
The extension package curve2e
Claudio Beccari

Version number v.1.42; last revised 2015/06/06.

Contents
Abstract

This file documents the curve2e extension package to the recent imple-
mentation of the pict2e bundle that has been described by Lamport himself
in the second edition of his LATEX handbook.

Please take notice that in April 2011 a new updated version of the pack-
age pict2e has been released that incorporates some of the commands de-
fined in this package; apparently there are no conflicts, but only the advanced
features of curve2e remain available for extending the above package. More-
over the xetex.def driver was introduced so that certain commands previ-
ously defined in this extension not only become unnecessary, but also would
produce errors when the program is used under XeLaTeX. Therefore these
commands were either eliminated or corrected.

This extension redefines a couple of commands and introduces some more
drawing facilities that allow to draw circular arcs and arbitrary curves with
the minimum of user intervention. This beta version is open to the con-
tribution of other users as well as it may be incorporated in other people’s
packages. Please cite the original author and the chain of contributors.

1 Package pict2e and this extension curve2e
Package pict2e was announced in issue 15 of latexnews around December 2003;
it was declared that the new package would replace the dummy one that has been
accompanying every release of LATEX 2ε since its beginnings in 1994. The dummy
package was just issuing an info message that simply announced the temporary
unavailability of the real package.

Eventually Gäßlein and Niepraschk implemented what Lamport himself had
already documented in the second edition of his LATEX handbook, that is a LATEX
package that contained the macros capable of removing all the limitations con-
tained in the standard commands of the original picture environment; specifi-
cally:

1. the line and vector slopes were limited to the ratios of relatively prime one-
digit integers of magnitude not exceeding 6 for lines and 4 for vectors;

1



2. filled and unfilled full circles were limited by the necessarily limited number
of specific glyphs contained in the special LATEX picture fonts;

3. quarter circles were also limited in their radii for the same reason;

4. ovals (rectangles with rounded corners) could not be too small because of
the unavailability of small radius quarter circles, nor could be too large, in
the sense that after a certain radius the rounded corners remained the same
and would not increase proportionally to the oval size.

5. vector arrows had only one possible shape and matched the limited number
of vector slopes;

6. for circles and inclined lines and vectors just two possible thicknesses were
available.

The package pict2e removes most if not all the above limitations:

1. line and vector slopes are virtually unlimited; the only remaining limitation
is that the direction coefficients must be three-digit integer numbers; they
need not be relatively prime; with the 2009 upgrade even this limitation
was removed and now slope coefficients can be any fractional number whose
magnitude does not exceed 16 384, the maximum dimension in points that
TEX can handle;

2. filled and unfilled circles can be of any size;

3. ovals can be designed with any specified corner curvature and there is vir-
tually no limitation to such curvatures; of course corner radii should not
exceed half the lower value between the base and the height of the oval;

4. there are two shapes for the arrow tips; the triangular one traditional with
LATEX vectors, or the arrow tip with PostScript style.

5. the \linethickness command changes the thickness of all lines, straight,
curved, vertical, horizontal, arrow tipped, et cetera.

This specific extension adds the following features

1. commands for setting the line terminations are introduced; the user can
chose between square or rounded caps; the default is set to rounded caps
(now available also with pict2e);

2. commands for specifying the way two lines or curves join to one nanother;

3. the \line macro is redefined so as to allow integer and fractional direction
coefficients, but maintaining the same syntax as in the original picture
environment (now available also with pict2e);

2



4. a new macro \Line was defined so as to avoid the need to specify the hor-
izontal projection of inclined lines (now available also with pict2e); this
conflicts with pict2e 2009 version; therefore its name is changed to \LIne
and supposedly it will not be used very often, if ever used;

5. a new macro \LINE was defined in order to join two points specified with
their coordinates; this is now the normal behavior of the \Line macro of
pict2e so that \LINE is now renamed \segment; of course there is no need
to use the \put command with this line specification;

6. a new macro \DLine is defined in order to draw dashed lines joining any
two given points; the dash length and gap (equal to one another) must be
specified;

7. similar macros are redefined for vectors; \vector redefines the original macro
but with the vector slope limitations removed; \Vector gets specified with its
two horizontal and vertical components; \VECTOR joins two specified points
(without using the \put command) with the arrow pointing to the second
point;

8. a new macro \polyline for drawing polygonal lines is defined that accepts
from two vertices up to an arbitrary (reasonably limited) number of them
(available now also in pict2e); here if is redefined so as to allow an optional
specification of the way segments fo the polyline are join to one another.;

9. a new macro \Arc is defined in order to draw an arc with arbitrary radius
and arbitrary angle amplitude; this amplitude is specified in sexagesimal
degrees, not in radians; the same functionality is now achieved with the
\arc macro of pict2e, which provides also the strar version \arc* that fills
up the interior of the generated circular arc. It must be noticed that the
syntax is slighltly different, so that it’s reasonable that both commands, in
spite of producing identical arcs, might be more comfortable with this or
that syntax.

10. two new macros are defined in order to draw circular arcs with one arrow at
one or both ends;

11. a new macro \Curve is defined so as to draw arbitrary curved lines by means
of third order Bézier splines; the \Curve macro requires only the curve nodes
and the direction of the tangents at each node.

In order to make the necessary calculations many macros have been defined so
as to use complex number arithmetics to manipulate point coordinates, directions
(directional versors), rotations and the like. The trigonometric functions have
also been defined in a way that the author believes to be more efficient than that
implied by the trig package; in any case the macro names are sufficiently different
to accommodate both definitions in the same LATEX run.

Many aspects of this extension could be fine tuned for better performance;
many new commands could be defined in order to further extend this extension.

3



If the new service macros are accepted by other TEX and LATEX programmers, this
beta version could become the start for a real extension of the pict2e package
or even become a part of it. Actually some macros have already been included
in the pict2e package. Actually the \Curve algorithm might be redefined so
as to use the macros introduced in the hobby package, that implements for the
typesetting engines the same functionalities that John Hobby wrote for META-
FONT and METAPOST programs.

For this reason I suppose that every enhancement should be submitted to
Gäßlein and Niepraschk who are the prime maintainers of pict2e; they only can
decide whether or not to incorporate new macros in their package.

2 Summary of modifications and new commands
This package curve2e extends the power of pict2e with the following modifica-
tions and the following new commands.

1. This package curve2e calls directly the LATEX packages color and pict2e
to whom it passes any possible option that the latter can receive; actually
the only options that make sense are those concerning the arrow tips, either
LATEX or PostScript styled, because it is assumed that if you use this package
you are not interested in using the original LATEX commands. See the pict2e
documentation in order to use the correct options pict2e can receive.

2. The user is offered new commands in order to control the line terminators
and the line joins; specifically:

• \roundcap: the line is terminated with a semicircle;
• \squarecap: the line is terminated with a half square;
• \roundjoin: two lines are joined with a rounded join;
• \beveljoin: two lines are joined with a bevel join;
• \miterjoin: two lines are joined with a miter join.

All the above commands should respect the intended range; but since they
act at the PostScript or PDF level, not at TEX level, it might be necessary
to issue the necessary command in order to restore the previous terminator
or join.

3. The commands \linethickness, \thicklines, \thinlines together with
\defaultlinethickness always redefine the internal \@wholewidth and
\@halfwidth so that the latter always refer to a full width and to a half
of it in this way: if you issue the command \defaultlinewidth{2pt} all
thin lines will be drawn with a thickeness of 1 pt while if a drawing com-
mand directly refers to the internal value \@wholewidth, its line will be
drawn with a thickness of 2 pt. If one issues the declaration \thinlines
all lines will be drawn with a 1 pt width, but if a command refers to the
internal value \@halfwidth the line will be drawn with a thickness of 0.5 pt.

4



The command \linethickness redefines the above internals but does not
change the default width value; all these width specifications apply to all
lines, straight ones, curved ones, circles, ovals, vectors, dashed, et cetera.
It’s better to recall that thinlines and thicklines are declarations that
do not take arguments; on the opposite the other two commands follow the
standard syntax:

\linethickness{〈dimensioned value〉}
\defaultlinewidth{〈dimensioned value〉}

where 〈dimensioned value〉 means a length specification complete of its units
or a dimensional expression.

4. Straight lines and vectors are redefined in such a way that fractional slope
coefficients may be specified; the zero length line does not produce errors
and is ignored; the zero length vectors draw only the arrow tips.

5. New line and vector macros are defined that avoid the necessity of specifying
the horizontal component \put(3,4){\LIne(25,15)} specifies a segment
that starts at point (3, 4) and goes to point (3 + 25, 4 + 15); the command
\segment(3,4)(28,19) achieves the same result without the need of the
using command \put. The same applies to the vector commands \Vector
and \VECTOR. Experience has shown that the commands intended to joint
two specified coordinates are particularly useful.

6. The \polyline command has been introduced: it accepts an unlimited list
of point coordinates enclosed within round parentheses; the command draws
a sequence of connected segments that joins in sequence the specified points;
the syntax is:

\polyline[{〈optional join style〉}](〈P1〉)( 〈P2〉)...(〈Pn〉)

See figure ?? where a pentagon is designed..

\unitlength=.5mm
\begin{picture}(40,32)(-20,0)
\polyline(0,0)(19.0211,13,8197)(11.7557,36.1803)%
(-11.7557,36.1803)(-19.0211,13,8197)(0,0)
\end{picture}

Figure 1: Polygonal line obtained by means of the \polyline command

Although you can draw polygons with \polyline, as it was done in figure ??,
do not confuse this command with the command \polygon defined in pict2e
2009; the latter automatically joins the last specified coordinate to the first
one with a straight line, therefore closing the path. pict2e defines also the
starred command that fills up the inside of the generated polygon.

7. The new command

5



\Dline(first point)(second point)(dash length)

draws a dashed line containing as many dashes as possible, long as specified,
and separated by a gap exactly the same size; actually, in order to make an
even gap-dash sequence, the desired dash length is used to do some com-
putations in order to find a suitable length, close to the one specified, such
that the distance of the end points is evenly divided in equally sized dashes
and gaps. The end points may be anywhere in the drawing area, without
any constraint on the slope of the joining segment. The desired dash length
is specified as a fractional multiple of \unitlength; see figure ??.

\unitlength.5mm
\begin{picture}(40,40)
\put(0,0){\GraphGrid(40,40)}
\Dline(0,0)(40,10){4}
\put(0,0){\circle*{2}}
\Dline(40,10)(0,25){4}
\put(40,10){\circle*{2}}
\Dline(0,25)(20,40){4}
\put(0,25){\circle*{2}}
\put(20,40){\circle*{2}}
\end{picture}

Figure 2: Dashed lines and graph grid

8. \GraphGrid is a command that draws a red grid over the drawing area
with lines separated 10\unitlengths; it is described only with a comma
separated couple of numbers, representing the base and the height of the
grid, see figure ??; it’s better to specify multiples of ten and the grid can be
placed anywhere in the drawing plane by means of \put, whose coordinates
are multiples of 10; nevertheless the grid line distance is rounded to the
nearest multiple of 10, while the point coordinates specified to \put are not
rounded at all; therefore some care should be used to place the working grid
in the drawing plane. This grid is intended as an aid in drawing; even if you
sketch your drawing on millimetre paper, the drawing grid turns out to be
very useful; one must only delete or comment out the command when the
drawing is finished.

