
Python OpenSSL Wrappers v0.5

Introduction
This is an early release for POW. The intention was to quickly cover the breadth of the OpenSSL library,
then the depth of particular areas. Future releases will focus on bug fixes and filling missing gaps in the
API. The digests and ciphers should be adequate for most purposes as should the SSL wrappers. Although
certificates and CRLs can be generated using this library no extension support has been included in the
current release.

The issue of how extensions should be supported is a high priority but is not clear how best to go about
supporting this functionality. The ASN1 support in OpenSSL is due to be overhauled in 0.9.7 which should
improve matters. Other possibilities would include using a tool like SNACC to augment OpenSSLs capabil-
ities or handle these problems in with a standalone module. If you have any thoughts on this or other issues
please contact the author.

Module Functions

Function Prototypes

def pemRead(string , type):
def seed (data):
def readRandomFile (filename):
def writeRandomFile (filename):
def getError ():
def clearError ():
def __doclist__ ():

Function Descriptions

The pemRead Function

This function attempts to parse thestring according to the PEM type passed.type should be one of the
following:

RSA_PUBLIC_KEY
RSA_PRIVATE_KEY
X509_CERTIFICATE
X509_CRL

1

Python OpenSSL Wrappers v0.5

The object returned will be and instance ofAsymmetric , X509 or X509Crl .

The seed Function

Theseed function adds data to OpenSSLs PRNG state. It is often said the hardest part of cryptography is
getting good random data, after all if you don’t have good random data, a 1024 bit key is no better than a
512 bit key and neither would provide good protection from a targeted brute force attack.

The readRandomFile Function

This function reads a previously saved random state. It can be very useful to improve the quality of random
data used by an application. The random data should be added to, using the seed function, with data from
other suitable random sources.

The writeRandomFile Function

This function writes the current random state to a file. Clearly this function should be used in conjunction
with readRandomFile .

The getError Function

Pops an error off the global error stack and returns it as a string.

The clearError Function

Removes all errors from the global error stack.

The __doclist__ Function

This function returns a list of all the doc strings in this module. The doc strings contain a mixture of
DocBook markup and custom tags which formally describe the class or function. The list of strings was
used to generate this documentation, it was processed by a simple and pretty raw script which produced a
valid DobBook article. Finally Openjade was used process the DocBook article to produce this document.

Module Classes

The Ssl Class
This class provides access to the Secure Socket Layer functionality of OpenSSL. It is designed to be a simple
as possible to use and is not designed for high performance applications which handle many simultaneous
connections. The original motivation for writing this library was to provide a security layer for network

2

Python OpenSSL Wrappers v0.5

agents written in Python, for this application, good performace with multiple concurrent connections is not
an issue.

Performance issues will be addressed in later releases. Currently threaded applications are not supported,
nor are SSL sessions.

Class Prototypes

class Ssl :
def __init__(protocol):
def setFd(descriptor):
def accept():
def connect():
def write(string):
def read(amount=1024):
def peerCertificate():
def useCertificate(cert):
def useKey(key):
def checkKey():

The __init__ Method

This constructor creates a newSsl object which will behave as a client or server, depending on theproto-

col value passed. Theprotocol also determines the protocol type and version and should be one of the
following:

SSLV2_SERVER_METHOD
SSLV2_CLIENT_METHOD
SSLV2_METHOD
SSLV3_SERVER_METHOD
SSLV3_CLIENT_METHOD
SSLV3_METHOD
TLSV1_SERVER_METHOD
TLSV1_CLIENT_METHOD
TLSV1_METHOD
SSLV23_SERVER_METHOD
SSLV23_CLIENT_METHOD
SSLV23_METHOD

The setFd Method

This function is used to associate a file descriptor with aSsl object. The file descriptor should belong to an
open TCP connection. Once this function has been called, callinguseKey or useCertificate will, fail
rasing exceptions.

The accept Method

This function will attempt the SSL level accept with a client. TheSsl object must have been created using

3

Python OpenSSL Wrappers v0.5

a XXXXX_SERVER_METHODor a XXXXX_METHODand this function should only be called afteruseKey ,
useCertificate andsetFd functions have been called.

