
PROOF TREES IN LATEX

MARCO BENINI

1. Introduction

Writing proofs in natural deduction or in similar, tree-like calculi, is always a
challenge: from the typographical point of view, these proofs are complex objects
that cannot be simply typeset using the standard LATEX commands. Thus, many
packages have been developed: Sam Buss’s bussproofs.sty, http://math.ucsd.
edu/~sbuss/ResearchWeb/bussproofs/; Makoto Tatsuta’s proof.sty, http://

research.nii.ac.jp/~tatsuta/proof-sty.html; and prooftree.sty by Paul
Taylor, http://mirror.ctan.org/macros/generic/proofs/taylor.

All these packages have their merits and weaknesses. For example, Buss’s pack-
age is extremely flexible but inference rules with more than five assumptions cannot
be directly typeset. On the other hand, Tatsuta’s package provides a very simple
set of commands doing a fine job, but customisation is very limited. Taylor’s pack-
age provides a natural syntax for writing proofs, but customisation is limited, and
the package has an expire date.

The package presented in the following provides most of the features which are
already present in Buss’s package, coupled with some new ones. This package uses
a syntax which is closer to Tatsuta’s one, but almost all the typesetting process is
parametric, so that each bit of a proof can be customised at will.

The graphical appearance of a proof is similar to the one obtained using Taylor’s
package, but the additional features allow to set up the graphical output to follow
the style of some of the standard textbooks, e.g., A.S. Troelstra and H. Schwicht-
enberg, Basic Proof Theory, Cambridge University Press (2000).

1

2 MARCO BENINI

2. Basic Commands

The package is invoked by putting \usepackage{prfree.sty} in the preamble
of the document, and installation reduces to put the file prftree.sty somewhere
in the LATEX search path.

A proof tree constructs a box with the following internal structure:

assumption1 · · · assumptionn

rule namelabel

conclusion

In turn, each assumption is typeset as a box which has usually the shape of another
proof tree, while the rule name and the label are typeset in a text box, and the
conclusion in a math box. The aspect of the proof line is controlled by suitable
options, as is the presence of the rule name and of the label. Options cover other
aspects of the graphical rendering of a proof tree, as it will be explained later. The
basic command to build a proof tree is \prftree.

For example, the proof of A ⊃ ¬¬A in natural deduction is:

[A] [¬A] ⊃E⊥ ⊃I¬¬A ⊃I
A ⊃ ¬¬A

This proof is generated by the following LATEX code:

\begin{displaymath}

\prftree[r]{\supsetI}

{\prftree[r]{\supsetI}

{\prftree[r]{\supsetE}

{\prfboundedassumption{A}}

{\prfboundedassumption{\neg A}}

{\bot}}

{\neg\neg A}}

{A \supset \neg\neg A}

\end{displaymath}

In general, the syntax of the \prftree command is:

\prftree[options] · · · [options]{assumption1} · · · {assumptionn}{conclusion}

Assumptions are optional and there may be any number of them. Each assump-
tion may contain a proof tree, which is typeset independently. The conclusion is
mandatory, and it is supposed to be a formula. Assumptions and the conclusion
are typeset in a display style math environment. Options control the way the proof
is generated: in the example, the r option has been used to signal that the first
argument of \prftree is the name of the inference rule.

The available options are:

• [r], [rule], [by rule], [by], [right]: the first argument after the options is
the rule name, which is typeset in text mode;

PROOF TREES IN LATEX 3

• [l], [left], [label]: the first argument after the options is the label of the
rule, which is typeset in text mode. If a rule name is present, the first
argument is the rule name, and the second one is the label;
• [straight], [straight line], [straightline]: makes the proof line solid;
• [dotted], [dotted line], [dottedline]: makes the proof line dotted;
• [dashed], [dashed line], [dashedline]: makes the proof line dashed;
• [f], [fancy], [fancy line], [fancyline]: the proof line will be fancy;
• [s], [single], [single line], [singleline]: makes the proof line single;
• [d], [double], [double line], [doubleline]: makes the proof line double;
• [noline]: suppresses the proof line (prevails over all other line options);
• [summary]: renders the proof line as the summary symbol (prevails over

all other line options except noline).

By default the proof line is straight and single. Options may be written in sequence,
as in [r,f,d], which means that the proof tree will have a rule name, and the
proof line will be fancy and double, or separately, as in [r][f][d], or even as a
combination, like [r][f,d]. Options are evaluated left-to-right, so [d,s] is the
same as [s], while [noline,straight,d] is the same as [noline].

