
The bigfoot package

version 2.0

David Kastrup∗

2014/10/23

Purpose of this package is to provide a one-stop solution to almost all problems
related to footnotes. You can use it as a drop-in replacement of the manyfoot

package, but without many of its shortcomings, and quite a few features of its
own. It uses the existing document class layouts for footnotes, so you can usually
use it without having to worry about the looks.

Features are:

• You can specify and use multiple footnote apparatus. Footnotes for an ap-
paratus lower on the pagea can be anchored in an apparatus1 that is higher
on the page.

• The last footnote in each apparatus may be broken to the next page.2 Any
subordinate footnote anchors that get moved to the next page will take the
corresponding footnote with them.

• The order of footnotes in an apparatus is ‘natural’: it starts with any foot-
note that may have been broken from the next page, followed by footnotes
from the current page in the order of the appearance of their footnote marks.b

Where the order of appearance in the document differs from the order in the
source code, you will usually want to use the \MakeSorted command from
the perpage package to get the numbering fixed appropriately.

∗dak@gnu.org 1The plural of “apparatus” is actually “apparatus”c
2This will probably be interesting for footnotes that contain stuff like math equationsd or

listse.

alike this one bThis footnote appears above notes on notes.
cWell, actually “apparatūs” with a long “u”, but that’s just obvious in spoken Latin.
dLike

∞∑
k=1

1

k2
=
π2

6
(1)

eLike

• This, or

• this.

1

• Footnotes can be formatted in separate paragraphs, or be run into a single
paragraph. The choice is made per footnote apparatus, but can be overrid-
den for single footnotes.3

• If footnotes are run into one paragraph, a variety of criteria makes sure that
this formatting is only chosen when it saves noticeable space and delivers
visually attractive results.

• Parameters for footnote formatting can be specified globally, or separately
for each footnote.

• The material in footnotes can contain \verb-like material without prob-
lems.4

• You can use color in footnotes. If a footnote gets broken across pages, the
color at the point of the break will get resumed on the next page. Actually,
the whole color stack will get reinstated.

As an example of how simple the usage can be, here is the documentation driver
for this document:

1 〈∗driver〉
2 \documentclass{ltxdoc}

3 \usepackage{bigfoot}

4 \usepackage{tabularx}

5 \usepackage{hyperref}

After loading the packages, we declare two footnote blocks. One is the default
footnote block, another block is called B and is numbered with letters. The letters
start new on each page. Both footnote blocks default to in-paragraph footnotes.
Since the block B can get entries from both the main text as well as the default
footnote block, the entries are not necessarily generated in page order. So we need
to use a sorted counter to fix this (feel free to try what happens when using an
unsorted counter).

6 \DeclareNewFootnote[para]{default}

7 \DeclareNewFootnote[para]{B}[alph]

8 \MakeSortedPerPage{footnoteB}

In addition, we add an alternate footnote sequence that can be interspersed with
the normal footnotes by use of the \footnote’ command which we effectively
define here.

9 \newcounter{footalt}

10 \def\thefootalt{\fnsymbol{footalt}}

11 \MakeSortedPerPage[2]{footalt}

12 \WithSuffix\def\footnotedefault’{\refstepcounter{footalt}%

13 \Footnotedefault{\thefootalt}}

3I.e., footnotes with display matha or list environmentsb have to be done in vertical mode.
4We wrote |\verb|-like above in the main text.c

aWe had this already, right? bAnd this looks familiar, too.
cWell, this is not so impressive. But we wrote \verb+|\verb|-like+ in the footnote then.

2

Actually, that already was all. We can now start the document. The following
makes sure that we get the full documentation only by compiling the separate
driver file:

14 \begin{document}

15 \OnlyDescription

16 〈driver〉 \AlsoImplementation

17 \DocInput{bigfoot.dtx}

18 \end{document}

19 〈/driver〉
In order to be useful without additional hassle, the normal footnote level will be
called default. If no such style has been defined at the start of the document,
it will get defined and used for ordinary footnotes, fixing quite a few problems of
LATEX’s own footnote placement algorithms.

Apart from that, usage is very much like that of manyfoot, so for the cus-
tomization possibilities of bigfoot with regards to multiple footnote blocks and
rules between them, refer to manyfoot’s documentation.

bigfoot contains a lot of bells and whistles for defining your footnote formats
and can use different formats for different footnote blocks. Those expert options
are not documented separately yet: look through the code sections to see them
explained.

1 The implementation

1.1 Startup code

We declare the package and several compatibility options supposed to make
bigfoot a drop-in replacement for manyfoot.

20 〈∗style〉
21 \NeedsTeXFormat{LaTeX2e}

22 \ProvidesPackage{bigfoot}[2014/10/23 2.0 makes footnotes work]

23

24 \DeclareOption{para}{\PackageInfo{bigfoot}{Compatibility option ‘para’

25 has no effect:^^J%

26 Spacing will be guessed from ‘\string\@makefntext’ unless^^J%

27 ‘\string\@preparefnhtext’ is redefined}}

28

29 \DeclareOption{para*}{\PackageInfo{bigfoot}{Compatibility option

30 ‘para*’:^^J%

31 Redefining ‘\string\@preparefnhtext’}%

32 \def\@preparefnhtext{\ifx\@thefnmark\@empty

33 \else\@makefnmark\nobreak\fi}}

34

35 \DeclareOption{ruled}{\PassOptionsToPackage{ruled}{manyfoot}}

The normal processing makes footnote text macros allow verbatim and similar. We
call this robust processing though it is not totally accurate. This is the default.
There is also an option fragile which will not allow this, but may be required

3

for some definitions of \@makefntext. It turns out that most document classes
work with the ‘robust’ option, but there might be some that fail, and there might
be some footnote-modifying packages that also can cause failure.

36 \DeclareOption{robust}{\def\FN@makefncall{\FN@makefnrobust}}

37 \DeclareOption{fragile}{\def\FN@makefncall{\FN@makefnfragile}}

38 \ExecuteOptions{robust}

The verbose option talks about changed labels at the end of a run. It is for
debugging instable configurations that fail to converge after a number of TEX
runs. The output is probably obscure.

39 \DeclareOption{verbose}{\AtBeginDocument{%

40 \def\@testdef #1#2#3{%

41 \def\reserved@a{#3}%

42 \expandafter \ifx \csname #1@#2\endcsname

43 \reserved@a

44 \else \@tempswatrue

45 \typeout{Changed label #1/#2:

46 \csname #1@#2\endcsname->#3}%

47 \fi}}}

The trace option is only available if you used docstrip while explicitly requesting
trace functionality. If you set the trace option, the next option specifies a bit
map of trace bits.

The following bits can be set in tracing:

1 break decisions
2 horizontal box building
4 allocation stuff
8 output routine stuff

16 retained and kept boxes

48 〈trace〉\DeclareOption{trace}{%
49 〈trace〉\DeclareOption*{\ftflags=\CurrentOption\relax
50 〈trace〉 \DeclareOption*{\OptionNotUsed}}%

51 〈trace〉 \AtEndOfPackage{\RequirePackage{trace}\relax

52 〈trace〉 \errorcontextlines\maxdimen

53 〈trace〉 \showboxdepth4

54 〈trace〉 \showboxbreadth100

55 〈trace〉 \tracingonline=\@ne}%

56 〈trace〉}
The tracepage option is followed by another option specifying the page to be
traced. If you use it, tracing happens only on the specified page. Only a single
page can be specified.

57 〈trace〉\def\FN@tracepage{\c@page}
58 〈trace〉\DeclareOption{tracepage}{%
59 〈trace〉 \DeclareOption*{\edef\FN@tracepage{\CurrentOption}%

60 〈trace〉 \DeclareOption*{\OptionNotUsed}}}

61 〈trace〉\newcount\ftflags
62 〈trace〉\def\foottrace#1{\ifnum\numexpr(\ftflags+(#1))/(2*#1)*(2*#1)%
63 〈trace〉 =\numexpr(\ftflags+3*#1/2)/#1*#1\relax

64 〈trace〉 f\else t\fi\ifnum\FN@tracepage=\c@page t\else n\fi}

65 \ProcessOptions*

4

hyperref’s footnote support will just cause trouble. So if hyperref was already
loaded or is going to be loaded, we turn off its footnote support. If you think you
know what you are doing, you can use \hypersetup to turn it on again before the
start of the document. Unfortunately, it appears like \hypersetup refuses to be
called more than once, so this actually does not work unless you load hyperref

last.

66 \ifx\hypersetup\@undefined

67 \PassOptionsToPackage{hyperfootnotes=false}{hyperref}

68 \else

69 \hypersetup{hyperfootnotes=false}

70 \fi

We require the etex package because

1. We need the facilities of the ε-TEX engine; and where they are not available,
the error messages from not finding the etex package or from loading it into
the wrong engine make much more sense than what would happen otherwise.

2. We allocate quite a few registers, and the danger of running out of them is
smaller when the extra registers of ε-TEX are taken into account.

We need the manyfoot package to build on. The suffix and perpage package
are needed for some small stuff.

71 \RequirePackage{etex}

72 \RequirePackage{manyfoot}

73 \RequirePackage{suffix}

74 \RequirePackage{perpage}

1.2 Fixes to the manyfoot package

While those fixes have been submitted once to the author of manyfoot, they have
not made it into its distribution at the current point of time. In the interest of
stability, it would probably be best just to incorporate the parts from manyfoot

that get used by bigfoot. This has not yet been done.

\MFL@reinsout We need the appropriate splitting parameters set for the footnote again. \MFL@realinsert
does that, but it has the disadvantage that it uses \strutbox, and that may be set
to arbitrary values at the time the output routine is invoked. manyfoot already
has this problem with minipages: the split sizes will be those of the font at the
end of the minipage instead of those at the time the footnote body was set up. So
we do this here, and see later for more info about how to do this right:

75 \def\MFL@reinsout#1#2{\ifvoid#2\else

76 \ifnum\count\@currbox>\z@

77 \advance\@pageht \ht#2%

78 \advance\@pageht \skip#2%

79 \advance\@pageht \dp#2%

80 \fi

81 \MFL@realinsert{#2}{\unvbox#2}%

82 \fi

83 }

5

\MFL@reins Actually, I don’t get the purpose of the following line in the first place. But if
we do need it for some reason, it is rather certain that we don’t want this empty
insert to float. Use \MFL@realinsert, or set the floatingpenalty the hard way.

84 \def\MFL@reins#1#2{\ifvoid#2\else\insert#2{\floatingpenalty\@MM}\fi}

\MFL@mpinsert

\MFL@minipage

The structure of the \MFL@mpinsert box is overly complicated, and it is a bad
idea to unpack the boxes put into it too early: the \lastbox command is pretty
inefficient when the list before it is long due to unpacking. So we just leave
everything packed in its own boxes, and unpack only at the moment when we are
reinserting.

85 \long\def\MFL@mpinsert#1#2{%

86 \global\setbox#1\vbox{%

87 \unvbox#1%

88 \nointerlineskip

89 \vbox{#2}%

90 }%

91 }

92

93 \def\FN@divert{%

94 \let\MFL@mpinsertsave\MFL@insert

95 \MFL@reinsert \let\MFL@insert\MFL@mpinsert}

96 \def\FN@enddivert{{\let\@elt\MFL@mpreinsert \MFL@list}}

97

98 \def\MFL@minipage{\ifinner\else \FN@divert\fi}

99 \def\MFL@endminipage{\ifinner\else \FN@enddivert\fi}

\MFL@mpreinsert When reinserting, we put all but the last insertion into one humongous blob. This
is so that the last insertion can be split by TEX’s paragraph splitting routines.
The footnote types that bigfoot supports will never get split by TEX, anyhow,
but it is conceivable that other extension packages for manyfoot work differently.
There is one difference, though: we let a slave mark escape into the main vertical
list.

100 \def\MFL@mpreinsert#1#2{%

101 \ifvoid#2\else

102 \setbox\@tempboxa\vbox\bgroup\unvbox#2%

103 \global\setbox#2\lastbox

104 \setbox\z@\lastbox

105 \ifvoid\z@

106 \egroup

107 \setbox\z@\box#2%

108 \else

109 \MFL@removevboxes \unvbox\z@

110 \egroup

111 \setbox\z@\box#2%

112 \MFL@mpinsertsave#2{\unvbox\@tempboxa}%

113 \fi

114 \ifvoid\z@\else

115 \MFL@mpinsertsave#2{\unvbox\z@}%

6

116 \fi

117 \marks\FN@slave{\number\FN@id}%

118 \fi}

\MFL@removevboxes This trick works like \removehboxes in the TEXbook’s appendix D.

119 \def\MFL@removevboxes{{\setbox\z@\lastbox

120 \ifvbox\z@ \MFL@removevboxes \unvbox\z@\fi}}

\NCC@makefnmark This provides the command in case it is not present (some versions did not have
it).

121 \ifx\NCC@makemark\@undefined

122 \ifx\NCC@makefnmark\@undefined \else

123 \def\NCC@makemark{\NCC@makefnmark}

124 \fi

125 \fi

While the above operations actually were fixes to manyfoot, now we actually
patch it for our own purposes. When allocating a new footnote, we set its max-
imum dimension to \maxdimen (since no hard limit makes sense, given that we
recalculate all respective sizes at output time) and allocate a cache box to go with
it. We also add the insertion to the list of insertions in \FN@nestlist.

\MFL@startplain

\MFL@startpara 126 \def\MFL@startplain#1{\global\dimen#1\maxdimen

127 \@cons\FN@nestlist{{}#1}%

128 \expandafter\expandafter\expandafter\newbox\FN@cache#1}

129

130 \let\MFL@startpara\MFL@startplain

\RestyleFootnote This macro gets two arguments: a footnote 〈type〉, and the style to be used for it.
It works by redefining the corresponding Footnotetext〈type〉 macro.

131 \def\RestyleFootnote#1#2{\expandafter\xdef

132 \csname Footnotetext#1\endcsname{\expandafter

133 \noexpand\csname MFL@fnote#2\endcsname{\csname footins#1\endcsname}}}

\FN@stripfootins

\FN@restylefootnote

We need the same kind of functionality for a footnote specified by its footnote
insertion. So we strip the footnote 〈type〉 from the insertion macro name. Kind of
ugly.

134 \expandafter\def\expandafter\FN@stripfootins\string\footins{}

135

136 \def\FN@restylefootnote#1#2{{\edef\next{%

137 \noexpand\RestyleFootnote{\expandafter\FN@stripfootins

138 \string#1}{#2}}\next}}

1.3 Dealing with footnote-specific code

The formatting of footnotes is determined by macros such as \@makefntext. For
several blocks of footnotes, we might want to have several different ways for for-
matting them. Whenever this is the case, we call them with

7

\FN@specific{〈insert#〉}{〈macroname〉}

This will use the default 〈macroname〉 unless a special macro has been defined
with something like

\FootnoteSpecific\marg{type}. . .

A number of other defining commands and constructs are available: those are
pretty much like the ones for the \WithSuffix command implemented by the
suffix package.

\FN@specific We use \romannumeral here just for the purpose of sustaining expansion. It ex-
pands to nothing when followed by \z@ eventually. Thus expanding the expansion
of \FN@specific again delivers the (unexpanded) final token to use.

139 \def\FN@specific#1#2{\romannumeral

140 \ifcsname FN\string#2\number#1\endcsname

141 \expandafter

142 \z@\csname FN\string#2\number#1\expandafter\endcsname

143 \else\expandafter\z@

144 \expandafter#2\fi}

\FootnoteSpecific

\FN@specific@ii

This is all a bit muddy, but quite similar to what the suffix package does, so you
might want to look there for the explanation.

145 \def\FootnoteSpecific#1{\count@\csname footins#1\endcsname\toks@{}%

146 \FN@specific@ii}

147

148 \long\def\FN@specific@ii#1#2{\toks@\expandafter{\the\toks@#1}%

149 \the\expandafter\toks@

150 \csname FN\string#2\number\count@\endcsname}

151

152 \WithSuffix\def\FN@specific@ii\long{\toks@\expandafter

153 {\the\toks@\long}\FN@specific@ii}

154

155 \WithSuffix\def\FN@specific@ii\global{\toks@\expandafter

156 {\the\toks@\global}\FN@specific@ii}

157

158 \WithSuffix\def\FN@specific@ii\expandafter{\expandafter

159 \FN@specific@ii\expandafter}

1.4 Putting footnotes into insertions

1.4.1 Dealing with Ids

Since we have to store additional information for each footnote as long as it is not
yet typeset, we allocate and deallocate numeric ‘id’s on an as-needed base, since
we do not want to store this sort of information indefinitely, with a large toll on
hash space. So we work with indirect ids, where the unique ids are just referenced
indirectly. We do this with ‘slots’.

8

\FN@slotxdef

\FN@slotget

New slots are assigned values with \FN@slotxdef, which can be retrieved again
with \FN@slotget.

