uthash User Guide

uthash User Guide

uthash User Guide

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

1.5

February 2009

TDH

uthash User Guide

i

Contents
1 AhashinC 1
1.1 Whatcanitdo? e 1
1.2 Isitfast? . . . oo e 1
1.3 TIsitalibrary? e e e e e e 1
1.4 C/C++andplatforms e 1
LA Testsuite o o vttt e e e e e 2
1.5 BSDlicensed e 2
1.6 Obtaining uthash L e e e 2
1.7 Getting help o . o e 2
1.8 RESOUICES o v it e e e 2
1.9 Who’susing it? o o e e e e e e e e e e e 2
2 Your structure 2
2.1 Thekey o o e e 2
2.1.1 Uniquekeys oL e 3
2.2 Thehashhandle e 3
3 Add, find, delete, count, sort, iterate 3
3.1 Declarethehash 0 o e 3
32 Additem ... e 3
3.2.1 Key must not be modified whilein-use 4
33 Finditem e e 4
34 Deleteitem e e e 4
3.4.1 uthash never frees your StrUCtUI® v v v v it et e e e e e e e e 4
3.4.2 Delete can change the pointer L e 4
3.5 Deleteallitems e 5
3.6 Countitems v vt i e e e e e e e 5
3.7 Tterating and SOTtING« o v i o e e e e e e e e e e e e e e 5
3.7.1 Sortediteration L. e e e e e e e e 6
3.8 Acompleteexample L e e 6
4 Kinds of keys 9
4.1 Integerkeys e 9
42 String Keys e e e e 9
43 Binary Keys e 10

44 Multi-field keys oL e 10

uthash User Guide

Structures in multiple hash tables

5.1 Alternative keys on the same structure

5.2 Multiplesortorders

Built-in hash functions

A.1 Which hash functionisbest?
A.2 keystats columnreference

A3 ddeal% e e

Expansion internals

B.1 Normalexpansion i
B.1.1 Per-bucket expansion threshold

B.2 [Inhibited expansion

Hooks

C.1 malloc/free e

C.1.1 Why are there two pairs of malloc/free functions?

C.3.1 Expansion notification

C.3.2 Expansion-inhibited notification

Debug mode

Thread safety

Macro reference

F.1 Convenience macroS v v v v v v vt e e e e e e e e e
F2 General macros e e e

F2.1 Argumentdescriptions

12
12
13

13
14
14
15

15
15
16
16

16
16
17
17
17
17
17

18

18

uthash User Guide
1/20

1 AhashinC

This document is written for C programmers. Since you’re reading this, chances are that you know a hash is used for looking up
items using a key. In scripting languages like Perl, hashes are used all the time. In C, hashes don’t exist in the language itself.
This software provides a hash table for C structures.

1.1 What can it do?

This software supports these basic operations on items in a hash table:

1. add
2. find
3. delete
count

iterate

SANE U

sort

1.2 lIs it fast?

Add, find and delete are normally constant-time operations. This is influenced by your key domain and the hash function.

This hash aims to be minimalistic and efficient. It’s around 600 lines of C. It inlines automatically because it’s implemented as
macros. It’s fast as long as the hash function is suited to your keys. You can use the default hash function, or easily compare
performance and choose from among several other built-in hash functions.

1.3 lIsitalibrary?

No, it’s just a single header file: uthash.h. All you need to do is copy the header file into your project, and:
#include "uthash.h"

Since uthash is a header file only, there is no library code to link against.

1.4 C/C++ and platforms

This software can be used in C and C++ programs. It has been tested on:

e Linux

e Mac OS X
* Solaris

* OpenBSD
* Cygwin

* MinGW

uthash User Guide
2/20

1.4.1 Test suite
You can run the test suite on these platforms, or any prospective Unix-like platform, in this way:

cd tests/
make

1.5 BSD licensed

This software is made available under the revised BSD license. It is free and open source.

1.6 Obtaining uthash

Please follow the link to download on the uthash website at http://uthash.sourceforge.net.

1.7 Getting help
Feel free to email the author at thanson @users.sourceforge.net.
1.8 Resources

News
The author has a news feed for software updates (RSS).

1.9 Who’s using it?

Since releasing uthash in 2006, it has been downloaded thousands of times, incorporated into commerical software, academic
research, and into other open-source software.

2 Your structure

In uthash, a hash table is comprised of structures. Each structure represents a key-value association. One or more of the structure
fields constitute the key; the structure itself is the value.

Example 2.1 Defining a structure that can be hashed

#include "uthash.h"

struct my_struct {

int id; /* key =/

char name[10];

UT_hash_handle hh; /* makes this structure hashable x/
bi
2.1 The key

There are no restrictions on the data type or name of the key field. The key can also comprise multiple contiguous fields, having
any names and data types.