Example 1.accept function usage

keyFile = open(’test/private.key’, ’r’)
certFile = open(’test/cacert.pem’, ’r’)

rsa = pow.pemRead(pow.RSA_PRIVATE_KEY, keyFile.read(), ’pass’)
x509 = pow.pemRead(pow.X509_CERTIFICATE, certFile.read())

keyFile.close()
certFile.close()

sl = pow.Ssl(pow.SSLV23_SERVER_METHOD)
sl.useCertificate(x509)
sl.useKey(rsa)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((’localhost’, 1111))
s.listen(5)
s2, addr = s.accept()

s.close()

sl.setFd(s2.fileno())
sl.accept()
print sl.read(1024)
sl.write(’Message from server to client...’)

s2.close()

The connect Method

This function will attempt the SSL level connection with a server. TheSsl object must have been created
using aXXXXX_CLIENT_METHODor aXXXXX_METHODand this function should only be called aftersetFd

has already been called.

Example 2.connect function usage

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((’localhost’, 1111))

sl = pow.Ssl(pow.SSLV23_CLIENT_METHOD)
sl.setFd(s.fileno())
sl.connect()
sl.write(’

4

Python OpenSSL Wrappers v0.5

Message from client to server...’)
print sl.read(1024)

The write Method

This method writes thestring to theSsl object, to be read by it’s peer. This function is analogous to the
socket classeswrite function.

The read Method

This method reads up toamount characters from theSsl object. This function is analogous to thesocket

classesread function.

The peerCertificate Method

This method returns any peer certificate presented in the initial SSL negotiation orNone. If a certificate is
returned, it will be an instance ofX509.

The useCertificate Method

The parametercert must be an instance of theX590 class. A second restriction, this function cannot be
called after the file descriptor has been set.

The useKey Method

The parameterkey must be an instance of theAsymmetric class and must contain the private key. A second
restriction, this function cannot be called after the file descriptor has been set.

The checkKey Method

This simple method will return 1 if the public key, contained in the X509 certificate thisSsl instance is
using, matches the private key thisSsl instance is using. Otherwise it will return 0.

The X509 Class
This class provides access to a significant proportion of X509 functionality of OpenSSL.

Example 3.x509 class usage

privateFile = open(’test/private.key’, ’r’)
publicFile = open(’test/public.key’, ’r’)
certFile = open(’test/cacert.pem’, ’w’)

5

Python OpenSSL Wrappers v0.5

publicKey = pow.pemRead(pow.RSA_PUBLIC_KEY, publicFile.read())
privateKey = pow.pemRead(pow.RSA_PRIVATE_KEY, privateFile.read(), ’pass’)

c = pow.X509()

name = [[’C’, ’GB’], [’ST’, ’Hertfordshire’],
[’O’,’The House’], [’CN’, ’Peter Shannon’]]

c.setIssuer(name)
c.setSubject(name)
c.setSerial(0)
c.setNotBefore(time.time())
c.setNotAfter(time.time() + 60*60*24*365)
c.setPublicKey(publicKey)
c.sign(privateKey)

certFile.write(c.pemWrite())

privateFile.close()
publicFile.close()
certFile.close()

Class Prototypes

class X509 :
def __init__():
def pemWrite():
def sign(key):
def setPublicKey(key):
def getVersion():
def setVersion(version):
def getSerial():
def setSerial(serial):
def getIssuer(format=SHORTNAME_FORMAT):
def setIssuer(name):
def getSubject(format=SHORTNAME_FORMAT):
def setSubject(name):
def getNotBefore():
def setNotBefore(time):
def getNotAfter():
def setNotAfter(time):
def pprint():

6

Python OpenSSL Wrappers v0.5

The __init__ Method

This constructor crates a skeletal X509 certificate object. It won’t be any use at all until several stuctures
have been created using it’s member functions.

The pemWrite Method

This method returns a PEM encoded certificate as a string.

The sign Method

This method signs a certificate with a private key. See the example for the methods which should be invoked
before signing a certificate.key should be an instance ofAsymmetric contianing a private key.

