Writing Drivers for NetBSD

Jochen Kunz
Version 1.0.1e
August 25th, 2003

An introduction into NetBSD’s autoconfig (0) system and the basics of de-
vice drivers under NetBSD.

CONTENTS

Contents

1 Preface

2 The autoconf (9) system

config(8) e e
ioconf.candcfdata
sys/kern/subr_autoconf.c
Attributes and Locators

2.1
2.2
23
24
2.5
2.6

3 The autoconf (9) part of the r£ (4) driver

3.1

3.2
3.3

Configurationfiles
3.1.1 The kernel configurationfile
3.1.2 sys/dev/gbus/files.uba
3.1.3 Thedevicenumbers
Data structures for autoconf(9)
Functions for autoconf (9)
33.1 rfcmatch() o
3.3.2 rfc_attach()
3.33 rfmatch() s
334 rfattach()o

4 The core of the driver

4.1

4.2

Data structures of thedriver.
4.1.1 Data structures per controller
4.1.2 Datastructure perdrive
The necessary functions
421 rfdump()
422 rfsize() . . . o
423 rfopen()o e e
424 rfclose() o s
425 rfread() and rfwrite()
42.6 rfstrategy() o e
427 rfcdntr() . . oo o
428 rfioctl() o

LIST OF FIGURES

rf.c
rfreg.h
License
Version History

Bibliography

a = 9 a w o »

Index

List of Figures

1 devicetree e
2 calling chain of autoconf (9) functions
3 rf(4)’sinteral states.

51

80

83

84

85

86

1 PREFACE 4

1 Preface

This document is intended to teach the basics of Unix-Kernelprogramming to a
beginning Programmer with basic C knowledge. As an example, a device driver
for a floppy drive under NetBSD was chosen, as the hardware and necessary doc-
umentation was available but the driver itself missing. NetBSD was chosen as the
target operating system, as it lends itself perfectly as a teaching example due to its
clearly structured source code and well defined interfaces.

Unfortunately, there is hardly any specific documentation on Unix-
Kernelprogramming under NetBSD apart from references to the functions in sec-
tion 9 of the NetBSD manual pages. These manual pages are however miss-
ing an introduction, a document that clarifies the connection between the various
functions. This document attempts to provide such an introduction, to act as the
necessary glue between the individual parts. Therefore, I will reference external
documents, particularly section 9 of the NetBSD manual pages in many places.
This document is mainly based on the experiences I made when I wrote the driver
rf (4) ! for the UnixBus / QBus RX211 8” floppy controller.

8” floppy? Those things existed? Yes. Those were the first floppies, built at
the end of the 60s / beginning of the 70s. UniBus / QBus? Whatsdat? That’s the
most common bus found in VAXen?. The VAX was the machine of the late 70s
up until the beginning of the 90s. Then it was obsoleted by the Alpha architecture.
BSD Unix has a long and glorious history on the VAX. [McK 99] But why am I
writing a driver today for such antiquated technology? In the end, it doesn’t really
matter if I explain the necessary steps using the latest 1GBit/s Ethernetcard for
a PCIX Bus or anything else. The underlying principles are the same. Besides,
the hardware used in this example is relatively simplistic, so that we can see the
essential aspects instead of being hindered by PeeCee idiocrasy.

The following chapter gives a short overview of the autoconf (9) concept in
NetBSD. Some details have been omitted, and I refer to the according manual
pages to avoid duplication of information.

The third chapter documents the implementation of the autoconf (9) inter-
face of rf (4).

The fourth and last chapter covers the actual driver, i.e. the functionality of
the driver carrying the data from and to the physical device.

In the appendix, you will find the complete source code of the driver as well

IRX01/02 Floppy
Zplural for VAX

1 PREFACE 5

as a copy of the referenced manual pages.

Future prospects: In its current form, this document represents only a be-
ginning. A description of a network device driver, the internal functionality of
bus_space (9) and bus_dma (9) or what is required to port NetBSD to a new ar-
chitecture would be possible extensions. Similarly, a discussion of the UVM /
UBC internals or a file system interface would be of interest to implement a new
file system for example. But at least the last example goes a bit too far away from
the initial intent of giving an overview or an introduction to device driver pro-
gramming and would be more suitable for a more extensive document on NetBSD
Kernel internals, which one day may evolve out of this text.

Thanks to Hubert Feyrer and Marc Balmer, who took the time to proof-read
my mental outpourings and provided incitement for some diagrams.

2 THE AUTOCONF (9) SYSTEM 6

2 The autoconf (9) system

The kernel configuration file is based on three pillars: ioconf.c / cfdata and
sys/kern/subr_autoconf.c. This concept has become known as autoconf .
But what exactly is going on behind the curtain?