Any data type. .. really? Yes, your key and structure can have any data type. Unlike function calls with fixed prototypes,
uthash consists of macros-- whose arguments are untyped-- and thus able to work with any type of structure or key.

file:license.html
http://uthash.sourceforge.net
http://uthash.sourceforge.net
mailto:thanson@users.sourceforge.net
http://troydhanson.wordpress.com/feed/

uthash User Guide
3/20

2.1.1 Unique keys
As with any hash, every item must have a unique key. Your application must enforce key uniqueness. Before you add an item to

the hash table, you must first know (if in doubt, check!) that the key is not already in use. You can check whether a key already
exists in the hash table using HASH_FIND.

2.2 The hash handle

The UT_hash_handle field must be present in your structure. It is used for the internal bookkeeping that makes the hash
work. It does not require initialization. It can be named anything, but you can simplify matters by naming it hh. This allows you
to use the easier "convenience" macros to add, find and delete items.

3 Add, find, delete, count, sort, iterate

This section introduces the uthash macros by example. For a more succinct listing, see Appendix F: Macro Reference.

Convenience vs. general macros: The uthash macros fall into two categories. The convenience macros can be used with
integer or string keys (and require that you chose the conventional name hh for the UT_hash_handle field). The
convenience macros take fewer arguments than the general macros, making their usage a bit simpler for these common
types of keys.

The general macros can be used for any types of keys, or for multi-field keys, or when the UT_hash_handle has been
named something other than hh. These macros take more arguments and offer greater flexibility in return. But if the
convenience macros suit your needs, use them-- your code will be more readable.

3.1 Declare the hash
Your hash must be declared as a NULL-initialized pointer to your structure.

struct my_struct *users = NULL; /+ important! initialize to NULL =/

3.2 Additem

Allocate and initialize your structure as you see fit. The only aspect of this that matters to uthash is that your key must be
initialized to a unique value. Then call HASH_ADD. (Here we use the convenience macro HASH_ADD_INT, which offers
simplified usage for keys of type int).

Example 3.1 Add an item to a hash

int add_user (int user_id, char *name) {
struct my_struct =*s;

s = malloc (sizeof (struct my_struct));

s—->id = user_id;

strcpy (s—>name, name) ;

HASH_ADD_INT(users, id, s); /* id: name of key field =/

The first parameter to HASH_ADD_ INT is the hash table, and the second parameter is the name of the key field. Here, this is id.
The last parameter is a pointer to the structure being added.

Wait.. the field name is a parameter? If you find it strange that id, which is the name of a field in the structure, can be
passed as a parameter, welcome to the world of macros. Don’t worry- the C preprocessor expands this to valid C code.

uthash User Guide
4/20

3.2.1 Key must not be modified while in-use

Once a structure has been added to the hash, do not change the value of its key. Instead, delete the item from the hash, change
the key, and then re-add it.

3.3 Find item

To look up a structure in a hash, you need its key. Then call HASH_F IND. (Here we use the convenience macro HASH_FIND_INT
for keys of type int).

Example 3.2 Find a structure using its key

struct my_struct xfind_user (int user_id) {
struct my_struct =*s;

HASH_FIND_INT(users, &user_id, s); /* s: output pointer =*/
return s;

Here, the hash table is users, and &user_id points to the key (an integer in this case). Last, s is the output variable of
HASH_FIND_INT. The final result is that s points to the structure with the given key, or is NULL if the key wasn’t found in the
hash.

Note
The middle argument is a pointer to the key. You can'’t pass a literal key value to HASH_F IND. Instead assign the literal value
to a variable, and pass a pointer to the variable.

3.4 Delete item

To delete a structure from a hash, you must have a pointer to it. (If you only have the key, first do a HASH_FIND to get the
structure pointer).

Example 3.3 Delete an item from a hash

void delete_user (struct my_struct =xuser) {
HASH_DEL (users, user); /* user: pointer to deletee =/
free (user); /* optional; it’s up to you! =/

Here again, users is the hash table, and user is a pointer to the structure we want to remove from the hash.

3.4.1 uthash never frees your structure

Deleting a structure just removes it from the hash table-- it doesn’t free it. The choice of when to free your structure is entirely
up to you; uthash will never free your structure.

3.4.2 Delete can change the pointer

The hash table pointer (which initially points to the first item added to the hash) can change in response to HASH_DEL (i.e. if
you delete the first item in the hash table).

uthash User Guide
5/20

3.5 Delete all items

To delete all the structures in a hash table, you need to iteratively delete. It’s easy: just keep deleting the first item. If you plan to
free it, copy the pointer beforehand since the delete will advance the "first item" to the next.

Example 3.4 Delete all items from a hash

void delete_all() {
user_struct *current_user;

while (users) {

current_user = users; /* copy pointer to first item */
HASH_DEL (users, current_user) ; /+ delete; users advances to next =*/
free (current_user); /+ optional- if you want to free =/

If you only want to delete all the items, but not free them, you can write this even more concisely as

while (users) HASH_DEL (users,users);

3.6 Countitems

The number of items in the hash table can be obtained using HASH_COUNT:

Example 3.5 Count of items in the hash table

unsigned int num_users;
num_users = HASH_COUNT (users) ;
printf ("there are %u users\n", num_users);

Incidentally, this works even the list (users, here) is NULL, in which case the count is 0.