160 \def\FN@slotxdef#1{%

161 \global\expandafter\xdef\csname FN@slot#1\endcsname}

162

163 \def\FN@slotget#1{\csname FN@slot#1\endcsname}

164 〈trace〉\def\FN@slotget#1{%
165 〈trace〉 \expandafter\FN@slotgetii\expandafter

166 〈trace〉 \FN@slotfreelist\expandafter

167 〈trace〉 {\number\number#1}}

168 〈trace〉\def\FN@slotgetii#1#2{%
169 〈trace〉 \ifx#1\@empty \csname FN@slot#2\endcsname\else

170 〈trace〉 \ifnum#1=#2 \errmessage{Use after freed: #1}\else

171 〈trace〉 \expandafter\FN@slotgetii

172 〈trace〉 \csname FN@slot#1\endcsname{#2}\fi\fi}

\FN@slotfreelist

\FN@nextslot

\FN@slotfreelist point to the first already allocated available id to be reused. If
it is empty, none exist. In that case, \N@nextslot contains the next slot number
to use.

173 \def\FN@slotfreelist{}

174 \def\FN@nextslot{1}

\FN@newslot This allocates a new slot by setting the given macro to a currently unused slot
number in decimal form. If there is something left in the freelist, it is assigned,
otherwise a new slot gets allocated.

175 \def\FN@newslot#1{%

176 \ifx\FN@slotfreelist\@empty

177 \edef#1{\FN@nextslot}%

178 \xdef\FN@nextslot{\number\numexpr \FN@nextslot+\@ne}%

179 \else

180 \let#1\FN@slotfreelist

181 \xdef\FN@slotfreelist{\csname FN@slot\FN@slotfreelist\endcsname}%

182 \fi

183 〈trace〉 \if\foottrace4\message{^^JAllocated #1^^J}\fi

184 }

\FN@freeslot This frees a given slot (by number) again by adding it to the freelist.

185 \def\FN@freeslot#1{%

186 〈trace〉 \if\foottrace4\message{^^JFreeing #1^^J}\fi

187 \global\expandafter\let\csname FN@slot#1\endcsname=\FN@slotfreelist

188 \xdef\FN@slotfreelist{#1}}

1.4.2 Dealing with footnote stacks

Footnote stacks are used for paired footnotes that refer to a text range instead of
a single text point. For example, you can use something like

Text \var<{was there}is here\var>

9

To have a text variant “was there” for the original passage “is here”, and mark it,
say, as “ais herea” by employing the suffix package suitably. This would anchor
the footnote at the start of the passage. It would also be imaginable to implement
the syntax

Text \var<is here\var>{was there}

for anchoring it at the end of the given passage.

189 \global\let\FN@stacklist\@empty

\DefineFootnoteStack This command is used for defining a footnote stack. It gets a single argument which
is the name of the stack and should consist just of ordinary character tokens.

190 \def\DefineFootnoteStack#1{%

191 \global\expandafter\let\csname FN@stack@#1\endcsname\@empty

192 \@cons\FN@stacklist{{#1}}%

193 }

At the end of the document, all stacks are checked to make sure they have been
used up completely.

194 \AtEndDocument{\FN@checkstacklist}

195

196 \def\FN@checkstacklist{{\let\@elt\FN@checkstack

197 \FN@stacklist}}

198

199 \def\FN@checkstack#1{{\let\@elt\FN@checkstackentry

200 \csname FN@stack#1@\endcsname}}

201

202 \def\FN@checkstackentry#1#2#3{%

203 \PackageError{bigfoot}{Unfinished #1 #2 from line #3}%

204 {The specified footnote range is uncomplete}}

\PushFootnoteMark This gets one argument, the name of the footnote stack. It pushes the current
footnote mark name stored in \@thefnmark onto the footnote stack.

205 \def\PushFootnoteMark#1{{\let\@elt\relax

206 \expandafter\unrestored@protected@xdef \csname FN@stack@#1\endcsname

207 {\@elt{#1}{\@thefnmark}{\number\inputlineno}\csname

208 FN@stack@#1\endcsname}}}

\PopFootnoteMark This gets one argument, the name of the footnote stack. It pops the value of
\@thefnmark from the named footnote stack.

209 \def\PopFootnoteMark#1{\expandafter

210 \ifx\csname FN@stack@#1\endcsname\@empty

211 \PackageError{bigfoot}{Empty footnote stack #1}%

212 {The specified footnote type has no uncompleted range}%

213 \else

214 {\let\@elt\FN@firstpop

215 \iffalse{\fi\csname FN@stack@#1\endcsname}}\fi}

10

216 \def\FN@firstpop#1#2#3{\protected@xdef\@thefnmark{#2}%

217 \let\@elt\relax

218 \expandafter\protected@xdef\csname FN@stack@#1\endcsname{%

219 \iffalse}\fi}

1.4.3 Continuation marks

We add a possibility of adding continuation marks. While the box is assembled,
immediately before the break, \FN@beforebreak gets called, and \FN@afterbreak

is called at the top of the continuing box.

220 \ifx\FN@beforebreak\@undefined

221 \let\FN@beforebreak\@empty

222 \fi

223 \ifx\FN@afterbreak\@undefined

224 \let\FN@afterbreak\@empty

225 \fi

1.4.4 The works

\FN@cache Cacheboxes cache the typeset forms of the insertion boxes for a certain configura-
tion of footnotes.

226 \def\FN@cache#1{\csname FN@cache\number#1\endcsname}

\FN@sortlist takes the current vertical list and sorts the contained boxes accord-
ing to their width (which is supposed to contain the sort key).

The algorithm is a pretty straightforward insertion sort with O(n2) steps. This
is the best one can hope for without comparisons across non-adjacent list elements.
For presorted lists, the performance will be O(n), and that’s what we expect to
see for simple cases (and when there are no sortkeys yet). Any negative width will
certainly hang the algorithm.

It also happens that TEX has a hardwired limit for grouping levels that hits at
255. Oops. We better not have a few hundred footnotes in a single block on one
page. . .

227 \def\FN@sortlist{{%

228 \setbox\z@\lastbox

229 \ifvoid\z@ \else \FN@sortlist\FN@sortlistii \fi}}

230

231 \def\FN@sortlistii{%

232 \setbox\tw@\lastbox

233 \ifvoid\tw@\else

234 \ifdim\wd\tw@<\wd\z@ {\FN@sortlistii}%

235 \fi\nointerlineskip\box\tw@\fi\nointerlineskip\box\z@}

\FN@sortinsert This function is an \@elt function that will sort the given insertion if it is non-
empty and if there is no cache box present (which would imply that the insertion
had already been sorted previously).

236 \def\FN@sortinsert#1#2{\ifvoid\FN@cache#2%

237 \ifvoid#2\else\global\setbox#2\vbox{\unvbox#2%

11

238 \FN@sortlist}\fi\fi}

\FN@maybeinvalidatecache This is called after pulling in additional material from the page. If the material
added an insertion, the cache is junk and must be regenerated.

239 \def\FN@maybeinvalidatecache#1#2{%

240 \ifvoid#2\else\global\setbox\FN@cache#2=\box\voidb@x\fi}

\FN@regeneratecache This unconditionally regenerates one cache box. The structure of a cache box is
basically a list of vertical boxes. All but the last such box are packed into a single
vertical box which is then followed by the last vertical box.

241 \def\FN@regeneratecache#1#2{%

242 \global\setbox\FN@cache#2=%

243 \ifvoid#2%

244 \box\voidb@x

245 \else

246 \vbox{\vbox{\unvcopy#2%

247 \setbox\z@\lastbox

248 \def\FN@masterinsert{#2}%

249 \FN@assembleboxes

250 \global\setbox\FN@cache#2\box\z@}%

251 \nointerlineskip \box\FN@cache#2}%

252 \fi}

\FN@mayberegeneratecache This regenerates the cache in case the cache box has been voided in order to mark
it as invalid.

253 \def\FN@mayberegeneratecache#1#2{%

254 \ifvoid\FN@cache#2%

255 \FN@regeneratecache{}#2%

256 \fi}

\FN@cachesize This calculates the size impact of a cache box on the current page as a term to be
added into a \glueexpr-type of expression.

257 \def\FN@cachesize#1#2{%

258 \ifvoid\FN@cache#2%

259 \else

260 +\skip#2+(\ht\FN@cache#2+\dp\FN@cache#2)*\count#2/\@m

261 \fi}

\FN@clearcache This just completely voids a cache register.

262 \def\FN@clearcache#1#2{%

263 \global\setbox\FN@cache#2=\box\voidb@x}

\@makefnvtext Ok, this is one of the parts putting together footnotes in para mode. The foot-
notes themselves have already been formatted into hboxes (placed there with
\@preparefnhtext in order to cater for proper indentation). \@makefnvtext

then formats a single footnote block from horizontal mode pieces (vertical mode
pieces are kept as-is). This takes text and typesets it in a single block. To get
correct indentation, it breaks before the first footnote and adjusts the clubpenal-
ties to move them to one line lower effectively. \@makefnvtext is called in vertical

12

mode, and its argument is typeset in horizontal mode right after a break, inside
of \@makefntext.

264 \def\@makefnvtext#1{%

265 \FN@specific\FN@masterinsert\@makefntext{%

266 \clubpenalties\thr@@\@MM\clubpenalty\z@

267 \vadjust{\nobreak\vskip-\baselineskip}\nobreak\hfill\break#1}}

\@preparefnhtext This creates appropriate skips to be put before the horizontal material to make
the indentation correct with a breakpoint before the footnote as well as when in
run-in text. This is run once at the start of each horizontal mode footnote when
it is first being typeset, in horizontal mode.

268 \ifx\@preparefnhtext\@undefined

269 \def\@preparefnhtext{{%

270 \setbox\z@\vbox{\FN@specific\FN@masterinsert\@makefntext{%

271 \unskip\unpenalty\setbox\z@\lastbox

272 \dimen@

273 \ifnum\parshape>\z@

274 \dimexpr\parshapeindent\tw@-\parshapeindent\@ne\relax

275 \else \ifnum\hangafter=\@ne\hangindent \else

276 \ifnum\hangafter=\m@ne -\hangindent

277 \else \z@ \fi\fi\fi

278 \dimen@ii\dimen@

279 \ifhbox\z@ \advance\dimen@-\wd\z@

280 \setbox\z@\hbox{\unhbox\z@}%

281 \advance\dimen@\wd\z@

282 \fi

283 \xdef\FN@tempinfo{\hskip\the\dimen@

284 \vadjust{}\nobreak\hskip-\the\dimen@ii\relax}}}}%

285 \FN@tempinfo}

286 \fi

Now we have in \FN@tempinfo the excess width of the label we don’t want to
preserve when doing in-paragraph footnote setting. A sequence of glue before a
label now has to consist of stuff that vanishes at a breakpoint, followed by stuff
that remains. We have to have two behaviors for the contents: behavior one is
justification at the start of a line, behavior two is justification in the line. When
we are at the start of the line, preceding interword space disappears swallowed
and so the natural criterion for distinguishing those cases is this initial line break.
This means that we can’t avoid articifially adding a line break at the start of such
a box. We will back up its height again. Some packages specify a \hangindent

(I know of no examples where they would actually set \hangafter to a value
different from its default of 1, or set \hangindent to a negative value which would
affect the right margin): due to our artifical line at the top, the indent will actually
be active for the first line already. We back it out of the actual labels happening
at the start of the line. Two-line parshapes have the same effect: the first line
is not actually used, and we put the relevant info for the first line into the label.
Different right indentation for the first line is something we can’t simulate, but
again, it should occur rarely. When \parshape is active, \hangindent is ignored.

13

287 \def\@makefnstartbox{%

288 \ifdefined\setspace@singlespace

289 \def\baselinestretch{\setspace@singlespace}%

290 \fi

291 \reset@font\footnotesize

292 \hsize\MFL@columnwidth \@parboxrestore

293 \interlinepenalty\FN@specific\FN@masterinsert\interfootnotelinepenalty

294 \widowpenalty\FN@specific\FN@masterinsert\footnotewidowpenalty

295 \clubpenalty\FN@specific\FN@masterinsert\footnoteclubpenalty

296 \advance\linepenalty500\relax}

297

298 \def\@makefnendbox{%

299 \widowpenalty\FN@specific\FN@masterinsert\finalfootnotewidowpenalty}

300

301 \newcount\footnotewidowpenalty

302 \footnotewidowpenalty=250

303 \newcount\footnoteclubpenalty

304 \footnoteclubpenalty=250

305 \newcount\finalfootnotewidowpenalty

306 \finalfootnotewidowpenalty=4000

\@makefnvbox This is the formatting code for a vertical mode footnote box from already set hor-
izontal material. It uses \@makefnstartbox for setting up the initial widow/club
penalties, and \@makefnendbox for preparing the final end. It results in a vbox.

307 \ifx\@makefnvbox\@undefined

308 \def\@makefnvbox#1{\vbox{%

309 \@makefnstartbox

310 \clubpenalties\thr@@\@MM\clubpenalty\z@

311 \let\@thefnmark\@empty

312 \FN@specific\FN@masterinsert\@makefntext{\rule\z@\footnotesep

313 \nobreak

314 #1\@finalstrut\strutbox

315 \@makefnendbox}}}

316 \fi

\hfootfraction

\vtypefraction

Those parameters govern when a footnote block is going to be set completely in
vertical mode. If a footnote block does not shrink to less than \hfootfraction

its size when using in-paragraph notes or has at least \vtypefraction of forcedly
vertical footnotes (specified as purely vertical, or vertical because of being large),
it is set entirely in vertical mode.

317 \def\hfootfraction{0.9}

318 \def\vtypefraction{0.7}

\FN@assembleboxes This will produce the finished product, by generating all boxes and concatenating
them except for the last vbox. It is assumed that have already set \box\z@ to
\lastbox before calling this routine (or, more likely, have already assembled and
split the last box). The last, not yet unpacked \vbox is left in \box\z@ on return.
The original id of the last box of a block is properly transferred to it.

14

The last box might have come about by joining several horizontal boxes, so
splitting it might separate footnotes. We deal with that problem at a different
point of time by checking the respective Ids when breaking a vbox into pieces: if
the split piece does not contain the last footnote beginning, we switch to a slow
motion decomposal. \FN@assembleboxes is supposed to be entered and exited in
vertical mode.

319 \def\FN@assembleboxes{%

320 〈trace〉 \ifhmode \PackageError{bigfoot}{Unexpected hmode}{}\fi

321 \ifhbox\z@

322 \dimen@\dp\z@

323 〈trace〉 \MFL@checksinglebox\z@\z@{}{}%

324 \dimen@ii\z@

325 \setbox\tw@\box\voidb@x

326 \loop \advance\dimen@ii\dimexpr\ht\z@+\dp\z@\relax

327 \setbox\tw@\hbox{\box\z@\unhbox\tw@}%

328 \setbox\z@\lastbox

329 \ifhbox\z@

330 \repeat

331 {\FN@assembleboxes\nointerlineskip\unvbox\z@}%

At this point of time, \box\tw@ contains a plain hbox with nothing but the un-
adorned hboxes in horizontal mode to be joined into one footnote block. All
preceding footnote blocks have been emptied into the current vertical list. We put
the \unvbox operations in a group so that the paragraph shapes will not get reset
over the break.

332 \global\setbox\FN@tempbox\copy\tw@

333 \setbox\z@\@makefnvbox{%

334 {\unhbox\FN@tempbox}%

335 \setbox\z@\lastbox\FN@joinhboxes}%

336 \ifcase

337 \ifdim\FN@vfound>\dimexpr\vtypefraction\p@*\FN@found\relax \@ne\fi

338 \ifdim\dimexpr \ht\z@+\dp\z@>\hfootfraction\dimen@ii \@ne\fi \z@

339 \or

340 \global\setbox\FN@tempbox\box\tw@

341 \setbox\z@\@makefnvbox{\let\@makefnbreak\FN@pseudofillbreak

342 {\unhbox\FN@tempbox}\setbox\z@\lastbox\FN@joinhboxes}%

343 \fi

344 \setbox\tw@\box\voidb@x

345 \ht\z@\dimexpr \ht\z@+\dp\z@-\dimen@\relax

346 \dp\z@\dimen@

347 〈trace〉 \MFL@checksinglebox\z@\z@{}{}%

348 \else

349 \ifvbox\z@

350 〈trace〉 \MFL@checksinglebox\z@\z@{}{}%

351 {\setbox\z@\lastbox

352 \FN@assembleboxes\nointerlineskip\unvbox\z@}%

353 \fi

354 \fi}

15

Ok, now follow a lot of fuzzy calculation routines. When we are considering truth
values, \p@ (1pt) corresponds to a value of “true”, and \z@ corresponds to “false”.

\FN@fuzzyeval This calculates a ratio, something with which you multiply. The first two argu-
ments of the function define an interval, and the third argument is a value in that
interval. If #3 is equal to #1, the resulting ratio is 0, if the #3 is equal to #2, the
resulting ratio is 1. Values in between are linearly interpolated. Values outside of
the interval are mapped to 0 and 1. If all three values are equal (hardly useful), 1
is returned.

355 \def\FN@fuzzyeval#1#2#3{%

356 \ifdim\dimexpr(#3)<\dimexpr(#2)\relax

357 \ifdim\dimexpr(#3)>\dimexpr(#1)\relax

358 *(\dimexpr(#3)-(#1))%

359 /(\dimexpr(#2)-(#1))%

360 \else *\z@

361 \fi

362 \fi}

\FN@fuzzyor This returns probabilistic or:

(#1 + #2− #1 · #2)

363 \def\FN@fuzzyor#1#2{(\p@-(\p@-(#1))*(\dimexpr\p@-(#2))/\p@)}

\FN@magicclue Ok, so here is the magic glue calculator. #1 and #2 give the range over which
the preceding line changes from ‘short’ to ‘long’. #3 and #4 give the range over
which the current line changes from ‘short’ to ‘long’. Both are combined with a
probabilistic or function, and then a penalty is chosen which ranges from #5 to #6

for short to long.