The setPublicKey Method

This method sets the public key for this certificate object. The parameterkey should be an instance of
Asymmetric containing a public key.

The getVersion Method

This method returns the version number from the version field of this certificate.

The setVersion Method

This method sets the version number in the version field of this certificate.version should be an integer.

The getSerial Method

This method get the serial number in the serial field of this certificate.

The setSerial Method

This method sets the serial number in the serial field of this certificate.serial should ba an intger.

The getIssuer Method

This method returns a tuple containg the issuers name. Each element of the tuple is a tuple with 2 elements.
The first tuple is an object name and the second is it’s value. Both issuer and sybject names a distinguished
names normally composed of a small number of objects:

c or countryName
st or stateOrProvinceName
o or organizationName

7

Python OpenSSL Wrappers v0.5

l or localityName
ou or organizationalUnitName
cn or commonName

The data type varies from one object to another, however, all the common objects are strings. It would
be possible to specify any kind of object but that would certainly adversly effect portability and is not
recomended.

The setIssuer Method

This method is used to set the issuers name.namecan be comprised of lists or tuples in the format described
in thegetissuer method.

The getSubject Method

This method returns a tuple containg the subjects name. SeegetIssuer for a description of the returned
object’s format.

The setSubject Method

This method is used to set the subjects name.namecan be comprised of lists or tuples in the format described
in thegetIssuer method.

The getNotBefore Method

This method returns a tuple containing two integers. The first number represents the time in seconds and is
the same as the Ctime_t typedef and the second represents the time zone offset in seconds.

The setNotBefore Method

This method sets part of theValidity sequence of the certificate, thenotBefore time. time should be a
time in seconds, as generated by thetime function in the Python Standard Library.

The getNotAfter Method

This method returns a tuple containing two integers. The first number represents the time in seconds and is
the same as the Ctime_t typedef and the second represents the time zone offset in seconds.

The setNotAfter Method

This method sets part of theValidity sequence of the certificate, thenotAfter time. time should be a
time in seconds, as generated by thetime function in the Python Standard Library.

8

Python OpenSSL Wrappers v0.5

The pprint Method

This method returns a formatted string showing the information held in the certificate.

The X509Crl Class
This class provides access to OpenSSL X509 CRL management facilities.

Class Prototypes

class X509Crl :
def pemWrite():
def getVersion():
def setVersion(version):
def getIssuer(format=SHORTNAME_FORMAT):
def setIssuer(name):
def getThisUpdate():
def setThisUpdate(time):
def getNextUpdate():
def setNextUpdate(time):
def getRevoked():
def setRevoked(revoked):
def verify(key):
def sign(key):
def pprint():

The pemWrite Method

This method returns a PEM encoded CRL as a string.

The getVersion Method

This method returns the version number from the version field of this CRL.

The setVersion Method

This method sets the version number in the version field of this CRL.version should be an integer.

The getIssuer Method

This method returns a tuple containg the issuers name. See thegetIssuer method ofX509 for more details.

9

Python OpenSSL Wrappers v0.5

The setIssuer Method

This method is used to set the issuers name.namecan be comprised of lists or tuples in the format described
in thegetIssuer method ofX509.

The getThisUpdate Method

This method returns a tuple containing two integers. The first number represents the time in seconds and is
the same as the Ctime_t typedef and the second represents the time zone offset in seconds.

The setThisUpdate Method

This method sets thethisUpdate field of this CRL.time should be a time in seconds, as generated by the
time function in the Python Standard Library.

The getNextUpdate Method

This method returns a tuple containing two integers. The first number represents the time in seconds and is
the same as the Ctime_t typedef and the second represents the time zone offset in seconds.

The setNextUpdate Method

This method sets thethisUpdate field of this CRL.time should be a time in seconds, as generated by the
time function in the Python Standard Library.

The getRevoked Method

This method returns a tuple ofX509Revoked objects described in the CRL.