9. New trigonometric function macros have been implemented; possibly they
are not better than the corresponding macros of the trig package, but they
are supposed to be more accurate at least they were intended to be so. The
other difference is that angles are specified in sexagesimal degrees (360◦ to
one revolution), so that reduction to the fundamental quadrant is supposed
to be more accurate; the tangent of odd multiples of 90◦ are approximated
with a “TEX infinity”, that is the signed value 16383.99999. This will possibly
produce computational errors in the subsequent calculations, but at least
it does not stop the tangent computation. In order to avoid overflows or

6



\unitlength=0.5mm
\begin{picture}(60,40)
\put(0,0){\GraphGrid(60,40)}
\Arc(0,20)(30,0){60}
\VECTOR(0,20)(30,0)\VECTOR(0,20)(32.5,36)
\VectorArc(0,20)(15,10){60}
\put(20,20){\makebox(0,0)[l]{$60ˆ\circ$}}
\VectorARC(60,20)(60,0){-180}
\end{picture}

60◦

Figure 3: Arcs and curved vectors

underflows in the computation of small angles (reduced to the first quadrant),
the sine and the tangent of angles smaller than 1◦ are approximated by the
first term of the McLaurin series, while for the cosine the approximation is
given by the first two terms of the McLaurin series. In both cases theoretical
errors are smaller than what TEX arithmetics can handle.
These trigonometric functions are used within the complex number macros;
but if the user wants to use them the syntax is the following:

\SinOf〈angle〉to〈control sequence〉
\CosOf〈angle〉to〈control sequence〉
\TanOf〈angle〉to〈control sequence〉

The 〈control sequence〉 may then be used as a multiplying factor of a length.

10. Arcs can be drawn as simple circular arcs, or with one or two arrows at their
ends (curved vectors); the syntax is:

\Arc(〈center〉)(〈starting point〉){〈angle〉}
\VectorArc(〈center〉)(〈starting point〉){〈angle〉}
\VectorARC(〈center〉)(〈starting point〉){〈angle〉}

If the angle is specified numerically it must be enclosed in braces, while
if it is specified with a control sequence the braces (curly brackets) are not
necessary. The above macro \Arc draws a simple circular arc without arrows;
\VectorArc draws an arc with an arrow tip at the ending point; \VectorARC
draws an arc with arrow tips at both ends; see figure ??.

11. A multitude of commands have been defined in order to manage complex
numbers; actually complex numbers are represented as a comma separated
pair of fractional numbers. They are used to address to specific points in
the drawing plane, but also as operators so as to scale and rotate other
objects. In the following 〈vector〉means a comma separated pair of fractional
numbers, 〈vector macro〉 means a macro the contains a comma separated
pair of fractional numbers; 〈angle macro〉 means a macro that contains the
angle of a vector in sexagesimal degrees; 〈argument〉 means a brace delimited

7



numeric value, possibly a macro; macro is a valid macro name, that is a
backslash followed by letters, or anything else that can receive a definition.
A ‘direction’ of a vector is its versor; the angle of a vector is the angle
between the vector and the positive x axis, generally directly used in the
Euler formula ~v = Mejϕ.

• \MakeVectorFrom〈two arguments〉to〈vector macro〉
• \CopyVect〈first vector〉to〈second vector macro〉
• \ModOfVect〈vector〉to〈macro〉
• \DirOfvect〈vector〉to〈versor macro〉
• \ModAndDirOfVect〈vector〉to〈1st macro〉and〈2nd macro〉
• \DistanceAndDirOfVect〈first vector〉minus〈second vector〉to〈1st macro〉and〈2nd macro〉
• \XpartOfVect〈vector〉to〈macro〉
• \YpartOfVect〈vector〉to〈macro〉
• \DirFromAngle〈angle〉to〈versor macro〉
• \ArgOfVect〈vector〉to〈angle macro〉
• \ScaleVect〈vector〉by〈scaling factor〉to〈vector macro〉
• \ConjVect〈vector〉to〈conjugate vector macro〉
• \SubVect〈first vector〉from〈second vector〉to〈vector macro〉
• \AddVect〈first vector〉and〈second vector〉to〈vector macro〉
• \MultVect〈first vector〉by〈second vector〉to〈vector macro〉
• \MultVect〈first vector〉by*〈second vector〉to〈vector macro〉
• \DivVect〈first vector〉by〈second vector〉to〈vector macro〉

12. General curves can be drawn with the pict2e macro \curve but it requires
the specification of the Bézier third order spline control points; sometimes
it’s better to be very specific with the control points and there is no other
means to do a decent graph; sometimes the curves to be drawn are not
so tricky and a general set of macros can be defined so as to compute the
control points, while letting the user specify only the nodes through which
the curve must pass, and the tangent direction of the curve in such nodes.
This macro is \Curve and must be followed by an “unlimited” sequence of
node-direction coordinates as a quadruple defined as

(〈node coordinates〉)<〈direction vector〉>

Possibly if a sudden change of direction has to be performed (cusp) another
item can be inserted after one of those quadruples in the form

...(...)<...>[〈new direction vector〉](...)<...>...

The \Curve macro does not (still) have facilities for cycling the path, that
is to close the path from the last specified node-direction to the first speci-
fied node-direction. The tangent direction need not be specified with a unit
vector, although only its direction is relevant; the scaling of the specified
direction vector to a unit vector is performed by the macro itself. There-
fore one cannot specify the fine tuning of the curve convexity as it can be
done with other programs, as for example with METAFONT or the pgf/tikz
package and environment. See figure ?? for an example.

8



\unitlength=8mm
\begin{picture}(5,5)
\put(0,0){\framebox(5,5){}}\thicklines\roundcap
\Curve(2.5,0)<1,1>(5,3.5)<0,1>%

(2.5,3.5)<-.5,-1.2>[-.5,1.2]%
(0,3.5)<0,-1>(2.5,0)<1,-1>

\end{picture}

Figure 4: A heart shaped curve with cusps drawn with \Curve

In spite of the relative simplicity of the macros contained in this package, the
described macros, as well as the original macros included in the pict2e package,
allow to produce fine drawings that were inconceivable of with the original LATEX
picture environment. Leslie Lamport himself announced an extension to his envi-
ronment when LATEX 2ε was first issued in 1994; in the latexnews news letter of
December 2003; the first implementation appeared; the first version of this pack-
age was issued in 2006. It was time to have a better drawing environment; this
package is a simple attempt to follow the initial path while extending the drawing
facilities; but Till Tantau’s pgf package has gone much farther.

3 Remark
There are other packages in the ctan archives that deal with tracing curves of
various kinds. PSTricks and tikz/pgf are the most powerful ones. But there
are also the package curves that is intended to draw almost anything by using
little dots or other symbols partially superimposed to one another. It used only
quadratic Bézier curves and the curve tracing is eased by specifying only the curve
nodes, without specifying the control nodes; with a suitable option to the package
call it is possible to reduce the memory usage by using short straight segments
drawn with the PostScript facilities offered by the dvips driver.

Another package ebezier performs about the same as curve2e but draws its
Bézier curves by using little dots partially superimposed to one another. The
documentation is quite interesting but since it explains very clearly what exactly
are the Bézier splines, it appears that ebezier should be used only for dvi output
without recourse to PostScript machinery.

4 Acknowledgements
I wish to express my deepest thanks to Michel Goosens who spotted some errors
and very kindly submitted them to me so that I was able to correct them.

Josef Tkadlec and the author collaborated extensively in order to make a better
real long division so as to get the fractional part and to avoid as much as possible

9



any numeric overflow; many Josef’s ideas are incorporated in the macro that is
implemented in this package, although the macro used by Josef is slightly different
from this one. Both versions aim at a better accuracy and at widening the operand
ranges.

Daniele Degiorgi spotted a fault in the kernel definition of \linethickness
that heavily influenced also curve2e; see below.

Thanks also to Jin-Hwan Cho and Juho Lee who suggested a small but crucial
modification in order to have curve2e work smoothly also with XeTeX (XeLaTeX).
Actually if version 0.2x or later, dated 2009/08/05 or later, of pict2e is being used,
such modification is not necessary, but it’s true that it becomes imperative if older
versions are used.

5 Source code
5.1 Some preliminary extensions to the pict2e package
The necessary preliminary code has already been introduced. Here we require
the color package and the pict2e one; for the latter one we make sure that a
sufficiently recent version is used.

1 \RequirePackage{color}
2 \RequirePackageWithOptions{pict2e}[2014/01/01]

The next macros are just for debugging. With the tracing package it would
probably be better to define other macros, but this is not for the users, but for
the developers.

3 \def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%
4 \def\TROF{\tracingcommands\z@ \tracingmacros\z@}%

Next we define some new dimension registers that will be used by the subse-
quent macros; should they be already defined, there will not be any redefinition;
nevertheless the macros should be sufficiently protected so as to avoid overwriting
register values loaded by other macro packages.

5 \ifx\undefined\@tdA \newdimen\@tdA \fi
6 \ifx\undefined\@tdB \newdimen\@tdB \fi
7 \ifx\undefined\@tdC \newdimen\@tdC \fi
8 \ifx\undefined\@tdD \newdimen\@tdD \fi
9 \ifx\undefined\@tdE \newdimen\@tdE \fi

10 \ifx\undefined\@tdF \newdimen\@tdF \fi
11 \ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi

It is better to define a macro for setting a different value for the line and
curve thicknesses; the ‘\defaultlinewidth should contain the equivalent of
\@wholewidth, that is the thickness of thick lines; thin lines are half as thick;
so when the default line thickness is specified to, say, 1pt, thick lines will be 1pt
thick and thin lines will be 0.5pt thick. The default whole width of thick lines is
0,8pt, but this is specified in the kernel of LATEX and/or in pict2e. On the op-
posite it is necessary to redefine \linethickness because the LATEX kernel global

10



definition does not hide the space after the closed brace when you enter something
such as \linethickness{1mm} followed by a space or a new line. 1

12 \gdef\linethickness#1{\@wholewidth#1\@halfwidth.5\@wholewidth\ignorespaces}%
13 \newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax
14 \def\thicklines{\linethickness{\defaultlinewidth}}%
15 \def\thinlines{\linethickness{.5\defaultlinewidth}}%
16 \thinlines\ignorespaces}

The \ignorespaces at the end of this and the subsequent macros is for avoiding
spurious spaces to get into the picture that is being drawn, because these spaces
introduce picture deformities often difficult to spot and eliminate.

5.1.1 Improved line and vector macros

The new macro \LIne allows to draw an arbitrary inclination line as if it was
a polygonal with just two vertices. This line should be set by means of a \put
command so that its starting point is always at a relative 0,0 coordinate point.
The two arguments define the horizontal and the vertical component respectively.
17 \def\LIne(#1,#2){\moveto(0,0)
18 \pIIe@lineto{#1\unitlength}{#2\unitlength}\strokepath}%

A similar macro \segment operates between two explicit points with absolute
coordinates, instead of relative to the position specified by a \put command; it
resorts to the \polyline macro that is to be defined in a while. The \@killglue
command might be unnecessary, but it does not harm; it eliminates any explicit
or implicit spacing that might precede this command.
19 \def\segment(#1)(#2){\@killglue\polyline(#1)(#2)}%

By passing its ending points coordinates to the \polyline macro, both macro
arguments are a pair of coordinates, not their components; in other words, if
P1 = (x1, y2) and P2 = (x2, y2), then the first argument is the couple x1, y1
and likewise the second argument is x2, y2. Please remember that the decimal
separator is the decimal point, while the comma acts as coordinate separator. This
recommendation is particularly important for non-English speaking users, since
the ISO regulations allow the decimal point only for English speaking countries,
while in all other countries the comma must be used as the decimal separator.