364 \def\FN@magicglue#1#2#3#4#5#6{%

365 〈trace〉 \if\foottrace2\traceon\fi

366 \dimen@\dimexpr\p@\FN@fuzzyeval{#1}{#2}\FN@lasthsize\relax

367 \dimen@ii\dimexpr\p@\FN@fuzzyeval{#3}{#4}{\ht\z@+\dp\z@}\relax

368 \dimen@\dimexpr\FN@fuzzyor\dimen@\dimen@ii

369 \count@\numexpr((#6)-(#5))*\dimen@/\p@+(#5)\relax

370 \xdef\FN@vfound{\the\dimexpr\FN@vfound+\dimen@}%

371 \ifnum\count@>-\@M

372 \penalty\count@

373 \hskip\glueexpr -\parfillskip+1em minus 0.5em\relax

374 \else

375 \FN@pseudobreak

376 \fi

377 \xdef\FN@found{\number\numexpr\FN@found+\@ne}%

378 }

\FN@pseudobreak This ends a line, but without introducing parskip and similar. It also ‘breaks in’
the next line to get proper indentation. The main difference with regard to \break

is that this restarts the reckoning of line numbers for the sake of \clubpenalty

calculation.

16

379 \def\FN@pseudobreak{%

380 {\parskip\z@skip\parfillskip\z@skip\parindent\z@\vadjust{}\par\noindent

381 \vadjust{\nobreak\vskip-\baselineskip}\nobreak\hfill\break}}

\FN@pseudofillbreak This is basically just for separating paragraphs by force.

382 \def\FN@pseudofillbreak{\nobreak\hskip\parfillskip\FN@pseudobreak}

\@makefnbreak This calculates the glue for the standard horizontal footnotes.

383 \def\@makefnbreak{\FN@magicglue {\footnotesep+\dp\strutbox}%

384 {\footnotesep+\dp\strutbox+\baselineskip}%

385 {\footnotesep+\dp\strutbox+0.5\baselineskip}%

386 {\footnotesep+\dp\strutbox+2\baselineskip}{-200}{-12000}}

\FN@joinhboxes is called with box 0 set to the next box to be appended to
the current list (all preceding hboxes on the current vertical list will have to go
in front). \FN@joinhboxes is entered in vertical mode, and will be exited in
horizontal mode.

387 \def\FN@joinhboxes{%

388 〈trace〉 \ifvmode \errmessage{Unexpected vertical mode.}\fi

389 \begingroup\setbox\z@\lastbox

390 \ifhbox\z@ \FN@joinhboxes

391 〈trace〉 \ifvmode \errmessage{Unexpected vertical mode.}\fi

392 \endgroup

393 \nobreak\hskip\parfillskip

394 \@makefnbreak

395 \else

396 〈trace〉 \ifvbox\z@ \errmessage{Unexpected vbox.}\fi

397 \endgroup

398 \vadjust{\nobreak\vskip-\baselineskip}\nobreak\hfill\break

399 \xdef\FN@vfound{\z@}%

400 \xdef\FN@found{\z@}%

401 \fi

402 \xdef\FN@lasthsize{\the\dimexpr \ht\z@ +\dp\z@}%

403 \unhbox\z@}

\FN@par

\FN@noindent

\FN@indent

In-paragraph footnotes are collected in horizontal mode. So \par, \noindent and
\indent simply don’t work. We replace them with something having the same
effect when the boxes get unhboxed. Note that this does not admit the tracking
of club/widow penalties: in a later version, it should get replaced by something
that actually allows for separate paragraphs. One possibility would be to replace
the current single hbox for an in-paragraph footnote by an hbox of hboxes and
unbox all of them in separate paragraphs. But that glosses over the fact that a
multi-paragraph footnote does not make sense in anything but vertical mode. So
a saner way would probably be to close off the hbox altogether and reinsert it into
a vbox, restarting the whole footnote in vertical mode. Both of those approaches
would require that no groups have been opened since the start of the footnote by
the time \par gets called. The below pseudosolution at least has the advantage
of not depending on the grouping structure at all.

17

404 \def\FN@par{\unskip\nobreak\hskip\parfillskip

405 \vadjust{\vskip\parskip}\break\null\kern\parindent\ignorespaces}

406 \def\FN@noindent{\unkern}

407 \def\FN@indent{\unkern{\setbox\z@\null\wd\z@\parindent\box\z@}}

\MFL@fnoteplain

\MFL@fnotepara

We redefine manyfoot’s basic footnote calls to use our own, versatile variant.

408 \def\MFL@fnoteplain{\FN@fnotenested{plain}}

409 \def\MFL@fnotepara{\FN@fnotenested{para}}

\FN@fnotenested This is somewhat contorted: we want \footnote+ to be in plain style and
\footnote- in para style regardless of the current footnote style. Adding a sec-
ond + or - after the first will actually restyle all footnotes coming afterwards
appropriately. This should work for all footnote commands getting footnote text.

410 \def\FN@fnotenested#1#2#3{%

411 \edef\reserved@d{#1}%

412 \FN@checkvariant{\edef\reserved@d}{%

413 \FN@checkvariant{\FN@restylefootnote{#2}}%

414 {\csname FN@fnote\reserved@d\endcsname{#2}{#3}}}}

415

416 \def\FN@checkvariant#1#2{\def\reserved@a{#1}%

417 \def\reserved@b{#2}%

418 \futurelet\reserved@c\FN@checkvariantii}

419

420 \def\FN@checkvariantii{%

421 \ifx\reserved@c+%

422 \reserved@a{plain}\expandafter\@firstoftwo

423 \else\ifx\reserved@c-%

424 \reserved@a{para}\expandafter\expandafter\expandafter

425 \@firstoftwo

426 \fi\fi

427 \reserved@b}

In order to be able to sort footnotes according to the order of their reference
points, we use a sorted counter.

428 \newcounter{FN@totalid}

429 \MakeSorted{FN@totalid}

\FN@fnoteplain

\FN@fnotepara

The actual commands are easy enough:

430 \def\FN@fnoteplain{\FN@fnotecommon\vbox}

431 \def\FN@fnotepara{\FN@fnotecommon\hbox}

\FN@masterinsert This contains the insert number of the insert where the footnote mark appears. If
it appears in the main text, 255 will be used.

432 \def\FN@masterinsert{\@cclv}

\FN@id

\FN@master

\FN@slave

Here is the deal with master and slave ids: each footnote has a unique master id.
This master id is larger by one than the last id of its subordinate footnotes. It is
recorded in the mark \FN@master in the footnote box at the start itself, although
with an indirection through the \FN@newslot mechanism since the actual id can

18

only become known after all subfootnotes have been typeset. The same id is
recorded in \FN@slave at the ultimate end of the footnote.

At the point where a \FN@master mark is placed, a default \FN@slave mark
is placed also with an id that is one less than the smallest id generated from
a footnote that is a ‘descendent’ of the current one. This makes it possible to
distinguish any split off subordinate footnotes. It must be noted that this sentinel
slave id will be the valid id of a completely unrelated footnote! Since the value
is only used for determining one end of an open interval of excluded ids, this is
no problem. All subordinate footnotes are numbered sequentially in the order of
completion, so that any subordinate footnotes have lower ids than their master.

433 \newcount\FN@id

434 \FN@id\@ne

435 \newmarks\FN@master

436 \newmarks\FN@slave

\FN@errorstack This records the history of nested footnotes in order to deliver more useful error
messages.

437 \let\FN@errorstack\@empty

\FN@fnotecommon Well, this is the work horse if the footnote macro. Really bad thing. We start off
by stepping our absolute counter and making a mark. \leavevmode is required so
that the action of perpage.sty is done smoothly.

438 \def\FN@fnotecommon#1#2#3{%

439 \leavevmode

440 \stepcounter{FN@totalid}%

441 \NCC@makemark{#3}%

It is an error if the footnote insert number of the current footnote does not corre-
spond to a block below the current insertion level.

442 \ifnum#2<\FN@masterinsert

443 \FN@colorstackbgroup\FN@divert

444 \FN@newslot\FN@masterslot

445 \count@\FN@id

\dimen@ is here set to a sorting criterion. This is designed to make the conversion
of footnote blocks as reliable as possible. If we could guarantee convergence, just
using \c@FN@totalid would be sufficient for sorting. It turns out that this is
too sensitive to footnotes of different blocks changing pages, so the number of
the superior footnote block is allowed to take precedence by multiplying it with
4194304 which is unlikely to get exceeded by \c@FN@totalid.

446 \dimen@=\dimexpr64\p@*\FN@masterinsert-\c@FN@totalid sp\relax

447 \def\FN@masterinsert{#2}%

448 \edef\FN@errorstack{\FN@errorstack^^J%

449 \FN@masterinsert\space entered in line \number\inputlineno}%

450 \let\FN@boxtype=#1%

451 \setbox\z@#1\bgroup

The following is for the likes of PDFTEX which has its own idea about how to
restore a color stack.

19

452 \let\current@color\default@color

453 \FN@@color@begingroup

454 \let\MFL@minipage\relax

455 \let\MFL@endminipage\relax

456 \@makefnstartbox

We reset the list parameters in footnotes. Strictly speaking, this is interfering with
LATEX’s standard operation, but the standard operation does not make sense.

457 \let\@listdepth\@mplistdepth \@mplistdepth\z@

458 \@itemdepth\z@ \@enumdepth\z@

459 \protected@edef\@currentlabel{\csname p@footnote%

460 \expandafter\FN@stripfootins\string#2\endcsname\@thefnmark}%

461 \ifx\FN@boxtype\vbox \normalcolor\nobreak

462 \else \FN@specific{#2}\@preparefnhtext \normalcolor

463 \fi

Ok, now we do the call to \@makefntext which may occur in one of several ways,
depending on whether the ‘robust’ or the ‘fragile’ package option got used.

464 \expandafter \FN@makefncall

465 \else

We still needed to cater for the error of badly anchored footnotes:

466 \PackageError{bigfoot}{#2 forbidden in \FN@masterinsert.}%

467 {Higher-placed footnotes can’t be anchored in inferior ones.^^J%

468 I am not putting this text in a footnote. History:%

469 \FN@errorstack}%

470 \rule{1em}{\ht\strutbox}%

471 \fi}

\FN@makefnstart This is called in the start of \@makefntext.

472 \providecommand{\FN@seitenobreak}{\nobreak}

473 \def\FN@makefnstart{%

Record the footnote specific dimensions. It is assumed that they don’t change in
the document, at least not before the footnote gets actually placed.

474 \expandafter\xdef\csname FN@ht\number\FN@masterinsert\endcsname

475 {\the\footnotesep}%

476 \expandafter\xdef\csname FN@dp\number\FN@masterinsert\endcsname

477 {\the\dp\strutbox}%

478 \expandafter\xdef\csname FN@wd\number\FN@masterinsert\endcsname

479 {\the\hsize}%

The footnote gets markers for identifying it and its starting block.

480 \marks\FN@master{\FN@masterslot}%

481 \marks\FN@slave{\number\FN@id}%

482 \nobreak

\FN@commonending will intervene before any tokens that are shifted in due to
switching back the color stack. Those will only be executed once we completely
relinquish control.

483 \ifx\FN@boxtype\vbox

20

484 \rule\z@\footnotesep

485 \else

486 \ifx\FN@par\par\else

487 \let\FN@@par\par

488 \let\FN@@noindent\noindent

489 \let\FN@@indent\indent

490 \fi

491 \everyvbox\expandafter{\expandafter\everyvbox

492 \expandafter{\the\everyvbox}%

493 \let\par\FN@@par

494 \let\noindent\FN@@noindent

495 \let\indent\FN@@indent

496 \the\everyvbox}%

497 \let\par\FN@par

498 \let\noindent\FN@noindent

499 \let\indent\FN@indent

500 \fi

501 \FN@seitenobreak

502 \afterassignment\ignorespaces}

\FN@makefnrobust After preparation, we now do the big bad trick for making footnotes cooperate
with \verb and other catcode changing things: we call \@makefntext with an
argument of \iffalse. This kills off its expansion right at the point where it
would choose to place its argument.

Furthermore, this swallows the opening brace of the footnote text and then
lets the footnote text progress. The closing group will then trigger the processing
via \aftergroup.

503 \def\FN@makefnrobust#{%

504 \FN@specific\FN@masterinsert\@makefntext

505 \iffalse\fi

506 \bgroup

507 \aftergroup\FN@robustending

508 \FN@makefnstart

509 \let\next}

\FN@robustending Here we put in the missing part of \@makefntext.

510 \def\FN@robustending{%

511 \expandafter\expandafter\expandafter

512 \expandafter\expandafter\expandafter\expandafter

513 \iffalse \FN@specific\FN@masterinsert\@makefntext\fi

514 \FN@commonending}

\FN@makefnfragile This is the escape route when the robust variant does not work. In that case,
\verb and similar won’t work in footnotes.

515 \long\def\FN@makefnfragile#1{%

516 \FN@specific\FN@masterinsert\@makefntext

517 {\FN@makefnstart#1\FN@commonending}}

21

Ok, color handling is a nuisance, to say the least. Split footnotes need to close
their color stack on the old page, and reopen it on the new one. So we record the
color stack state at each time it changes in a marks register.

518 \newmarks\FN@color

519 \def\FN@colorstackbgroup{\let\FN@savecolorstack\FN@colorstack

520 \global\let\FN@colorstack\@empty

521 \bgroup

522 \ifdefined\FN@savecolorstack\else

523 \let\FN@@set@color\set@color

524 \let\FN@@reset@color\reset@color

525 \let\FN@@color@begingroup\color@begingroup

526 \fi

527 \let\set@color\FN@set@color

528 \let\reset@color\FN@reset@color

529 \let\color@begingroup\FN@color@begingroup}

530

531 \def\FN@colorstackegroup{\egroup

532 \global\let\FN@colorstack\FN@savecolorstack}

533

534 \def\FN@colorstackfinish{\def\@elt##1##2{\FN@@reset@color##2}%

535 \FN@colorstack

536 \def\@elt##1##2{\noexpand\@elt{}{##2}}%

537 \xdef\FN@colorstack{\FN@colorstack}%

538 \let\@elt\relax

539 \marks\FN@color{}}

540

541 \def\FN@reset@color{%

542 \bgroup\def\@elt##1##2{\def\FN@next{##1}{\gdef\FN@colorstack{##2}}}%

543 \let\FN@next\@empty

544 \FN@colorstack

545 \ifx\FN@next\@empty

546 \FN@colorstackegroup

547 \else \egroup

548 \FN@@reset@color

549 \marks\FN@color{\FN@colorstack}%

550 \fi}

551

552 \def\FN@color@begingroup{%

553 \let\reset@color\FN@@reset@color

554 \let\color@begingroup\FN@@color@begingroup

555 \let\set@color\FN@@set@color

556 \color@begingroup}

557

558 \def\FN@set@color{\FN@@set@color

559 \xdef\FN@colorstack{\@elt{\current@color}{\FN@colorstack}}%

560 \marks\FN@color{\FN@colorstack}}

561

562 \def\FN@coloraftersplit#1{%

563 \def\@elt##1##2{##2\def\current@color{##1}\set@color}%

22

564 #1%

565 \let\@elt\relax}

\FN@commonending We’ll eventually arrive here at the end of the footnote. Now we again call
\@makefntext, but this time pass it \fi as its argument, and place \iffalse

before its expansion. This cuts away the start of the macro. If this start changes
the tail of the macro when executed, the whole trickery will not work. It turns out
that a large sampling of document classes (including the standard ones) happens
to work.

566 \def\FN@commonending{%

567 \@makefnendbox

568 \ifx\FN@boxtype\vbox\@finalstrut\strutbox \else \unskip \fi

569 \FN@colorstackfinish

570 \color@endgroup

571 \egroup

572 \global\advance\FN@id\@ne

573 \FN@slotxdef\FN@masterslot{\number\FN@id}%

Now we want to get an upper estimate of the size. In case of a horizontal box, we
do this by creating a vertical box of it all alone, and measuring that. Measuring the
hbox itself is plain out: TEX’s maximal dimension of something like 5 m is already
busted with about two pages of material. We put the master slot identification
into the depth of the box, and arrange for the total of depth and height of the box
to still give the total depth and height of its size on the page.

574 \ifhbox\z@

575 \global\setbox\FN@tempbox\copy\z@

576 \setbox\tw@\@makefnvbox{\unhbox\FN@tempbox}%

577 \ht\z@\dimexpr\ht\tw@+\dp\tw@-\FN@masterslot sp\relax

578 \else

579 \ht\z@\dimexpr\ht\z@+\dp\z@-\FN@masterslot sp\relax

580 \fi

Now we put the sorting criterion into the width of the box, and then put the
masterslot id into the depth.