Example 4.getRevoked function usage

publicFile = open(’test/public.key’, ’r’)
crlFile = open(’test/crl.pem’, ’r’)

publicKey = pow.pemRead(pow.RSA_PUBLIC_KEY, publicFile.read())

crl = pow.pemRead(pow.X509_CRL, crlFile.read())

print crl.pprint()
if crl.verify(publicKey):

print ’signature ok!’
else:

print ’signature not ok!’

revocations = crl.getRevoked()
for revoked in revocations:

10

Python OpenSSL Wrappers v0.5

print ’serial number:’, revoked.getSerial()
print ’date:’, time.ctime(revoked.getDate()[0])

publicFile.close()
crlFile.close()

The setRevoked Method

This method sets the sequence of revoked certificates in this CRL.revoked should be a list or tuple of
X509Revoked .

Example 5.setRevoked function usage

privateFile = open(’test/private.key’, ’r’)
publicFile = open(’test/public.key’, ’r’)
crlFile = open(’test/crl.pem’, ’w’)

publicKey = pow.pemRead(pow.RSA_PUBLIC_KEY, publicFile.read())
privateKey = pow.pemRead(pow.RSA_PRIVATE_KEY, privateFile.read(), ’pass’)

crl = pow.X509Crl()

name = [[’C’, ’GB’], [’ST’, ’Hertfordshire’],
[’O’,’The House’], [’CN’, ’Peter Shannon’]]

crl.setIssuer(name)
rev = [pow.X509Revoked(3, int(time.time()) - 24*60*60),

pow.X509Revoked(4, int(time.time()) - 24*60*60),
pow.X509Revoked(5, int(time.time()) - 24*60*60)]

crl.setRevoked(rev)
crl.setThisUpdate(time.time())
crl.setNextUpdate(time.time() + 2*60*60*24*365)
crl.sign(privateKey)

crlFile.write(crl.pemWrite())

privateFile.close()
publicFile.close()
crlFile.close()

11

Python OpenSSL Wrappers v0.5

The verify Method

TheX509Crl methodverify is based on theX509_CRL_verify function. Unlike theX509 function of
the same name, this function simply checks the CRL was signed with the private key which corresponds the
parameterkey . key should be an instance ofAsymmetric and contain a public key.

The sign Method

This method signs a CRL with a private key.key should be an instance ofAsymmetric and contain a
private key. See thesetRevoked example.

The pprint Method

This method returns a formatted string showing the information held in the CRL.

The X509Revoked Class
This class provides a container for details of a revoked certificate. It normally would only be used in associ-
ation with a CRL, its not much use by itself. Indeed the only reason this class exists is because in the future
POW is likely to be extended to support extensions for certificates, CRLs and revocations.X509Revoked

existing as an object in its own right will make adding this support easier, while avoiding backwards com-
patibility issues.

Class Prototypes

class X509Revoked :
def __init__(serial, date):
def getDate():
def setDate(time):
def getSerial():
def setSerial(serial):

The __init__ Method

This constructor builds a X509 Revoked structure. Both arguments are integers,date is the same as the C
time_t typedef and can be generated with the Python Standard Library functiontime .

The getDate Method

This method returns a tuple containing two integers representingrevocationDate . The first number rep-
resents the time in seconds and is the same as the Ctime_t typedef and the second represents the time
zone offset in seconds.

12

Python OpenSSL Wrappers v0.5

The setDate Method

This method sets therevocationDate field of this object.time should be a time in seconds, as generated
by thetime function in the Python Standard Library.

The getSerial Method

This method get the serial number in the serial field of this object.

The setSerial Method

This method sets the serial number in the serial field of this object.serial should ba an intger.

The X509Store Class
This class provides preliminary access to OpenSSL X509 verfication facilities.

Example 6.x509_store class usage

store = pow.X509Store()

caFile = open(’test/cacert.pem’, ’r’)
ca = pow.pemRead(pow.X509_CERTIFICATE, caFile.read())
caFile.close()

store.addTrust(ca)

certFile = open(’test/foocom.cert’, ’r’)
x509 = pow.pemRead(pow.X509_CERTIFICATE, certFile.read())
certFile.close()

print x509.pprint()

if store.verify(x509):
print ’Verified certificate!.’

else:
print ’Failed to verify certificate!.’