The \line macro is redefined by making use of a new division routine that
receives in input two dimensions and yields on output their fractional ratio. The
beginning of the macro definition is the same as that of pict2e:
20 \def\line(#1)#2{\begingroup
21 \@linelen #2\unitlength
22 \ifdim\@linelen<\z@\@badlinearg\else

but as soon as it is verified that the line length is not negative, things change
remarkably; in facts the machinery for complex numbers is invoked. This makes
the code much simpler, not necessarily more efficient; nevertheless \DirOfVect
takes the only macro argument (that actually contains a comma separated pair

1Thanks to Daniele Degiorgi (degiorgi@inf.ethz.ch).

11



of fractional numbers) and copies it to \Dir@line (an arbitrarily named control
sequence) after re-normalizing to unit magnitude; this is passed to GetCoord that
separates the two components into the control sequences \d@mX and\d@mY; these in
turn are the values that are actually operated upon by the subsequent commands.
23 \expandafter\DirOfVect#1to\Dir@line
24 \GetCoord(\Dir@line)\d@mX\d@mY

The normalized vector direction is actually formed with the directing cosines of
the line direction; since the line length is actually the horizontal component for
non vertical lines, it is necessary to compute the actual line length for non vertical
lines by dividing the given length by the magnitude of horizontal cosine \d@mX,
and the line length is accordingly scaled:
25 \ifdim\d@mX\p@=\z@\else
26 \DividE\ifdim\d@mX\p@<\z@-\fi\p@ by\d@mX\p@ to\sc@lelen
27 \@linelen=\sc@lelen\@linelen
28 \fi

Of course, if the line is vertical this division must not take place. Finally the
moveto, lineto and stroke language keywords are invoked by means of the in-
ternal pict2e commands in order to draw the line. Notice that even vertical lines
are drawn with the “PostScript” commands instead of resorting to the dvi low level
language that was used both in pict2e and in the original picture commands;
it had a meaning in the old times, but it certainly does not have any when lines
are drawn by the driver that drives the output to a visible document form, not by
TEX the program.
29 \moveto(0,0)
30 \pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
31 \strokepath
32 \fi
33 \endgroup\ignorespaces}%

The new definition of the command \line, besides the ease with which is readable,
does not do different things from the definition of pict2e 2009, but it did pre-
form in a better way whith the 2004 version that was limited to integer direction
coefficients up to 999 in magnitude.

Another useful line-type macro creates a dashed line between two given points
with a dash length that must be specified; actually the specified dash length is
a desired dash length; the actual length is computed by integer division between
the distance of the given points and the desired dash length; this integer is tested
in order to see if it’s odd; if it’s not, it is increased by one. Then the actual dash
length is obtained by dividing the above distance by this odd number. Another
vector is created from P1 − P0 by dividing it by the magic odd number; then it
is multiplied by two in order to have the increment from one dash to the next,
and finally the number of patterns is obtained by integer dividing the magic odd
number by 2 and increasing it by 1. A simple \multiput completes the job, but
in order to use the various vectors and numbers within a group and to throw the
result outside the group while restoring all the intermediate counters and registers,
a service macro is created with an expanded definition and then this service macro

12



is executed.
34 \ifx\Dline\undefined
35 \def\Dline(#1,#2)(#3,#4)#5{%
36 \begingroup
37 \countdef\NumA254\countdef\NumB252\relax
38 \MakeVectorFrom{#1}{#2}to\V@ttA
39 \MakeVectorFrom{#3}{#4}to\V@ttB
40 \SubVect\V@ttA from\V@ttB to\V@ttC
41 \ModOfVect\V@ttC to\DlineMod
42 \DividE\DlineMod\p@ by#5\p@ to\NumD
43 \NumA\expandafter\Integer\NumD??
44 \ifodd\NumA\else\advance\NumA\@ne\fi
45 \NumB=\NumA \divide\NumB\tw@
46 \DividE\DlineMod\p@ by\NumA\p@ to\D@shMod
47 \DividE\p@ by\NumA\p@ to \@tempa
48 \MultVect\V@ttC by\@tempa,0 to\V@ttB
49 \MultVect\V@ttB by 2,0 to\V@ttC
50 \advance\NumB\@ne
51 \edef\@mpt{\noexpand\endgroup
52 \noexpand\multiput(\V@ttA)(\V@ttC){\number\NumB}{\noexpand\LIne(\V@ttB)}}%
53 \@mpt\ignorespaces}%
54 \fi

The new macro \GetCoord splits a vector (or complex number) specification
into its components:
55 \def\GetCoord(#1)#2#3{%
56 \expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}

But the macro that does the real work is \SplitNod@:
57 \def\SplitNod@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%

The redefinitions and the new definitions for vectors are a little more compli-
cated than with segments, because each vector is drawn as a filled contour; the
original pict2e 2004 macro checks if the slopes are corresponding to the limi-
tations specified by Lamport (integer three digit signed numbers) and sets up a
transformation in order to make it possible to draw each vector as an horizontal
left-to-right arrow and then to rotate it by its angle about its tail point; with
pict2e 2009, possibly this redefinition of \vector is not necessary, but we do
it as well and for the same reasons we had for redefining \line; actually there
are two macros for tracing the contours that are eventually filled by the principal
macro; each contour macro draws the vector with a LATEX or a PostScript arrow
whose parameters are specified by default or may be taken from the parameters
taken from the PSTricks package if this one is loaded before pict2e; in any case
we did not change the contour drawing macros because if they are modified the
same modification is passed on to the arrows drawn with the curve2e package
redefinitions.

Because of these features the redefinitions and the new macros are different
from those used for straight lines.

13



We start with the redefinition of \vector and we use the machinery for vectors
(as complex numbers) we used for \line.
58 \def\vector(#1)#2{%
59 \begingroup
60 \GetCoord(#1)\d@mX\d@mY
61 \@linelen#2\unitlength

As in pict2e we avoid tracing vectors if the slope parameters are both zero.
62 \ifdim\d@mX\p@=\z@\ifdim\d@mY\p@=\z@\@badlinearg\fi\fi

But we check only for the positive nature of the lx component; if it is negative,
we simply change sign instead of blocking the typesetting process. This is useful
also for macros \Vector and \VECTOR to be defined in a while.
63 \ifdim\@linelen<\z@ \@linelen=-\@linelen\fi

We now make a vector with the slope coefficients even if one or the other is zero
and we determine its direction; the real and imaginary parts of the direction vector
are also the values we need for the subsequent rotation.
64 \MakeVectorFrom\d@mX\d@mY to\@Vect
65 \DirOfVect\@Vect to\Dir@Vect

In order to be compatible with the original pict2e we need to transform the
components of the vector direction in lengths with the specific names \@xdim and
\@ydim
66 \YpartOfVect\Dir@Vect to\@ynum \@ydim=\@ynum\p@
67 \XpartOfVect\Dir@Vect to\@xnum \@xdim=\@xnum\p@

If the vector is really sloping we need to scale the lx component in order to get the
vector total length; we have to divide by the cosine of the vector inclination which
is the real part of the vector direction. I use my division macro; since it yields a
“factor” I directly use it to scale the length of the vector. I finally memorize the
true vector length in the internal dimension @tdB
68 \ifdim\d@mX\p@=\z@
69 \else\ifdim\d@mY\p@=\z@
70 \else
71 \DividE\ifdim\@xnum\p@<\z@-\fi\p@ by\@xnum\p@ to\sc@lelen
72 \@linelen=\sc@lelen\@linelen
73 \fi
74 \fi
75 \@tdB=\@linelen

The remaining code is definitely similar to that of pict2e; the real difference
consists in the fact that the arrow is designed by itself without the stem; but it is
placed at the vector end; therefore the first statement is just the transformation
matrix used by the output driver to rotate the arrow tip and to displace it the
right amount. But in order to draw only the arrow tip I have to set the \@linelen
length to zero.
76 \pIIe@concat\@xdim\@ydim{-\@ydim}\@xdim{\@xnum\@linelen}{\@ynum\@linelen}%
77 \@linelen\z@
78 \pIIe@vector
79 \fillpath

14



Now we can restore the stem length that must be shortened by the dimension of
the arrow; examining the documentation of pict2e we discover that we have to
shorten it by an approximate amount of AL (with the notations of pict2e, figs 10
and 11); the arrow tip parameters are stored in certain variables with which we
can determine the amount of the stem shortening; if the stem was too short and
the new length is negative, we refrain from designing such stem.
80 \@linelen=\@tdB
81 \@tdA=\pIIe@FAW\@wholewidth
82 \@tdA=\pIIe@FAL\@tdA
83 \advance\@linelen-\@tdA
84 \ifdim\@linelen>\z@
85 \moveto(0,0)
86 \pIIe@lineto{\@xnum\@linelen}{\@ynum\@linelen}%
87 \strokepath\fi
88 \endgroup}

Now we define the macro that does not require the specification of the length
or the lx length component; the way the new \vector macro works does not
actually require this specification, because TEX can compute the vector length,
provided the two direction components are exactly the horizontal and vertical
vector components. If the horizontal component is zero, the actual length must
be specified as the vertical component.
89 \def\Vector(#1,#2){%
90 \ifdim#1\p@=\z@\vector(#1,#2){#2}
91 \else
92 \vector(#1,#2){#1}\fi}

On the opposite the next macro specifies a vector by means of the coordinates
of its end points; the first point is where the vector starts, and the second point
is the arrow tip side. We need the difference of these two coordinates, because it
represents the actual vector.
93 \def\VECTOR(#1)(#2){\begingroup
94 \SubVect#1from#2to\@tempa
95 \expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%
96 \endgroup\ignorespaces}

The pict2e documentation says that if the vector length is zero the macro
designs only the arrow tip; this may work with macro \vector, certainly not with
\Vector and \VECTOR. This might be useful for adding an arrow tip to a circular
arc. See examples in figure ??.

5.1.2 Polylines

We now define the polygonal line macro; its syntax is very simple

\polygonal(P0)(P1)(P2) ...(Pn)

In order to write a recursive macro we need aliases for the parentheses; actually
we need only the left parenthesis, but some editors complain about unmatched
delimiters, so we define an alias also for the right parenthesis.

15



\unitlength=.5mm
\begin{picture}(60,20)
\put(0,0){\GraphGrid(60,20)}
\put(0,0){\vector(1.5,2.3){10}}
\put(20,0){\Vector(10,15.33333)}
\VECTOR(40,0)(50,15.33333)
\end{picture}

Figure 5: Three (displaced) identical vectors obtained with the three vector
macros.

97 \let\lp@r( \let\rp@r)

The first call to \polyline examines the first point coordinates and moves the
drawing position to this point; afterwards it looks for the second point coordinates;
they start with a left parenthesis; if this is found the coordinates should be there,
but if the left parenthesis is missing (possibly preceded by spaces that are ignored
by the \@ifnextchar macro) then a warning message is output together with
the line number where the missing parenthesis causes the warning: beware, this
line number might point to several lines further on along the source file! In any
case it’s necessary to insert a \@killglue command, because \polyline refers to
absolute coordinates not necessarily is put in position through a \put command
that provides to eliminate any spurious spaces preceding this command.

Remember: \polyline has been incorporated into pict2e 2009, but we rede-
fine it so as to allow an optional argument to allow the line join specification.