581 \wd\z@\dimen@

582 \dp\z@\FN@masterslot sp\relax

583 〈trace〉 \ifnum\z@<0\FN@slotget{\FN@masterslot} %

584 〈trace〉 \else \errmessage{Inconsistent

585 〈trace〉 \string\FN@masterslot=\FN@masterslot}\fi

Now we just need to place the stuff into an insertion and record the possibly
changed slave id in order to know what subordinate footnotes belong to this one.

586 \MFL@insert\FN@masterinsert{\nointerlineskip\box\z@}%

587 \ifdim\lastkern=\z@ \let\FN@next\@empty\else

588 \edef\FN@next{\kern\the\lastkern\relax}\unkern

589 \fi

590 \marks\FN@slave{\number\FN@id}%

591 \expandafter\FN@enddivert\expandafter\FN@colorstackegroup

592 \FN@next

593 }

23

A lot of stuff follows. This should really be cleaned up and documented.

594 \dimen\footins\maxdimen

595 \gdef\FN@nestlist{}

596

597 \newdimen\FN@outervsize

598 \newskip\FN@vsize

599

600 \newbox\FN@insertions

601

602 〈trace〉\def\MFL@showone#1#2{\message{Box #2:}\showbox#2%

603 〈trace〉 \MFL@checkconsistency{#2}%

604 〈trace〉 \message{Cachebox #2:}\showbox\FN@cache#2}

605 〈trace〉
606 〈trace〉\def\MFL@checkconsistency#1{{%
607 〈trace〉 \setbox\z@\vbox{\unvcopy#1%

608 〈trace〉 \MFL@checkconsistencyi{#1}}}}

\MFL@checksinglebox Check box #1 for consistency. If it is bad, output box #2. Execute #3 if it was
good, #4 if it was bad.

609 〈trace〉\def\MFL@checksinglebox#1#2#3#4{%
610 〈trace〉 \ifvoid#1\else

611 〈trace〉 \ifnum\z@<0\FN@slotget{\number\dp#1} %

612 〈trace〉 #3%

613 〈trace〉 \else \errmessage{Inconsistent box #2}%

614 〈trace〉 \showboxdepth4\showboxbreadth100

615 〈trace〉 \showbox#2\relax

616 〈trace〉 #4%

617 〈trace〉 \fi\fi}

618 〈trace〉\def\MFL@checkconsistencyi#1{%
619 〈trace〉 \unpenalty\unskip\unkern

620 〈trace〉 \setbox\z@\lastbox

621 〈trace〉 \MFL@checksinglebox\z@{#1}{{\MFL@checkconsistencyi{#1}}}{}}

622 〈trace〉
623 〈trace〉\def\MFL@showall{{%
624 〈trace〉 \showboxbreadth=\maxdimen

625 〈trace〉 \showboxdepth=4

626 〈trace〉 \tracingonline=\@ne

627 〈trace〉 \FN@nest@iterate\MFL@showone}}

\FN@retaindelayed This is a complex macro that removes all boxes from the current list that are not
to be kept for the next page. It works on the material from the original insertions,
not the cache boxes. The slot specified by \count@ is not freed when encountered,
all others are freed upon removing the box. The last box is returned in box 0 if
any is retained. The vertical list might have an unchecked part locked off in front
by placing a \nobreak penalty there. This penalty is removed, and the list before
it not touched.

628 \def\FN@retaindelayed{%

629 \setbox\z@\lastbox

24

630 \ifcase

631 \ifvoid\z@\m@ne\fi \FN@config\z@

632 〈trace〉 \if\foottrace8\message{^^J\string\FN@retaindelayed:

633 〈trace〉 dropping Id \FN@slotget{\number\dp\z@}}\fi

634 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

635 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi

636 \ifnum\dp\z@=\count@\else \FN@freeslot{\number\dp\z@}\fi

637 〈trace〉 \ifnum\dp\z@<\@ne \errmessage{Unidentified box}\fi

638 \expandafter\FN@retaindelayed

639 \or

640 〈trace〉 \if\foottrace8\message{^^J\string\FN@retaindelayed:

641 〈trace〉 retaining Id \FN@slotget{\number\dp\z@}}\fi

642 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

643 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi

644 {\FN@retaindelayed \nointerlineskip \box\z@}%

645 \else \unpenalty \setbox\z@\lastbox

646 〈trace〉 \ifnum\lastnodetype>\m@ne

647 〈trace〉 \errmessage{Unexpected node \number\lastnodetype}\fi

648 〈trace〉 \ifvoid\z@ \else

649 〈trace〉 \if\foottrace8\message{^^J\string\FN@retaindelayed:

650 〈trace〉 carrying split box \FN@slotget{\number\dp\z@}}\fi

651 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

652 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi\fi

653 \fi}

\MFL@processplain This gets called for actually inserting the processed material into the footnote box.
The current state of affairs is that \FN@config contains all footnotes that should
get transferred to the next page completely. The cache boxes contain the collected
and typeset footnotes for typesetting on the current page.

The structure of a cachebox is currently as follows: it is filled with vboxes
containing the arranged material, optionally followed by another box to be carried
over to the next page flagged with a \nobreak penalty.

654 \def\MFL@processplain#1{%

655 〈trace〉 \MFL@checkconsistency#1%

656 \ifvoid\FN@cache#1%

Now if the cache box is void, nothing gets typeset on the current page. What we
do, however, is to collect all boxes from the original insertion that did not make
it on this page and reinsert them. \count@ is cleared to zero to retain nothing
special.

657 \global\setbox\FN@tempbox\vbox\bgroup

658 \unvbox#1%

659 \count@\z@

660 \let\@elt\FN@removecheck \FN@retaindelayed

661 \ifvoid\z@ \egroup

662 \else \nointerlineskip \box\z@ \egroup

663 \MFL@realinsert{#1}{\unvbox\FN@tempbox}%

664 \fi

The following stops in the insertion process within the manyfoot package.

25

665 \expandafter\expandafter

666 \fi\iffalse\fi

Ok, this is the case when we have a nonvoid cache box.

667 \global\setbox#1\vbox\bgroup%

668 \unvbox\FN@cache#1%

669 \ifnum\lastpenalty>\z@

670 \unpenalty

671 \setbox\z@\lastbox

672 \else

673 \setbox\z@\box\voidb@x

674 \fi

Ok, now box zero contains carryover material (if any). We initialize \count@ to
this so that we will keep this carryover material just once.

675 \count@\dp\z@

676 \global\setbox\FN@tempbox\vbox\bgroup

677 \box\z@

678 \nobreak

679 \unvbox#1%

680 \let\@elt\FN@removecheck \FN@retaindelayed

681 \ifvoid\z@ \egroup \MFL@removevboxes\egroup

682 \else \nointerlineskip \box\z@ \egroup

683 \MFL@removevboxes \egroup

684 \MFL@realinsert{#1}{\unvbox\FN@tempbox}%

685 \fi}

686

687 \let\MFL@processpara\MFL@processplain

Ok, here is the bit about the caches: whenever we encounter a new configuration,
we have to first update the caches since we don’t know the sizes we are dealing
with regarding the new configuration until we do so. The caches are kept up to
date globally. When we are working at several levels in the recursion, we have
a bottom active level where we may are looking for a way to find a best break
and configuration. We will return at most one configuration once we are finished.
While we are working with a returned configuration, adding more material on the
current list will not require another recursion as long as the totals stay underfull:
the penalty difference between underfull configurations becomes smaller while the
underfullness decreases, which means that smaller breaks that have not been cho-
sen before might become eligible if the penalties allow for that. Only when the
badness of underfullness remains infinite can’t we have any improvement.

Ok, after we recurse for removing an underfull condition, the resulting config-
uration can’t actually be used further for breaks with less remaining space. It is,
however, clear that if less space remains, there is no better break with the same
configuration leaving more space: if there were, it would already have been taken.
That means that our goal height for the next break will be chosen in order to
reach the exact size met on the last recursion. No break before that can be chosen
on the next try, but a break after it might then be taken.

26

available, or an overfull one. If a deeper level at any point of time returns an
overfull configuration, we are finished. The best configuration to be returned is
the least underfull. If there is none, the least overfull. The case of no underfull at
all can only happen if even splitting this and every subordinate level to minimal
height and recursing does not yield an underfull. At every level, we need to
maintain just a current split, and the previous best split at most.

When we change a configuration on recursing, we have to remember the config-
urations for the previous best split. We can manage that by sweeping the current
cache values into a local box register before recursing with a different configura-
tion: we have to rebuild the box registers for a different configuration, anyway.
We don’t save the configuration from an overfull setting: when we rework the list
in slow motion mode, we can’t help stopping the recursion by reaching an overfull
setting that is at least as good as the initial one.

When we return to a caller, we leave the cache in the configuration of the best
choice up to now: either we are returning an overfull configuration and if it is
not the best so far, the caller can restore his better choice from his copy, or we
are returning an underfull configuration in which case the caller might still want
to improve upon it before returning to its caller in turn. New: If we return an
underfull configuration, we also return an “optimal penalty estimate” that gives
the best break point penalty under the assumption that additional stretchability
is present on the page.

The purpose of this is to offer the possibility of avoiding widows and similar
by moving more material in some footnotes to the next page in exchange for other
material.

At the current grouping level we empty out our current cache and keep it for
working purposes on the vertical list until we return (nobody references it while
we are working on it). We always enter with an overfull configuration, meaning
that \FN@vsize is negative. It is calculated with the current cache/config setting.

There is a danger of overflow involved with that: if we keep a swept complete
configuration at each level of recursion, we need O(n2) of space here. The alter-
native would be to keep the history of how the configuration came about. Since
that might involve some slow-motion splitting, this is also a speed issue. Since
deep recursion with pending best data at each level is not really likely, and since
we are not going to have that many footnote levels to go around, anyway, we just
rely on LATEX having been started with sufficient memory.

A workable compromise would be to just store the split boxes from a configura-
tion together with the configuration data for reconstructing the rest. After all, we
don’t need to reconsider such a configuration before actually typesetting anything.
And whenever we find an acceptable fit (neither underfull/overfull), we could cut
through all the hierarchy without having to restore anything. This has not been
implemented yet: at the moment we go for the less complicated variation.

The algorithm we use here is a bit complicated. Whenever we recurse, we have
one of the following situations:

1. An overfull/underfull dilemma: including a minimal amount of material at
the current level will cause the page to become overfull. This can be the

27

case in connection with zero (in case of interline penalties for larger blocks),
one or more subordinate footnotes and related footnotes.

2. A pure overfull dilemma: the page was overfull to start with, we need to
reduce it.

3. an underfull dilemma: some operation in the next level made the page be-
come underfull, only too much so. We can’t make it fuller on the current
level, but we can make it even emptier, and let the next level fill it up again.

In the current implementation, we just ignore the slight probability that the
optimum choice might lie with case 3. We don’t recurse for making the page fuller
again. If we have an overfull/underfull dilemma, the recursion will either give
us a less awful overfull box, or an underfull one. An overfull box that occurs at
the highest level of recursion can’t be improved on any lower level. So we never
need to locally return an overfull box: we can compare it to the best overfull box
seen before, and if we turn out better than that, we overwrite the global best
overfull value and return the best local underfull if there is such a one. The best
local underfull will then be refilled as much as possible on the next level without
changing the configuration. Actually, if we need to change the configuration, this
would also be fine as long as we arrive at a better underfull eventually. But since
a change of configuration renders our previous split completely useless, as the
broken paragraph could look disastrously different under a changed configuration,
we would need to recurse again. We repeat this recursing operation until we don’t
get an underfull solution returned anymore. We then return the best underfull, if
any. The best overfull is stored globally, as mention before.

Does this sound complicated? Unfortunately, it does. It also sounds somewhat
slow. For that reason, we do a few assumptions that will facilitate a good average-
case behavior. The first assumption is that we will usually do fine by just splitting
in the current level (if at all) and not at all in subordinate levels.

We do this assumption on the first pass used for gathering the size information
and collect the corresponding boxes in nested lists. When the recursion tops out,
it does so either with an overfull page, or an underfull page. If it does with an
underfull page, we cache the current configuration for the next pass through the
output routine, so that we won’t need to retypeset and measure assembled boxes
that have not gathered any new material. If we top out with an overfull page, the
previous underfull configuration is still worth keeping as well, as it might become
the material actually chosen to be typeset.

Ok, the current best configuration of the next recursion level is gathered on
the current vertical list, in a separate box. We use box 2 for this purpose. A
saved configuration consists of the complete contents for the current cache box
without the trailing penalty indicating material from a single split box carried
over to the next page (boxes that are carried over completely to the next page
are not maintained here but rather reinserted by \MFL@processnested). This
penalty is added in case the box is actually disassembled and returned: there is
no possibility for confusion since we only save such a configuration if indeed there
is a split present.

28

688 \newtoks\FN@output

689 \FN@output\output

690

691 \newbox\FN@tempbox

692 \newinsert\FN@savebox

693 \count\FN@savebox\@m

694 \dimen\FN@savebox\maxdimen

695 \skip\FN@savebox\z@skip

696 \global\setbox\FN@savebox\box\voidb@x

697

698 \expandafter\expandafter\expandafter\let\FN@cache\FN@savebox=\@cclv

699

700 \expandafter\def\csname FN@ht\number\FN@savebox\endcsname{\z@skip}%

701 \expandafter\def\csname FN@dp\number\FN@savebox\endcsname{\maxdepth}

702 \expandafter\def\csname FN@wd\number\FN@savebox\endcsname{\columnwidth}

703

704 \def\FN@list{\MFL@list\@elt{}\footins}

705

706 \def\FN@sweepbox#1#2{\ifvoid#2\else

707 \nointerlineskip\box#2\penalty#2\fi}

708

709 \def\FN@sweepcachebox#1#2{\nointerlineskip

710 \box\FN@cache#2%

711 \penalty\FN@cache#2}

712

713 \def\FN@copycachebox#1#2{\nointerlineskip

714 \copy\FN@cache#2%

715 \penalty\FN@cache#2}

716

717 \def\FN@restoreboxes{\count@\lastpenalty \unpenalty

718 \ifnum\count@>\z@

719 \global\setbox\count@\lastbox

720 \expandafter\FN@restoreboxes

721 \fi}

\FN@removecheck This returns \@ne if and only if the current slot master is strictly inside of the
specified open interval. In this case it is not to appear on the current page.

722 \def\FN@removecheck#1#2{%

723 \ifnum#1<\FN@slotget{\number\dp\z@} %

724 \ifnum#2>\FN@slotget{\number\dp\z@} %

725 \@ne\fi\fi}

Parameter recording merely records the relevant value of the skip register and sets
it to zero. The purpose is to avoid changes of the reserved page space when we
collect additional material from a page where an insertion of the appropriate kind
had already been encountered. This is used for filling up underfull pages.

726 \def\FN@recordinsertparam#1#2{\ifvoid#2\else

727 \global\skip\number#2=\the\skip#2\relax\fi}

728

29

729 \def\FN@clearinsertparam#1#2{\ifvoid#2\else

730 \global\skip#2=\z@skip\fi}

\FN@insertouterspace will sum the size of the inserts manually.

731 \def\FN@insertouterspace#1#2{\ifvoid#2\else

732 +\skip#2+(\ht#2+\dp#2)*\count#2/\@m\fi}

733

734 \def\FN@list@iterate#1{\let\FN@eltsave\@elt

735 \let\@elt#1%

736 \FN@list

737 \let\@elt\FN@eltsave}

738

739 \def\FN@nest@iterate#1{\let\FN@eltsave\@elt

740 \let\@elt#1%

741 \FN@nestlist

742 \let\@elt\FN@eltsave}

1.5 The output routine stuff

Marks This is used for sweeping all marks up for reinsertion.

\FN@allmarks

743 \def\FN@allmarks#1{\@elt{#1}%

744 \ifnum#1<\count266

745 \expandafter\FN@allmarks\expandafter{\number\numexpr#1+\@ne}%

746 \fi}

\FN@sweeptopmarks

\FN@topmarkbox

This sweeps the current topmarks and places them into the global box \FN@topmarkbox.

747 \def\FN@sweeptopmarks{\global\setbox\FN@topmarkbox\vbox{%

748 \def\@elt##1{\marks##1{\unexpanded\expandafter{\topmarks##1}}}%

749 \FN@allmarks0}}

750 \newbox\FN@topmarkbox

\FN@establishmarks This sets marks from a marks sweep. The first argument is the mark number,
the second is from the first mark on the first scan, the third argument from the
bottom mark on the first scan, and the fourth argument from the bottom mark
on the second scan (with additional mark entries). If second and third arguments
don’t match, no mark gets placed.

751 \long\def\FN@establishmarks#1#2{\edef\reserved@a{\unexpanded{#2}}%

752 \edef\reserved@b{\unexpanded\expandafter{\splitbotmarks#1}}%

753 \ifx\reserved@a\reserved@b

754 \marks#1{\unexpanded\expandafter{\splitfirstmarks#1}}%

755 \marks#1{\unexpanded\expandafter{\reserved@b}}%

756 \fi}

\FN@markspassone This constitutes the first pass for mark collection. We do this just to check whether
there are any marks in the list.

757 \def\FN@markspassone#1{\noexpand\FN@establishmarks{#1}%

758 {\unexpanded\expandafter{\splitbotmarks#1}}}

30

\FN@insertmarks This routine transfers first and bottom marks from the current \box255 to the
vertical list in order to get the marks right. This is quite a bother, since we must
detect the special case where there are no marks at all in the list, and since we
might require the use of several \vsplit commands in a row, since infinite stretch
might make the optimal breakpoint lie before the end of the box in spite of its
large size.

