
The fcolumn package∗

Edgar Olthof

Printed March 11, 2015

Abstract

In financial reports, text and currency amounts are regularly put in one
table, e.g., a year balance or a profit-and-loss overview. This package pro-
vides the settings for automatically typesetting such columns, including the
sum line (preceded by a rule of the correct width), using the specifier f.

The column specifier f itself is rather simple. It is the predefined version
of a generic column F. The generic version expects three arguments: #1 is
the separator, #2 is the decimal mark, and #3 the coding used for grouping
digits of the integer part and decimal part.

The f-column in the current version of the package is defined as
\newcolumntype{f}{F{.}{,}{3,2}} (which is the continental European
standard, implemented here) and people in the Anglo-saxon world would
rather code \newcolumntype{f}{F{,}{.}{3,2}}. The default value for #3

is 3,2, indicating that grouping of the integer part is by three digits and
that the decimal part consists of two digits. If however, in your country or
company grouping is done with a thinspace every four digits and there are
three digits after the decimal mark—that happens to be a \cdot—, then
simply specify \newcolumntype{f}{F{\,}{\cdot}{4,3}} in that case. By
default two digits are used for the decimal part, so if you really want no
decimal digits (in that case of course also skipping the decimal mark) you
have to explicitly specify x,0.

1 Introduction

To show where and how the f-column is used, let’s look at a typical financial table.

Balance sheet
properties 31 dec 2014 debts 31 dec 2014
house 200.000,00 equity capital 50.000,00
bank account −603,23 mortgage 150.000,00
savings 28.000,00
cash 145,85 profit 27.542,62

227.542,62 227.542,62

∗This file has version number v1.0, last revised 2015/03/07.

1

This table was entered as:

\begin{table}[htb]

\begin{tabular}{@{}lflf@{}}

\multicolumn4c{\bfseries Balance sheet}\\

\multicolumn1{@{}l}{properties}&\multicolumn1r{31 dec 2014}

&\multicolumn1l{debts}&\multicolumn1{l@{}}{31 dec 2014}\\

\hline

house & 20000000 & equity capital& 5000000\\

bank account& -60323 & mortgage & 15000000\\

savings& 2800000 & & \leeg \\

cash& 14585 & profit & 2754262\\

\sumline

\check12

\hline

\end{tabular}

\end{table}

All the work was done by the column specifier “f” (for “finance”). In this case it
constructs the \sumline, typesets the numbers, calculates the totals, and checks
whether the two columns are in balance; if not, the user is warned via a \message.
Of course for nice settings one should use the booktabs package, but that is not
the point here.

This package is heavily inspired by the dcolumn package by David Carlisle,
some constructions are more or less copied from that package.

There is at least one things to improve in this version: An empty entry in an
f-column should result in an empty spot in the table. Now an empty entry is not
correct and is repaired by LATEX to be equal to 0, printing a number in the table.
This can be prevented by explicitly specifying \leeg, like in the table above, but
that should be automated.

2 The macros

column F

column f

Note that the definition of the column type f does not use private macros (no @),
so overriding its definition is easy for a user.

1 \newcolumntype{F}[3]{>{\b@fi{#1}{#2}{#3}}r<{\e@fi}}

2 \newcolumntype{f}{F{.}{,}{3,2}}

\FCsc@l Two 〈count〉s are defined, that both start at zero: the 〈count〉 \FCsc@l, that
keeps track at which f-column the tabular is working on and the 〈count〉 \FCtc@l,
that records the number of f-columns that were encountered so far. Later in the
package the code can be found for generating a new 〈count〉 and a new 〈dimen〉
if the number of requested f-columns is larger than currently available. This is of
course the case when an f-column is used for the first time.

3 \newcount\FCsc@l \FCsc@l0

4 \newcount\FCtc@l \FCtc@l0

2

\geldm@cro The macro \geldm@cro takes a number and by default interprets this as an amount
expressed in cents (dollar cents, euro cents, centen, Pfennige, kopecks, groszy) and
typesets it as the amount in entire currency units (dollars, euros, guldens, Marke,
ruble, z loty) with comma as decimal separator and the dot as thousand separator.
As explained, this can be changed. It uses a private boolean \withs@p and an
accessable, i.e., without @ boolean: \strictaccounting. The latter is used to
typeset negative numbers between parentheses. By default it doesn’t do this: a
minus sign is used. It also uses two private 〈count〉s. I’m still figuring out whether
this is needed; everything is done local within a column of an \ialign, so using
\count0, \count1, etc. might also work: it would safe two 〈count〉s.
5 \newcount\g@lda

6 \newcount\g@ldb

7 \newif\ifwiths@p

8 \newif\ifstrictaccounting \strictaccountingfalse

Actually \geldm@cro is only a wrapper around \g@ldm@cro.