2.1 config(8)

There is one central file which declares the kernel configuration for a BSD Unix
Kernel. Under NetBSD, this file is located in sys/arch/<arch>/conf. <arch>
represents the appropriate machine- / processor architecture. In our example, this
is vax, i.e. d.h. sys/arch/vax/conf. In this folder, you can find the kernel con-
figuration file GENERIC, which contains all the drivers and options supported by
this architecture. You can create a user-defined configuration file by copying the
file to a new name in this directory and editing it. Usually, this means commenting
out all the drivers for devices not available in the particular machine. This process
can be automated by using the tool pkgsrc/sysutils/adjustkernel.

After calling config(8), it reads the kernel configuration file to determine
which drivers / functionality should be included in the kernel. Some ”‘files.*’”
files assign the .c- and .h-files to the various drivers and functionality. Us-
ing these dependencies, config(8) creates a compilation directory containing
a Makefile as well as a range of .c- and .h-files. The .h-files usually contain
defines with parameters such as the max. number of driver instances (for exam-
ple PseudoTTYs, BPF, ...), kernel options such as KTRACE, ... The file param.c
also falls into this category.

The compilation directory is named after the kernel configuration file and is
located in sys/arch/vax/compile. After changing into said directory, the actual
compilation is started by the command make depend netbsd. See config(8)
and http://www.netbsd.org/Documentation/kernel/ for details.

2.2 ioconf.cand cfdata

The file ioconf.c in the compilation directory contains the data structure,
marking the central point of access of the entire autoconf process. This
configuration data table shows all the devices supported by the kernel. Let’s
start with an excerpt of the kernels configuration file:

mainbus0 at root

2 THE AUTOCONF (9) SYSTEM 7

ibus0 at mainbus0 # All MicroVAX

sbi0 at mainbus0 # SBI, master bus on 11/780.
vsbus0 at mainbus0 # All VAXstations

ubal at ibus0 # Qbus adapter

zel at ibus0 # SGEC on-board ethernet

1e0 at ibus0 # LANCE ethernet (Mv3400)
1e0 at vsbus0 csr 0x200e0000 # LANCE ethernet

zel at vsbus0O csr 0x20008000 # SGEC ethernet

s10 at vsbus0 csr 0x200c0080 # vS2000/3100 SCSI-ctlr
asc0 at vsbus0 csr 0x200c0080 # VvS4000/60 (or VLC) SCSI-ctlr
asc0 at vsbus0 csr 0x26000080 # VvS4000/90 SCSI-ctlr

uda0 at uba? csr 0172150 # UDA50/RQDX?

qe0 at uba? csr 0174440 # DEQNA/DELQA

rlcO at uba? csr 0174400 # RL11/RLV11 controller

rl* at rlc? drive? # RLO1/RL0O2 disk drive
scsibus* at asc?

scsibus* at si?

sd* at scsibus? target? lun?

st* at scsibus? target? lun?

cd* at scsibus? target? lun?

We quickly realize that the organization of the device drivers can be repre-
sented in a treelike structure as in figure 1. Attached to the imaginary root
(which appears “out of nowhere”) we find the first child, the abstract mainbus.
This mainbus is parent to the children ibus, sbi and vsbus. These children in
turn are parent to uba, le, asc, ... These relationships represent the above men-
tioned cfdata table found in the file ioconf.c. The programmer does not need
to know or care about this table, as it is automagically created by config(8) .

It is important to realize that each device (node) has a parent (except for root,
due to the old chicken-or-the-egg problem). A node that has children, is a Bus or
a controller. The actual devices are the leaves of the tree. Each leaf and each node
represent a device driver. That of course means, that there must be drivers for the

2 THE AUTOCONF (9) SYSTEM 8

uda0
——qu0
e e ————n®
ibusO —_
1e0
root mainbus—— sbi0
/ leO
ze0
vsbus(O < si0 sd*

/
\ > scsibusO - St
asc(cd*

Figure 1: device tree

bus systems as well. The bus drivers are, especially in this context, responsible
for locating the devices attached to the bus (i.e. the “busscan”).

Another important realization lies in the fact that there are several different
ways of arriving at the same driver! For example 1e0: root => mainbus0
=> ibus0 => le0 or root => mainbus0 => vsbus0 => 1le0. le is the actual
driver for the LANCE Ethernet Chip. Since the core of the driver accesses the
hardware only through abstract,bus-independent functions, the special details of
the hardware are hidden from it. Instead of manipulating the hardware directly,
the driver utilizes abstract handles. These handles and the according functions are
provided by the parent (i.e. the driver of the bussystem). Of course, all possible
parents (vsbus and ibus in this case) for a given child (1le, in this case) need to
provide the same interfaces.® These interfaces and the dependencies among the
drivers and the other kernel subsystems are described in more detail via so-called
attributes further down.