In order to allow a specification for the joints of the various segments of a
polygonal line it is necessary to allow for an optional parameter; the default join
is the bevel join.
98 \renewcommand*\polyline[1][\beveljoin]{\p@lylin@[#1]}
99

100 \def\p@lylin@[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
101 \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
102 \@ifnextchar\lp@r{\p@lyline}{%
103 \PackageWarning{curve2e}%
104 {Polylines require at least two vertices!\MessageBreak
105 Control your polyline specification\MessageBreak}%
106 \ignorespaces}}
107

But if there is a second or further point coordinate the recursive macro \p@lyline
is called; it works on the next point and checks for a further point; if such a point
exists it calls itself, otherwise it terminates the polygonal line by stroking it.

108 \def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY
109 \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
110 \@ifnextchar\lp@r{\p@lyline}{\strokepath\ignorespaces}}

16



5.1.3 The red service grid

The next command is very useful for debugging while editing one’s drawings; it
draws a red grid with square meshes that are ten drawing units apart; there is
no graduation along the grid, since it is supposed to be a debugging aid and the
user should know what he/she is doing; nevertheless it is advisable to displace the
grid by means of a \put command so that its grid lines coincide with the graph
coordinates multiples of 10. Missing to do so the readings become cumbersome.
The \RoundUp macro provides to increase the grid dimensions to integer multiples
of ten.

111 \def\GraphGrid(#1,#2){\begingroup\textcolor{red}{\linethickness{.1\p@}%
112 \RoundUp#1modulo10to\@GridWd \RoundUp#2modulo10to\@GridHt
113 \@tempcnta=\@GridWd \divide\@tempcnta10\relax \advance\@tempcnta\@ne
114 \multiput(0,0)(10,0){\@tempcnta}{\line(0,1){\@GridHt}}%
115 \@tempcnta=\@GridHt \divide\@tempcnta10\advance\@tempcnta\@ne
116 \multiput(0,0)(0,10){\@tempcnta}{\line(1,0){\@GridWd}}\thinlines}%
117 \endgroup\ignorespaces}

Rounding up is useful because also the grid margins fall on coordinates multiples
of 10. It resorts to the \Integer macro that will be described in a while.

118 \def\RoundUp#1modulo#2to#3{\expandafter\@tempcnta\Integer#1.??%
119 \count254\@tempcnta\divide\count254by#2\relax
120 \multiply\count254by#2\relax
121 \count252\@tempcnta\advance\count252-\count254
122 \ifnum\count252>0\advance\count252-#2\relax
123 \advance\@tempcnta-\count252\fi\edef#3{\number\@tempcnta}\ignorespaces}%

The \Integer macro takes a possibly fractional number whose decimal separator,
if present, must be the decimal point and uses the point as an argument delimiter
If one has the doubt that the number being passed to \Integer might be an
integer, he/she should call the macro with a further point; if the argument is truly
integer this point works as the delimiter of the integer part; if the argument being
passed is fractional this extra point gets discarded as well as the fractional part of
the number.

124 \def\Integer#1.#2??{#1}%

5.2 The new division macro
Now comes one of the most important macros in the whole package: the division
macro; it takes two lengths as input values and computes their fractional ratio into
a control sequence. It must take care of the signs, so that it examines the operand
signs and determines the result sign separately conserving this computed sign in
the macro \segno; this done, we are sure that both operands are or are made
positive; should the numerator be zero it directly issues the zero quotient; should
the denominator be zero it outputs “infinity” (\maxdimen in points), that is the
maximum allowable length measured in points that TEX can deal with. Since the
result is assigned a value, the calling statement must pass as the third argument

17



either a control sequence or an active character. Of course the first operand is the
dividend, the second the divisor and the third the quotient.

Since curve2e is supposed to be an extension of pict2e and this macro package
already contains a division macro, we do not define any other division macro;
nevertheless, since the macro in pict2e may not be so efficient as it might be
if the e-tex extensions of the interpreter program were available, here we check
and eventually provide a more efficient macro. The latter exploits the scaling
mechanism embedded in pdftex since 2007, if the extended mode is enabled, that
is used to scale a dimension by a fraction: L×N/D, where L is a dimension, and
N and D are the numerator an denominator of the scaling factor; these might
be integers, but it’s better they represent the numbers of scaled points another
two dimensions correspond to, in the philosophy that floating point numbers are
represented by the measures of lengths in points.

Therefore first we test if the macro is already defined:
125 \ifdefined\dimexpr

then we test if the extended mode exists and/or is enabled:
126 \unless\ifdefined\DividE

Notice that \dimexpr is the specific extended mode control sequence we are going
to use in order to perform our task; if the interpreter program is too old and/or
it is a recent version, but it was compiled without activating the extended mode,
the macro \dimexpr is undefined.

The macro, creates a group where the names of two counters and a dimensional
register are defined; the numbers of these integer and dimension registers are
expressly above the value 255, because one of the extensions is the possibility of
using a virtually unlimited number of registers; moreover even if these registers
were used within other macros, their use within a group does not damage the other
macros; we just have to use a dirty trick to throw the result beyond the end-group
command.

The efficiency of this macro is contained in the extended command \dimexpr;
both the \@DimA and \Num registers are program words of 32 bits; the result is
stored into an internal register of 64 bits; the final division by a factor stored into
a register of 32 bits, so that in terms of scaled points a division by 1 pt = 1× 216,
scales down the result by 16 bits, and if the total length of the result is smaller
than 230, the result can be correctly assigned to a dimension register. In any other
case the extended features imply suitable error messages end the termination of
the program. During the division a scaling down by 16 bits, the result is not
simply truncated, but it is rounded to the nearest integer (in scaled points). The
first two operands are lengths and the third is a macro.

127 \def\DividE#1by#2to#3{\bgroup
128 \countdef\Num2254\relax \countdef\Den2252\relax
129 \dimendef\@DimA 2254
130 \Num=\p@ \@DimA=#2\relax \Den=\@DimA
131 \ifnum\Den=\z@
132 \edef\x{\noexpand\endgroup\noexpand\def\noexpand#3{\strip@pt\maxdimen}}%
133 \else

18



134 \@DimA=#1\relax
135 \@DimA=\dimexpr\@DimA*\Num/\Den\relax
136 \edef\x{\noexpand\egroup\noexpand\def\noexpand#3{\strip@pt\@DimA}}%
137 \fi
138 \x\ignorespaces}%
139 \fi

We need a similar macro to divide two fractional or integer numbers, not
dimensions, and produce a macro that contains the fractional result.

140 \unless\ifdefined\DivideFN
141 \def\DivideFN#1by#2to#3{\DividE#1\p@ by#2\p@ to#3}%
142 \fi

We do the same in order to multiply two integer o fractional numbers held in
the first two arguments and the third argument is a definable token that will hold
the result of multiplication in the form of a fractional number, possibly with a non
null fractional part; a null fractional part is eliminated by strip@pt.

143 \unless\ifdefined\MultiplY
144 \def\MultiplY#1by#2to#3{\bgroup
145 \dimendef\@DimA 2254 \dimendef\@DimB2255
146 \@DimA=#1\p@\relax \@DimB=#2\p@\relax
147 \@DimA=\dimexpr\@DimA*\@DimB/\p@\relax
148 \edef\x{\noexpand\egroup\noexpand\def\noexpand#3{\strip@pt\@DimA}}%
149 \x\ignorespaces}%
150 \fi
151 \fi

The next macro uses the \strip@pt LATEX kernel macro to get the numerical
value of a measure in points. One has to call \Numero with a control sequence and
a dimension; the dimension value in points is assigned to the control sequence.

152 \unless\ifdefined\Numero
153 \def\Numero#1#2{\dimen3254#2\relax
154 \edef#1{\strip@pt\dimen3254}\ignorespaces}%
155 \fi

The \ifdefined primitive command is provided by the e-TEX extension of the
typesetting engine; the test does not create any hash table entry; it is a different
way than the \ifx\csname ....\endcsname test, because the latter first possibly
creates a macro with meaning relax then executes the test; therefore an undefined
macro name is always defined to mean \relax.

5.3 Trigonometric functions
We now start with trigonometric functions. We define the macros \SinOf, \CosOf
and \TanOf (we might define also \CotOf, but the cotangent does not appear so
essential) by means of the parametric formulas that require the knowledge of the
tangent of the half angle. We want to specify the angles in sexagesimal degrees,
not in radians, so we can make accurate reductions to the main quadrants. We

19



use the formulas

sin θ = 2
cotx+ tan x

cos θ = cotx− tan x
cotx+ tan x

tan θ = 2
cotx− tan x

where
x = θ/114.591559

is the half angle in degrees converted to radians.
We use this slightly modified set of parametric formulas because the cotangent

of x is a by product of the computation of the tangent of x; in this way we avoid
computing the squares of numbers that might lead to overflows. For the same
reason we avoid computing the value of the trigonometric functions in proximity
of the value zero (and the other values that might involve high tangent or cotangent
values) and in that case we prefer to approximate the small angle function value
with its first or second order truncation of the McLaurin series; in facts for angles
whose magnitude is smaller than 1◦ the magnitude of the independent variable
y = 2x (the angle in degrees converted to radians) is so small (less than 0.017)
that the sine and tangent can be freely approximated with y itself (the error being
smaller than approximately 10−6), while the cosine can be freely approximated
with the formula 1− 0.5y2 (the error being smaller than about 4 · 10−9).

We keep using grouping so that internal variables are local to these groups and
do not mess up other things.

The first macro is the service routine that computes the tangent and the cotan-
gent of the half angle in radians; since we have to use always the reciprocal of this
value, we call it \X@ but in spite of the similarity it is the reciprocal of x. Notice
that parameter #1 must be a length.

156 \def\g@tTanCotanFrom#1to#2and#3{%
157 \DividE 114.591559\p@ by#1to\X@ \@tdB=\X@\p@

Computations are done with the help of counter \I, of the length \@tdB, and the
auxiliary control sequences \Tan and \Cot whose meaning is transparent. The
iterative process controlled by \@whilenum implements the (truncated) continued
fraction expansion of the tangent function.

tan x = 1
1
x
− 1

3
x
− 1

5
x
− 1

7
x
− 1

9
x
− 1

11
x
− · · ·

20



158 \countdef\I=2546\def\Tan{0}\I=11\relax
159 \@whilenum\I>\z@\do{%
160 \@tdC=\Tan\p@ \@tdD=\I\@tdB
161 \advance\@tdD-\@tdC \DividE\p@ by\@tdD to\Tan
162 \advance\I-2\relax}%
163 \def#2{\Tan}\DividE\p@ by\Tan\p@ to\Cot \def#3{\Cot}%
164 \ignorespaces}%

Now that we have the macro for computing the tangent and cotangent of the
half angle, we can compute the real trigonometric functions we are interested
in. The sine value is computed after reducing the sine argument to the interval
0◦ < θ < 180◦; actually special values such as 0◦, 90◦, 180◦, et cetera, are taken
care separately, so that CPU time is saved for these special cases. The sine sign
is taken care separately according to the quadrant of the sine argument.

Since all computations are done within a group, a trick is necessary in order
to extract the sine value from the group; this is done by defining within the group
a macro (in this case \endSinOf) with the expanded definition of the result, but
in charge of of closing the group, so that when the group is closed the auxiliary
function is not defined any more, although its expansion keeps getting executed
so that the expanded result is thrown beyond the group end.