3.7 lterating and sorting

You can loop over the items in the hash by starting from the beginning and following the hh . next pointer.

Example 3.6 Iterating over all the items in a hash

void print_users() {
struct my_struct =*s;

for (s=users; s != NULL; s=s->hh.next) {
printf ("user id %d: name %$s\n", s->id, s->name);

There is also an hh . prev pointer you could use to iterate backwards through the hash, starting from any known item.

A hash is also a doubly-linked list. Iterating backward and forward through the items in the hash is possible because of the
hh.prev and hh.next fields. All the items in the hash can be reached by repeatedly following these pointers, thus the
hash is also a doubly-linked list.

If you’re using uthash in a C++ program, you need an extra cast on the for iterator, e.g., s= (struct my_struct«)s—hh.next.

uthash User Guide
6/20

3.7.1 Sorted iteration

The items in the hash are, by default, traversed in the order they were added ("insertion order") when you follow the hh.next
pointer. But you can sort the items into a new order using HASH_SORT. E.g.,

HASH_SORT (users, name_sort);

The second argument is a pointer to a comparison function. It must accept two arguments which are pointers to two items to
compare. Its return value should be less than zero, zero, or greater than zero, if the first item sorts before, equal to, or after the
second item, respectively. (Just like st rcmp).

Example 3.7 Sorting the items in the hash

int name_sort (struct my_struct *a, struct my_struct xb) {
return strcmp (a->name,b->name) ;

}

int id_sort (struct my_struct =xa, struct my_struct =*b) {
return (a->id - b->id);

}

void sort_by_name () {
HASH_SORT (users, name_sort);
}

void sort_by_id() {
HASH_SORT (users, id_sort);
}

When the items in the hash are sorted, the first item may change position. In the example above, users may point to a different
structure after calling HASH_ SORT.

3.8 A complete example

We’ll repeat all the code and embellish it with amain () function to form a working example.

If this code was placed in a file called example. c in the same directory as uthash. h, it could be compiled and run like this:

cc -0 example example.c
./example

Follow the prompts to try the program, and type Ct r1-C when done.

uthash User Guide
7/20

Example 3.8 A complete program (part 1 of 2)

#include <stdio.h> /* gets x/
#include <stdlib.h> /% atoi, malloc =/
#include <string.h> /% strcpy =*/
#include "uthash.h"

struct my_struct {

int 1id; /* key */
char name[10];
UT_hash_handle hh; /+* makes this structure hashable x/

bi
struct my_struct xusers = NULL;

int add_user (int user_id, char xname) {
struct my_struct =*s;

s = malloc(sizeof (struct my_struct));

s—>id = user_id;

strcpy (s—>name, name) ;

HASH_ADD_INT(users, id, s); /* id: name of key field =/

struct my_struct xfind_user (int user_id) {
struct my_struct =*s;
HASH_FIND_INT(users, &user_id, s); /x s: output pointer =/

return s;

void delete_user (struct my_struct xuser) {
HASH_DEL (users, user); /* user: pointer to deletee =/
free (user);

void delete_all() {
struct my_struct *current_user;

while (users) {

current_user = users; /+ grab pointer to first item x/
HASH_DEL (users, current_user) ; /* delete it (users advances to next) =*/
free (current_user) ; /+ free it =/
}
}
void print_users () {

struct my_struct =*s;

for (s=users; s != NULL; s=s->hh.next) {
printf ("user id %d: name %s\n", s->id, s->name);

int name_sort (struct my_struct xa, struct my_struct *b) {
return strcmp (a->name, b->name) ;

int id_sort (struct my_struct =xa, struct my_struct =*b) {
return (a->id - b->id);

uthash User Guide

8/20

Example 3.9 A complete program (part 2 of 2)

void sort_by_name () {
HASH_SORT (users, name_sort);

void sort_by_id() {
HASH_SORT (users, id_sort);

int main(int argc, char =*argv[]) {
char in[10];
int id=1;
struct my_struct =*s;
unsigned num_users;

while (1) {
printf ("1. add user\n");
printf("2. find user\n");
printf ("3. delete user\n");
printf ("4. delete all users\n");
printf ("5. sort items by name\n");
printf ("6. sort items by id\n");
printf ("7. print users\n");

printf ("8. count users\n");
gets (in) ;
switch (atoi (in)) {
case 1:
printf ("name?\n");
add_user (id++, gets(in));

break;
case 2:
printf ("id?\n");
s = find_user (atoi(gets(in)));
printf ("user: %$s\n", s ? s—>name
break;
case 3:
printf ("id?\n");
s = find_user (atoi (gets(in)));

if (s) delete_user(s);
else printf ("id unknown\n");
break;
case 4:
delete_all();
break;
case 5:
sort_by_name () ;
break;
case 6:
sort_by_id();
break;
case 7:
print_users|();
break;
case 8:
num_users=HASH_COUNT (users) ;

"unknown") ;

printf ("there are %u users\n", num_users);

break;

uthash User Guide
9/20

This program is included in the distribution in tests/example.c. You canrunmake example in thatdirectory to compile
it easily.