2.3 sys/kern/subr _autoconf.c

The functions found in sys/kern/subr_autoconf.c walk down the cfdata ta-
ble in ioconf.c on boot and descend down the entire device tree. For this to work
properly, each driver needs to implement a special interface for these functions.

The reader is advised to read the following manual pages, preferably in this
order: driver (9), config(9), autoconf (9).

3Things get even more entertaining when we account for other architectures. 1e may also be
attached to tc, pci, zbus, vme, dio, mainbus, sbus,

2 THE AUTOCONF (9) SYSTEM 9

2.4 Attributes and Locators

Something that unfortunately does not become quite clear are the differences and
interrelations among the interface- and plain attributes and locators. A plain at-
tribute simply signifies that a driver has a certain property, such as, for example,
that the driver enables an ethernet or a serial interface. This allows several similar
drivers to associate themselves with the attribute and thusly utilize the same source
code. When a driver is included in a kernel that requires a certain attribute, the
source code snippets that provide the attribute are then included in the kernel as
well. ifnet, ether, tty, isadma, ... areexamples of such plain attributes.

An interface attribute describes a logical software interface between some de-
vices, typically a bus driver and the attached drivers. Usually, it contains one or
more so-called “locators”. A locator contains the “position” on the bus / controller
at which the child-device can be found. In the above mentioned kernel configu-
ration file, for example, there exists the ge device, which attaches to the uba?,
meaning the QBus driver implements the software interface labeled with the at-
tribute uba, to which the device ge refers. csr is the (only) locator of the interface
attribute uba.

device wuba { csr }
file dev/gbus/uba.c uba

DEQNA/DELQA Ethernet controller

device qe: ifnet, ether, arp

attach ge at uba

file dev/gbus/if_ge.c ge

The above is an excerpt of sys/dev/qgbus/files.uba. The first line intro-
duces the interface attribute uba with the locator csr. The following line instructs
config(8) to include the file dev/gbus/uba.c in the kernel compilation if a de-
vice is associated with the uba attribute. The last three lines define the ge device.
It is associated with the three plain attributes ifnet, ether, arp, attaches to
the interface attribute uba and the source code is found in dev/gbus/if _ge.c.

An example of an interface attribute with multiple locators is isa, which
supports the locators port, size, iomem, iosiz, irqg, drqg, drg2. See the

4Before the QBus, there was the very similar UniBus; UniBus Aadapters then became ubas.
Since both busses are very similar, a single bus driver is sufficient for both.

2 THE AUTOCONEF (9) SYSTEM 10

declaration in sys/dev/isa/files.isa. The locators given in the kernel config-
uration file directly lead to the according values in the void *aux parameters of
the foo_match and foo_attach functions. (Well, read driver (9)? ;-))

Locators do not have to contain absolute values. Depending on the capabil-
ities of the driver, wildcards may be possible. A typical candidate for wildcards
is a bus- or controller driver supporting direct configuration. The “files.*” file
defining the interface attribute has to provide standard values for such a locator
in this case. Typical standard values are O for bus addresses or -1 for common
indices. The chapter 3.1.2 shows an example of such a case. If no standard val-
ues are assigned, then the kernel configuration file needs to provide a value and
wildcards are not allowed. A locator declared in [] is optional.

2.5 Where are my children?

There’s one question the reader should have by now: Well, sure, the driver / device
is found. But how and where does my driver look for its children? (If the driver
does support a bus or a controller.) What’s up with these config_search () and
config_found_sm() functions?

There are two cases when integrating a device on a bus:

direct configuration The bus adapter hardware provides a complete list of all
currently available physically available child-devices. By reading the “PCI
configuration space”, a bus driver can find out which PCI devices are cur-
rently available and thus only pull in the drivers for those devices.

indirect configuration With the QBus or ISA, the second case applies. With
these busses, the driver can not simply loop through all the bus addresses to
determine which devices do (and do not) exist.