165 \def\SinOf#1to#2{\bgroup%
166 \@tdA=#1\p@%
167 \ifdim\@tdA>\z@%
168 \@whiledim\@tdA>180\p@\do{\advance\@tdA -360\p@}%
169 \else%
170 \@whiledim\@tdA<-180\p@\do{\advance\@tdA 360\p@}%
171 \fi \ifdim\@tdA=\z@
172 \def\@tempA{0}%
173 \else
174 \ifdim\@tdA>\z@
175 \def\Segno{+}%
176 \else
177 \def\Segno{-}%
178 \@tdA=-\@tdA
179 \fi
180 \ifdim\@tdA>90\p@
181 \@tdA=-\@tdA \advance\@tdA 180\p@
182 \fi
183 \ifdim\@tdA=90\p@
184 \def\@tempA{\Segno1}%
185 \else
186 \ifdim\@tdA=180\p@
187 \def\@tempA{0}%
188 \else
189 \ifdim\@tdA<\p@
190 \@tdA=\Segno0.0174533\@tdA
191 \DividE\@tdA by\p@ to \@tempA%
192 \else
193 \g@tTanCotanFrom\@tdA to\T and\Tp

21



194 \@tdA=\T\p@ \advance\@tdA \Tp\p@
195 \DividE \Segno2\p@ by\@tdA to \@tempA%
196 \fi
197 \fi
198 \fi
199 \fi
200 \edef\endSinOf{\noexpand\egroup
201 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
202 \endSinOf}%

For the computation of the cosine we behave in a similar way using also the
identical trick for throwing the result beyond the group end.

203 \def\CosOf#1to#2{\bgroup%
204 \@tdA=#1\p@%
205 \ifdim\@tdA>\z@%
206 \@whiledim\@tdA>360\p@\do{\advance\@tdA -360\p@}%
207 \else%
208 \@whiledim\@tdA<\z@\do{\advance\@tdA 360\p@}%
209 \fi
210 %
211 \ifdim\@tdA>180\p@
212 \@tdA=-\@tdA \advance\@tdA 360\p@
213 \fi
214 %
215 \ifdim\@tdA<90\p@
216 \def\Segno{+}%
217 \else
218 \def\Segno{-}%
219 \@tdA=-\@tdA \advance\@tdA 180\p@
220 \fi
221 \ifdim\@tdA=\z@
222 \def\@tempA{\Segno1}%
223 \else
224 \ifdim\@tdA<\p@
225 \@tdA=0.0174533\@tdA \Numero\@tempA\@tdA
226 \@tdA=\@tempA\@tdA \@tdA=-.5\@tdA
227 \advance\@tdA \p@
228 \DividE\@tdA by\p@ to\@tempA%
229 \else
230 \ifdim\@tdA=90\p@
231 \def\@tempA{0}%
232 \else
233 \g@tTanCotanFrom\@tdA to\T and\Tp
234 \@tdA=\Tp\p@ \advance\@tdA-\T\p@
235 \@tdB=\Tp\p@ \advance\@tdB\T\p@
236 \DividE\Segno\@tdA by\@tdB to\@tempA%
237 \fi
238 \fi
239 \fi
240 \edef\endCosOf{\noexpand\egroup

22



241 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
242 \endCosOf}%

For the tangent computation we behave in a similar way, except that we con-
sider the fundamental interval as 0◦ < θ < 90◦; for the odd multiples of 90◦ we
assign the result a TEX infinity value, that is the maximum a dimension can be.

243 \def\TanOf#1to#2{\bgroup%
244 \@tdA=#1\p@%
245 \ifdim\@tdA>90\p@%
246 \@whiledim\@tdA>90\p@\do{\advance\@tdA -180\p@}%
247 \else%
248 \@whiledim\@tdA<-90\p@\do{\advance\@tdA 180\p@}%
249 \fi%
250 \ifdim\@tdA=\z@%
251 \def\@tempA{0}%
252 \else
253 \ifdim\@tdA>\z@
254 \def\Segno{+}%
255 \else
256 \def\Segno{-}%
257 \@tdA=-\@tdA
258 \fi
259 \ifdim\@tdA=90\p@
260 \def\@tempA{\Segno16383.99999}%
261 \else
262 \ifdim\@tdA<\p@
263 \@tdA=\Segno0.0174533\@tdA
264 \DividE\@tdA by\p@ to\@tempA%
265 \else
266 \g@tTanCotanFrom\@tdA to\T and\Tp
267 \@tdA\Tp\p@ \advance\@tdA -\T\p@
268 \DividE\Segno2\p@ by\@tdA to\@tempA%
269 \fi
270 \fi
271 \fi
272 \edef\endTanOf{\noexpand\egroup
273 \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
274 \endTanOf}%

5.4 Arcs and curves preliminary information
We would like to define now a macro for drawing circular arcs of any radius and
any angular aperture; the macro should require the arc center, the arc starting
point and the angular aperture. The arc has its reference point in its center,
therefore it does not need to be put in place by the command \put; nevertheless if
\put is used, it may displace the arc into another position. The command should
have the following syntax:

\Arc(〈center〉)(〈starting point〉){〈angle〉}

23



which is totally equivalent to:

\put(〈center〉){\Arc(0,0)(〈starting point〉){〈angle〉}}

If the 〈angle〉 is positive the arc runs counterclockwise from the starting point;
clockwise if it’s negative.

It’s necessary to determine the end point and the control points of the Bézier
spline(s) that make up the circular arc.

The end point is obtained from the rotation of the starting point around the
center; but the pict2e command \pIIe@rotate is such that the pivoting point
appears to be non relocatable. It is therefore necessary to resort to low level
TEX commands and the defined trigonometric functions and a set of macros that
operate on complex numbers used as vector scale-rotate operators.

5.5 Complex number macros
We need therefore macros for summing, subtracting, multiplying, dividing com-
plex numbers, for determining they directions (unit vectors); a unit vector is the
complex number divided by its magnitude so that the result is the Cartesian form
of the Euler’s formula

ejφ = cosφ+ j sinφ

The magnitude of a vector is determined by taking a clever square root of a
function of the real and the imaginary parts; see further on.

It’s better to represent each complex number with one control sequence; this
implies frequent assembling and disassembling the pair of real numbers that make
up a complex number. These real components are assembled into the defining
control sequence as a couple of coordinates, i.e. two comma separated integer or
fractional signed decimal numbers.

For assembling two real numbers into a complex number we use the following
elementary macro:

275 \def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%

Another elementary macro copies a complex number into another one:
276 \def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%

The magnitude is determined with the macro \ModOfVect with delimited argu-
ments; as usual it is assumed that the results are retrieved by means of control
sequences, not used directly.

The magnitudeM is determined by taking the moduli of the real and imaginary
parts, changing their signs if necessary; the larger component is then taken as the
reference one so that, if a is larger than b, the square root of the sum of their
squares is computed as such:

M =
√
a2 + b2 = |a|

√
1 + (b/a)2

In this way the radicand never exceeds 2 and it is quite easy to get its square
root by means of the Newton iterative process; due to the quadratic convergence,

24



five iterations are more than sufficient. When one of the components is zero, the
Newton iterative process is skipped. The overall macro is the following:

277 \def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
278 \@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi
279 \@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi
280 \ifdim\@tempdima>\@tempdimb
281 \DividE\@tempdimb by\@tempdima to\@T
282 \@tempdimc=\@tempdima
283 \else
284 \DividE\@tempdima by\@tempdimb to\@T
285 \@tempdimc=\@tempdimb
286 \fi
287 \ifdim\@T\p@=\z@
288 \else
289 \@tempdima=\@T\p@ \@tempdima=\@T\@tempdima
290 \advance\@tempdima\p@%
291 \@tempdimb=\p@%
292 \@tempcnta=5\relax
293 \@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T
294 \advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb
295 \advance\@tempcnta\m@ne}%
296 \@tempdimc=\@T\@tempdimc
297 \fi
298 \Numero#2\@tempdimc
299 \ignorespaces}%

As a byproduct of the computation the control sequence \@tempdimc contains the
vector or complex number magnitude multiplied by the length of one point.

Since the macro for determining the magnitude of a vector is available, we can
now normalize the vector to its magnitude, therefore getting the Cartesian form of
the direction vector. If by any chance the direction of the null vector is requested,
the output is again the null vector, without normalization.

300 \def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
301 \ModOfVect#1to\@tempa
302 \unless\ifdim\@tempdimc=\z@
303 \DividE\t@X\p@ by\@tempdimc to\t@X
304 \DividE\t@Y\p@ by\@tempdimc to\t@Y
305 \fi
306 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

A cumulative macro uses the above ones for determining with one call both
the magnitude and the direction of a complex number. The first argument is
the input complex number, the second its magnitude, and the third is again a
complex number normalized to unit magnitude (unless the input was the null
complex number); remember always that output quantities must be specified with
control sequences to be used at a later time.

307 \def\ModAndDirOfVect#1to#2and#3{%
308 \GetCoord(#1)\t@X\t@Y
309 \ModOfVect#1to#2%

25



310 \ifdim\@tempdimc=\z@\else
311 \DividE\t@X\p@ by\@tempdimc to\t@X
312 \DividE\t@Y\p@ by\@tempdimc to\t@Y
313 \fi
314 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

The next macro computes the magnitude and the direction of the difference of
two complex numbers; the first input argument is the minuend, the second is the
subtrahend; the output quantities are the third argument containing the magni-
tude of the difference and the fourth is the direction of the difference. The service
macro \SubVect executes the difference of two complex numbers and is described
further on.

315 \def\DistanceAndDirOfVect#1minus#2to#3and#4{%
316 \SubVect#2from#1to\@tempa
317 \ModAndDirOfVect\@tempa to#3and#4\ignorespaces}%

We now have two macros intended to fetch just the real or, respectively, the
imaginary part of the input complex number.

318 \def\XpartOfVect#1to#2{%
319 \GetCoord(#1)#2\@tempa\ignorespaces}%
320 %
321 \def\YpartOfVect#1to#2{%
322 \GetCoord(#1)\@tempa#2\ignorespaces}%

With the next macro we create a direction vector (second argument) from a given
angle (first argument).

323 \def\DirFromAngle#1to#2{%
324 \CosOf#1to\t@X
325 \SinOf#1to\t@Y
326 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

As of today the anomaly (angle) of a complex number may not be necessary,
but it might become useful in the future; therefore with macro \ArgOfVect we
calculate the four quadrant arctangent (in degrees) of the given vector taking
into account the sings of the vector components. For the principal value of the
arctangent we would like to use the continued fraction:

arctan x =
x

1 +
x2

3− x2 +
(3x)2

5− 3x2 +
(5x)2

7− 5x2 +
(7x)2

9− 7x2 + .. .

(1)

but after some testing we had to give up due to the slow convergence of continued
fraction (??), strictly connected with the slow convergence of the McLaurin series
from which it is derived.

26



y = tan θ t = tan θ∞

θ

y

π/2θi−1

yi−1

t

θiθ∞

Figure 6: Newton method

Waiting for a faster convergence continued fraction, we examined the paramet-
ric formula and its inverse:

tan θ = 2 tan(θ/2))
1− tan2(θ/2)

tan(θ/2) =
√

tan2 θ + 1− 1
tan θ

(3)

If we count the times we use the above formula we can arrive at a point where we
have to compute the arctangent of a very small value, where the arctangent and it
argument are approximately equal, so that the angle value in radians is equal to
its tangent; at that point we multiply by 2n, where n is the number of bisections
and transform the radians in degrees. The procedure is pretty good, even if is is
very rudimental and based on an approximation; the fixed radix computation of
the typesetting engine does not help, but we get pretty decent results, although
we loose some accuracy that hopefully would not harm further computations.

The results obtainable with equation (??) are possibly acceptable, but the
square that must be computed in it tends to go in underflow if too many iterations
are performed and the algorthim crashes; therefore it’s virtually impossibile to get
more than three correct digits after the decimal separator.