So we need to do the splitting in a loop, and do it twice, once with artificial
marks at the start. If those artificial marks make it to \splitbotmarks, we don’t
place any actual marks.

759 \def\FN@pseudomarks#1{\marks#1{X}}

760 \def\FN@insertmarks{%

761 {\setbox\z@\copy\@cclv

762 \splittopskip-\maxdimen\relax

763 \vbadness=\@M

764 \vfuzz=\maxdimen

765 \loop

766 \ifvoid\z@\else

767 {\let\@elt\FN@pseudomarks

768 \setbox\z@\vbox{\FN@allmarks0\nobreak\unvcopy\z@}%

769 \setbox\z@\vsplit\z@ to\maxdimen}%

770 \let\@elt\FN@markspassone

771 \edef\next{\FN@allmarks0}%

772 \setbox\z@\vbox{\nobreak\unvbox\z@}%

773 {\setbox\z@\vsplit\z@ to\maxdimen}%

774 \next

775 \repeat}}

Some stuff

\FootnoteMainMinimum This specifies the minimum amount of main text. You can make this a complicated
expression if you want to, for example by checking the presence of particular
footnotes.

776 \def\FootnoteMinimum{1sp}

777 \def\FootnoteMainMinimum{0pt}

778 \expandafter\def\csname\string\FootnoteMinimum\number\FN@savebox

779 \endcsname{\FootnoteMainMinimum}

The output routine itself This is our own output routine that does all the
balancing stuff. If we receive a forced penalty here, we must not do any of our
output processing on our own unless this is the choice of the underlying output
routine. We do want to have the ‘real’ output routine to have a correct idea
about the size that the insertions will take up. So the steps that we will actually
perform in any case are sorting the insertions and calculating their real size. If we
have not had a forced penalty, we are free to exit the output routine for gathering
further material as there are no expections of the underlying output routine when
it should get called. If we encountered a forced penalty, things are getting more
complicated. If the current page happens to be overfull after adding the current

31

material, we first need to ship out the material for a regular page (after splitting
off the necessary material for the next page). We then reinsert the remaining split
insertions, any possibly split off page material and the penalty.

TEX is rather monotonous in its page break processing. Increase the available
page size, and the available page material will also increase. There is a singular
exception to that rule, and that are split and floating insertions. However, we
notice their presence by a non-zero setting of \insertpenalties, and we can
just measure the material that they have taken up in a forced pass of the output
routine, adding that much to our request size. However, this operation will change
the penalties associated with the page breaks.

Unfortunately, this is not sufficient: the penalty might have been inserted
with a box immediately preceding it. In that case the penalty would have been
guaranteed to eventually turn up in the output routine. If we now reinsert merely
all of the above stuff, the penalty will just disappear. If we protect the penalty
by placing an empty box before it when none of it had been before it before, we
will get an empty page. Since we don’t know whether the penalty was supposed
to disappear at the start of an empty page or not, we will do the following: if the
rest of \box255 is nonvoid, we just reinsert the split insertions followed by the rest
of and the penalty and return. If it is void, we call the regular output routine,
capturing its output in a \vbox of its own. If the regular output routine failed
to ship out the prepared insertions, we just keep the original data either in their
boxes or in a reinserted insertion.

It hides the relevant information from the ‘real’ output routine until such a
time that we have enough material gathered to produce a full page. The exception
to this is when we have a special penalty that gets passed through to the regular
output routine.

If we are on a material collecting spree, \FN@savebox contains all boxes from
the last output call time. At the point where we enter the output routine,
\FN@vsize contains the amount of space available for mounting footnotes, af-
ter subtracting all insertions of footnote variety. At most times in our output
routine, the variable will contain the amount of space left after everything is put
to the page including footnotes.

780 \savingvdiscards=\@ne

We have the following situations that can cause us to enter the output routine:

1. The page has just filled up.

2. A magic output penalty has been encountered.

3. We are filling up a previously underfull page.

4. We are looking for missing insertions that may have floated.

We are trying to do bookkeeping on the effects of page size for insertions that
fall into the footnote class. While we do basic bookkeeping for other insertions as
well, this can only be incomplete since we don’t reinsert material. In consequence,
multiple material ending up in the same insertion might cause the correspond-

32

ing skip register to be accounted for several times. LATEX does not really reuse
insertions in that manner except for footnotes, so we are mostly ok here.

bigfoot usually does some lookahead in the main list in order to obtain optimal
breakpoints. It explicitly undoes the effect this has on marks, but insertions are
a different matter here. So floats may appear on an earlier page than expected.

If the output routine is invoked with a penalty of −13750, then the page content
is merely used for setting the \topmarks array. In that case, we just clear out
the output box and resume. We don’t fiddle with \deadcycles in order to catch
foulups.

Also we don’t touch insertion boxes. There is a particular situation where
there are insertions, namely if we are collecting insertions after the last output
routine has ended up with a non-zero value of \insertpenalties. In this case,
all insertions we do get are floating insertions, meaning that they had a preceding
insertion of the same class already on the last page, and thus we have zeroed its
skip register already. We are assuming that a single pass with such a large \vsize

is sufficient for pulling all insertions. If that happens to be incorrect, insertions
need to get pulled in piecewise, but then we are probably in big dodo with regard
to page size accounting, anyway.

781 \newcount\FN@outputflag

782 \FN@outputflag=3158345

783 \output{%

784 \let\@elt\relax

785 \ifvoid\@cclv \PackageError{bigfoot}{Empty box 255 in \output}\fi

786 〈trace〉 \if\foottrace8%

787 〈trace〉 \message{entering output with

788 〈trace〉 \outputpenalty=\the\outputpenalty:}%

789 〈trace〉 {\showboxdepth4\showboxbreadth\maxdimen\showbox\@cclv}\fi

790 \ifnum\outputpenalty=-13750

791 〈trace〉 \if\foottrace8%

792 〈trace〉 \message{Discarding box 255.}%

793 〈trace〉 \fi

794 \ifnum\insertpenalties>\z@

795 \PackageError{bigfoot}{Too much insertion material}{%

796 This error means that the output routine was not able to^^J%

797 gather all floating insertions in a single pass.^^J%

798 Complain to the author if you consider this a bug}%

799 \fi

800 \global\advance\FN@outervsize\dimexpr\ht\@cclv-\vsize

801 \global\setbox\@cclv\box\voidb@x

802 \else

Note that a potential \FN@vsadjustlist will restore the previous value of
\outputpenalty. So we need to save it.

803 \edef\FN@outputpenalty{\number\outputpenalty}%

804 \ifvoid\FN@savebox

805 \ifvoid\@holdpg

806 \FN@sweeptopmarks

807 \fi

33

808 \FN@nest@iterate{\FN@insertouterspace\global\FN@outervsize

809 \dimexpr\z@}%

810 \global\advance\FN@outervsize\ht\@cclv

811 \global\setbox\@cclv\vbox{\unvbox\@cclv\boxmaxdepth\maxdepth}%

812 \global\let\FN@vsadjustlist\@empty

\FN@outervsize now contains the value of \pagegoal at the time of out-
put. It should be \vsize adjusted by the natural size of insertions. Note
that \FN@normaloutput is not required to return with a sensible value of
\outputpenalty.

813 \FN@normaloutput

814 \else

We now are in the situation that we already have collected material previously.
We can’t be sure that adding a special penalty does not take more than one
output routine call before delivery. For that reason, we don’t rely on special
outputs being special and always subtract any additionally demanded \vspace

from \FN@outervsize before calling a special output, so that we can afterwards
compensate for it.

815 \FN@nest@iterate{\FN@insertouterspace\global\advance\FN@outervsize

816 \dimexpr\ht\@cclv}%

817 \global\setbox\@cclv\vbox{\unvbox\@cclv\boxmaxdepth\maxdepth}%

Now we invalidate the cache boxes for all insertions that had changed due to the
recent additions to the page (this does not affect \FN@vsize).

818 \FN@nest@iterate\FN@maybeinvalidatecache

We now update all boxes by inserting the previously collected material in front of
the boxes.

819 \vskip\z@skip

820 \unvbox\FN@savebox

821 \loop

822 \count@\lastpenalty

823 \ifnum\count@>\z@

824 \unpenalty

825 \setbox\z@\lastbox

826 \global\setbox\count@\vbox{\unvbox\z@\unvbox\count@}%

827 \repeat

828 \ifcase

829 \ifnum\FN@outputpenalty=-13749 \@ne\fi

830 \ifnum\FN@outputpenalty=-13751 \@ne\fi \tw@

831 \or

\outputpenalty is restored to the original value before the total page is glued
together.

832 \FN@vsadjustlist

833 〈trace〉 \if\foottrace8\message{receiving special penalty

834 〈trace〉 \FN@outputpenalty, dissing box 255:}%

835 〈trace〉 {\showboxdepth4 \showboxbreadth400

836 〈trace〉 \tracingonline=\@ne\showbox\@cclv}\fi

34

This special penalty means that we have been collecting floated insertions right
now. So \box255 is actually empty except for filler material. We restore the old
box into it.

837 \global\setbox\@cclv\lastbox

838 \unskip

839 〈trace〉 \ifnum\lastnodetype>\m@ne

840 〈trace〉 \errmessage{Unexpected node \number\lastnodetype}\fi

841 \ifnum\FN@outputpenalty=-13749

842 \FN@normaloutput

843 \else

844 \the\FN@output

845 \@pageht-\vsize

846 \let\@currbox\footins

847 \@reinserts

848 \global\vsize-\@pageht

849 \fi

850 \else

851 \dimen@\topskip

852 \FN@vsadjustlist

853 \setbox\z@\lastbox

854 \unskip

855 〈trace〉 \ifnum\lastnodetype>\m@ne

856 〈trace〉 \errmessage{Unexpected node \number\lastnodetype}\fi

Ok, now we reconstruct the box from its parts. We add the material together,
taking the previous output penalty and the current page discards (if it belongs
between those boxes, otherwise we leave it on the list) for glueing the stuff together.
The previous output penalty then is irrelevant for further purposes and we replace
it again. \FN@outervsize has been adjusted by the accumulated contributions of
insertions to the page size. Fiddling with it would not appear necessary or even
prudent.

857 〈trace〉\if\foottrace8
858 〈trace〉 \message{Box 255 before reglue

859 〈trace〉 (outputpenalty=\the\outputpenalty):}%

860 〈trace〉 {\showboxdepth4\showboxbreadth100\showbox\@cclv}\fi

861 \global\setbox\@cclv\vbox{%

Now we might have had a \topskip value designed for requesting a given number
of lines. We need to remove anything of that kind. Splitting again achieves that.
If the current page was empty except for insertions, this means that we gain a
new breakpoint. But insertions with discardable material before them would be
unusual.

The only exception to this may happen if the current page contained only
insertions: in this case TEX has made a page break before the actually inserted
\topskip glue (which will then arrive one page later).

Note that the pagediscards contain material corresponding to the last break-
point chosen, so they will either start with a penalty of 10000 (which is what an
actual outputpenalty gets replaced with) or will start with discardable material.
We clean it for that reason.

35

862 \unvbox\z@

863 \global\setbox\@cclv\vbox{\break\unvbox\@cclv}%

864 {\splittopskip-\maxdimen \setbox\z@\vsplit\@cclv to\z@}

865 \ifnum\outputpenalty=\@M

866 \setbox\z@\vbox{\pagediscards

867 \FN@cleanpagepenalty}%

868 \unvbox\z@

869 \else

870 \penalty\outputpenalty

871 \pagediscards

872 \fi

873 \unvbox\@cclv

874 \boxmaxdepth\maxdepth}%

875 〈trace〉\if\foottrace8
876 〈trace〉 \message{Box 255 reglued (outputpenalty=\FN@outputpenalty):}%

877 〈trace〉 {\showboxdepth4\showboxbreadth100\showbox\@cclv}\fi

878 \global\outputpenalty\FN@outputpenalty\relax

Ok, now if \topskip is actually positive, we have been collecting material ten-
tatively without having proper marks. We then need to fill in the marks into
the list and try again. Note that we are not reinserting anything in order to
compensate for \outputpenalty being replaced by a nobreak: this is the job of
\FN@normaloutput when it decides to place material back on the page. That is:
when code is written that will make use of pagediscards, it has to cater for their
proper structure.

879 \ifdim\dimen@>\z@

880 〈trace〉 \if\foottrace8

881 〈trace〉 \message{recycling special penalty}

882 〈trace〉 \fi

883 \hrule\@height\z@\@depth\z@

884 \unvcopy\FN@topmarkbox

885 \penalty-13750

886 \penalty\FN@outputflag

887 \hrule\@height\z@\@depth\z@

888 \FN@insertmarks

889 \penalty-13749

890 \penalty\FN@outputflag

891 \FN@prepareoutput

892 \global\topskip-\maxdimen

893 \global\vsize0.5\maxdimen

894 \global\advance\FN@outervsize-\vsize

895 \else

896 \FN@normaloutput

897 \fi

898 \fi

899 \fi

900 \fi}

\FN@normaloutput This is the normal output routine we use. Now we have recovered a sensible state
and glued everything together that has been necessary. All insertion parame-

36

ters are at their standard values, and any insertions have been collected in the
respective boxes.

901 \def\FN@normaloutput{%

902 〈trace〉 \if\foottrace8\message{^^JEntering \string\FN@normaloutput:^^J}\fi

\FN@vsize is now being set to the vertical size taken up by the insertions, ac-
cording to TEX. Note that this does not include flexibility. This much amount
of space gets available on the current page if we remove all insertions. This fig-
ures into \FN@vsize as a positive quantity since the insertion size was taken from
\pagegoal, and we reconstitute it in this manner.

903 \global\FN@vsize\FN@outervsize

904 \global\advance\FN@vsize-\ht\@cclv\relax\relax

Now we sort the inserts and regenerate the cache.

905 \FN@nest@iterate\FN@sortinsert

906 \FN@nest@iterate\FN@clearcache

907 \xdef\FN@config{\@elt{\number0\botmarks\FN@slave}%

908 {\number\maxdimen}}%

909 〈trace〉 \if\foottrace8%

910 〈trace〉 \message{\noexpand\FN@normaloutput start config: \FN@config^^J}%

911 〈trace〉 \fi

912 \FN@nest@iterate\FN@reconfig

Note that \FN@reconfig subtracts the actual size of all insertions (after para-
graphs have been combined and too early insertions moved to the next page) and
also subtracts the flexible glues associated with the insertions’ skip registers, so
this flexibility is typically negative. Since the cache registers have been explic-
itly cleared, \FN@reconfig starts from the state where indeed no insertions are
present.

913 \ifcase

914 \ifnum\insertpenalties>\z@ \@ne\fi

If we have floating insertions, we need to catch up with them. This is done in
case 1 which just places an immediate penalty and recurses.

Now here are a few cases that are only checked when we don’t have a special
penalty:

915 \ifnum\outputpenalty>-\@M

The first case is if the page is underfull. We need more material then.

916 \ifdim\FN@vsize>-\gluestretch\FN@vsize \tw@ \fi

Second case is when there is not enough vertical minimum material.

917 \ifdim\FootnoteMainMinimum>\ht\@cclv \tw@ \fi

918 \fi

Case 3 means page is overfull. If there are no missing insertions, try to split.

919 \ifdim\FN@vsize<\glueshrink\FN@vsize \thr@@ \fi

page has appropriate size or we have special penalty. If we have come here not the
first time, we might have arrived at a non-optimal break. So we attempt a split.

920 \ifx\FN@vsadjustlist\@empty \else \thr@@\fi\z@

37

Ok, now we get the default case in our big routine: case 0. We just pass the result
onto the output routine.

921 {\vbadness\@M

922 \vfuzz\maxdimen

923 \global\setbox\@cclv\vbox

924 spread\FN@vsize{\unvbox\@cclv\boxmaxdepth\maxdepth}}%

925 \the\FN@output

926 \let\@currbox\footins

927 \@pageht-\vsize

928 \@reinserts

929 \global\vsize-\@pageht

930 \FN@nest@iterate\FN@clearcache

931 \or

Case 1: We just pull in remaining insertions and are done. Note that the special
penalty here will get turned into an explicit nobreak. So if we have no record of
an actual outputpenalty, we need to insert an artificial penalty of 0 here.

932 \FN@restartoutput

933 \penalty -13749

934 \penalty \FN@outputflag

935 \or

Case 2: Now we want to gather additional material. This is somewhat weird. We
first gather our material with a ‘normal’ setting of topskip, and then we’ll have
another go at the material using proper marks. We can’t actually insert anything
right now in order not to introduce a premature breakpoint.

936 \dimen@=\dimexpr\FN@vsize-\glueshrink\FN@vsize\relax

937 \FN@prepareoutput

938 \global\topskip \normalbaselineskip

939 \global\vsize \dimen@

940 \global\advance\FN@outervsize-\vsize

941 \global\deadcycles\z@

942 \else

This is case 3: Fake our output box into something looking like a cache box and
do the optimal split routine. The output cache box has a few deficiencies: its
inner box is not depth-extended to some default measurement. That means that
where page size calculations are involved, one needs to disregard its actual depth
and instead use \maxdepth. This is somewhat awkward and prone to problems.
One alternative might be to mark the box as split, extend its depth in the split
part and let it be followed by nothing as lower part of the split. But we still would
need to account for the missing depth at the end.