9 \def\geldm@cro#1#2{\withs@pfalse

10 \afterassignment\g@ldm@cro\count@#2\relax{#1}}

\g@ldm@cro This macro starts by looking at the sign of #2: if it is negative, it prints the
correct indicator (a parenthesis or a minus sign), assigns the absolute value of #2
to \g@lda and goes on. Note that \geldm@cro and therefore \g@ldm@cro are used
within $s, so it is really a minus sign that is printed, not a hyphen.

11 \def\g@ldm@cro#1\relax#2{%

12 \ifnum#2<0 \ifstrictaccounting(\else-\fi\g@lda=-#2 \else\g@lda=#2 \fi

Calculate the entire currency units: this is the result of x/a as integer division,
with a = 10n and n the part of #1 after the separator (if any). Here the first
character of #1 is discarded, so the separator in #1 is not strict: you could also
specify 3.2 instead of 3,2 (or even 3p2).

13 \ifx\relax#1\relax\g@ldb=2 \else \g@ldb\@gobble#1\relax\fi

14 \loop

15 \ifnum\g@ldb>0 \divide\g@lda by 10 \advance\g@ldb by \m@ne

16 \repeat

The value in \g@lda is then output by \g@ldens using the separation given.

17 \g@ldens{\the\count@}%

If there is a decimal part. . .

18 \ifx\relax#1\relax\g@ldb=2 \else \g@ldb\@gobble#1\relax\fi

19 \ifnum\g@ldb>0\decim@lmark

Next the decimal part is dealt with. Now x mod a is calculated in the usual way:
x − (x/a) ∗ a. The minus sign necessary for this calculation is introduced in the
next line by changing the comparison to > instead of <.

20 \ifnum#2>0 \g@lda=-#2\else\g@lda=#2 \fi

21 \loop

22 \ifnum\g@ldb>0 \divide\g@lda by 10 \advance\g@ldb by \m@ne

23 \repeat

24 \ifx\relax#1\relax\g@ldb=2 \else \g@ldb\@gobble#1\relax\fi

3

25 \loop

26 \ifnum\g@ldb>0 \multiply\g@lda by 10 \advance\g@ldb by \m@ne

27 \repeat

28 \ifnum#2>0 \advance\g@lda by #2

29 \else \advance\g@lda by -#2

30 \fi

31 \ifx\relax#1\relax\g@ldb=2 \else \g@ldb\@gobble#1\relax\fi

32 \zerop@d{\number\g@ldb}{\number\g@lda}%

33 \fi

If the negative number is indicated by putting it between parentheses, then the
closing parenthesis should stick out of the column, otherwise the alignment of this
entry in the column is wrong. This is done by an \rlap and therefore does not
influence the column width. For the last column this means that this parenthe-
sis may even stick out of the table. I don’t like this, therefore I chose to put
\strictaccountingfalse. Change if you like.

34 \ifnum#2<0 \ifstrictaccounting\rlap{)}\fi\fi}

\g@ldens Here the whole currency units are dealt with. The macro \g@ldens is used re-
cursively, therefore the double braces; this allows to use \count0 locally. Tail
recursion is not possible here (at least I don’t know of a way), but that is not
very important, as the largest number (231 − 1) will only cause a threefold re-
cursion. This also implies that the largest amount this package can deal with is
2.147.483.647 (using x.0). For most people this is probably more than enough if
the currency is euros or dollars. If not, then it is more likely that you are spending
your time on the beach than studying this package. And otherwise make clear that
you use a currency unit of k$.

35 \def\g@ldens#1{{\g@ldb=\g@lda \count0=#1

First divide by 10n, where n is #1.

36 \loop

37 \ifnum\count0>0

38 \divide\g@lda by 10

39 \advance\count0 by \m@ne

40 \repeat

Here is the recursive part,

41 \ifnum\g@lda>0 \g@ldens{#1}\fi

and then reconstruct the rest of the number.

42 \count0=#1

43 \loop

44 \ifnum\count0>0

45 \multiply\g@lda by 10

46 \advance\count0 by \m@ne

47 \repeat

48 \g@lda=-\g@lda

49 \advance\g@lda by \g@ldb \du@zendprint{#1}}}

4

\du@zendprint The macro \du@zendprint takes care for correctly printing the separator and
possible trailing zeros.