In the case of indirect configuration, the bus driver has to utilize the
config_search () function. config_search() walks down the potential child
device drivers in cfdata, i.e. it will call the foo match () function of all potential
child device drivers. So the bus- / controller driver calls config_search() only
once to find all the child devices. The config_attach () function of the driver
of the located child device will therefore not be called. So the bus- / controller
driver would have to search the cfdata table for the just found children and call
config_attach () for those. But I have not found any driver that does this. Es de-
scribed under autoconf (9) in the section on config_search (), you can achieve
the same by using the func function parameter of config_search (). This func

2 THE AUTOCONF (9) SYSTEM

indirect
config

config_. search
1 10

func

foo_ match

config_ attach

if print() != y}_//

11

direct
config

config_found_sm
)/
config_search

foo_match

config_attach

74BN

print foo_attach print foo_attach

Figure 2: calling chain of autoconf (9) functions

function is provided by the bus- / controller driver. config_search () calls this
function for all the child device drivers found in the cfdata table. That function,
on the other hand, calls the foo_match () function of the child device driver and,
should the child have located the device, the config_attach () function of the
child device driver. If a bus / controller supports direct configuration, as for ex-
ample PCI or PNP-ISA, the bus driver calls config_found_sm() once for each
child device. This function first calls config_search () and then, if a child has
been found, config_attach(). The config_attach () function reserves mem-
ory for the softc structure of the child device drivers and calls its foo_attach ()
function. In this case, the submatch () is often NULL, or the config_found/()
function is called immediately. The parent provides the print function , and
passes a pointer to this function to config_found_sm(). The print function is
called from within config_attach (), after config_attach () has printed a mes-
sage like “foo at bar”. The name parameter of the print function is then NULL.
The print function should be used to output more detailed information on the
console about the child device, such as the exact device type, data transfer rate, ...
If this is not desired, NULL may be passed in place of the function pointer.

But why do we look for the children using config_search (), if the bus- /
controller driver already noticed the presence of any child device? Well, while the
child device may without any doubt be present, the question remains whether or
not a driver for it is included in the current kernel. If there is no driver for this child

2 THE AUTOCONEF (9) SYSTEM 12

device, then config_search () fails and print (provided by the parent) is called
directly instead of config_attach (). During this call, the name parameter of the
print function is a pointer to the name of the parents device. The print function
should then print a message like “foo at bar”. Usually, foo_attach would
print this message, but since no driver for foo is included in the kernel, there
is no foo_attach function. The print then returns either UNCONF or UNSUPP
. Either the message “not configured” or “unsupported” will be appended
to the message printed by print accordingly. If the driver does exist (at least
in principle), but was not compiled into the current kernel, UNCONF is returned;
UNSUPP, if the parent detects a child and knows that there isn’t a driver available
for it. Another reason for the use of config_search() and foo_match () under
direct configuration is explained in section 3.3.3. But that detail shall confuse use
only lateron. ;-)

Any questions? Hell yeah! Where exactly does the driver call
config_found() or config_search() from? Well, that’s easy: in its own
foo_attach() function. foo_attach() initializes the driver, and looking for
your children is part of the initialization.

All these pieces fall into place if, armed with this knowledge, you ven-
ture into the kernel source code and take a close look at the autoconf (9)
interface as well as the involved “files.*” files. Also of interest is
sys/kern/subr_autoconf.c, as well as the config_search() (+mapply()),
config_found_sm() and config_attach() functions (you don’t need to com-
pletely understand config_attach() just yet). These few lines of code in
sys/kern/subr_autoconf.c are what it’s all about.

2.6 bus_space (9) and bus_dma (9)

As mentioned above, one and the same driver core can be attached to different
busses. In this special case, bus refers to a systembus, the addressspace of which
can be mapped into the address space of the CPU, such as the QBus or PCI, for
example. That means, the CPU is able to transfer data from and to the bus device
using load and store operations. Not part of this category are mass memory-,
desktop- and other busses like SCSI, HP-IB, ADB, USB, ... with which can only
be accessed indirectly through a hostadapter, possibly using a packet oriented
protocol.

The core of the driver uses only abstract functions to access the hardware us-
ing tags and handles. This makes it independent of the bus system. Part of
this core of the driver may be several bus-attachments. These bus-attachments

2 THE AUTOCONEF (9) SYSTEM 13

implement the cfattach and softc data structures described in driver (9) as
well as the foo_match () and foo_attach () functions for each bus system sep-
arately. The foo_attach () function “frobs” the tags and handles for the driver
core. bus_space (9) and bus_dma (9) represent the system of NetBSD that ac-
cesses the hardware independent of the utilized bus system through the use of ab-
stract functions. If you write a driver, you get bus_space (9) and / or bus_dma (9)
tags and handles back which are passed to the foomatch () and foo_attach()
functions. But you don’t get bus_space (9) / bus_dma (9) tags and handles di-
rectly, but rather an attach-struct, specific to the according bus, which contains
the bus_space (9) / bus_dma (9) tags and handles as well as other bus-specific
parameters.

The bus_space (9) /bus_dma (9) tag is the abstract representation of the bus-
hierarchy of a machine, while the handle represents an abstract address of a bus
within this hierarchy. The structure of these tags and handles largely depends on
the architecture of the specific hardware. Bus drivers for QBus, ISA, ... convert
the locator values from the kernel configuration file into the appropriate handles.
The actual driver does not need to take care of the structure or the content of these
tags and handles, but can simply make use of them.