943 \edef\FN@masterid{\number\maxdimen}%

944 \def\FN@masterslot{-1}%

945 \global\setbox\@cclv\vbox{\box\@cclv}%

946 \xdef\FN@config{\noexpand\@elt{\number0\botmarks\FN@slave}%

947 {\number\maxdimen}}%

948 〈trace〉 \ifvoid\FN@savebox \else \PackageError{bigfoot}{\FN@savebox

949 〈trace〉 \space should be void!}{}\fi

950 \global\setbox\FN@savebox\vbox{}%

38

951 \gdef\FN@penalties{0}%

952 \edef\FN@defaultpenalty{\ifnum\outputpenalty<\@M

953 \number\outputpenalty

954 \else

955 0\fi}%

956 \let\@elt\FN@newlevel

957 \@elt{}\FN@savebox\FN@nestlist\FN@mainsplitreturn

958 \let\@elt\relax

959 〈trace〉 \if\foottrace8{\showboxdepth4\showboxbreadth100\showbox\@cclv}\fi

960 \global\setbox\FN@savebox\box\voidb@x

961 {%

962 \vbadness\@M

963 \vfuzz\maxdimen

964 \global\setbox\@cclv\vbox spread\FN@vsize{%

965 \unvbox\@cclv

966 \ifnum\lastpenalty>\z@

967 \unpenalty

968 \global\setbox\FN@tempbox\lastbox

969 \else

970 \global\setbox\FN@tempbox\box\voidb@x

971 \fi

972 \setbox\z@\lastbox

Now if a split has been done, \box\FN@tempbox contains the lower part of the
split. In either case, \box\z@ contains the upper part of the split (in a prepared
form with the splitdiscards in a box of their own). This may be void if there is no
main text but only footnotes. If we have carryover material, we add the current
outputpenalty there and set outputpenalty to a value indicating that we have no
outputpenalty to add at the end of the current list.

973 \ifvoid\z@

974 \ifvbox\FN@tempbox

975 \ifnum\outputpenalty<\@M

976 % The output penalty originally from below the split box gets appended

977 % to the end of the split box.

978 \global\setbox\FN@tempbox{\unvbox\FN@tempbox

979 \penalty\outputpenalty}%

980 \fi

981 \global\outputpenalty=\@M

982 \fi

983 \else

Ok, we have material to go to the next page. We unpack it and fish out the
break penalty from the last box. After checking it, put it in box 0. A prospective
current break penalty gets appended to the carryover material. The fished-out
break penalty becomes the new value of outputpenalty.

984 \MFL@removevboxes

985 \unvbox\z@

986 \edef\FN@defaultpenalty{\number\@M}%

987 \FN@getbreakpenalty

988 \setbox\z@\lastbox

39

989 \global\setbox\FN@tempbox\vbox\bgroup\unvbox\z@

990 \unvbox\FN@tempbox

991 \ifnum\lastnodetype<\z@

992 \egroup\global\setbox\FN@tempbox\box\voidb@x

993 \else

994 \ifnum\outputpenalty<\@M

995 \penalty\outputpenalty

996 \fi

997 \egroup

998 \global\outputpenalty\FN@breakpenalty

999 \fi

1000 \fi

1001 \boxmaxdepth\maxdepth}%

1002 }%

1003 \setbox\z@\box\FN@tempbox

1004 \let\@elt\relax

Ok, now we have in box 255 the split off stuff for the current output routine, and
in box 0 stuff that is going to follow afterwards. If box 0 is not void, we were not
able to make use of all of box 255. There is a slight probability that by taking
even more material from the main list, we might get a better result (by being able
to move footnote material to the next page instead), but we don’t make use of
this possibility here. In general, we assume that if box 0 is nonvoid, we take the
resulting split. Otherwise, if the page appears underfull, we pull in more material.
If the page is not underfull, we can pass it to the output routine. If box 0 is void,
the break was chosen at the ultimate end of the vertical list. If it was not a forced
break, and if it is not an overfull case already, we pull in more material in order
to avoid widows in the main text.

1005 \dimen@=\dimexpr\FN@vsize-\glueshrink\FN@vsize\relax

1006 \ifcase

1007 \ifvoid\z@ \ifnum\outputpenalty>-\@M

1008 \ifdim\dimen@<\z@ \else \@ne \fi

1009 \fi

1010 \else \thr@@

1011 \fi

1012 \ifdim\ht\@cclv<\normalbaselineskip \@ne\fi

1013 \ifdim\dimen@<\normalbaselineskip \tw@\fi \@ne

1014 \or

1015 \FN@prepareoutput

1016 \global\topskip \normalbaselineskip

1017 \ifdim\dimen@<\normalbaselineskip \dimen@=2\baselineskip\fi

1018 \global\vsize \dimen@

1019 \global\advance\FN@outervsize-\vsize

1020 \global\deadcycles\z@

1021 \or

1022 〈trace〉 \if\foottrace8%

1023 〈trace〉 \message{^^JOutput: config is \FN@config...}\fi

1024 \setbox\tw@\vbox{%

1025 \the\FN@output

40

1026 〈trace〉 \if\foottrace8%

1027 〈trace〉 \ifnum\lastnodetype=\m@ne

1028 〈trace〉 \message{^^JOutput: end without carryover^^J}%

1029 〈trace〉 \else

1030 〈trace〉 \message{^^JOutput: end with carryover}}%

1031 〈trace〉 {\showboxdepth5 \showboxbreadth400

1032 〈trace〉 \tracingonline=\@ne\showbox\tw@

1033 〈trace〉 \fi

1034 〈trace〉 \fi

1035 }%

1036 \unvbox\tw@

1037 \unvbox\z@

1038 \let\@currbox\footins

1039 \@pageht-\vsize

1040 \@reinserts

1041 \global\vsize-\@pageht

1042 \FN@nest@iterate\FN@clearcache

1043 \or

1044 \FN@restartoutput

1045 \penalty -13751

1046 \penalty\FN@outputflag

1047 \unvbox\z@

1048 \ifnum\outputpenalty>\@M

1049 \else \penalty

1050 \ifnum\outputpenalty=\@M \z@ \else\outputpenalty\fi

1051 \fi

1052 \fi

1053 \fi

1054 〈trace〉 \if\foottrace8\message{^^JExiting \string\FN@normaloutput^^J}\fi

1055 }

\FN@prepareoutput This is a preparation for gathering more material. First sweep up all the infor-
mation about \vsize, \topskip and \outputpenalty. After that, record the
insertion skip parameter of all insertions that have already been started, and re-
set them to zero so that no additional space gets reserved for them in case more
material accumulates. We don’t reset \topskip here since the amount of newly
requested material will typically be in total lines, and \topskip might be the
only way to figure out the proper request size. If the current depth and following
height would make for a non-standard line distance, we might have a problem
here. There is no obvious way to avoid it, though.

1056 \def\FN@prepareoutput{%

1057 {\let\@elt\FN@recordinsertparam

1058 \xdef\FN@vsadjustlist{%

1059 \global\vsize=\the\vsize

1060 \global\topskip=\the\topskip

1061 \global\outputpenalty=\the\outputpenalty\relax

1062 \FN@list}%

1063 \let\@elt\FN@clearinsertparam

1064 \FN@list}%

41

Now we collect all boxes in the save box.

1065 〈trace〉 \ifvoid\FN@savebox \else \PackageError{bigfoot}{\FN@savebox

1066 〈trace〉 \space should be void in \string\FN@prepareoutput}{}\fi

1067 \global\setbox\FN@savebox\vbox{%

1068 \box\@cclv

1069 \FN@list@iterate\FN@sweepbox}}

\FN@restartoutput This is for the case where we are requesting additional material and have to cater
for sizes.

1070 \def\FN@restartoutput{%

Calculate the remaining size on this page:

1071 \dimen@=\dimexpr\FN@vsize-\glueshrink\FN@vsize\relax

We just pull in remaining insertions and are done.

1072 〈trace〉 \if\foottrace8\message{sending special penalty}\fi

1073 \hrule\@height\z@\@depth\z@

1074 \unvcopy\FN@topmarkbox

1075 \penalty -13750

1076 \penalty\FN@outputflag

1077 \hrule\@height\z@\@depth\z@

1078 \FN@insertmarks

1079 \FN@prepareoutput

1080 \global\topskip-\maxdimen\relax

1081 \global\vsize 0.5\maxdimen

1082 \global\advance\FN@outervsize-\vsize

1083 \global\deadcycles\z@

1084 }

Ok, here is the deal. If the \FN@truevsize is negative, we have an overfull vbox
at our hand. We then start the splitting action. We take the first non-split lowest
footnote block and split it to size, removing subordinate footnotes that we would
not be able to maintain. We do this recursively starting by the top footnote block.
It must be noted that it would be even better to start with the highest-numbered
footnote (which corresponds to the latest finished footnote in logical order, that
in the source code), but then we get the problem that we might have to remove
boxes from a footnote block that has already been split, and that is troublesome
(to put it mildly) in case where the footnote block is set in paragraph mode. It’s
bad enough backtracking in a fixed order across footnote blocks, going back and
forward would be pretty tough.

So our recursion just walks the footnote blocks once top to bottom, splitting
and removing boxes that are not needed. When we recurse, we have a dichotomy
between current overfull and underfull boxes. At each recursion level, we enter with
an overfull configuration that establishes the breakable section for the footnote
block in question.

Suppose that we have already established a previous best configuration. When
we are recursing, we can only increase the badness (a non-broken insertion box
contributes nothing to the overall badness or penalties, breaking the box causes a
badness of 10000, minus the break penalty, plus the break badness). So there is no

42

point in recursing if entry badness and break penalty are as large as the previous
best break penalty or more.

Ok, so we construct the footnote block and try splitting it to size. If this
gives us a good underfull version, we return that (and break out of recursion
altogether). Otherwise we remember the underfull version before the break and
recurse on the overfull version. If this returns an overfull version again, we return
the underfull version before the break. If it returns an underfull version, we fill
up the underfull version as much as possible without a change of configuration,
then select the best of the last underfull and this as new local underfull. We
then take the first overfull combination (even allowing a change of configuration),
throw away the previous split in the next recursion level and recurse on the now
thoroughly overfull combination again.

When recursion tops out, we compare the current overfull with the previous
one and record the best. We prefer keeping an older overfull, all other things being
equal.

Ok, so what are the data structures we maintain when going through all this
folderol?

We let the insertion boxes themselves remain untouched: that makes it only
a bit more complicated to maintain and access the relevant boxes, but it might
come handy at one time when somebody wants to implement recursion that is not
strictly top-to-bottom.

Instead we return the relevant information in the cache boxes. The total size
of the cache boxes may not correspond to their actual contents: in case a split box
intended for the next page is stored within them, its height is deducted from the
total height of the cache box (and, consequentially, from \FN@vsize).

\FN@vsize, the amount of free space on the current page, is only updated when
changing levels of recursion. Instead we maintain score of the accumulated size in
the current insertion in \FN@myvsize.

What about the penalties and badness we collect? An unsplit footnote block
carries a penalty of 0 (so we need not take into account unsplit footnote blocks at
all during our bookkeeping, as they are neutral), a split footnote block is prepe-
nalized with a penalty of 10000, plus the badness of the split, plus any penalties
associated with the split (limited to the [−10000 . . . 10000] range). This means
that no operation on other footnote blocks can lower an already accumulated
score. This in turn means that we can prune any operations leading to a worse
score than the preceding best score without having to actually recurse.

This strategy will usually buy us a minimum number of split footnotes (since
the penalty of 10000 is not easy to compensate) and corresponds rather closely to
TEX’s own idea of footnote splitting.

The following routine will analyze the last box where the results from
\splitdiscards are stored and return the penalty associated with the breakpoint
in the macro \FN@breakpenalty.

\FN@getbreakpenalty

1085 \def\FN@getbreakpenalty{{\setbox\z@\lastbox

1086 \nointerlineskip\copy\z@

43

1087 \setbox\z@

1088 \vbox{\unvbox\z@

1089 \count@\@M

1090 \FN@getbreakpenaltyii

1091 \xdef\FN@tempinfo{\edef\noexpand\FN@breakpenalty{%

1092 \number\ifnum\count@=\@M \FN@defaultpenalty \else \count@\fi

1093 }}}}%

1094 \FN@tempinfo}

1095

1096 \def\FN@getbreakpenaltyii{%

1097 \ifcase

1098 \ifnum\lastnodetype<\z@ \m@ne\fi

1099 \ifnum\lastnodetype<11 \@ne\fi

1100 \ifnum\lastnodetype>13 \@ne\fi

1101 \numexpr\lastnodetype-9\relax

1102 \or

1103 \PackageError{bigfoot}{Illegal node type}{This can’t happen}%

1104 \or

1105 \count@\z@ \unskip \expandafter\FN@getbreakpenaltyii

1106 \or

1107 \count@\z@ \unkern \expandafter\FN@getbreakpenaltyii

1108 \or

1109 \count@\lastpenalty

1110 \unpenalty \expandafter\FN@getbreakpenaltyii

1111 \fi}

\FN@cleanpagepenalty This is used for removing initial infinite penalties from the pagediscards: those
are artifacts of the page break routine.

1112 \def\FN@cleanpagepenalty{%

1113 \ifcase

1114 \ifnum\lastnodetype<\z@ \m@ne\fi

1115 \ifnum\lastnodetype<11 \@ne\fi

1116 \ifnum\lastnodetype>13 \@ne\fi

1117 \numexpr\lastnodetype-9\relax

1118 \or

1119 \PackageError{bigfoot}{Illegal node type}{This can’t happen}%

1120 \or

1121 \skip@=\lastskip \unskip

1122 \expandafter \FN@cleanpagepenalty \expandafter\vskip\the

1123 \expandafter\skip@

1124 \or

1125 \dimen@=\lastkern \unkern

1126 \expandafter \FN@cleanpagepenalty \expandafter\kern\the

1127 \expandafter\dimen@

1128 \or

1129 \count@\lastpenalty \unpenalty

1130 \ifnum\count@=\FN@outputflag

1131 \unpenalty\expandafter\expandafter\expandafter\FN@cleanpagepenalty

1132 \else

1133 \expandafter\FN@cleanpagepenalty\expandafter

44

1134 \penalty\the\expandafter\expandafter\expandafter\count@

1135 \fi

1136 \fi

1137 \relax}

\FN@mainsplitreturn This is merely an argument delimiting control sequence to make it possible to
figure out which recursion levels still need visiting.

1138 \def\FN@mainsplitreturn{}

\FN@myvsize This is the size currently taken by this insertion.

1139 \newdimen\FN@myvsize

\bigfoottolerance This specifies what footnote arrangement penalty will be accepted without looking
for a better solution.

1140 \newcount\bigfoottolerance

1141 \bigfoottolerance=100

\FN@getbadness This takes a skip value of remaining space and negative stretchability and shrink-
ability, and then calculates \badness depending on how good the stretching ac-
commodates the remaining space.

1142 \def\FN@getbadness#1{%

1143 {\hfuzz\maxdimen\hbadness\@M\setbox\z@\hbox to\z@{\hskip-#1}}}

\FN@newlevel This is the main workhorse of bigfoot. It splits a particular footnote level, re-
cursing if necessary. The level list is delimited with \FN@mainsplitreturn. The
whole thing is looped through while the splits are being optimized. While re-
cursing, \FN@penalties contains the accumulated penalities of the current split
configuration: a penalty of 10000 for any split (except the main list), plus the
penalty at the split points plus a ‘hangover’ badness for the percentage of mate-
rial carried over to the following pages. If nothing is carried over, this is 0, if more
is carried over, we get a penalty according to the proportion of carryover material,
raised to the third power.

\footnotecarryratio The fractional variable \footnotecarryratio is used for scaling the leftover ma-
terial dimensions. After scaling with \footnotecarryratio, the carried material
is treated like missing material in a glue calculation, while the stretchability for
this calculation is given by the total size of material before breaking. So with
a setting of 1, there should always be enough stretchability, causing at most a
penalty of 100. That’s not very effective, so we scale this up.

The default value of 2 seems to provide a reasonable penalty for leftover mate-
rial. The actual purpose for this component of the scoring is to penalize footnote
blocks that seem to carry over disproportionally much material to later pages.

1144 \providecommand\footnotecarryratio{2}

\FN@ebadness is an augmented value, but also counting in the stretch badness for
one particular configuration. Ebadness does not make sense to evaluate more than
temporarily: it is not passed through the levels. Since \FN@penalties is globally
tampered with, its value at entry is saved in \FN@entrypenalties. Whenever

45

we recurse or return, \FN@vsize contains the full information about the available
space on the page, even though locally we use \FN@myvsize, a local value, to
keep track of the locally reserved space. The only time when we need to save
\FN@myvsize should be when we temporarily leave boxes in order to save the
current configuration.