50 \def\du@zendprint#1{\ifwiths@p\sep@rator\zerop@d{#1}{\number\g@lda}%

51 \else\zerop@d{1}{\number\g@lda}\fi

52 \global\withs@ptrue}

\zerop@d The macro \zerop@d uses at least #1 digits for printing the number #2, padding
with zeros when necessary. Initially this was a nice macro using tail recursion until
it was found that the running time of that macro was proportional to n2, where
n is roughly the number of zeros to be padded. The worst case situation is when
printing “0”. The running time of the current version is only linear in n.

It is done within an extra pair of braces, so that \count0 and \count1 can be
used without disturbing their values in other macros.

53 \def\zerop@d#1#2{{\count0=1 \count1=#2

First determine the number of digits of #2 (expressed in the decimal system). This
number is in \count0 and is at least 1.

54 \loop

55 \divide \count1 by 10

56 \ifnum\count1>0 \advance\count0 by 1

57 \repeat

The number of zeros to be padded is max(0, #1-\count0) (the second argument
can be negative), so a simple loop suffices.

58 \loop

59 \ifnum\count0<#1 0\advance\count0 by 1

60 \repeat

61 \number#2}}

\zetg@ld This macro takes care for several things: it increases the total for a given f-column,
it records the largest width of the entries in that column and it typesets #1 via
\geldm@cro.

62 \def\zetg@ld#1#2{\global\advance\csname

63 FCtot@\romannumeral\FCsc@l\endcsname by #1

64 \setbox0=\hbox{$\geldm@cro{#1}{#2}$}%

65 \ifdim\wd0>\csname FCwd@\romannumeral\FCsc@l\endcsname

66 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\wd0

67 \fi\unhbox0}

\check The macro \check provides a way to the user to check that the appropriate
columns are balanced (as it should in a balance). Arguments #1 and #2 are
the column numbers to compare. It is the responsibility of the user to provide
the correct numbers here, otherwise bogus output is generated. But the output
is only to screen and the transcript file; it doesn’t change the appearance of your
document, so you can safely ignore the result then, repair and go on.

68 \def\check#1#2{\noalign{\ifnum\csname FCtot@\romannumeral#1\endcsname=

69 \csname FCtot@\romannumeral#2\endcsname\else

70 \message{Columns #1 and #2 do not balance!}\fi}}

5

\b@fi The macro \b@fi provides the beginning of the financial column. It will be inserted
in the column to capture the number entered by the user. The \let is only local
to the column and is necessary because \ignorespaces is automatically inserted
by the preamble-generating macro \@mkpream. Its effect should be annihilated,
otherwise the assignment to \bedr@g goes wrong. The plain LATEX command
\@empty is used for that. The separator and decimal mark are within a math
environment, so you can indeed specify \, instead of \thinspace, but there is
an extra brace around, so it doesn’t affect the spacing between the digits (trick
copied from dcolumn).

71 \newcount\bedr@g

72 \def\b@fi#1#2#3{\def\sep@rator{{#1}}\def\decim@lmark{{#2}}%

73 \let\ignorespaces=\@empty \def\sp@l{#3}\global\advance\FCsc@l by \@ne

The value specified by the user is then captured by \bedr@g.

74 \bedr@g=}

\e@fi Once captured, the rest is handled by \e@fi. The number is then fed to \zetg@ld

for the current column.

75 \def\e@fi{\relax \zetg@ld{\number\bedr@g}{\sp@l}}

Here are adaptations to existing macros.

\@xarraycr Among all its tasks, now \\ also resets the column number. This is a transparant
change, i.e., loading this package without using the “f” column specifier does not
change the effect of package array.sty in any way. This resetting has to be done
after the \cr, so it is stored in a \noalign.

76 \def\@xarraycr{\@ifnextchar [%

77 \@argarraycr {\ifnum 0=‘{}\fi \cr\noalign{\global\FCsc@l=0 }}}

\@array The definition of \@array had to be extended slightly because it should also include
\@mksumline (acting on the same #2 as \@mkpream gets). Also this change is
transparant: it only adds functionality and if you don’t use that, you won’t notice
the difference.

78 \def\@array[#1]#2{%

79 \@tempdima \ht \strutbox

80 \advance \@tempdima by\extrarowheight

81 \setbox \@arstrutbox \hbox{\vrule

82 \@height \arraystretch \@tempdima

83 \@depth \arraystretch \dp \strutbox

84 \@width \z@}%

85 \begingroup

86 \@mkpream{#2}%

87 \xdef\@preamble{\noexpand \ialign \@halignto

88 \bgroup \@arstrut \@preamble

89 \tabskip \z@ \cr}%

The combination \endgroup followed by \begingroup seems redundant, but that
is not the case: the \endgroup restores everything that was not \global. With

6

the following \begingroup it is ensured that \@mksumline experiences the same
settings as \@mkpream did.