It is probably better to refer to the Newton iterations for solving the equation:

tan θ − tan θ∞ = 0 (4)

in the unknown θ given the value t = tan θ∞; see figure ??.
The iterative algorithm with Newton method implies the recurrence

y′i−1 = d tan(θi−1)
dθ = 1

cos2 θi−1

θi = θi−1 − y′i−1(tan θi−1 − t) = θi−1 − cos2 θi−1(tan θi−1 − t)
(6)

27



The algorithm starts with an initial value θ0, at each iteration for i = 1, 2, 3, . . .
a new value of θi is computed from the data of the previous iteration i− 1. When
for a certain i, tan θi is sufficiently close to t, the iterations may be stopped; since
we already have the algorithms for computing both the tangent and the cosine;
such Newton iterative method dos not pose any problems, especially if we use the
properties of the trigonometric functions and we confine the computations to the
first quadrant.

327 \def\ArcTanOf#1to#2{\bgroup
328 \edef\@tF{#1}\@tdF=\@tF\p@
329 \@tdE=57.295779\p@
330 \ifdim\@tdF=\z@\def\@tX{0}\else
331 \edef\@tXX{1}%
332 \MultiplY57.295779by\@tXX to \@tX
333 \countdef\I 2323 \I=7\relax
334 \@whilenum\I>0\do{\TanOf\@tX to\@tG
335 \CosOf\@tX to \@tH
336 \edef\@tG{\strip@pt\dimexpr\@tG\p@-\@tdF\relax}%
337 \MultiplY\@tH by\@tH to\@tH
338 \MultiplY\@tH by\@tG to \@tH
339 \edef\@tXX{\strip@pt\dimexpr\@tXX\p@ - \@tH\p@\relax}%
340 \MultiplY57.295779by\@tXX to\@tX
341 \advance\I\m@ne}\fi
342 \edef\x{\egroup\noexpand\edef\noexpand#2{\@tX}}\x}%

Now we have the algorithm to compute the arctangent of a number; and it
should be relatively easy to compute the angle of a complex number. We have to
pay attention that the algorithm to compute the arctangent does not care about
the quadrant where the complex number lays in, and it yields the principal value
of the arctan in the domain π/2 < θ ≤ π/2. with complex numbers we have just a
sign change in their angle when the lay in the first or the fourth quadrants; while
for the third and second quadrants we have to reflect the complex number to its
opposite and in the result we have to add a “flat angle”, that is 180°, since we are
working in degrees. Even if mathematically it is undefined we decided to assign a
null angle to a null complex number; possibly a warning message would be helpful,
but for drawing purposes we think that the problem is irrelevant.

343 \def\ArgOfVect#1to#2{\bgroup\GetCoord(#1){\t@X}{\t@Y}%
344 \def\s@gno{}\def\addflatt@ngle{0}
345 \ifdim\t@X\p@=\z@
346 \ifdim\t@Y\p@=\z@
347 \def\ArcTan{0}%
348 \else
349 \def\ArcTan{90}%
350 \ifdim\t@Y\p@<\z@\def\s@gno{-}\fi
351 \fi
352 \else
353 \ifdim\t@Y\p@=\z@
354 \ifdim\t@X\p@<\z@
355 \def\ArcTan{180}%

28



356 \else
357 \def\ArcTan{0}%
358 \fi
359 \else
360 \ifdim\t@X\p@<\z@%
361 \def\addflatt@ngle{180}%
362 \edef\t@X{\strip@pt\dimexpr-\t@X\p@}%
363 \edef\t@Y{\strip@pt\dimexpr-\t@Y\p@}%
364 \ifdim\t@Y\p@<\z@
365 \def\s@gno{-}%
366 \edef\t@Y{-\t@Y}%
367 \fi
368 \fi
369 \DivideFN\t@Y by\t@X to \t@A
370 \ArcTanOf\t@A to\ArcTan
371 \fi
372 \fi
373 \edef\ArcTan{\unless\ifx\s@gno\empty\s@gno\fi\ArcTan}%
374 \unless\ifnum\addflatt@ngle=0\relax
375 \edef\ArcTan{%
376 \strip@pt\dimexpr\ArcTan\p@\ifx\s@gno\empty-\else+\fi
377 \addflatt@ngle\p@\relax}%
378 \fi
379 \edef\x{\noexpand\egroup\noexpand\edef\noexpand#2{\ArcTan}}%
380 \x\ignorespaces}

It is worth noting that the absolute error in these computations is lower than
0.001°, that is 0.000017 rad; pretty satisfactory since the typesetting engines work
in fixed radix notation with 16 fractional binary digits, and an error on the fifth
fractional digit is almost the best it can be expected from this kind of arithmetics.

Sometimes it is necessary to scale a vector by an arbitrary real factor; this
implies scaling both the real and imaginary part of the input given vector.

381 \def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y
382 \@tempdima=\t@X\p@ \@tempdima=#2\@tempdima\Numero\t@X\@tempdima
383 \@tempdima=\t@Y\p@ \@tempdima=#2\@tempdima\Numero\t@Y\@tempdima
384 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Again, sometimes it is necessary to reverse the direction of rotation; this implies
changing the sign of the imaginary part of a given complex number; this operation
produces the complex conjugate of the given number.

385 \def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y
386 \@tempdima=-\t@Y\p@\Numero\t@Y\@tempdima
387 \MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

With all the low level elementary operations we can now proceed to the defi-
nitions of the binary operations on complex numbers. We start with the addition:

388 \def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y
389 \GetCoord(#2)\td@X\td@Y
390 \@tempdima\tu@X\p@\advance\@tempdima\td@X\p@ \Numero\t@X\@tempdima
391 \@tempdima\tu@Y\p@\advance\@tempdima\td@Y\p@ \Numero\t@Y\@tempdima

29



392 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

Then the subtraction:
393 \def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y
394 \GetCoord(#2)\td@X\td@Y
395 \@tempdima\td@X\p@\advance\@tempdima-\tu@X\p@ \Numero\t@X\@tempdima
396 \@tempdima\td@Y\p@\advance\@tempdima-\tu@Y\p@ \Numero\t@Y\@tempdima
397 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%

For the multiplication we need to split the operation according to the fact
that we want to multiply by the second operand or by the complex conjugate of
the second operand; it would be nice if we could use the usual postfixed asterisk
notation for the complex conjugate, but I could not find a simple means for doing
so; therefore I use the prefixed notation, that is I put the asterisk before the
second operand. The first part of the multiplication macro just takes care of the
multiplicand and then checks for the asterisk; if there is no asterisk it calls a second
service macro that performs a regular complex multiplication, otherwise it calls a
third service macro that executes the conjugate multiplication.

398 \def\MultVect#1by{\@ifstar{\@ConjMultVect#1by}{\@MultVect#1by}}%
399 %
400 \def\@MultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
401 \GetCoord(#2)\td@X\td@Y
402 \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
403 \@tempdimc=\td@X\@tempdima\advance\@tempdimc-\td@Y\@tempdimb
404 \Numero\t@X\@tempdimc
405 \@tempdimc=\td@Y\@tempdima\advance\@tempdimc\td@X\@tempdimb
406 \Numero\t@Y\@tempdimc
407 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
408 %
409 \def\@ConjMultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
410 \GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
411 \@tempdimc=\td@X\@tempdima\advance\@tempdimc+\td@Y\@tempdimb
412 \Numero\t@X\@tempdimc
413 \@tempdimc=\td@X\@tempdimb\advance\@tempdimc-\td@Y\@tempdima
414 \Numero\t@Y\@tempdimc
415 \MakeVectorFrom\t@X\t@Y to#3\ignorespaces}

The division of two complex numbers implies scaling down the dividend by
the magnitude of the divisor and by rotating the dividend scaled vector by the
opposite direction of the divisor; therefore:

416 \def\DivVect#1by#2to#3{\ModAndDirOfVect#2to\@Mod and\@Dir
417 \DividE\p@ by\@Mod\p@ to\@Mod \ConjVect\@Dir to\@Dir
418 \ScaleVect#1by\@Mod to\@tempa
419 \MultVect\@tempa by\@Dir to#3\ignorespaces}%

5.6 Arcs and curved vectors
We are now in the position of really doing graphic work.

30



5.6.1 Arcs

We start with tracing a circular arc of arbitrary center, arbitrary starting point
and arbitrary aperture; the first macro checks the aperture; if this is not zero it
actually proceeds with the necessary computations, otherwise it does nothing.

420 \def\Arc(#1)(#2)#3{\begingroup
421 \@tdA=#3\p@
422 \ifdim\@tdA=\z@\else
423 \@Arc(#1)(#2)%
424 \fi
425 \endgroup\ignorespaces}%

The aperture is already memorized in \@tdA; the \@Arc macro receives the center
coordinates in the first argument and the coordinates of the starting point in the
second argument.

426 \def\@Arc(#1)(#2){%
427 \ifdim\@tdA>\z@
428 \let\Segno+%
429 \else
430 \@tdA=-\@tdA \let\Segno-%
431 \fi

The rotation angle sign is memorized in \Segno and \@tdA now contains the
absolute value of the arc aperture. If the rotation angle is larger than 360◦ a
message is issued that informs the user that the angle will be reduced modulo
360◦; this operation is performed by successive subtractions rather than with
modular arithmetics on the assumption that in general one subtraction suffices.

432 \Numero\@gradi\@tdA
433 \ifdim\@tdA>360\p@
434 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
435 and gets reduced\MessageBreak%
436 to the range 0--360 taking the sign into consideration}%
437 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
438 \fi

Now the radius is determined and the drawing point is moved to the stating point.
439 \SubVect#2from#1to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
440 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY

From now on it’s better to define a new macro that will be used also in the subse-
quent macros that trace arcs; here we already have the starting point coordinates
and the angle to draw the arc, therefore we just call the new macro, stroke the
line and exit.

441 \@@Arc
442 \strokepath\ignorespaces}%

And the new macro \@@Arc starts with moving the drawing point to the first
point and does everything needed for tracing the requested arc, except stroking it;
I leave the stroke command to the completion of the calling macro and nobody
forbids to use the \@@Arc macro for other purposes.

31



443 \def\@@Arc{%
444 \pIIe@moveto{\@pPunX\unitlength}{\@pPunY\unitlength}%

If the aperture is larger than 180◦ it traces a semicircle in the right direction and
correspondingly reduces the overall aperture.