Well, now it’s about time to read bus_space (9) and bus_dma (9). ;-)

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 14

3 The autoconf (9) part of the rf (4) driver

And here we go. We want to write a driver for the VAX. The rf (4) driver con-
sists, from the point of view of autoconf (9), of two drivers. One driver for the
controller and one driver for the attached drives.

First a comment about the basic structure of the drivers source code: The code
should begin with a copyright notice. The copyright of the source code has to be
compatible with the BSD license. It therefore makes sense to use the BSD license
or a BSD-like license. After that comes a comment with common notes, such as
“This is the driver for blah, ...”, TODO lists, known BUGS etc. Then the include
statements, starting with the common, kernel include files up to the special include
files that are only used by this driver. Next are the preprocessor directions such as
macro definitions and symbolic constants, followed by the functions prototypes
and the declaration of data structures and -types. See /usr/share/misc/style
(also found in the appendix). This file explains the indentations rules, which must
be followed for NetBSD source code. (If you ever want to see the code in the
NetBSD CVS repository.)

3.1 Configuration files
3.1.1 The kernel configuration file

rfcO at uba? csr 0177170 # RX01/02 controller
rf* at rfc? drive? # RX01/RX02 floppy disk drive

That’s all we need to add to the kernels configuration file to activate the driver.
The csr is the locator of the UniBus / QBus. It is given in octal and represents the
address of the device under which it identifies itself on the QBus.

3.1.2 sys/dev/gbus/files.uba

Then we need to enter our driver and the files that implement it in
sys/dev/qgbus/files.uba’:

RX01/02 floppy disk controller
device rfc { drive=-1 }
attach rfc at uba

Sfiles.uba instead of £iles.qgbus, as the UniBus existed before the QBus.

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 15

device rf: disk
attach rf at rfc
file dev/gbus/rf.c rf | rfc needs-flag

The first line announces to config (8), that there is a driver called rfc. Since
other devices may attach to rfc, and it thus represents an interface attribute, we
tell config(8) to use the locator drive. Since the rfc driver supports direct
configuration, it makes sense to allow wildcards, we pass a standard value of -1 to
the locator. (See 2.4 as well as -1.)

The second line informs config (8), that rfc attaches to the uba bus (=inter-
face attribute). Accordingly, the fourth line describes the connection between rf
and rfc.

The third line is a little bit more interesting. This line defines the rf driver and
associates it with the disk attribute®.

The last line finally makes sure that the file sys/dev/gbus/rf.c is com-
piled into the kernel if one of the rfc and / or rf attributes is found in the
current kernel configuration. needs-flag assures that the file rf.h is created
by config(8) in the compilation directory. This file contains #define NRF 1
and #define NRFC 1 if the rf (4) driver is compiled into the kernel and
#define NRF 0 and #define NRFC 0 if it isn’t. These preprocessor constants
can be used by other parts of the source code if they depend on the (non-) exis-
tence of the driver.’

3.1.3 The device numbers

As all of you certainly know, device nodes, which appear as files in the file system,
are a way for the userland processes to access the hardware, the drivers in the
kernel. The kernel tells the device nodes apart by their major- and minor device
numbers. Each driver, that supports device nodes has an individual major device
number, by which it is identified.

The kernel needs to have a table telling it which driver maps to which ma-
jor device number. (The minor device number is handled by the driver itself.)
There are separate tables for character- and block devices, so that the major de-
vice number of a character device can be different from one of a block device.

6Actually, disk is a “device class”, whatever the precise difference between an attribute and a
“device class” may be.

"Up until NetBSD 1.6-release these preprocessor constants are also necessary for handling
the Majordevice numbers of the character- and block device nodes. Therefore, needs-flag is
absolutely necessary in those versions.

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 16

Since NetBSD 2.0-current, these tables are created automatically by config (8)
in the file devsw. c inside the kernels compilation directory.® The list of major de-
vice numbers in sys/arch/<arch>/conf/majors.<arch>is used as a template,
where <arch> represents the machine- / processor architecture, vax in our case.
Therefore, the following line in sys/arch/vax/conf/majors.vax is necessary
to get the major device numbers:

device-major rf char 78 Dblock 27 rf

The numbers 78 and 27 are used, since the last available entry used the numbers
77 and 26 respectively.