90 \endgroup

91 \begingroup

92 \@mksumline{#2}%

93 \endgroup

As a side product of \@mksumline also the 〈count〉s for the totals and 〈dimen〉s for
the widths of the colums are created. The columns should start fresh, i.e., totals
are 0 and widths are 0 pt.

94 \res@tsumline

From here on it is just the old definition of array.sty.

95 \@arrayleft

96 \if #1t\vtop \else \if#1b\vbox \else \vcenter \fi \fi

97 \bgroup

98 \let \@sharp ##\let \protect \relax

99 \lineskip \z@

100 \baselineskip \z@

101 \m@th

102 \let\\\@arraycr \let\tabularnewline\\\let\par\@empty \@preamble}

Because \@array was changed here and it is this version that should be used,
\@@array should be \let equal to \@array again.

103 \let\@@array=\@array

\@mksumline The construction of the sumline is much easier than that of the preamble for several
reasons. It may be safely assumed that the preamble specifier is grammatically
correct because it has already been screened by \@mkpream. Furthermore most
entries will simply add nothing to \sumline, e.g., @, !, and | can be fully ignored.
Ampersands are only inserted by c, l, r, p, m, and b. So a specifier like @{}lflf@{}
will yield the sumline &\a&&\a\\, where \a is a macro that prints the desired
result of the column. Had the specifier been l|f||@{ }l|f, then the same
sumline must be constructed: all difficulties are already picked up and solved in
the creation of the preamble.

In reality the sumline must be constructed from the expanded form of the
specifier, so @{}lf@{} will expand as @{}l>{\b@fi#1#2#2}r<{\e@fi}@{}. The
rules for constructing the sumline are now very simple:
• add an ampersand when c, l, r, p, m, or b is found, unless it is the first one

(this is the same as in the preamble);
• add a \a when <{\e@fi} is found;
• ignore everything else.

To discriminate, a special version of \testpach could be written, but that is not
necessary: \testpach can do all the work, although much of it will be discarded.
Here speed is sacrificed for space and this can be afforded because the creation of
the sumline is only done once per \tabular.

The start is copied from \@mkpream.

104 \def\@mksumline#1{\gdef\sumline{}

105 \@lastchclass 4 \@firstamptrue

7

At first the column number is reset and the actual code for what was called \a

above is made inactive.

106 \global\FCsc@l=\z@

107 \let\prr@sult=\relax

Then \@mkpream is picked up again.

108 \@temptokena{#1}

109 \@tempswatrue

110 \@whilesw\if@tempswa\fi{\@tempswafalse\the\NC@list}%

111 \count@\m@ne

112 \let\the@toks\relax

113 \prepnext@tok

Next is the loop over all tokens in the expanded form of the specifier. The change
with respect to \@mkpream is that the body of the loop is now only dealing with
classes 0, 2, and 10. What to do in those cases is of course different from what to
do when constructing the preamble, so special definitions are created, see below.

114 \expandafter \@tfor \expandafter \@nextchar

115 \expandafter :\expandafter =\the\@temptokena \do

116 {\@testpach

117 \ifcase \@chclass \@classfz

118 \or \or \@classfii \or

119 \or \or \or \or \or \or \or \@classfx \fi

120 \@lastchclass\@chclass}%

And the macro is finished by appending the \\ to the sumline.

121 \xdef\sumline{\sumline\noexpand\\}}

\@addtosumline Macro \@addtosumline, as its name already suggests, adds something to the
sumline, like its counterpart \@addtopreamble did to the preamble.

122 \def\@addtosumline#1{\xdef\sumline{\sumline #1}}

\@classfx Class 10 for the sumline creation is a stripped down version of \@classx: add an
ampersand unless it is the first. It deals with the specifiers b, m, p, c, l, and r.

123 \def\@classfx{\if@firstamp \@firstampfalse \else \@addtosumline &\fi}

\@classfz Class 0 is applicable for specifiers c, l, and r and if the arguments of p, m, or b

are given. The latter three cases, with \@chnum is 0, 1, or 2 should be ignored and
the first three cases are now similar to class 10.

124 \def\@classfz{\ifnum\@chnum<\thr@@ \@classfx\fi}

\@classfii Here comes the nice and nasty part. Class 2 is applicable if a < is specified. This is
tested by checking \@lastchclass, which should be equal to 8. Then it is checked
that the argument to < is indeed \e@fi. This check is rather clumsy but this was
the first way, after many attempts, that worked. It is necessary because the usage
of < is not restricted to \e@fi: the user may have specified other TEX-code using
<.