Class Prototypes

class X509Store :
def __init__():
def verify(cert):
def addTrust(cert):
def addCrl(crl):

13

Python OpenSSL Wrappers v0.5

The __init__ Method

This constructor takes no arguments. TheX509Store returned cannot be used for verifying certificates
until at least one trusted certificate has been added.

The verify Method

TheX509Store methodverify is based on theX509_verify_cert . It handles certain aspects of verifi-
cation but not others. The certificate will be verified againstnotBefore , notAfter and trusted certificates.
It crucially will not handle checking the certificate against CRLs. This functionality will probably make it
into OpenSSL 0.9.7.

The addTrust Method

This method adds a new certificate to the store to be used in the verification process.cert should be an
instance ofX509. Using trusted certificates to manage verification is relativly primative, more sophisticated
systems can be constructed at an application level by by constructing certifate chains to verify. This support
will be added in the near future.

The addCrl Method

This method adds a CRL to a store to be used for verification.crl should be an instance ofX509Crl .
Unfortunately, the current stable release of OpenSSL does not support CRL checking for certificate veri-
fication. This functionality will probably make it into OpenSSL 0.9.7, until it does this function is useless
and CRL verification must be implemented by the application.

The Digest Class
This class provides access to the digest functionality of OpenSSL. It emulates the digest modules in the
Python Standard Library but does not currently support thehexdigest function.

Example 7.digest class usage

plain_text = ’Hello World!’
sha1 = pow.Digest(pow.SHA1_DIGEST)
sha1.update(plain_text)
print ’ Plain text: Hello World! = >’, sha1.digest()

Class Prototypes

class Digest :
def __init__(type):
def update(data):
def copy():

14

Python OpenSSL Wrappers v0.5

def digest():

The __init__ Method

This constructor creates a newDigest object. The parametertype specfies what kind of digest to create
and should be one of the following:

MD2_DIGEST
MD5_DIGEST
SHA_DIGEST
SHA1_DIGEST
RIPEMD160_DIGEST

The update Method

This method updates the internal structures of theDigest object withdata . data should be a string.

The copy Method

This method returns a copy of theDigest object.

The digest Method

This method returns the digest of all the data which has been processed. This function can be called at any
time and will not effect the internal structure of thedigest object.

The Symmetric Class
This class provides access to all the symmetric ciphers in OpenSSL. Initialisation of the cipher structures is
performed late, only whenencryptInit or decryptInit is called, the constructor only records the cipher
type. It is possible to reuse theSymmetric objects by callingencryptInit or decryptInit again.

Example 8.Symmetric class usage

passphrase = ’my silly passphrase’
md5 = pow.Digest(pow.MD5_DIGEST)
md5.update(passphrase)
password = md5.digest()[:8]

plaintext = ’cast test message’
cast = pow.Symmetric(pow.CAST5_CFB)
cast.encryptInit(password)
ciphertext = cast.update(plaintext) + cast.final()
print ’Cipher text:’, ciphertext

cast.decryptInit(password)

15

Python OpenSSL Wrappers v0.5

out = cast.update(ciphertext) + cast.final()
print ’Deciphered text:’, out

Class Prototypes

class Symmetric :
def __init__(type):
def encryptInit(key, initialvalue=”):
def decryptInit(key, initialvalue=”):
def update(data):
def final(size=1024):

The __init__ Method

This constructor creates a newSymmetric object. The parametertype specfies which kind of cipher to
create.type should be one of the following:

DES_ECB IDEA_CBC
DES_EDE RC2_ECB
ES_EDE3 RC2_CBC
DES_CFB RC2_40_CBC
DES_EDE_CFB RC2_CFB
DES_EDE3_CFB RC2_OFB
DES_OFB BF_ECB
DES_EDE_OFB BF_CBC
DES_EDE3_OFB BF_CFB
DES_CBC BF_OFB
DES_EDE_CBC CAST5_ECB
DES_EDE3_CBC CAST5_CBC
DESX_CBC CAST5_CFB
RC4 CAST5_OFB
RC4_40 RC5_32_12_16_CBC
IDEA_ECB RC5_32_12_16_CFB
IDEA_CFB RC5_32_12_16_ECB
IDEA_OFB RC5_32_12_16_OFB

Please note your version of OpenSSL might not have been compiled with all the ciphers listed above. If that
is the case, which is very likely if you are using a stock binary, the unsorported ciphers will not even be in
the module namespace.