The file devsw. ¢ contains the two tables bdevsw and cdevsw®. The index of
this table is the major device number. Each line in these tables conforms to a de-
vice and contains a pointer to the struct bdevsw data structure (or the struct
cdevsw data structure) declared in the driver, which contains several function
pointers depending on the device type:

const struct bdevsw rf_bdevsw = {

rfopen,

rfclose,

rfstrategy,

rfioctl,

rfdump,

rfsize,

D_DISK

}i

const struct cdevsw rf_cdevsw = {

rfopen,
rfclose,
rfread,
rfwrite,
rfioctl,
nostop,
notty,

nopoll,

8Up until NetBSD 1.6-release, these tables are located in sys/arch/<arch>/<arch>/conf.c
and need to be maintained by hand.

9BlockDEViceSWitch and CharacterDEViceSWitch respectively. Both these tables have been
available under the same name in UNIX V6 since 1976. See [Li 77]

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 17

nommap,
nokgfilter,
D_DISK

bi

These functions implement the different operations possible with the device
in question, such as open, close, write, ioctl.... If a driver does not
implement one of these functions, it writes no<functionname> in its place, for
example nommap. The last field in the cdevsw or bdevsw data structure is the de-
vice type. Currently, the following types are available: D DISK, D_TAPE, D_TTY.
Block devices are understandably always of type D_DISK. The device type deter-
mines which functions a driver has to implement:

D DISK: open, close, read, write, ioctl
D_TAPE: open, close, read, write, ioctl

D_TTY: open, close, read, write, ioctl, stop, tty, poll

D_DISK and D_TAPE therefore do not need to provide stop, tty, poll. (Ques-
tion to all gurus: What about drivers, which also implement mmap(2)?) As we
will see below, there are preprocessor macros to simplify the declaration of these
functions. All these macros and the prepared data structures can be found in
sys/sys/conf.h.

dev_type_open (rfopen);
dev_type_close(rfclose);
dev_type_read(rfread);
dev_type_write(rfwrite);
dev_type_ioctl(rfioctl);
dev_type_strategy(rfstrategy);
dev_type_dump (rfdump) ;
dev_type_size(rfsize);

3.2 Data structures for autoconf (9)

As mentioned in driver (9), the kernel uses a static struct, through which the
functions necessary for autoconf (9) are included. Since NetBSD 2.0-current,
this declaration is done through a macro CFATTACH DECL. Since the rf (4) driver
doesn’t need the “detach” and “activate” functions, you simply pass NULL-pointers
in their place.

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 18

CFATTACH_DECL (
rfc,
sizeof (struct rfc_softc),
rfc_match,
rfc_attach,
NULL,
NULL

)i

CFATTACH_DECL (
rf,
sizeof (struct rf_softc),
rf_match,
rf_attach,
NULL,
NULL

);

And finally the struct, through which the rfc parent tells its rf child at
autoconfig(9) time its actual found “bus address”. More on this under section
3.3.3, when we talk about rf _match.

struct rfc_attach_args {
u_int8_t type; /* controller type, 1 or 2 */
u_int8 t dnum; /* drive number, 0 or 1 */

}i

3.3 Functions for autoconf (9)
3.31 rfcmatch()

A parent device hands down a bus- or controller specific attach_args data struc-
ture to its child devices in the void *aux parameter. These data inform the child
device driver “where” on the bus it should look for a device. In extensible busses
such as the QBus, this data structure also contains the bus_space (9) handles.
The driver can access the hardware only by means of these handles through the
bus_space (9) functions / macros. That is why one of the first actions in one of
the “match” or “attache” routines is a typecast of the void *aux parameter to the
appropriate attach_args data structure.

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 19

In order to communicate with the controller, it maps a two byte wide “regis-
ters” (the so-called command and status registers) into the address space of the
bus.!0 As the name suggests, it is possible to send a specific command to the con-
troller by sending a certain combination of bits via bus_space _write_2(9) or to
query its status via bus_space_read_2 (9). Depending on the command, multiple
writes may be necessary to provide all parameters such as sector number, etc.

int
rfc_match (struct device *parent, struct cfdata *match, void *aux)
{

struct uba_attach_args *ua = aux;

int 1i;

/* Issue reset command. */
bus_space_write_2 (ua->ua_iot, ua->ua_ioh, RX2CS, RX2CS_INIT);
/* Wait for the controller to become ready, that is when
* RX2CS_DONE, RX2ES_RDY and RX2ES_ID are set. */
for (1 =0 ; 1 < 20 ; 1i++) {
if ((bus_space_read_2 (ua->ua_iot, ua->ua_ioh, RX2CS)

& RX2CS_DONE) !'= 0
&& (bus_space_read_2 (ua->ua_iot, ua->ua_ioh, RX2ES)
& (RX2ES_RDY | RX2ES_ID)) != 0)

break;

DELAY (100000); /* wait 100ms */
}
/%
* Give up if the timeout has elapsed
* and the controller is not ready.