125 \def\@classfii{\ifnum\@lastchclass=8

126 \edef\t@stm{\expandafter\string\@nextchar}

8

127 \edef\t@stn{\string\e@fi}

128 \ifx\t@stm\t@stn

If both tests yield true then add the macro to typeset everything.

129 \@addtosumline{\prr@sult}

But we’re not done yet: in the following lines of code the appropriate 〈count〉s
and 〈dimen〉s are created, if necessary.

130 \global\advance\FCsc@l by \@ne

131 \ifnum\FCsc@l>\FCtc@l

Apparently the number of requested columns is larger than the currently available
number, so a new one should be created. What is checked here is its existence: if
it exists, it is not created by fcolumn so it may be something other than a 〈count〉,
in which things go haywire. Therefore it is assumed that only fcolumn is allowed
to generate a 〈count〉 called \FCtot@<some romannumeral>.

132 \expandafter\ifx\csname FCtot@\romannumeral\FCsc@l\endcsname\relax

133 \expandafter\newcount\csname FCtot@\romannumeral\FCsc@l\endcsname

134 \else

135 \message{\noexpand\FCtot@\romannumeral\FCsc@l already exists.}

136 \fi

And the same is applicable for the 〈dimen〉: it is assumed that only fcolumn is
allowed to generate a 〈dimen〉 called \FCwd@<some romannumeral>.

137 \expandafter\ifx\csname FCwd@\romannumeral\FCsc@l\endcsname\relax

138 \expandafter\newdimen\csname FCwd@\romannumeral\FCsc@l\endcsname

If the creation was successful, the 〈count〉 \FCtc@l should be increased.

139 \global\FCtc@l=\FCsc@l

140 \else

141 \message{\noexpand\FCwd@\romannumeral\FCsc@l already exists.}

142 \fi

143 \fi

144 \fi

145 \fi}

Once created they are not initialised here because that is done later in one go.

\leeg The macro \prr@sult (see below) actually puts the information together. It starts
with switching off the default behaviour of the f-column by providing the number
0 to comfort the assignment in \b@fi, although any number would be good: it is
discarded anyway. This is achieved by \letting \e@fi to be \relax. This \let is
only local to the current column. Since the user may from time to time also need
an empty entry in the table, this definition is without at-sign.

146 \def\leeg{0\relax \let\e@fi=\relax}

A better solution were to check for a number. If present then do the default action,
otherwise generate an empty entry.

\prr@sult And here it is: the end result. First annihilate the effect of \e@fi.

147 \def\prr@sult{\leeg

9

Then the information for the last line is computed. It is not sufficient to calculate
the width of the result (in points) to use that as the width of the rule separating
the individual entries and the result. It may be that the sum is larger (in points)
than any of the entries, e.g., when the result of 6 + 6 is typeset. The width of the
rule should be equal to the width of \hbox{12} then. On the other hand the
width of the rule when summing 24 and −24 should be that of \hbox{-24} (or
\hbox{$(24$}, see above), not the width of the result \hbox{0}. Therefore the
maximum of all entry widths, including the result, was calculated.

148 \setbox0=\hbox{$\geldm@cro{\number\csname

149 FCtot@\romannumeral\FCsc@l\endcsname}{\sp@l}$}%

150 \ifdim\wd0>\csname FCwd@\romannumeral\FCsc@l\endcsname

151 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\wd0

152 \fi

153 \vbox{\hbox to \csname

154 FCwd@\romannumeral\FCsc@l\endcsname{\hrulefill}\vskip2pt

155 \hbox to \csname

156 FCwd@\romannumeral\FCsc@l\endcsname{\hfil\unhbox0}}}

\res@tsumline Since all changes to the totals and widths of the columns are global, they have
to be reset actively at the start of a tabular or array. That is an action by itself,
but it may occur more often, on request of the user, therefore a special macro
is defined. The count \FCsc@l can be used as a temporary register because its
actual value is not important anymore.

157 \def\res@tsumline{\FCsc@l\FCtc@l \loop\ifnum\FCsc@l>0

158 \global\csname FCtot@\romannumeral\FCsc@l\endcsname=0

159 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=0pt

160 \advance\FCsc@l by \m@ne \repeat}

\resetsumline To reset a sumline within a table, it should be done within a \noalign.

161 \def\resetsumline{\noalign{\res@tsumline}}

That’s it!

10

