either manually with the raise tag, or as the result of some error that Zope encounters, you can
catch it with the try tag.

Exceptions are unexpected errors that Zope encounters during the execution of a DTML document or method. Once an
exception is detected, the normal execution of the DTML stops. Consider the following example:
Cost per unit: <dtm -var

expr="_.float(total _cost/total units)"
fmt =dol | ar s- and- cent s>

This DTML works fine if total_units is not zero. However, if total_units is zero, a ZeroDivisionError exception is raised
indicating an illegal operation. So rather than rendering the DTML, an error message will be returned.

You can use the try tag to handle these kind of problems. With the try tag you can anticipate and handle errors
yourself, rather than getting a Zope error message whenever an exception occurs.

The try tag has two functions. First, if an exception is raised, the try tag gains control of execution and handles the
exception appropriately, and thus avoids returning a Zope error message. Second, the try tag allows the rendering of
any subsequent DTML to continue.

Within the try tag are one or more except tags that identify and handle different exceptions. When an exception is
raised, each except tag is checked in turn to see if it matches the exception's type. The first except tag to match
handles the exception. If no exceptions are given in an except tag, then the except tag will match all exceptions.
Here's how to use the try tag to avoid errors that could occur in the last example:
<dtm -try>
Cost per unit: <dtm -var
expr="_.float(total _cost/total _units)"
fnt="dol | ars- and-cents">
<dt ml - except ZeroDi vi si onError>
Cost per unit: NA
</dtm-try>

If a ZeroDivisionError is raised, control goes to the except tag, and "Cost per unit: N/A" is rendered. Once the except
tag block finishes, execution of DTML continues after the try block.

DTML's except tags work with Python's class-based exceptions. In addition to matching exceptions by name, the
except tag will match any subclass of the named exception. For example, if ArithmeticError is named in a except tag,
the tag can handle all ArithmeticError subclasses including, ZeroDivisionError . See a Python reference such as the
online Python Library Reference for a list of Python exceptions and their subclasses. An except tag can catch multiple
exceptions by listing them all in the same tag.

Inside the body of an except tag you can access information about the handled exception through several special
variables.

error_type — The type of the handled exception.
error_value — The value of the handled exception.

error_tb — The traceback of the handled exception.

196

The Zope Book (2.6 Edition)

You can use these variables to provide error messages to users or to take different actions such as sending email to
the webmaster or logging errors depending on the type of error.

The Try Tag Optional Else Block

The try tag has an optional else block that is rendered if an exception didn't occur. Here's an example of how to use the
else tag within the try tag:

<dtm -try>
<dtm -call feedAlligators>
<dt nl - except Not EnoughFood W ongKi ndOf Food>
<p>Make sure you have enough alligator food first.</p>
<dt ml - except Not Hungry>
<p>The alligators aren't hungry yet.</p>
<dt m - except >
<p>There was some problemtrying to feed the alligators.<p>
<p>Error type: <dtm-var error_type></p>
<p>Error value: <dtnl-var error_val ue></p>
<dtm - el se>
<p>The alligator were successfully fed.</p>
</fdtm -try>
The first except block to match the type of error raised is rendered. If an except block has no name, then it matches all

raised errors. The optional else block is rendered when no exception occurs in the try block. Exceptions in the else
block are not handled by the preceding except blocks.

The Try Tag Optional Finally Block

You can also use the try tag in a slightly different way. Instead of handling exceptions, the try tag can be used not to
trap exceptions, but to clean up after them.

The finally tag inside the try tag specifies a cleanup block to be rendered even when an exception occurs.

The finally block is only useful if you need to clean up something that will not be cleaned up by the transaction abort
code. The finally block will always be called, whether there is an exception or not and whether a return tag is used or
not. If you use a return tag in the try block, any output of the finally block is discarded. Here's an example of how you
might use the finally tag:

<dtm -cal | acquireLock>
<dtm -try>

<dtml -cal | uselLockedResource>
<dtm -finally>

<l-- this always gets done even if an exception is raised -->
<dtm -cal | rel easeLock>
</dtm -try>

In this example you first acquire a lock on a resource, then try to perform some action on the locked resource. If an
exception is raised, you don't handle it, but you make sure to release the lock before passing control off to an exception
handler. If all goes well and no exception is raised, you still release the lock at the end of the try block by executing the
finally block.

197

The Zope Book (2.6 Edition)

The try/finally form of the try tag is seldom used in Zope. This kind of complex programming control is often better done
in Python or Perl.