4 Kinds of keys

4.1 Integer keys

The preceding examples demonstrated use of integer keys. To recap, use the convenience macros HASH_ADD_INT and HASH_FIND_ I1
for structures with integer keys. (The other operations such as HASH_DELETE and HASH_ SORT are the same for all types of
keys).

4.2 String keys

String keys are handled almost the same as integer keys. The convenience macros for dealing with string keys are called
HASH_ADD_STR and HASH_FIND_STR

char[] vs. char*
The string is within the structure in the next example-- name is a char [10] field. If instead our structure merely pointed to
the key (i.e., name was declared char), we'd use HASH_ADD_KEYPTR, described in Appendix F.

Example 4.1 A string-keyed hash

#include <string.h> /% strcpy =*/
#include <stdlib.h> /% malloc x/
#include <stdio.h> /* printf */
#include "uthash.h"

struct my_struct {

char name[10]; /* key */

int id;

UT_hash_handle hh; /+* makes this structure hashable x/
bi
int main(int argc, char xargv[]) {

char xxn, *names[] = { "joe", "bob", "betty", NULL };

struct my_struct *s, *users = NULL;

int 1i=0;

for (n = names; *n != NULL; n++) {

s = malloc(sizeof (struct my_struct));

strcpy (s—>name, =*n);
s=>id = it
HASH_ADD_STR(users, name, s);

HASH_FIND_STR(users, "betty", s);
if (s) printf ("betty’s id is %d\n", s->id);

This example is included in the distribution in tests/test15. c. It prints:

betty’s id is 2

uthash User Guide
10/20

4.3 Binary keys

We’re using the term "binary" here to simply mean an arbitrary byte sequence. Your key field can have any data type. To uthash,
it is just a sequence of bytes. We’ll use the general macros HASH_ADD and HASH_F IND to demonstrate usage of a floating point
key of type double.

Example 4.2 A key of type double

#include <stdlib.h>
#include <stdio.h>
#include "uthash.h"

typedef struct {
double veloc;
/* ... other data ... x/
UT_hash_handle hh;

} veloc_t;

int main(int argc, char =*argv[]) {
veloc_t #*v, *v2, =*veloc_table = NULL;
double x = 1/3.0;

v = malloc(sizeof (*v));

v->veloc = x;

HASH_ADD (hh, veloc_table, veloc, sizeof (double), v);
HASH_FIND (hh, veloc_table, &x, sizeof (double), v2);

if (v2) printf ("found (%.2f)\n", v2->veloc);

Note that the general macros require the name of the UT_hash_handle to be passed as the first argument (here, this is hh).
The general macros are documented in Appendix F: Macro Reference.

4.4 Multi-field keys

Your key can even comprise multiple contiguous fields.

uthash User Guide
11/20

Example 4.3 A multi-field key

#include <stdlib.h> /* malloc */
#include <stddef.h> /+ offsetof */
#include <stdio.h> /* printf */
#include <string.h> /* memset %/

#include "uthash.h"

#define UTF32 1

typedef struct {
UT_hash_handle hh;

int len;

char encoding; /* these two fields x/

int text[]; /* comprise the key */
} msg_t;

int main(int argc, char xargv[]) {
int keylen;
msg_t *msg, *msgs = NULL;
struct { char encoding; int text[]; } *lookup_key;

int beijing[] = {0x5317, Ox4eac}; /+* UTF-32LE for 北� =/

/x allocate and initialize our structure x/

msg = malloc(sizeof (msg_t) + sizeof (beijing));
memset (msg, 0, sizeof (msg_t)+sizeof (beijing)); /* zero fill x/
msg->len = sizeof (beijing);

msg—>encoding = UTF32;
memcpy (msg->text, beijing, sizeof (beijing));

/+ calculate the key length including padding, using formula =*/

keylen = offsetof (msg_t, text) /+ offset of last key field »*/
+ sizeof (beijing) /* size of last key field */
- offsetof (msg_t, encoding); /* offset of first key field =/

/* add our structure to the hash table x/
HASH_ADD(hh, msgs, encoding, keylen, msqg);

/* look it up to prove that it worked :-) =*/
msg=NULL;

lookup_key = malloc (sizeof (xlookup_key) + sizeof (beijing));
memset (lookup_key, 0, sizeof (xlookup_key) + sizeof (beijing));
lookup_key->encoding = UTF32;

memcpy (lookup_key—->text, beijing, sizeof (beijing));
HASH_FIND(hh, msgs, &lookup_key->encoding, keylen, msg);

if (msg) printf ("found \n");

free (lookup_key) ;

This example is included in the distribution in tests/test22.c.