1145 \def\FN@newlevel#1#2#3\FN@mainsplitreturn{%

1146 \count@\FN@cache#2%

1147 \ifvoid\count@

1148 〈trace〉 \if\foottrace1\message{Page=\thepage #2 is empty, recursing with

1149 〈trace〉 \the\FN@vsize^^J}%

1150 〈trace〉 \message{Config=\unexpanded\expandafter{\FN@config}^^J}\fi

1151 #3\FN@mainsplitreturn

1152 〈trace〉 \if\foottrace1%

1153 〈trace〉 \message{Page=\thepage #2 was empty,

1154 〈trace〉 returning with \the\FN@vsize^^J}%

1155 〈trace〉 \message{Config=\unexpanded\expandafter{\FN@config}^^J}\fi

1156 \else

1157 〈trace〉 \if\foottrace1\message{Entering #2 with \FN@penalties,

1158 〈trace〉 \FN@vsize=\the\FN@vsize,^^J%

1159 〈trace〉 Config=\unexpanded\expandafter{\FN@config}^^J}\fi

1160 {\def\FN@currentinsertion{#2}%

1161 \def\FN@currentrecursion{#3}%

1162 \let\FN@entryconfig\FN@config

1163 \let\FN@entrypenalties\FN@penalties

1164 \splittopskip\csname FN@ht\number#2\endcsname\relax

1165 \splitmaxdepth\csname FN@dp\number#2\endcsname\relax

1166 \hsize\csname FN@wd\number#2\endcsname\relax

1167 \vbadness=\@M

1168 \vfuzz\maxdimen

1169 \let\@elt\relax

1170 \expandafter\FN@newleveli\expandafter}%

1171 〈trace〉 \if\foottrace1\message{Exiting #2 with \FN@penalties,

1172 〈trace〉 \FN@vsize=\the\FN@vsize,^^J%

1173 〈trace〉 Config=\unexpanded\expandafter{\FN@config}^^J}\fi

1174 \fi}

\FN@newleveli

1175 \def\FN@newleveli{%

\FN@vsize already includes the size of the complete unsplit insertion. When we
recurse, it has to reflect the correct size at the time of recursion. Rounding error
problems don’t permit us to accumulate any sizes in \FN@vsize from processing
our current insertion, so we just subtract the whole insertion-related content. We’ll
add stuff into it when recursing.

1176 \dimen@\dimexpr\ht\count@

1177 \ifnum\FN@currentinsertion=\FN@savebox

1178 +\maxdepth

1179 \else

1180 +\dp\count@

46

1181 \fi\relax

1182 \global\advance\FN@vsize\dimexpr \dimen@

1183 *\count\FN@currentinsertion/\@m\relax\relax

Ok, now we are typesetting and collecting the best box. Notice that we don’t
exit this \setbox command until we have found the best possible split. What we
\unvbox here, stays dormant except for the last box. When we collect configu-
rations from cache boxes, we don’t collect anything from our current box that is
being assembled. So the whole action is confined within the current list that will
replace the cache box after splitting. The meaning of boxes on the various levels
are:

0 box0: where stuff gets collected as tentative material to be unboxed with
\FN@removevboxes once the insertion gets readied for shipout

0 box2: the previous best split that was found
1 box0: the material that gets worked off, the tail of the split
1 box2: where the current split is assigned

The structure of 0/box2 is the head of the split, followed by \break penalty,
followed by the tail of the split, followed by \penalty\FN@tempbox, followed by
pairs of cache boxes and penalties indicating their box number. That way, the tail
can get restored immediately into \FN@tempbox when using \FN@restoreboxes.

1184 \global\setbox\count@\vbox\bgroup\unvbox\count@

We calculate \FN@myvsize as the total space taken up by this insertion. The size
of the last box is excluded since it will be split now.

1185 \ifnum\lastpenalty=\z@

1186 \setbox\tw@\box\voidb@x

1187 \setbox\z@\lastbox

1188 \FN@myvsize=\ifnum\lastnodetype<\z@

1189 \z@

1190 \else

1191 \dimexpr\dimen@-\ht\z@-\dp\z@\relax

1192 \fi

1193 \else

Now if the box has been split previously, we glue it back together again. Since
the lower part of the split has been subtracted from the total in \dimen@, we need
to put it back into the equation here. \dimen@ contains the size of the box after
padding split material has been added.

1194 〈trace〉 \if\foottrace1\message{Regluing box 2}\fi

1195 \unpenalty

1196 \setbox\tw@\lastbox

1197 \setbox\z@\lastbox

1198 \FN@myvsize=\dimexpr\dimen@-\ht\z@-\dp\z@\relax

1199 \dimen@\dp\z@

1200 \setbox\z@{\unvbox\z@

1201 \setbox\z@\lastbox

1202 \unvbox\z@

1203 \unvbox\tw@}%

1204 \ht\z@=\dimexpr\ht\z@+\dp\z@-\dimen@\relax

47

1205 \dp\z@\dimen@

1206 \fi

Ok, size is all accounted for. Go on with optimization. Note that these defini-
tions here are made in inner level, so they can’t make it outside as the result of
the optimization. If we drop out of here without superceding them, something’s
completely rotten.

1207 \edef\FN@bestcost{\number\maxdimen}%

1208 \let\FN@bestbadness\FN@bestcost

1209 \let\FN@bestconfig\@undefined

1210 \def\FN@bestvsize{-\maxdimen}%

1211 \let\FN@splitcolors\@empty

Ok, first attempt. One interesting feature is that we will never have to rewind the
boxes from a split: we can always just glue the box together again. And apart
from tentative splits which we might revert if they cause a configuration change,
we will not have to bother about contributing too much. What we put in the box
here can stay.

First we split to the remaining size. Since we still have all subordinate footnotes
considered fully, we need at least this split size (in case of a configuration change,
we will need more). After having done the initial split, we continue splitting until
we get the necessary mark of the last footnote into our grasp: we can’t split before
that.

1212 \ifnum\FN@currentinsertion=\FN@savebox

1213 \else

1214 \edef\FN@defaultpenalty{\number-\@M}%

1215 \edef\FN@masterslot{\number\dp\z@}%

1216 \edef\FN@masterid{\FN@slotget\FN@masterslot}%

1217 \fi

Now we are building one tentative candidate for returning in \box\z@. It will
get discarded in case that a better candidate was already found before this box
completes.

1218 \setbox\z@

1219 \vbox\bgroup

Ok, now stuff gets complicated: for the first, tentatively ‘optimal’ split, we want
to have all available page stretchability properly taken into account. So we take
the box, and add the available page stretchability at the top. Note that the
stretchability is registered negatively. If we are on the main vertical list, an empty
page can be an acceptable option, so we add a penalty of zero to account for that.
Note that any prospective true penalties will already have disappeared into the
page break.

1220 \let\FN@splitcolors\@empty

1221 \setbox\z@\vbox{\vskip-\glueexpr(\FN@vsize-\dimexpr\FN@vsize

1222 \relax\@minus\glueshrink\FN@vsize)%

1223 *\@m/\count\FN@currentinsertion

1224 \penalty\z@

1225 \unvbox\z@

1226 \ifnum\FN@defaultpenalty>-\@M

48

1227 \penalty\FN@defaultpenalty\relax\nointerlineskip

1228 \vbox to\maxdimen{}%

1229 \fi}%

Ok, now we have pushed the additional available stretch onto the top of box 0.
Now we do the actual split to minimal size. That means that we don’t consider
any of the shrinkability available on the page: it might still be better employed in
some recursive level.

1230 \setbox\tw@\vsplit\z@ to%

1231 \dimexpr\FN@vsize*\@m/\count\FN@currentinsertion

1232 -\FN@myvsize-\splitmaxdepth

1233 \relax

1234 \ifnum\FN@defaultpenalty>-\@M

1235 \setbox\z@\vbox\bgroup\unvbox\z@\setbox\z@\lastbox

1236 \unskip

1237 \unpenalty

1238 \ifnum\lastnodetype<\z@

1239 \egroup \setbox\z@\box\voidb@x

1240 \else

1241 \egroup

1242 \fi

1243 \fi

Ok, now the top of box 2 contains unwanted additional stretchability. The easiest
way to get rid of it is by adding its negation.

1244 \setbox\tw@\vbox{%

1245 \vskip\glueexpr(\FN@vsize-\dimexpr\FN@vsize

1246 \relax\@minus\glueshrink\FN@vsize)%

1247 *\@m/\count\FN@currentinsertion

1248 \unvbox\tw@\boxmaxdepth\splitmaxdepth}%

Ok, now rinse and repeat if we haven’t reached the last footnote in the block.

1249 \ifnum\FN@currentinsertion=\FN@savebox

1250 \edef\FN@slaveid{\splitbotmarks\FN@slave}%

1251 \FN@contribute@tw@

1252 \else

1253 \ifnum0\splitbotmarks\FN@master=\FN@masterslot \else

1254 \loop

1255 \FN@contribute@tw@

1256 \setbox\tw@\vsplit\z@ to\z@

1257 \ifnum0\splitbotmarks\FN@master=\FN@masterslot

1258 \else

1259 \repeat

1260 \fi

1261 \let\FN@splitcolors\@empty

1262 \edef\FN@slaveid{\splitbotmarks\FN@slave}%

1263 \FN@contribute@tw@

1264 \fi

All of the above was necessary to ensure that we actually have the beginning of the
relevant footnote in our material. From now on, we are dealing with legal splits.

49

Ok, now we have to check whether the subordinate configuration has changed.

1265 \ifx\FN@slaveid\@empty

1266 〈trace〉 \ifnum\FN@currentinsertion=\FN@savebox\else

1267 〈trace〉 \errmessage{Missing slaveid in \FN@currentinsertion}\fi

1268 \edef\FN@slaveid{\number0\topmarks\FN@slave}%

1269 \fi

1270 \ifnum\numexpr\FN@slaveid+\@ne<\FN@masterid

1271 \let\FN@next\FN@slaveid

1272 \else

1273 \let\FN@next\@empty

1274 \fi

At this point of time, we have \FN@masterid set properly for our purposes. It
is to be used for returning any tail part of a box. \FN@slaveid is by necessity
not empty. If any footnote has had its mark broken off, its id must be in the
open range between \FN@slaveid and \FN@masterid. So a nonempty value of
\FN@next at this point of time indicates that we have to cater for a different
configuration rather than the currently cached one.

1275 \FN@splitfurther}

\FN@vsizerecurse This fixes the vertical size up and recurses once.

1276 \def\FN@vsizerecurse{%

1277 \global\advance\FN@vsize

1278 -\dimexpr\FN@myvsize*\count\FN@currentinsertion/\@m \relax\relax

1279 \let\@elt\FN@newlevel

1280 \FN@currentrecursion\FN@mainsplitreturn

1281 \let\@elt\relax

1282 \global\advance\FN@vsize

1283 \dimexpr\FN@myvsize*\count\FN@currentinsertion/\@m \relax\relax}

1.5.1 Main label for reconsideration

When we are here, then there is not yet a split in the next footnote blocks sched-
uled. We might have to restitch stuff together here, though.

\FN@splitfurther

1284 \def\FN@splitfurther{%

1285 \ifx\FN@next\@empty \else \let \FN@slaveid\FN@next \fi

Ok, if our configuration now differs from the last one for which we have cache boxes
set up, we have to reconfigure. It it doesn’t, we just stitch the boxes together again
in order to have correct size info.

1286 \let\FN@next\FN@config

1287 \xdef\FN@config{%

1288 \@elt{\FN@slaveid}%

1289 {\FN@masterid}%

1290 \FN@entryconfig}%

1291 \ifx\FN@next\FN@config

1292 \let\@elt\FN@rejoin

50

1293 \else

1294 \let\@elt\FN@reconfig

1295 \fi

1296 \FN@currentrecursion

1297 \let\@elt\relax

Ok, now we check whether the current configuration is a match for the best pre-
vious one. Also we calculate the badness of the current situation.

1298 \xdef\FN@penalties{\number\FN@entrypenalties}%

1299 \FN@checkcurrent

No point in recursing if we can’t beat the current best one. However, if we find a
forced break, this is considered perfect as long as we are not overfull. Note that
recursion can only increase the badness if we are still underfull here, so there is
no point in using \FN@penalties as the deciding factor of whether there may be
a point in recursing: the current ebadness (which is never less than the badness)
already is minimal.

1300 \ifnum

1301 \ifdim\skip@>\z@ \FN@ebadness \else \FN@penalties \fi

1302 >\FN@bestcost\relax

1303 〈trace〉 \if\foottrace1%

1304 〈trace〉 \message{no recursion: \skip@=\the\skip@,

1305 〈trace〉 \noexpand\FN@bestvsize=\FN@bestvsize,

1306 〈trace〉 \noexpand\FN@ebadness=\FN@ebadness,

1307 〈trace〉 \noexpand\FN@penalties=\FN@penalties,

1308 〈trace〉 \noexpand\FN@bestcost=\FN@bestcost.}\fi

1309 \else

1310 〈trace〉 \if\foottrace1%

1311 〈trace〉 \message{before recursion: \skip@=\the\skip@,

1312 〈trace〉 \noexpand\FN@bestvsize=\FN@bestvsize,

1313 〈trace〉 \noexpand\FN@ebadness=\FN@ebadness,

1314 〈trace〉 \noexpand\FN@penalties=\FN@penalties,

1315 〈trace〉 \noexpand\FN@bestcost=\FN@bestcost.^^J

1316 〈trace〉 recurse with \noexpand\FN@penalties=\number\FN@entrypenalties.}\fi

1317 \xdef\FN@penalties{\number\FN@entrypenalties}%

1318 \FN@vsizerecurse

1319 \FN@checkcurrent

1320 〈trace〉 \if\foottrace1%

1321 〈trace〉 \message{after recursion: \skip@=\the\skip@,

1322 〈trace〉 \noexpand\FN@bestvsize=\FN@bestvsize,

1323 〈trace〉 \noexpand\FN@ebadness=\FN@ebadness,

1324 〈trace〉 \noexpand\FN@penalties=\FN@penalties,

1325 〈trace〉 \noexpand\FN@bestcost=\FN@bestcost.}\fi

1326 \fi

Don’t look further if we had a forced break or are overfull or are at the end of the
list.

1327 \ifcase

1328 \ifnum\FN@breakpenalty>-\@M \else \@ne \fi

1329 \ifvoid\z@ \@ne \fi

51

1330 \ifnum\badness<\@MM \else \@ne \fi

1331 \tw@

1332 \or

1333 \expandafter \FN@returnbest

1334 \else

1335 \FN@mayberecordbest

1336 \setbox\tw@\vsplit\z@ to\z@

1337 \edef\FN@next{\splitbotmarks\FN@slave}%

1338 \FN@contribute@tw@

1339 \expandafter \FN@splitfurther

1340 \fi}

\FN@checkcurrent Check out the badness of the current configuration. The last box on the list is the
material constituting the discardable material after a split.

1341 \def\FN@checkcurrent{%

1342 \FN@getbreakpenalty

1343 \ifnum\FN@breakpenalty<-\@M

1344 \edef\FN@breakpenalty{\number-\@M}%

1345 \fi

1346 \ifnum\FN@currentinsertion=\FN@savebox

1347 \else

1348 \ifdim\FN@specific\FN@currentinsertion\footnotecarryratio\p@>\z@

1349 \skip@

1350 \ifdim\FN@specific\FN@currentinsertion\footnotecarryratio\p@>\p@

1351 \dimexpr\ht\z@+\dp\z@\relax

1352 \@plus-\dimexpr((\FN@myvsize+\ht\z@+\dp\z@)

1353 *\p@/\dimexpr

1354 \FN@specific\FN@currentinsertion

1355 \footnotecarryratio\p@)\relax

1356 \else

1357 \FN@specific\FN@currentinsertion

1358 \footnotecarryratio

1359 \dimexpr\ht\z@+\dp\z@\relax

1360 \@plus-\dimexpr\FN@myvsize+\ht\z@+\dp\z@\relax

1361 \fi

1362 \relax

1363 \FN@getbadness\skip@

1364 \xdef\FN@penalties{\number\numexpr\FN@penalties+\badness}%

1365 \fi

1366 \fi

1367 \skip@\glueexpr\FN@vsize-\FN@myvsize

1368 *\count\FN@currentinsertion/\@m\relax

1369 \FN@getbadness\skip@

1370 \xdef\FN@penalties{\number\numexpr\FN@penalties+%

1371 \FN@breakpenalty+\@M}%

1372 \ifnum\badness>\@M

1373 \edef\FN@ebadness{\number\numexpr\maxdimen-\@ne}%

1374 \else

1375 \ifnum\badness=\@M

1376 \ifdim\skip@<\vsize

52

1377 \edef\FN@ebadness{\number\numexpr\maxdimen-\tw@}%

1378 \else

1379 \edef\FN@ebadness{\number\numexpr\maxdimen}%

1380 \fi

1381 \else

1382 \edef\FN@ebadness{\number\numexpr

1383 \FN@penalties+\badness

1384 \ifdim\FN@specific\FN@currentinsertion\FootnoteMinimum>\FN@myvsize

1385 1000000

1386 \fi

1387 }%

1388 \fi

1389 \fi

1390 \dimen@\glueexpr\FN@bestvsize\relax

1391 }

\FN@checkforbest This generates 2 if the old stored best is better, 1 if the current variation is better.