Other useful examples

In this section are several useful examples of dtml code. While many of these are most often better done in Python
scripts, there are occasions when knowing how to accomplish this in dtml is worthwhile.

Forwarding a REQUEST

We have seen how to redirect the user's browser to another page with the help of the call directive. However, there are
times when a redirection is not necessary and a simple forwarding of a REQUEST from one dtml-method to another
would suffice. In this example, the dtml-method shown obtains a variable named type from the REQUEST object. A
lookup table is reference to obtain the name of the dtml-method to which the REQUEST should be forwarded. The
code below accomplishes this:

<dtm -let |ookup="{"a" : 'forml5', 'b" : '"fornv5', 'c'" : 'fornB8}">
<dtm -return "_[| ookup[REQUEST. get (' type')]]">
</dtm -let>

This code looks up the name of the desired dtml-method in the lookup table (contained in the let statement) and in turn,
looks up the name of this dtml-method in the current namespace. As long as the dtml-method exists, control will be
passed to the method directly. This example could be made more complete with the addition of exception handling
which was discussed above.

Sorting with the <dtm -i n> tag

There are many times when sorting a result set is hecessary. The dtml-in tag has some very interesting sort capabilities
for both static and dynamic sorting. In the example below, a ZSQL method is called that returns results from a log table.
The columns returned are logTime, logType, and userName. The dtml-method or document that contains this code will

generate links back to itself to re-sort the query based upon certain search criteria:

<dt m - conment >

The sorting is acconplished by |Iooking up a sort type
variable in the REQUEST that is conprised of two parts. Al
but the | ast character indicate the name of the columm on
which to sort. The last character of the sort type indicates
whet her the sort shoul d be ascending or descendi ng.

</ dtm - comment >

<t abl e>
<tr>

<t d>Ti me <a href ="<dtm - var URL>?st =l ogTi nea" >A</ a> <a href ="<dtm -var URL>?st =l ogTi ned" >D</ a></t d>
<t d>Type <a href="<dtm -var URL>?st =| ogTypea" >A</ a> <a href ="<dtm -var URL>?st =l ogTyped" >D</ a></td>
<t d>User &bsp; <a href ="<dt m -var URL>?st =user Nanea" >A</ a> <a href ="<dtnm -var URL>?st =user Naned" >D</ a></t d>

</tr>

<dt m - comment >The |ine bel ow sets the default sort</dtm -conmment >

<dtm -if "REQUEST.get('st')==None"><dtm -call "REQUEST.set('st', 'logTined)"></dtm-if>
<dtm -in getLogData sort_expr="REQUEST.get('st')[0:-1]" reverse_expr="REQUEST.get('st')[-1]=="d"">
<tr>

<td><dtm -var | ogTi me></td>
<td><dtm -var |ogType></td>
<td><dtm -var userName></td>
</tr>
</dtm -in>
</tabl e>

198

The Zope Book (2.6 Edition)

Calling a DTML object from a Python Script

Although calling a DTML method from a Python script isn't really an advanced DTML technique, it deals with DTML, so
it's being included here. To call a DTML Method or DTML Document from a Python script, the following code is used:

dt m Met hodNanme = 'index_htm"'
return context[dtm Met hodNane] (cont ai ner, contai ner. REQUEST)

It's as simple as that. Often this is very useful if you wish to forward a request and significant processing is needed to
determine which dtml object is the target.

Explicit Lookups

Occasionally it is useful to "turn off" acquisition when looking up an attribute. In this example, you have a folder which
contains sub-folders. Each sub-folder contains Images. The top-level folder, each subfolder, and each image contain a
property named desc .

If you were to query the Image for its desc property it would return the desc property of it's parent folder if the Image did
not have the property. This could cause confusion as the Image would appear to have the desc property when it really
belonged to the parent folder. In most cases, this behavior is desired. However, in this case, the user would like to see
which images have the desc property and which don't. This is accomplished by utilizing aq_explicit in the call to the
object in question.

Given the following structure:
Fol der
| - Folderl (desc='Fol der one')
| - Fol der2 (desc='Fol der two')
| - I'magel (desc='Photo one')

| - 1 mage2
| - I'nmage3 (desc='Photo three')

when the second image is asked for its desc property it will return Fol der two based on acquisition rules:

<dtm -var "Il nmage2.desc">

However, utilizing agq_explicit will cause Zope to look on