If you use multi-field keys, recognize that the compiler pads adjacent fields (by inserting unused space between them) in order
to fulfill the alignment requirement of each field. For example a structure containing a char followed by an int will normally
have 3 "wasted" bytes of padding after the char, in order to make the int field start on a multiple-of-4 address (4 is the length of
the int).

uthash User Guide
12/20

Calculating the length of a multi-field key: To determine the key length when using a multi-field key, you must include
any intervening structure padding the compiler adds for alignment purposes.

An easy way to calculate the key length is to use the of f set of macro from <stddef . h>. The formula is:

key length = offsetof (last_key_field)
+ sizeof (last_key_field)
— offsetof (first_key_field)

In the example above, the keylen variable is set using this formula.

When dealing with a multi-field key, you must zero-fill your structure before HASH_ADD’ing it to a hash table, or using its fields
in a HASH_F IND key.

In the previous example, memset is used to initialize the structure by zero-filling it. This zeroes out any padding between the
key fields. If we didn’t zero-fill the structure, this padding would contain random values. The random values would lead to
HASH_FIND failures; as two "identical" keys will appear to mismatch if there are any differences within their padding.

5 Structures in multiple hash tables

A structure can be added to multiple hash tables. A few reasons you might do this include:

* each hash table may use an alternative key;
* each hash table may have its own sort order;

* or you might simply use multiple hash tables for grouping purposes. E.g., you could have users in an admin_users and a
users hash table.

Your structure needs to have a UT_hash_handle field for each hash table to which it might be added. You can name them
anything. E.g.,

UT_hash_handle hhl, hh2;

5.1 Alternative keys on the same structure

You might create a hash table keyed on an ID field, and another hash table keyed on username (if they are unique). You can add
the same user structure to both hash tables, then look up a user by either their unique ID or username.

Example 5.1 A structure with two alternative keys

struct my_struct {

int id; /* key 1 */
char username[10]; /*x key 2 x/
UT_hash_handle hhl,hh2; /* makes this structure hashable */

}i

In the example above, the structure can now be added to two separate hash tables. In one hash, id is its key, while in the other
hash, username is its key. (There is no requirement that the two hashes have different key fields. They could both use the same
key, such as id).

Notice the structure has two hash handles (hh1 and hh2). In the code below, notice that each hash handle is used exclusively with
a particular hash table. (hh1 is always used with the users_by_ id hash, while hh2 is always used with the users_by_name
hash table).

uthash User Guide
13/20

Example 5.2 Two keys on a structure

struct my_struct *users_by_id = NULL, =*users_by_name = NULL, xs;
int 1i;

char xname;

s = malloc (sizeof (struct my_struct));

s—>id = 1;
strcpy (s—>username, "thanson");

/+ add the structure to both hash tables x/
HASH_ADD (hhl, users_by_id, id, sizeof (int), s);

HASH_ADD (hh2, users_pby_name, username, strlen(s—->username), s);

/+ lookup user by ID in the "users_by_id" hash table */

i=1;
HASH_FIND (hhl, users_by_id, &i, sizeof (int), s);
if (s) printf ("found id %d: %s\n", i, s->username);

/+ lookup user by username in the "users_by_name" hash table «*/
name = "thanson";

HASH_FIND (hh2, users_by_name, name, strlen (name), s);

if (s) printf ("found user %s: %d\n", name, s->id);

5.2 Multiple sort orders

Extending the previous example, suppose we have many users in our users_by_id and our users_by_name hash, and that
we want to sort each hash so that we can print the keys in order. We’d define two sort functions, then use HASH_SRT:

int sort_by_id(struct my_struct =a, struct my_struct xb) {
if (a->id == b->id) return 0;
return (a->id < b->id) ? -1 : 1;

int sort_by_name (struct my_struct =*a, struct my_struct xb) {
return strcmp (a->username,b->username) ;

HASH_SRT (hhl, users_by_id, sort_by_id);
HASH_SRT (hh2, users_by_name, sort_by_name);

/* now iterate over users_by_id and users_by_name in sorted order =/

A Built-in hash functions

Internally, a hash function transforms a key into a bucket number. You don’t have to take any action to use the default hash
function, Jenkin’s hash.

Some programs may benefit from using another of the built-in hash functions. There is a simple analysis utility included with
uthash to help you determine if another hash function will give you better performance.

You can use a different hash function by compiling your program with ~-DHASH_FUNCTION=HASH_xyz where xyz is one of
the symbolic names listed below. E.g.,

cc —-DHASH_FUNCTION=HASH_BER -0 program program.cC

uthash User Guide
14 /20

Table 1: Built-in hash functions

Symbol Name

JEN Jenkins (default)
BER Bernstein

SAX Shift-Add-Xor
OAT One-at-a-time

FNV Fowler/Noll/Vo

A.1 Which hash function is best?