*/

if (1 >= 20)
return(0);

/*

* Issue a Read Status command with interrupt enabled.
* The uba(4) driver wants to catch the interrupt to get the
* interrupt vector and level of the device

*/

10Remember the name of the locator for the UniBus / QBus from the kernels configuration file?
It’s “csr”.

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 20

bus_space_write_2 (ua->ua_iot, ua->ua_ioh, RX2CS,

RX2CS_RSTAT | RX2CS_IE);
/*
* Wait for command to finish, ignore errors and
* abort if the controller does not respond within the timeout
*/
for (1 =0 ; i <20 ; i++) {

if ((bus_space_read_2 (ua->ua_iot, ua->ua_ioh, RX2CS)

& (RX2CS_DONE | RX2CS_IE)) != 0
&& (bus_space_read_2 (ua->ua_iot, ua->ua_ioh, RX2ES)
& RX2ES_RDY) != 0)

return(1l);

DELAY (100000); /* wait 100ms */
}

return (0);

First we send a reset to the controller and wait up to two seconds if it ac-
knowledges the command. Should the controller end the reset properly, a second
command with an interrupt enable bit is sent. Why are we using an interrupt, if
driver (9) states that the entire autoconfig(9) procedure takes place when no
interrupts have been enabled yet? Well, this only means that a driver can not yet
use any interrupts, since the interrupt handling of the kernel has not yet been ini-
tialized. A device can, however, cause an interrupt nonetheless, it will just remain
in the depth of the hard-/software. The interrupt gets lost, the interrupt handler is
not called. We’ll cover interrupts in more details lateron.

In this case, this is actually necessary. A driver for a QBus device has to
cause an interrupt in its foo_match() function. This interrupt is caught by
the QBus bus driver and is the only possibility for it to determine the inter-
rupt level and -vector of the device. Therefore, the QBus bus driver does give
an error message at boot time, if a foomatch() function indicates the pres-
ence of a device but no interrupt has taken place. (All of this is handled in the
function sys/dev/gbus/uba.c:ubasearch (), which is the func parameter of
config_search in the QBus bus driver. See 2.5.)

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 21

3.3.2 rfc_attach()

The attach_args data structure is valid only temporarily at autoconfig(9)
time. Therefore, the driver lateron copies the required information from
attach_args data structure into its softc data structure (more on this in the next
chapter) and initializes the variables only lateron. Part of this is also the reser-
vation of the appropriate resources such as the “DMA map” and to detach the
interrupt handler. What and how exactly all this is done, does of course depend
very much on the supported device and the bus-/controller to which it attaches.

void
rfc_attach(struct device *parent, struct device *self, void *aux)
{
struct rfc_softc *rfc_sc = (struct rfc_softc *)self;
struct uba_attach_args *ua = aux;
struct rfc_attach_args rfc_aa;
int 1i;

rfc_sc->sc_iot = ua->ua_iot;
rfc_sc->sc_ioh = ua->ua_ioh;
rfc_sc->sc_dmat = ua->ua_dmat;
rfc_sc->sc_curbuf = NULL;
/* Tell the QBus busdriver about our interrupt handler. */
uba_intr establish(ua->ua_icookie, ua->ua_cvec, rfc_intr, rfc_sc,
&rfc_sc->sc_intr_count);
/* Attach to the interrupt counter, see evcnt(9) */
event_attach_dynamic (&rfc_sc->sc_intr_count, EVCNT_TYPE_INTR,
ua->ua_event, rfc_sc->sc_dev.dv_xname, "intr");
/* get a bus_dma(9) handle */
i = bus_dmamap_create (rfc_sc->sc_dmat, RX2_BYTE_DD, 1, RX2_BYTE_DD, O,
BUS_DMA_ALLOCNOW, &rfc_sc->sc_dmam);
if (1 !'= 0) {
printf ("rfc_attach: Error creating bus dma map: %d\n", 1i);
return;

}

Passing another reset to initialize the device at this point is a “Good Idea” (C)
(R) (TM), since an “attach” routine must not rely on any “pre-requisites” of the
“match” routine.

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 22

/* Issue reset command. */
bus_space_write_2 (rfc_sc->sc_iot, rfc_sc->sc_ioh, RX2CS, RX2CS_INIT);
/%

* Wait for the controller to become ready, that is when

* RX2CS_DONE, RX2ES_RDY and RX2ES_ID are set.

*/

for (1 =0 ; i< 20 ; i++) {

if ((bus_space_read_2(rfc_sc->sc_iot, rfc_sc->sc_ioh, RX2CS)

& RX2CS_DONE) != 0
&& (bus_space_read_2 (rfc_sc->sc_iot, rfc_sc->sc_ioh, RX2ES)
& (RX2ES_RDY | RX2ES_ID)) != 0)

break;

DELAY (100000); /* wait 100ms */
}
/%
* Give up if the timeout has elapsed
* and the controller is not ready.