1392 \def\FN@checkforbest{%

1393 \ifnum\FN@breakpenalty>-\@M \else

1394 \ifnum\badness>\@M \else

1395 \@ne

1396 \fi

1397 \fi

Ok, so the split was not as good as to cause us to return immediately, and it
also was not the last opportunity for a split (which again would make us return
immediately). So we check if it is at least better than the last one, in which case
we need to replace the previous best.

1398 \ifnum\FN@bestcost>\FN@ebadness \@ne\fi

1399 \ifnum\FN@bestcost<\FN@ebadness \tw@\fi

1400 \ifdim\skip@<\z@

1401 \ifdim\dimen@<\skip@ \@ne \fi \tw@

1402 \fi

1403 \ifdim\dimen@>\skip@ \@ne\fi \tw@}

\FN@mayberecordbest This checks whether the current configuration is better than a previously saved
one. If it is, the previous configuration gets replaced. The cache boxes itself are
copied, not voided in the process for efficiency reasons.

1404 \def\FN@mayberecordbest{%

If the current break is forced and the page is not overfull, we take the break.

1405 \ifcase

1406 \FN@checkforbest

1407 \or

1408 \xdef\FN@tempinfo{\def\noexpand\FN@bestvsize{\the\skip@}%

1409 \def\noexpand\FN@bestcost{\FN@ebadness}%

1410 \def\noexpand\FN@bestbadness{\number\FN@penalties}%

1411 \def\noexpand\FN@bestconfig{\FN@config}%

1412 \def\noexpand\FN@bestslaveid{\FN@slaveid}%

1413 \def\noexpand\FN@bestsplitcolors{\FN@splitcolors}%

53

1414 \def\noexpand\FN@breakpenalty{\FN@breakpenalty}%

1415 \FN@myvsize=\the\FN@myvsize\relax}%

1416 \global\setbox\FN@tempbox\box\z@

1417 \egroup

1418 \FN@tempinfo

1419 \let\FN@splitcolors\FN@bestsplitcolors

1420 \let\FN@slaveid\FN@bestslaveid

Now all relevant info has been retrieved, and we collect the best box info in
\box\tw@. The structure of the information is as follows: it starts with the current
box in split form, first the tail, then the start of the current split box. This is then
followed by a zero kern, and then by pairs of boxes and penalties indicating the
swept box.

1421 \setbox\tw@\vbox{%

We don’t need to place master/slave marks here: the necessary information is
available outside in the \FN@masterslot and \FN@slaveid info and gets attached
afterwards.

1422 \copy\z@\break\nointerlineskip

1423 \copy\FN@tempbox\penalty\FN@tempbox

1424 \let\@elt\FN@copycachebox

1425 \FN@currentrecursion}%

1426 \setbox\z@

1427 \vbox\bgroup

1428 \unvbox\z@

1429 \setbox\z@\box\FN@tempbox

1430 \fi}

\FN@returnbest

1431 \def\FN@returnbest{%

1432 \ifcase\FN@checkforbest

1433 \or

1434 \xdef\FN@tempinfo{\def\noexpand\FN@bestvsize{\the\skip@}%

1435 \def\noexpand\FN@bestcost{\FN@ebadness}%

1436 \def\noexpand\FN@bestbadness{\number\FN@penalties}%

1437 \def\noexpand\FN@bestconfig{\FN@config}%

1438 \def\noexpand\FN@bestslaveid{\FN@slaveid}%

1439 \def\noexpand\FN@bestsplitcolors{\FN@splitcolors}%

1440 \def\noexpand\FN@breakpenalty{\FN@breakpenalty}%

1441 \FN@myvsize=\the\FN@myvsize\relax}%

1442 \global\setbox\FN@tempbox\box\z@

1443 \egroup

1444 \FN@tempinfo

1445 \let\FN@splitcolors\FN@bestsplitcolors

1446 \let\FN@slaveid\FN@bestslaveid

1447 \global\FN@vsize\FN@bestvsize\relax

Now all relevant info has been retrieved, and we collect the best box info in
\box\tw@. The structure of the information is as follows: it starts with the current
box in split form, first the tail, then the start of the current split box. This is then

54

followed by a zero kern, and then by pairs of boxes and penalties indicating the
swept box.

1448 \or

1449 \global\let\FN@config\FN@bestconfig

1450 \global\FN@vsize\FN@bestvsize

1451 \global\let\FN@penalties\FN@bestbadness

1452 \egroup

Restore the saved configuration.

1453 \setbox\z@\vbox{\unvbox\tw@ \FN@restoreboxes}%

1454 \let\FN@splitcolors\FN@bestsplitcolors

1455 \let\FN@slaveid\FN@bestslaveid

1456 \unvbox\z@

1457 \setbox\z@\lastbox

1458 \fi

1459 \ifnum\FN@currentinsertion=\FN@savebox

1460 \else

1461 \setbox\z@\vbox{%

1462 \prevdepth\dp\z@

1463 \unvbox\z@

1464 \ifvoid\FN@tempbox

1465 \else

1466 \global\setbox\FN@tempbox\vbox{%

1467 \marks\FN@master{\FN@masterslot}%

1468 \marks\FN@slave{\FN@slaveid}%

1469 \FN@coloraftersplit\FN@splitcolors

1470 \FN@specific\FN@currentinsertion\FN@afterbreak

1471 \nobreak

1472 \unvbox\FN@tempbox}%

1473 \FN@specific\FN@currentinsertion\FN@beforebreak

1474 \ht\FN@tempbox

1475 \dimexpr\ht\FN@tempbox+\dp\FN@tempbox-\FN@masterslot sp\relax

1476 \dp\FN@tempbox\FN@masterslot sp\relax

1477 \wd\FN@tempbox\maxdimen

1478 \fi

1479 \ifdim\prevdepth<\splitmaxdepth

1480 \hrule\@height-\prevdepth \@width\z@

1481 \@depth \splitmaxdepth \relax \fi}%

1482 \ht\z@=\dimexpr\ht\z@+\dp\z@-\FN@masterslot sp\relax

1483 \dp\z@=\FN@masterslot sp

1484 \fi

1485 \nointerlineskip \box\z@

If nothing is to be carried over, we just finish our assignment to the cache box and
return.

1486 \ifvoid\FN@tempbox \egroup

If not, we add the carried-over box to the list, flag it with a \nobreak, and
subtract its size from the finished box. Please note that the \expandafter chain
will expand just \cmd\dimen@, but everything following it will be evaluated only

55

after \egroup, thus using the new height of the box.

1487 \else

1488 \dimen@-\dimexpr\ht\FN@tempbox+\dp\FN@tempbox\relax

1489 \nointerlineskip\box\FN@tempbox

1490 \nobreak

1491 \expandafter\egroup

1492 \expandafter\ht\expandafter\count@\expandafter\dimexpr

1493 \the\dimen@+\ht\count@\relax

1494 \fi

1495 }

\FN@contribute@tw@ This will go from the state where we have the previous \splitdiscards struttified
on the current list some material split off from box 0 in box 2 to a state where
box 2 is contributed to the current list.

1496 \def\FN@contribute@tw@{%

First we change the current colors if we have any in our group. Not sure if this is
entirely correct.

1497 \begingroup\edef\FN@next{\splitbotmarks\FN@color}%

1498 \ifx\FN@next\@empty \endgroup\else \endgroup

1499 \edef\FN@splitcolors{\splitbotmarks\FN@color}\fi

If the last box is void, there is no previous split to reconstitute.

1500 \setbox4\lastbox

1501 \ifvoid4 \setbox4\vbox{\splitdiscards}%

1502 \setbox\tw@\vbox{\unvbox\tw@\boxmaxdepth\splitmaxdepth}%

1503 \else

Now the last box is a strut. We remove its outer dimensions from the total account,
and then add back its natural dimensions after which we pour it back into the
current list.

1504 \advance\FN@myvsize-\dimexpr\ht4+\dp4\relax

1505 \setbox4\vbox{\unvbox4}%

1506 \advance\FN@myvsize\dimexpr\ht4+\dp4\relax

1507 \unvbox4

We want to contribute box 2 back without any topskip glue, so we manually
remove any such glue by splitting an empty box off.

1508 \setbox4\vbox{\splitdiscards}%

1509 \setbox\tw@\vbox{\break\unvbox\tw@}%

1510 {\splittopskip-\maxdimen \setbox\tw@\vsplit\tw@ to\z@}%

Notice the effect of TEX’s special box scope rules: box 2 assigned just right now
will be affected by the split. The result of the split will be an empty box that will
temporarily overwrite box 2 within the group, but will be restored back to the
split result on exit. In this manner, any topskip glue will have disappeared. After
the split, box 2 is set to the natural depth and height of its contents.

We now add a sort of strut by putting all the discarded material inside of a
box that creates the proper size. If this split is taken, the box is adjusted to have
a full depth of \splitmaxdepth, and we take this into account.

56

1511 \fi

1512 \ht4-\dp\tw@

1513 \dp4\ifdim\dp\tw@<\splitmaxdepth \splitmaxdepth \else \dp\tw@ \fi

1514 \advance\FN@myvsize\dimexpr \ht\tw@+\dp4\relax

1515 \unvbox\tw@

1516 \nointerlineskip

1517 \box4 }

\FN@uncontribute@tw@ This is just the opposite: after a split, we revert its effects again.

1518 \def\FN@uncontribute@tw@{%

1519 \ifvoid\tw@ \else

1520 \setbox\tw@\vbox{\unvbox\tw@\splitdiscards}%

1521 \setbox\z@\vbox{\break\unvbox\z@}%

1522 {\splittopskip-\maxdimen \setbox\z@\vsplit\z@ to\z@}%

1523 \setbox\z@\vbox{\unvbox\tw@\unvbox\z@}\fi}

\FN@reconfig This reconfigures the insertion cache to contain only the boxes that belong to this
page. If the insertion box is empty, we can skip all the folderol. If it isn’t, we
empty the cache box (the number of which we place in \count@) and add its size
back to \FN@vsize.

1524 \def\FN@reconfig#1#2{\ifvoid#2%

1525 〈trace〉 \ifvoid\FN@cache#2\else

1526 〈trace〉 \errmessage{\FN@cache#2 should be void}\fi

1527 \else

1528 \count@\FN@cache#2%

1529 \ifvoid\count@\else

1530 \global\advance\FN@vsize

1531 \glueexpr(\ht\count@+\dp\count@)*\count#2/\@m+\skip#2\relax

1532 \global\setbox\count@ \box\voidb@x

1533 \fi

Ok, now we have emptied the cache and readjusted the size. We now fill the cache
by first copying the insertion into it.

1534 \global\setbox\count@\vbox\bgroup\vbox\bgroup\unvcopy#2%

1535 \let\@elt\FN@removecheck

1536 \FN@retainkept

Now if nothing was retained, we void the cachebox.

1537 \ifvoid\z@ \egroup\egroup \global\setbox\count@ \box\voidb@x

Otherwise, we combine all the boxes that remain on the page.

1538 \else \def\FN@masterinsert{#2}%

1539 \FN@assembleboxes\global\setbox\count@\box\z@\egroup

1540 \nointerlineskip\box\count@\egroup

Note that now all footnote boxes are collected into a single vbox, followed by the
last footnote box as another vbox. Now we just need to reduce the available size
on the page by the height of the assembled material:

1541 \global\advance\FN@vsize

1542 -\glueexpr(\ht\count@+\dp\count@)*\count#2/\@m+\skip#2\relax

1543 \fi\fi}

57

\FN@rejoin This glues together cache boxes that have been split, without regenerating them.
This saves a lot of time as compared to \FN@reconfig.

1544 \def\FN@rejoin#1#2{{%

1545 〈trace〉 \if\foottrace1\message{^^JRejoining #2}\fi

1546 \count@\FN@cache#2%

1547 \ifvoid\count@\else

1548 \global\advance\FN@vsize\dimexpr

1549 (\ht\count@+\dp\count@)*\count#2/\@m\relax

1550 \global\setbox\count@\vbox{%

1551 \unvbox\count@

1552 \ifnum\lastpenalty>\z@

1553 \unpenalty

1554 \setbox\tw@\lastbox

1555 \setbox\z@\lastbox

1556 \dimen@\dp\z@

1557 \setbox\z@\vbox{%

1558 \unvbox\z@

1559 \setbox\z@\lastbox

1560 \unvbox\z@

1561 \unvbox\tw@}%

1562 \ht\z@=\dimexpr\ht\z@+\dp\z@-\dimen@\relax

1563 \dp\z@=\dimen@

1564 \nointerlineskip

1565 \box\z@

1566 \fi}%

1567 \global\advance\FN@vsize-\dimexpr

1568 (\ht\count@+\dp\count@)*\count#2/\@m\relax

1569 \fi}}

\FN@retainkept This relies on \@elt being set to \FN@removecheck which expands to \@ne if \box0
is strictly between the two values from an entry of \FN@config, which means that
it is material that should get moved to the next page. In that case, we recurse
while dropping the box in question. Otherwise we keep it. Recursion bottoms out
when there are no boxes left. The function leaves the last retained box in box 0;
if there are no boxes to be retained, this will be void.

1570 \def\FN@retainkept{%

1571 \setbox\z@\lastbox

1572 \ifcase

1573 \ifvoid\z@\m@ne\fi \FN@config\z@

1574 〈trace〉 \if\foottrace8\message{^^J\string\FN@retainkept:

1575 〈trace〉 retaining Id \FN@slotget{\number\dp\z@}}\fi

1576 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

1577 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi

1578 {\FN@retainkept \nointerlineskip \box\z@}%

1579 \or

1580 〈trace〉 \if\foottrace8\message{^^J\string\FN@retainkept:

1581 〈trace〉 dropping Id \FN@slotget{\number\dp\z@}}\fi

1582 〈trace〉 \if\foottrace{16}{\showboxdepth4 \showboxbreadth400

1583 〈trace〉 \tracingonline=\@ne\showbox\z@}\fi

58

1584 \FN@retainkept

1585 〈trace〉 \else

1586 〈trace〉 \ifnum\lastnodetype>\m@ne

1587 〈trace〉 \errmessage{Unexpected node \number\lastnodetype}\fi

1588 \fi}

Well, as the last measure, we change the output routine to our new routine.

1589 \let\output\FN@output

Ok, here is debugging code intercepting all calls of the regular output routine and
reporting its entry and exit states.

1590 〈trace〉 \newtoks\FN@tr@output

1591 〈trace〉 \FN@tr@output\output

1592 〈trace〉 \output{\if\foottrace8{%

1593 〈trace〉 \setbox\z@\vbox{%

1594 〈trace〉 \message{Calling regular output with

1595 〈trace〉 \outputpenalty=\the\outputpenalty, box255 as}%

1596 〈trace〉 \showbox\@cclv

1597 〈trace〉 \the\FN@tr@output

1598 〈trace〉 \message{Returning from regular output with

1599 〈trace〉 \ifnum\lastnodetype<\z@

1600 〈trace〉 empty vertical list.\else vlist:}}%

1601 〈trace〉 \showbox\z@

1602 〈trace〉 \unvbox\z@{{\fi}}}\else\the\FN@tr@output\fi}

1603 〈trace〉 \let\output\FN@tr@output

If the footnote type “default” has not been declared by the time the document
starts, we do so at the start of the document. Unfortunately, by this time the
initialization code in manyfoot’s own \AtBeginDocument hook has already run,
so we manually run the initialization hook just for the command we inserted
ourselves.

1604 \def\FN@maybestart#1#2#3{\ifx#3\relax

1605 \csname MFL@start#1\endcsname{#2}\fi#3}

1606 \@onlypreamble\FN@maybestart

1607 \AtBeginDocument{\@ifundefined{footinsdefault}%

1608 {\newfootnote[plain]{default}%

1609 {\let\@elt\FN@maybestart

1610 \MFL@list\relax}

1611 }{}%

And since LaTeX’s macros are inferior to our own (and would probably not match
too well), we reroot them to the default footnote style.

1612 \def\@footnotetext{\Footnotetextdefault{}}

1613 \def\p@footnotedefault{\p@footnote}

1614 }

1615 〈/style〉

59

2 Various driver files

The installer, in case it is missing. If it is to be used via make, we don’t specify
an installation path, since

make install

is supposed to cater for the installation itself.

1616 〈installer〉 \input docstrip

1617 〈installer &make〉 \askforoverwritefalse \nopreamble

1618 〈installer〉 \generate{

1619 〈installer〉 \file{bigfoot.drv}{\from{bigfoot.dtx}{driver}}

1620 〈installer〉 \file{perpage.drv}{\from{perpage.dtx}{driver}}

1621 〈installer〉 \file{suffix.drv}{\from{suffix.dtx}{driver}}

1622 〈installer&!make〉 \usedir{tex/latex/bigfoot}

1623 〈installer〉 \file{bigfoot.sty}{\from{bigfoot.dtx}{style}}

1624 〈installer〉 \file{perpage.sty}{\from{perpage.dtx}{style}}

1625 〈installer〉 \file{suffix.sty}{\from{suffix.dtx}{style}}

1626 〈installer〉 }

1627 〈installer〉 \endbatchfile

60

	The implementation
	Startup code
	Fixes to the manyfoot package
	Dealing with footnote-specific code
	Putting footnotes into insertions
	Dealing with Ids
	Dealing with footnote stacks
	Continuation marks
	The works

	The output routine stuff
	Main label for reconsideration

	Various driver files