The encryptInit Method

This method sets up the cipher object to start encrypting a stream of data. The first parameter is the key
used to encrypt the data. The second, theinitialvalue serves a similar purpose the the salt supplied to
the Unixcrypt function. Theinitialvalue is normally chosen at random and often transmitted with the
encrypted data, its purpose is to prevent two identical plain texts resulting in two identical cipher texts.

16

Python OpenSSL Wrappers v0.5

The decryptInit Method

This method sets up the cipher object to start decrypting a stream of data. The first value must be the key
used to encrypt the data. The second parameter is theinitialvalue used to encrypt the data.

The update Method

This method is used to process the bulk of data being encrypted or decrypted by the cipher object.data

should be a string.

The final Method

Most ciphers are block ciphers, that is they encrypt or decrypt a block of data at a time. Often the data being
processed will not fill an entire block, this method processes these half-empty blocks. A string is returned
of a maximum lengthsize .

The Asymmetric Class
This class provides access to RSA asymmetric ciphers in OpenSSL. Other ciphers will probably be sup-
ported in the future but this is not considered a priority.

Class Prototypes

class Asymmetric :
def __init__(keytype, keylength):
def pemWrite(keytype, ciphertype=None, passphrase=None):
def publicEncrypt(plaintext):
def publicDecrypt(ciphertext):
def privateEncrypt(plaintext):
def privateDecrypt(ciphertext):
def sign(digesttext, digesttype):
def verify(signedtext, digesttext, digesttype):

The __init__ Method

This constructor builds a new cipher object. Only RSA ciphers are currently support, so the first argument
should always beRSA_CIPHER. The second argument,keylength , is normally 512, 768, 1024 or 2048.
Key lengths as short as 512 bits are generally considered weak, and can be cracked by determined attackers
without tremendous expense.

Example 9.asymmetric class usage

privateFile = open(’test/private.key’, ’w’)
publicFile = open(’test/public.key’, ’w’)

17

Python OpenSSL Wrappers v0.5

passphrase = ’my silly passphrase’
md5 = pow.Digest(pow.MD5_DIGEST)
md5.update(passphrase)
password = md5.digest()

rsa = pow.Asymmetric(pow.RSA_CIPHER, 1024)
privateFile.write(rsa.pemWrite(

pow.RSA_PRIVATE_KEY, pow.DES_EDE3_CFB, password))
publicFile.write(rsa.pemWrite(pow.RSA_PUBLIC_KEY))

privateFile.close()
publicFile.close()

The pemWrite Method

This method is used to writeAsymmetric objects out to strings. The first argument should be either
RSA_PUBLIC_KEYor RSA_PRIVATE_KEY. Private keys are often saved in encrypted files to offer extra
security above access control mechanisms. If thekeytype is RSA_PRIVATE_KEYa ciphertype and
passphrase can also be specified. Theciphertype should be one of those listed in theSymmetric

class section.

The publicEncrypt Method

This method is used to encrypt theplaintext using a public key. It should be noted; in practice this
function would be used almost exclusivly to encrypt symmetric cipher keys and not data since asymmetric
cipher operations are very slow.

The publicDecrypt Method

This method is used to decrypt theciphertext which has been encrypted using the corresponding private
key and theprivateEncrypt function.

The privateEncrypt Method

This method is used to encrypt theplaintext using a private key. It should be noted; in practice this
function would be used almost exclusivly to encrypt symmetric cipher keys and not data since asymmetric
cipher operations are very slow.

The privateDecrypt Method

This method is used to decrypt ciphertext which has been encrypted using the corresponding public key and
thepublicEncrypt function.