You can easily determine the best hash function for your key domain. To do so, you’ll need to run your program once in a
data-collection pass, and then run the collected data through an included analysis utility.

First you must build the analysis utility. From the top-level directory,

cd tests/
make

We’ll use test14. c to demonstrate the data-collection and analysis steps (here using sh syntax to redirect file descriptor 3 to
a file):

Example A.1 Using keystats

o\

cc —-DHASH_EMIT_KEYS=3 -I../src —-o testld4 testld.c
./testld 3>testld.keys

o\

% ./keystats testld.keys

fcn ideal% #items #buckets dups fl add_usec find_usec del-all usec
FNV 90.3% 1219 512 0% ok 244 136 44
SAX 88.7% 1219 512 0% ok 201 145 46
OAT 87.2% 1219 256 0% ok 166 214 40
JEN 86.7% 1219 256 0% ok 266 221 40
BER 86.2% 1219 256 0% ok 171 155 45

Note

The value 3 in ~-DHASH_EMIT_KEYS=3 is a file descriptor. Any file descriptor that your program doesn’t use for its own
purposes can be used instead of 3. The data-collection mode enabled by ~-DHASH_EMIT_KEYS=x should not be used in
production code.

Usually, you should just pick the first hash function that is listed. Here, this is FNV. This is the function that provides the most
even distribution for your keys. If several have the same ideal$, then choose the fastest one according to the find_usec
column.

A.2 keystats column reference

fen
symbolic name of hash function

ideal %
The percentage of items in the hash table which can be looked up within an ideal number of steps. (Further explained
below).

uthash User Guide
15/20

#items
the number of keys that were read in from the emitted key file

#buckets
the number of buckets in the hash after all the keys were added

dup %
the percent of duplicate keys encountered in the emitted key file. Duplicates keys are filtered out to maintain key unique-
ness. (Duplicates are normal. For example, if the application adds an item to a hash, deletes it, then re-adds it, the key is
written twice to the emitted file.)

flags
this is either ok, or nx (noexpand) if the expansion inhibited flag is set, described in Appendix B. It is not recommended
to use a hash function that has the noexpand flag set.

add_usec
the clock time in microseconds required to add all the keys to a hash

find_usec
the clock time in microseconds required to look up every key in the hash

del-all usec
the clock time in microseconds required to delete every item in the hash

A.3 ideal%

What is ideal%? The n items in a hash are distributed into & buckets. Ideally each bucket would contain an equal share
(n/k) of the items. In other words, the maximum linear position of any item in a bucket chain would be n/k if every bucket
is equally used. If some buckets are overused and others are underused, the overused buckets will contain items whose
linear position surpasses n/k. Such items are considered non-ideal.

As you might guess, ideal% is the percentage of ideal items in the hash. These items have favorable linear positions in
their bucket chains. As ideal% approaches 100%, the hash table approaches constant-time lookup performance.

B Expansion internals

Internally this hash manages the number of buckets, with the goal of having enough buckets so that each one contains only a
small number of items.

Why does the number of buckets matter? When looking up an item by its key, this hash scans linearly through the items
in the appropriate bucket. In order for the linear scan to run in constant time, the number of items in each bucket must be
bounded. This is accomplished by increasing the number of buckets as needed.

B.1 Normal expansion

This hash attempts to keep fewer than 10 items in each bucket. When an item is added that would cause a bucket to exceed this
number, the number of buckets in the hash is doubled and the items are redistributed into the new buckets. In an ideal world,
each bucket will then contain half as many items as it did before.

Bucket expansion occurs automatically and invisibly as needed. There is no need for the application to know when it occurs.

uthash User Guide
16/ 20

B.1.1 Per-bucket expansion threshold

Normally all buckets share the same threshold (10 items) at which point bucket expansion is triggered. During the process
of bucket expansion, uthash can adjust this expansion-trigger threshold on a per-bucket basis if it sees that certain buckets are
over-utilized.

When this threshold is adjusted, it goes from 10 to a multiple of 10 (for that particular bucket). The multiple is based on how
many times greater the actual chain length is than the ideal length. It is a practical measure to reduce excess bucket expansion in
the case where a hash function over-utilizes a few buckets but has good overall distribution. However, if the overall distribution
gets too bad, uthash changes tactics.

B.2 Inhibited expansion

You usually don’t need to know or worry about this, particularly if you used the keystat s utility during development to select
a good hash for your keys.

A hash function may yield an uneven distribution of items across the buckets. In moderation this is not a problem. Normal bucket
expansion takes place as the chain lengths grow. But when significant imbalance occurs (because the hash function is not well
suited to the key domain), bucket expansion may be ineffective at reducing the chain lengths.