445 \ifdim\@tdA>180\p@
446 \advance\@tdA-180\p@
447 \Numero\@gradi\@tdA
448 \SubVect\@pPun from\@Cent to\@V
449 \AddVect\@V and\@Cent to\@sPun
450 \MultVect\@V by0,-1.3333333to\@V \if\Segno-\ScaleVect\@V by-1to\@V\fi
451 \AddVect\@pPun and\@V to\@pcPun
452 \AddVect\@sPun and\@V to\@scPun
453 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
454 \GetCoord(\@scPun)\@scPunX\@scPunY
455 \GetCoord(\@sPun)\@sPunX\@sPunY
456 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
457 {\@scPunX\unitlength}{\@scPunY\unitlength}%
458 {\@sPunX\unitlength}{\@sPunY\unitlength}%
459 \CopyVect\@sPun to\@pPun
460 \fi

If the remaining aperture is not zero it continues tracing the rest of the arc. Here
we need the extrema of the arc and the coordinates of the control points of the
Bézier cubic spline that traces the arc. The control points lay on the perpendicular
to the vectors that join the arc center to the starting and end points respectively.
Their distance K from the adjacent nodes is determined with the formula

K = 4
3

1− cos θ
sin θ R

where θ is half the arc aperture and R is its radius.
461 \ifdim\@tdA>\z@
462 \DirFromAngle\@gradi to\@Dir \if\Segno-\ConjVect\@Dir to\@Dir \fi
463 \SubVect\@Cent from\@pPun to\@V
464 \MultVect\@V by\@Dir to\@V
465 \AddVect\@Cent and\@V to\@sPun
466 \@tdA=.5\@tdA \Numero\@gradi\@tdA
467 \DirFromAngle\@gradi to\@Phimezzi
468 \GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi
469 \@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB
470 \@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@ \Numero\@tempa\@tdC
471 \@tdB=\@tempa\@tdB
472 \DividE\@tdB by\@sinphimezzi\p@ to\@cZ
473 \ScaleVect\@Phimezzi by\@cZ to\@Phimezzi
474 \ConjVect\@Phimezzi to\@mPhimezzi
475 \if\Segno-%
476 \let\@tempa\@Phimezzi
477 \let\@Phimezzi\@mPhimezzi
478 \let\@mPhimezzi\@tempa
479 \fi

32



480 \SubVect\@sPun from\@pPun to\@V
481 \DirOfVect\@V to\@V
482 \MultVect\@Phimezzi by\@V to\@Phimezzi
483 \AddVect\@sPun and\@Phimezzi to\@scPun
484 \ScaleVect\@V by-1to\@V
485 \MultVect\@mPhimezzi by\@V to\@mPhimezzi
486 \AddVect\@pPun and\@mPhimezzi to\@pcPun
487 \GetCoord(\@pcPun)\@pcPunX\@pcPunY
488 \GetCoord(\@scPun)\@scPunX\@scPunY
489 \GetCoord(\@sPun)\@sPunX\@sPunY
490 \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
491 {\@scPunX\unitlength}{\@scPunY\unitlength}%
492 {\@sPunX\unitlength}{\@sPunY\unitlength}%
493 \fi}

5.6.2 Arc vectors

We exploit much of the above definitions for the \Arc macro for drawing circular
arcs with an arrow at one or both ends; the first macro \VerctorArc draws an
arrow at the ending point of the arc; the second macro \VectorARC draws arrows
at both ends; the arrows have the same shape as those for vectors; actually they
are drawn by putting a vector of zero length at the proper arc end(s), therefore
they are styled as traditional LATEX or PostScript arrows according to the option
of the pict2e package.

But the specific drawing done here shortens the arc so as not to overlap on the
arrow(s); the only arrow (or both ones) are also lightly tilted in order to avoid the
impression of a corner where the arc enters the arrow tip.

All these operations require a lot of “playing” with vector directions, but even
if the operations are numerous, they do not do anything else but: (a) determining
the end point and its direction; (b) determining the arrow length as an angular
quantity, i.e. the arc amplitude that must be subtracted from the total arc to be
drawn; (c) the direction of the arrow should be corresponding to the tangent to
the arc at the point where the arrow tip is attached;(d) tilting the arrow tip by
half its angular amplitude; (e) determining the resulting position and direction
of the arrow tip so as to draw a zero length vector; (f) possibly repeating the
same procedure for the other end of the arc; (g) shortening the total arc angular
amplitude by the amount of the arrow tip(s) already set, and (h) then drawing
the final circular arc that joins the starting point to the final arrow or one arrow
to the other one.

The calling macros are very similar to the \Arc macro initial one:
494 \def\VectorArc(#1)(#2)#3{\begingroup
495 \@tdA=#3\p@ \ifdim\@tdA=\z@\else
496 \@VArc(#1)(#2)%
497 \fi
498 \endgroup\ignorespaces}%
499 %
500 \def\VectorARC(#1)(#2)#3{\begingroup

33



501 \@tdA=#3\p@
502 \ifdim\@tdA=\z@\else
503 \@VARC(#1)(#2)%
504 \fi
505 \endgroup\ignorespaces}%

The single arrowed arc is defined with the following long macro where all
the described operations are performed more or less in the described succession;
probably the macro requires a little cleaning, but since it works fine I did not
try to optimize it for time or number of tokens. The final part of the macro is
almost identical to that of the plain arc; the beginning also is quite similar. The
central part is dedicated to the positioning of the arrow tip and to the necessary
calculations for determining the tip tilt and the reduction of the total arc length;
pay attention that the arrow length, stored in \@tdE is a real length, while the
radius stored in \@Raggio is just a multiple of the \unitlength, so that the
division (that yields a good angular approximation to the arrow length as seen
from the center of the arc) must be done with real lengths. The already defined
\@@Arc macro actually draws the curved vector stem without stroking it.

506 \def\@VArc(#1)(#2){%
507 \ifdim\@tdA>\z@
508 \let\Segno+%
509 \else
510 \@tdA=-\@tdA \let\Segno-%
511 \fi \Numero\@gradi\@tdA
512 \ifdim\@tdA>360\p@
513 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
514 and gets reduced\MessageBreak%
515 to the range 0--360 taking the sign into consideration}%
516 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
517 \fi
518 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
519 \@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
520 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
521 \@tdD=\DeltaGradi\p@
522 \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
523 \@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
524 \DirFromAngle\@tempa to\@Dir
525 \MultVect\@V by\@Dir to\@sPun
526 \edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
527 \MultVect\@sPun by 0,\@tempA to\@vPun
528 \DirOfVect\@vPun to\@Dir
529 \AddVect\@sPun and #1 to \@sPun
530 \GetCoord(\@sPun)\@tdX\@tdY
531 \@tdD\ifx\Segno--\fi\DeltaGradi\p@
532 \@tdD=.5\@tdD \Numero\DeltaGradi\@tdD
533 \DirFromAngle\DeltaGradi to\@Dird
534 \MultVect\@Dir by*\@Dird to\@Dir
535 \GetCoord(\@Dir)\@xnum\@ynum
536 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%

34



537 \@tdE =\ifx\Segno--\fi\DeltaGradi\p@
538 \advance\@tdA -\@tdE \Numero\@gradi\@tdA
539 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
540 \@@Arc
541 \strokepath\ignorespaces}%

The macro for the arc terminated with arrow tips at both ends is again very
similar, except it is necessary to repeat the arrow tip positioning also at the starting
point. The \@@Arc macro draws the curved stem.

542 \def\@VARC(#1)(#2){%
543 \ifdim\@tdA>\z@
544 \let\Segno+%
545 \else
546 \@tdA=-\@tdA \let\Segno-%
547 \fi \Numero\@gradi\@tdA
548 \ifdim\@tdA>360\p@
549 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
550 and gets reduced\MessageBreak%
551 to the range 0--360 taking the sign into consideration}%
552 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
553 \fi
554 \SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
555 \@tdE=\pIIe@FAW\@wholewidth \@tdE=0.8\@tdE
556 \DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
557 \@tdD=\DeltaGradi\p@ \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
558 \@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
559 \DirFromAngle\@tempa to\@Dir
560 \MultVect\@V by\@Dir to\@sPun% corrects the end point
561 \edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
562 \MultVect\@sPun by 0,\@tempA to\@vPun
563 \DirOfVect\@vPun to\@Dir
564 \AddVect\@sPun and #1 to \@sPun
565 \GetCoord(\@sPun)\@tdX\@tdY
566 \@tdD\ifx\Segno--\fi\DeltaGradi\p@
567 \@tdD=.5\@tdD \Numero\@tempB\@tdD
568 \DirFromAngle\@tempB to\@Dird
569 \MultVect\@Dir by*\@Dird to\@Dir
570 \GetCoord(\@Dir)\@xnum\@ynum
571 \put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}% arrow tip at the end point
572 \@tdE =\DeltaGradi\p@
573 \advance\@tdA -2\@tdE \Numero\@gradi\@tdA
574 \CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
575 \SubVect\@Cent from\@pPun to \@V
576 \edef\@tempa{\ifx\Segno-\else-\fi\@ne}%
577 \MultVect\@V by0,\@tempa to\@vPun
578 \@tdE\ifx\Segno--\fi\DeltaGradi\p@
579 \Numero\@tempB{0.5\@tdE}%
580 \DirFromAngle\@tempB to\@Dird
581 \MultVect\@vPun by\@Dird to\@vPun% corrects the starting point
582 \DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum

35



583 \put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}% arrow tip at the starting point
584 \edef\@tempa{\ifx\Segno--\fi\DeltaGradi}%
585 \DirFromAngle\@tempa to \@Dir
586 \SubVect\@Cent from\@pPun to\@V
587 \MultVect\@V by\@Dir to\@V
588 \AddVect\@Cent and\@V to\@pPun
589 \GetCoord(\@pPun)\@pPunX\@pPunY
590 \@@Arc
591 \strokepath\ignorespaces}%

It must be understood that the curved vectors, the above circular arcs termi-
nated with an arrow tip at one or both ends, have a nice appearance only if the arc
radius is not too small, or, said in a different way, if the arrow tip angular width
does not exceed a maximum of a dozen degrees (and this is probably already too
much); the tip does not get curved as the arc is, therefore there is not a smooth
transition from the curved stem and the straight arrow tip if this one is large in
comparison to the arc radius.

5.7 General curves
Now we define a macro for tracing a general, not necessarily circular arc. This
macro resorts to a general triplet of macros with which it is possible to draw
almost anything. It traces a single Bézier spline from a first point where the
tangent direction is specified to a second point where again it is specified the
tangent direction. Actually this is a special (possibly useless) case where the
general \curve macro could do the same or a better job. In any case. . .

592 \def\CurveBetween#1and#2WithDirs#3and#4{%
593 \StartCurveAt#1WithDir{#3}\relax
594 \CurveTo#2WithDir{#4}\CurveFinish}%

Actually the above macro is a special case of concatenation of the triplet formed
by macros \StartCurve, \CurveTo and\CurveFinish; the second of which can be
repeated an arbitrary number of times.

The first macro initializes the drawing and the third one strokes it; the real
work is done by the second macro. The first macro initializes the drawing but
also memorizes the starting direction; the second macro traces the current Bézier
arc reaching the destination point with the specified direction, but memorizes this
direction as the one with which to start the next arc. The overall curve is then
always smooth because the various Bézier arcs join with continuous tangents. If
a cusp is desired it is necessary to change the memorized direction at the end of
the arc before the cusp and before the start of the next arc; this is better than
stroking the curve before the cusp and then starting another curve, because the
curve joining point at the cusp is not stroked with the same command, therefore
we get two superimposed curve terminations. We therefore need another small
macro \ChangeDir to perform this task.

It is necessary to recall that the directions point to the control points, but
they do not define the control points themselves; they are just directions, or, even

36



better, they are simply vectors with the desired direction; the macros themselves
provide to the normalization and memorization.

The next desirable point would be to design a macro that accepts optional
node directions and computes the missing ones according to a suitable strategy.
I can think of many such strategies, but none seems to be generally applicable,
in the sense that one strategy might give good results, say, with sinusoids and
another one, say, with cardioids, but neither one is suitable for both cases.

For the moment we refrain from automatic direction computation, but we
design the general macro as if directions were optional.