*/

if (1 >= 20) {
printf (": did not respond to INIT CMD\n");
return;

}

Ok, the controller has been found. After our rfcmatch () function as an-
nounced the presence of a suitable device, the QBus driver will print a message
like
rfcO0 at ubal csr 177170 vec 264 ipl 17
without a trailing \n. That way, our rfc_attach () is able to print more detailed
information regarding the device. And that’s exactly what we’ll do first: deter-
mine if the device in question is a RX01 or a RX02, save that piece of information
in the softc structure and print an appropriate message.

/* Is ths a RX01l or a RX02? */
if ((bus_space_read_2 (rfc_sc->sc_iot, rfc_sc->sc_ioh, RX2CS)
& RX2CS_RX02) !'= 0) {
rfc_sc->type = 2;
rfc_aa.type = 2;
} else {
rfc_sc->type = 1;

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 23

rfc_aa.type = 1;
}
printf(": RX0%d\n", rfc_sc->type);

The last task remaining is to look for the children, i.e. to determine if, where
and how any floppy drives are attached. Those are then integrated into the device
tree by means of config_found().

#ifndef RX02_PROBE
/%
* Both disk drives and the controller are one physical unit.
* If we found the controller, there will be both disk drives.
* So attach them.
*/
rfc_aa.dnum = 0;
rfc_sc->sc_childs[0]
rfc_aa.dnum = 1;
rfc_sc->sc_childs[1]
#else /* RX02_PROBE */
/%
* There are clones of the DEC RX system with standard shugart
* interface. In this case we can not be sure that there are
* both disk drives. So we want to do a detection of attached
* drives. This is done by reading a sector from disk. This means
* that there must be a formated disk in the drive at boot time.
* This is bad, but I did not find an other way to detect the
* (non)existence of a floppy drive.
*/
if (rfcprobedens(rfc_sc, 0) >= 0) {
rfc_aa.dnum = 0;
rfc_sc->sc_childs[0]
rf_print);

config_found(&rfc_sc->sc_dev, &rfc_aa,rf_print);

config_found(&rfc_sc->sc_dev, &rfc_aa,rf_print);

config_found(&rfc_sc->sc_dev, &rfc_aa,

} else
rfc_sc->sc_childs[0] = NULL;
if (rfcprobedens(rfc_sc, 1) >= 0) {
rfc_aa.dnum = 1;
rfc_sc->sc_childs[1] = config_found(&rfc_sc->sc_dev, &rfc_aa,

rf_print);
} else

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 24

rfc_sc->sc_childs[1] = NULL;
#endif /* RX02_PROBE */
return;

3.3.3 rf match ()

Since the rfc driver supports direct configuration, is calls config_found() (and
through it rf match()) only if the device is without a doubt present. You may
think to yourself: “No problem, the device is present. We can reduce the function
rf match to a measly return(1);”, but you would be wrong.

int
rf_match(struct device *parent, struct cfdata *match, void *aux)
struct rfc_attach_args *rfc_aa = aux;

if (match->cf_loc[RFCCF_DRIVE] == RFCCF_DRIVE_DEFAULT ||
match->cf_loc[RFCCF_DRIVE] == rfc_aa->dnum) {
return(1);

}

return(0);

Why this check? Or rather, what is being checked? The match data struc-
ture of type cfdata describes the autoconfig (9) parameter for this driver from
the kernels configuration file. The cf_loc array of the cfdata data structure
contains the value of the locators. The position of the locators in this array is
given by config (8). In order to be able to access the value of a certain locator
in this array, there are preprocessor constants which follow this naming conven-
tion: <ATTR>CF_<LOC>, with <ATTR> representing the name of the interface at-
tribute to which the locator belongs, and <LOC> representing the desired locator.
The rf driver attaches to the rfc interface attribute with the drive locator, i.e.
RFCCF_DRIVE. This way, the driver can directory access the values of the drive
locator given in the kernel configuration file. For example, if it contains:
rf0 at rfcO drive 1
then the value of match->cf_loc[RFCCF_DRIVE] is 1. If the kernel configura-
tion file does not assign a value to the locator, a wildcard is used, so that the value
os set to the standard value given in the file files.uba. This standard value is

3 THE AUTOCONF (9) PART OF THE RF (4) DRIVER 25

available as a preprocessor constant RFCCF_DRIVE _DEFAULT and in is our example
-1. (See 3.1.2 and 2.4 for the reason.)

Thus, the driver gets the value of the locators from two sides of the interface
attribute to which it attaches, i.e. the p