Imagine a very bad hash function which always puts every item in bucket 0. No matter how many times the number of buckets
is doubled, the chain length of bucket 0 stays the same. In a situation like this, the best behavior is to stop expanding, and accept
O(n) lookup performance. This is what uthash does. It degrades gracefully if the hash function is ill-suited to the keys.

If two consecutive bucket expansions yield ideal% values below 50%, uthash inhibits expansion for that hash table. Once
set, the bucket expansion inhibited flag remains in effect as long as the hash has items in it. Inhibited expansion may cause
HASH_FIND to exhibit worse than constant-time performance.

C Hooks

You don’t need to use these hooks- they are only here if you want to modify the behavior of uthash. Hooks can be used to change
how uthash allocates memory, and to run code in response to certain internal events.

C.1 malloc/free

By default this hash implementation uses malloc and free to manage memory. If your application uses its own custom
allocator, this hash can use them too.

Example C.1 Specifying alternate memory management functions

#include "uthash.h"

/* undefine the defaults =*/
#undef uthash_bkt_malloc
#undef uthash_bkt_free
#undef uthash_tbl malloc
#fundef uthash_tbl_free

/+ re-define, specifying alternate functions */

#define uthash_bkt_malloc(sz) my_malloc(sz) /* for UT_hash_bucket x/
#define uthash_bkt_free (ptr) my_free (ptr)

#define uthash_tbl_malloc(sz) my_malloc(sz) /* for UT_hash_table =/
#define uthash_tbl_free (ptr) my_free (ptr)

uthash User Guide
17 /20

C.1.1 Why are there two pairs of malloc/free functions?
One deals with UT_hash_bucket structures, the other with UT_hash_table structures. While the two structures don’t
need to have their own allocation and free functions (indeed, the default is just to use malloc and free for both), they exist

separately for each structure for convenient integration with pool or "slab" type allocators. This type of allocator provides a
separate pool for each structure.

C.2 Out of memory

If memory allocation fails (i.e., the malloc function returned NULL), the default behavior is to terminate the process by calling
exit (—1). This can be modified by re-defining the uthash_fatal macro.

#fundef uthash_fatal
#define uthash_fatal (msg) my_fatal_function (msqg);

The fatal function should terminate the process; uthash does not support "returning a failure" if memory cannot be allocated.

C.3 Internal events

There is no need for the application to set these hooks or take action in response to these events. They are mainly for diagnostic
purposes.

These two hooks are "notification” hooks which get executed if uthash is expanding buckets, or setting the bucket expansion
inhibited flag. Normally both of these hooks are undefined and thus compile away to nothing.

C.3.1 Expansion notification

There is a hook for the bucket expansion event.

Example C.2 Bucket expansion hook

#include "uthash.h"

#undef uthash_expand_fyi
#define uthash_expand_fyi (tbl) printf ("expanded to %d buckets\n", tbl->num_buckets)

C.3.2 Expansion-inhibited notification

This hook can be defined to code to execute in the event that uthash decides to set the bucket expansion inhibited flag.

Example C.3 Bucket expansion inhibited hook

#include "uthash.h"

#undef uthash_noexpand_fyi
#define uthash_noexpand_fyi printf ("warning: bucket expansion inhibited\n");

uthash User Guide
18/20

D Debug mode

If a program that uses this hash is compiled with ~-DHASH_DEBUG=1, a special internal consistency-checking mode is activated.
In this mode, the integrity of the whole hash is checked following every add or delete operation. This is for debugging the uthash
software only, not for use in production code.

In the tests/ directory, running make debug will run all the tests in this mode.
In this mode, any internal errors in the hash data structure will cause a message to be printed to st derr and the program to exit.

The UT_hash_handle data structure includes next, prev, hh_next and hh_prev fields. The former two fields determine
the "application" ordering (that is, insertion order-- the order the items were added). The latter two fields determine the "bucket
chain" order. These link the UT_hash_handles together in a doubly-linked list that is a bucket chain.

Checks performed in ~-DHASH_DEBUG=1 mode:

* the hash is walked in its entirety twice: once in bucket order and a second time in application order
* the total number of items encountered in both walks is checked against the stored number
* during the walk in bucket order, each item’s hh_prev pointer is compared for equality with the last visited item

* during the walk in application order, each item’s prev pointer is compared for equality with the last visited item

Macro debugging: Sometimes it’s difficult to interpret a compiler warning when all it has is a warning and a line number
containing a macro call. In the case of uthash, the macro can expand to dozens of lines. In this case, it is helpful to expand
the macros to get a more precise idea of the line number where the error occurs.

gcc -E -I../src testl.c > /tmp/a.c
egrep -v "4’ /tmp/a.c > /tmp/b.c
indent /tmp/b.c

gcc -o /tmp/b /tmp/b.c

The last line compiles the original program (testl.c) with all macros expanded. So any compiler error or warning will have
a line number that can be used to pinpoint the offending line precisely within the expanded macro call.