Here we begin with the first initializing macro that receives in the first argu-
ment the starting point and in the second argument the direction of the tangent
(not necessarily normalized to a unit vector)

595 \def\StartCurveAt#1WithDir#2{%
596 \begingroup
597 \GetCoord(#1)\@tempa\@tempb
598 \CopyVect\@tempa,\@tempb to\@Pzero
599 \pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%
600 \GetCoord(#2)\@tempa\@tempb
601 \CopyVect\@tempa,\@tempb to\@Dzero
602 \DirOfVect\@Dzero to\@Dzero}

And this re-initializes the direction after a cusp
603 \def\ChangeDir<#1>{%
604 \GetCoord(#1)\@tempa\@tempb
605 \CopyVect\@tempa,\@tempb to\@Dzero
606 \DirOfVect\@Dzero to\@Dzero
607 \ignorespaces}

The next macro is the finishing one; it strokes the whole curve and closes the
group that was opened with \StartCurve.

608 \def\CurveFinish{\strokepath\endgroup\ignorespaces}%

The “real” curve macro comes next; it is supposed to determine the control
points for joining the previous point (initial node) with the specified direction to
the next point with another specified direction (final node). Since the control
points are along the specified directions, it is necessary to determine the distances
from the adjacent curve nodes. This must work correctly even if nodes and direc-
tions imply an inflection point somewhere along the arc.

The strategy I devised consists in determining each control point as if it were
the control point of a circular arc, precisely an arc of an osculating circle, a circle
tangent to the curve at that node. The ambiguity of the stated problem may be
solved by establishing that the chord of the osculating circle has the same direction
as the chord of the arc being drawn, and that the curve chord is divided into two
parts each of which should be interpreted as half the chord of the osculating circle;
this curve chord division is made proportionally to the projection of the tangent
directions on the chord itself. Excluding degenerate cases that may be dealt with
directly, imagine the triangle built with the chord and the two tangents; this
triangle is straightforward if there is no inflection point; otherwise it is necessary

37



to change one of the two directions by reflecting it about the chord. This is much
simpler to view if a general rotation of the whole construction is made so as to
bring the curve chord on the x axis, because the reflection about the chord amounts
to taking the complex conjugate of one of the directions. In facts with a concave
curve the “left” direction vector arrow and the “right” direction vector tail lay in
the same half plane, while with an inflected curve, they lay in opposite half plains,
so that taking the complex conjugate of one of directions re-establishes the correct
situation for the triangle we are looking for.

This done the perpendicular from the triangle vertex to the cord divides the
chord in two parts (the foot of this perpendicular may lay outside the chord,
but this is no problem since we are looking for positive solutions, so that if we get
negative numbers we just negate them); these two parts are taken as the half chords
of the osculating circles, therefore there is no problem determining the distances
Kleft and Kright from the left and right nodes by using the same formula we used
with circular arcs. Well. . . the same formula means that we have to determine the
radius from the half chord and its inclination with the node tangent; all things
we can do with the complex number algebra and macros we already have at our
disposal. If we look carefully at this computation done for the circular arc we
discover that in practice we used the half chord length instead of the radius; so
the coding is actually the same, may be just with different variable names.

We therefore start with getting the points and directions and calculating the
chord and its direction

609 \def\CurveTo#1WithDir#2{%
610 \def\@Puno{#1}\def\@Duno{#2}\DirOfVect\@Duno to\@Duno
611 \DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord

Then we rotate everything about the starting point so as to bring the chord on
the real axis

612 \MultVect\@Dzero by*\@DirChord to \@Dpzero
613 \MultVect\@Duno by*\@DirChord to \@Dpuno
614 \GetCoord(\@Dpzero)\@Xpzero\@Ypzero
615 \GetCoord(\@Dpuno)\@Xpuno\@Ypuno

The chord needs not be actually rotated because it suffices its length along the
real axis; the chord length is memorized in \@Chord.

We now examine the various degenerate cases, when either tangent is perpen-
dicular to the chord, or when it is parallel pointing inward or outward, with or
without inflection.

We start with the 90◦ case for the “left” direction separating the cases when
the other direction is or is not 90◦ . . .

616 \ifdim\@Xpzero\p@=\z@
617 \ifdim\@Xpuno\p@=\z@
618 \@tdA=0.666666\p@
619 \Numero\@Mcpzero{\@Chord\@tdA}%
620 \edef\@Mcpuno{\@Mcpzero}%
621 \else
622 \@tdA=0.666666\p@
623 \Numero\@Mcpzero{\@Chord\@tdA}%

38



624 \SetCPmodule\@Mcpuno from\@ne\@Chord\@Dpuno%
625 \fi

. . . from when the “left” direction is not perpendicular to the chord; it might be
parallel and we must distinguish the cases for the other direction . . .

626 \else
627 \ifdim\@Xpuno\p@=\z@
628 \@tdA=0.666666\p@
629 \Numero\@Mcpuno{\@Chord\@tdA}%
630 \SetCPmodule\@Mcpzero from\@ne\@Chord\@Dpzero%
631 \else
632 \ifdim\@Ypzero\p@=\z@
633 \@tdA=0.333333\p@
634 \Numero\@Mcpzero{\@Chord\@tdA}%
635 \edef\@Mcpuno{\@Mcpzero}%

. . . from when the left direction is oblique and the other direction is either parallel
to the chord . . .

636 \else
637 \ifdim\@Ypuno\p@=\z@
638 \@tdA=0.333333\p@
639 \Numero\@Mcpuno{\@Chord\@tdA}%
640 \SetCPmodule\@Mcpzero from\@ne\@Chord\@Dpzero

. . . and, finally, from when both directions are oblique with respect to the chord;
we must see if there is an inflection point; if both direction point to the same half
plane we have to take the complex conjugate of one direction so as to define the
triangle we were speaking about above.

641 \else
642 \@tdA=\@Ypzero\p@ \@tdA=\@Ypuno\@tdA
643 \ifdim\@tdA>\z@
644 \ConjVect\@Dpuno to\@Dwpuno
645 \else
646 \edef\@Dwpuno{\@Dpuno}%
647 \fi

The control sequence \@Dwpuno contains the right direction for forming the trian-
gle; we can make the weighed subdivision of the chord according to the horizontal
components of the directions; we eventually turn negative values to positive ones
since we are interested in the magnitudes of the control vectors.

648 \GetCoord(\@Dwpuno)\@Xwpuno\@Ywpuno
649 \@tdA=\@Xpzero\p@ \@tdA=\@Ywpuno\@tdA
650 \@tdB=\@Xwpuno\p@ \@tdB=\@Ypzero\@tdB
651 \DividE\@tdB by\@tdA to\@Fact
652 \@tdC=\p@ \advance\@tdC-\@Fact\p@
653 \ifdim\@tdC<\z@ \@tdC=-\@tdC\fi
654 \DividE\p@ by \@Fact\p@ to\@Fact
655 \@tdD=\p@ \advance\@tdD-\@Fact\p@
656 \ifdim\@tdD<\z@ \@tdD=-\@tdD\fi

39



Before dividing by the denominator we have to check the directions, although
oblique to the chord are not parallel to one another; in this case there is no
question of a weighed subdivision of the chord

657 \ifdim\@tdD<0.0001\p@
658 \def\@factzero{1}%
659 \def\@factuno{1}%
660 \else
661 \DividE\p@ by\@tdC to\@factzero
662 \DividE\p@ by\@tdD to\@factuno
663 \fi

We now have the subdivision factors and we call another macro for determining
the required magnitudes

664 \SetCPmodule\@Mcpzero from\@factzero\@Chord\@Dpzero
665 \SetCPmodule\@Mcpuno from\@factuno\@Chord\@Dwpuno
666 \fi
667 \fi
668 \fi
669 \fi

Now we have all data we need and we determine the positions of the control points;
we do not work any more on the rotated diagram of the horizontal chord, but we
operate on the original points and directions; all we had to compute, after all,
were the distances of the control points along the specified directions; remember
that the “left” control point is along the positive “left” direction, while the “right”
control point precedes the curve node along the “right” direction, so that a vector
subtraction must be done.

670 \ScaleVect\@Dzero by\@Mcpzero to\@CPzero
671 \AddVect\@Pzero and\@CPzero to\@CPzero
672 \ScaleVect\@Duno by\@Mcpuno to\@CPuno
673 \SubVect\@CPuno from\@Puno to\@CPuno

Now we have the four points and we can instruct the internal pict2e macros to
do the path tracing.

674 \GetCoord(\@Puno)\@XPuno\@YPuno
675 \GetCoord(\@CPzero)\@XCPzero\@YCPzero
676 \GetCoord(\@CPuno)\@XCPuno\@YCPuno
677 \pIIe@curveto{\@XCPzero\unitlength}{\@YCPzero\unitlength}%
678 {\@XCPuno\unitlength}{\@YCPuno\unitlength}%
679 {\@XPuno\unitlength}{\@YPuno\unitlength}%

It does not have to stroke the curve because other Bézier splines might still be
added to the path. On the opposite it memorizes the final point as the initial
point of the next spline

680 \CopyVect\@Puno to\@Pzero
681 \CopyVect\@Duno to\@Dzero
682 \ignorespaces}%

The next macro is used to determine the control vectors lengths when we have
the chord fraction, the chord length and the direction along which to compute the

40



vector; all the input data (arguments from #2 to #4) may be passed as control
sequences so the calling statement needs not use any curly braces.

683 \def\SetCPmodule#1from#2#3#4{%
684 \GetCoord(#4)\t@X\t@Y
685 \@tdA=#3\p@
686 \@tdA=#2\@tdA
687 \@tdA=1.333333\@tdA
688 \@tdB=\p@ \advance\@tdB +\t@X\p@
689 \DividE\@tdA by\@tdB to#1\relax
690 \ignorespaces}%

We finally define the overall \Curve macro that recursively examines an ar-
bitrary list of nodes and directions; node coordinates are grouped within regular
parentheses while direction components are grouped within angle brackets. The
first call of the macro initializes the drawing process and checks for the next node
and direction; if a second node is missing, it issues a warning message and does
not draw anything. It does not check for a change in direction, because it would
be meaningless at the beginning of a curve. The second macro defines the path to
the next point and checks for another node; if the next list item is a square bracket
delimited argument, it interprets it as a change of direction, while if it is another
parenthesis delimited argument it interprets it as a new node-direction specifica-
tion; if the node and direction list is terminated, it issues the stroking command
and exits the recursive process. The @ChangeDir macro is just an interface for
executing the regular \ChangeDir macro, but also for recursing again by recalling
\@Curve.

691 \def\Curve(#1)<#2>{%
692 \StartCurveAt#1WithDir{#2}%
693 \@ifnextchar\lp@r\@Curve{%
694 \PackageWarning{curve2e}{%
695 Curve specifications must contain at least two nodes!\Messagebreak
696 Please, control your Curve specifications\MessageBreak}}}
697 \def\@Curve(#1)<#2>{%
698 \CurveTo#1WithDir{#2}%
699 \@ifnextchar\lp@r\@Curve{%
700 \@ifnextchar[\@ChangeDir\CurveFinish}}
701 \def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}

As a concluding remark, please notice that the \Curve macro is certainly the
most comfortable to use, but it is sort of frozen in its possibilities. The user may
certainly use the \StartCurve, \CurveTo, \ChangeDir, and \CurveFinish for a
more versatile set of drawing macros; evidently nobody forbids to exploit the full
power of the \cbezier original macro for cubic splines.

I believe that the set of new macros can really help the user to draw his/her
diagrams with more agility; it will be the accumulated experience to decide if this
is true.

41



References
[1] Gäßlein H., Niepraschk R., and Tkadlec J. The pict2e package, 2009, PDF

document attached to the “new” pict2e bundle; the bundle may be down-
loaded from any CTAN archive or one of their mirrors.

42