18

Python OpenSSL Wrappers v0.5

The sign Method

This method is used to produce a signed digest text. This instance ofAsymmetric should be a private key
used for signing. The parameterdigesttext should be a digest of the data to protect against alteration and
finally digesttype should be one of the following:

MD2_DIGEST
MD5_DIGEST
SHA_DIGEST
SHA1_DIGEST
RIPEMD160_DIGEST

If the procedure was succesful, a string containing the signed digest is retuned.

The verify Method

This method is used to verify a signed digest text.

Example 10.verify method usage

plain_text = ’Hello World!’
print ’ Plain text:’, plain_text
digest = pow.Digest(pow.RIPEMD160_DIGEST)
digest.update(plain_text)
print ’ Digest text:’, digest.digest()

privateFile = open(’test/private.key’, ’r’)
privateKey = pow.pemRead(pow.RSA_PRIVATE_KEY, privateFile.read(), ’pass’)
privateFile.close()
signed_text = privateKey.sign(digest.digest(), pow.RIPEMD160_DIGEST)
print ’ Signed text:’, signed_text

digest2 = pow.Digest(pow.RIPEMD160_DIGEST)
digest2.update(plain_text)
publicFile = open(’test/public.key’, ’r’)
publicKey = pow.pemRead(pow.RSA_PUBLIC_KEY, publicFile.read())
publicFile.close()
if publicKey.verify(signed_text, digest2.digest(), pow.RIPEMD160_DIGEST):

print ’Signing verified!’
else:

print ’Signing gone wrong!’

The parametersignedtext should be a signed digest text. This instance ofAsymmetric should corre-
spond to the private key used to sign the digest. The parameterdigesttext should be a digest of the same
data used to produce thesignedtext and finallydigesttype should be one of the following:

MD2_DIGEST
MD5_DIGEST
SHA_DIGEST

19

Python OpenSSL Wrappers v0.5

SHA1_DIGEST
RIPEMD160_DIGEST

If the procedure was succesful, 1 is returned, otherwise 0 is returned.

20

	Introduction
	Module Functions
	Function Prototypes
	Function Descriptions
	The pemRead Function
	The seed Function
	The readRandomFile Function
	The writeRandomFile Function
	The getError Function
	The clearError Function
	The doclist Function

	Module Classes
	The Ssl Class
	Class Prototypes
	The init Method
	The setFd Method
	The accept Method
	The connect Method
	The write Method
	The read Method
	The peerCertificate Method
	The useCertificate Method
	The useKey Method
	The checkKey Method

	The X509 Class
	Class Prototypes
	The init Method
	The pemWrite Method
	The sign Method
	The setPublicKey Method
	The getVersion Method
	The setVersion Method
	The getSerial Method
	The setSerial Method
	The getIssuer Method
	The setIssuer Method
	The getSubject Method
	The setSubject Method
	The getNotBefore Method
	The setNotBefore Method
	The getNotAfter Method
	The setNotAfter Method
	The pprint Method

	The X509Crl Class
	Class Prototypes
	The pemWrite Method
	The getVersion Method
	The setVersion Method
	The getIssuer Method
	The setIssuer Method
	The getThisUpdate Method
	The setThisUpdate Method
	The getNextUpdate Method
	The setNextUpdate Method
	The getRevoked Method
	The setRevoked Method
	The verify Method
	The sign Method
	The pprint Method

	The X509Revoked Class
	Class Prototypes
	The init Method
	The getDate Method
	The setDate Method
	The getSerial Method
	The setSerial Method

	The X509Store Class
	Class Prototypes
	The init Method
	The verify Method
	The addTrust Method
	The addCrl Method

	The Digest Class
	Class Prototypes
	The init Method
	The update Method
	The copy Method
	The digest Method

	The Symmetric Class
	Class Prototypes
	The init Method
	The encryptInit Method
	The decryptInit Method
	The update Method
	The final Method

	The Asymmetric Class
	Class Prototypes
	The init Method
	The pemWrite Method
	The publicEncrypt Method
	The publicDecrypt Method
	The privateEncrypt Method
	The privateDecrypt Method
	The sign Method
	The verify Method