E Thread safety

You can use uthash in a threaded program. But you must do the locking. Use a read-write lock to protect against concurrent
writes. It is ok to have concurrent readers (since uthash 1.5).

For example using pthreads you can create an rwlock like this:

pthread_rwlock_t lock;
if (pthread_rwlock_init (&lock,NULL) != 0) fatal ("can’t create rwlock");

Then, readers must acquire the read lock before doing any HASH_FIND calls or before iterating over the hash elements:

if (pthread_rwlock_rdlock (&lock) != 0) fatal("can’t get rdlock");
HASH FIND_ INT (elts, &i, e);
pthread_rwlock_unlock (&lock);

Writers must acquire the exclusive write lock before doing any update. Add, delete, and sort are all updates that must be locked.

uthash User Guide
19/20

if (pthread_rwlock_wrlock (&lock) != 0) fatal("can’t get wrlock");
HASH_DEL (elts, e);
pthread_rwlock_unlock (&lock);

If you prefer, you can use a mutex instead of a read-write lock, but this will reduce reader concurrency to a single thread at a
time.

An example program using uthash with a read-write lock is included in tests/threads/testl.c.

F Macro reference

F.1 Convenience macros

The convenience macros do the same thing as the generalized macros, but require fewer arguments.

In order to use the convenience macros,

1. the structure’s UT_hash_handle field must be named hh, and

2. for add or find, the key field must be of type int or char []

Table 2: Convenience macros

macro arguments

HASH_ADD_INT (head, keyfield_name, item_ptr)
HASH_FIND_INT (head, key_ptr, item ptr)
HASH_ADD_STR (head, keyfield_name, item_ptr)
HASH_FIND_STR (head, key_ptr, item_ptr)
HASH_DEL (head, item_ptr)

HASH_SORT (head, cmp)

HASH_COUNT (

F.2 General macros

These macros add, find, delete and sort the items in a hash. You need to use the general macros if your UT_hash_handle is
named something other than hh, or if your key’s data type isn’t int or char[].

Table 3: General macros

macro arguments
HASH_ADD th_name, head, keyfield_name, key_len,
item_ptr)

HASH_ADD_KEYPTR (hh_name, head, key_ptr, key_len, item_ptr)
HASH_FIND (hh_name, head, key_ptr, key_len, item ptr)
HASH_DELETE (hh_name, head, item_ptr)

HASH_SRT (hh_name, head, cmp)

HASH_CNT (hh_name, head)

uthash User Guide

20/20
Note
HASH_ADD_KEYPTR is used when the structure contains a pointer to the key, rather than the key itself.
F.2.1 Argument descriptions
hh_name
name of the UT_hash_handle field in the structure. Conventionally called hh.
head
the structure pointer variable which acts as the "head" of the hash. So named because it initially points to the first item that
is added to the hash.

keyfield_name
the name of the key field in the structure. (In the case of a multi-field key, this is the first field of the key). If you’re new to
macros, it might seem strange to pass the name of a field as a parameter. See note.

key_len
the length of the key field in bytes. E.g. for an integer key, thisis sizeof (int), while for astringkeyit’s strlen (key).
(For a multi-field key, see the notes in this guide on calculating key length).

key_ptr
for HASH_FIND, this is a pointer to the key to look up in the hash (since it’s a pointer, you can’t directly pass a literal
value here). For HASH_ADD_KEYPTR, this is the address of the key of the item being added.

item_ptr
pointer to the structure being added, deleted or looked up. This is an input parameter for HASH_ADD and HASH_DELETE
macros, and an output parameter for HASH_FIND.

cmp
pointer to comparison function which accepts two arguments (pointers to items to compare) and returns an int specifying
whether the first item should sort before, equal to, or after the second item (like st rcmp).

	A hash in C
	What can it do?
	Is it fast?
	Is it a library?
	C/C++ and platforms
	Test suite

	BSD licensed
	Obtaining uthash
	Getting help
	Resources
	Who's using it?

	Your structure
	The key
	Unique keys

	The hash handle

	Add, find, delete, count, sort, iterate
	Declare the hash
	Add item
	Key must not be modified while in-use

	Find item
	Delete item
	uthash never frees your structure
	Delete can change the pointer

	Delete all items
	Count items
	Iterating and sorting
	Sorted iteration

	A complete example

	Kinds of keys
	Integer keys
	String keys
	Binary keys
	Multi-field keys

	Structures in multiple hash tables
	Alternative keys on the same structure
	Multiple sort orders

	Built-in hash functions
	Which hash function is best?
	keystats column reference
	ideal%

	Expansion internals
	Normal expansion
	Per-bucket expansion threshold

	Inhibited expansion

	Hooks
	malloc/free
	Why are there two pairs of malloc/free functions?

	Out of memory
	Internal events
	Expansion notification
	Expansion-inhibited notification

	Debug mode
	Thread safety
	Macro reference
	Convenience macros
	General macros
	Argument descriptions