The conjunction introduction rule illustrates the various line options1:

default (single straight)

A B

A ∧B
A B ∧I
A ∧B [straight]

double straight

A B

A ∧B
A B

∧I
A ∧B [double,straight]

single dotted

A B.........
A ∧B

A B......... ∧I
A ∧B [dotted]

double dotted

A B..................
A ∧B

A B.................. ∧I
A ∧B [double,dotted]

single dashed

A B

A ∧B
A B ∧I
A ∧B [dashed]

double dashed

A B

A ∧B
A B

∧I
A ∧B [double,dashed]

single fancy

A B∼∼∼∼∼
A ∧B

A B∼∼∼∼∼∧I
A ∧B [fancy]

double fancy

A B∼∼∼∼∼∼∼∼∼∼
A ∧B

A B∼∼∼∼∼∼∼∼∼∼∧I
A ∧B [double,fancy]

noline
A B
A ∧B

A B ∧I
A ∧B [noline]

An assumption is a special proof tree, built by the command:

\prfassumption{formula}

Similarly, a bounded assumption is produced by the command:

\prfboundedassumption{formula}

as in the previous example.

1The reader is invited to look at the source code of the documentation to see how these
examples have been implemented.

4 MARCO BENINI

Although it is possible to type assumptions directly as argument of \prftree,
it is better to use the commands above: as explained later, since a proof tree is
a box with an internal structure, the assumption commands take care of building
this structure appropriately, while the direct typing does not, which may produce
unexpected results.

Similarly, axioms are produced by the commands

\prfaxiom{axiom}
and

\prfbyaxiom{name}{axiom}
For example, the axiom stating that equality is reflexive, is

∀xx = x
refl∀xx = x

and they are generated by the LATEX code

\prfaxiom{\forall x\, x = x} \prfbyaxiom{refl}{\forall x\, x = x}

Finally, a proof summary is used to summarise a proof. The corresponding
command is:

\prfsummary[name]{assumption1} · · · {assumptionn}{conclusion}
The name of the proof is optional, while the assumptions and the conclusion are
treated as in \prftree. When present, the proof name is typeset in text mode.

For example, \prfsummary{\forall x\, x = x} produces
·····

∀xx = x

while \prfsummary[name]{A(x)}{B(y)}{B(y) \wedge A(x)} gives

A(x) B(y)
·····
name

B(y) ∧A(x)

In general, a proof tree is a TEX box containing all the pieces of the tree, with
strict bounds: for example,

A(x) B(y)
·····
name

B(y) ∧A(x)

PROOF TREES IN LATEX 5

3. Parameters

A number of parameters may be used to control the typesetting of proof trees.
They may be changed globally or locally, following the usual scoping rules of TEX.
In this respect, remember that each assumption is typeset independently, so pa-
rameters may be changed on a sub-proof basis, as will be done in most examples.

There are various TEX dimensions that influence how proofs are constructed:

• \prflinepad (default 0.3ex): the space between the bottom line of as-
sumptions and the proof line, and also the space between the proof line
and the top of the conclusion;
• \prflineextra (default 0.3em): the length which extends on the left and

on the right the proof line so that it is slightly longer than the largest
between the conclusion and the list of (direct) assumptions;
• \prflinethickness (default 0.2pt): the thickness of the proof line;
• \prfemptylinethickness (default 4 times the line thickness): in the rare

case when the line is empty, but there are assumptions, this is the distance
between the assumptions and the conclusion;
• \prfrulenameskip (default 0.2em): the space between the proof line and

the rule name;
• \prflabelskip (default 0.2em): the space between the proof label and

the proof line;
• \prfinterspace (default .6em): the space between two subsequent as-

sumptions in the assumption list;
• \prfdoublelineinterspace (default 1.2pt): the space between the two

lines of a double line.

For example,

[A] [¬A]
⊃E

⊥
⊃I

¬¬A
⊃I

A ⊃ ¬¬A

is typeset by

\prflinepad=.7ex

\prftree[r]{\supsetI}

{\prftree[r]{\supsetI}

{\prftree[r]{\supsetE}

{\prfboundedassumption{A}}

{\prfboundedassumption{\neg A}}

{\bot}}

{\neg\neg A}}

{A \supset \neg\neg A}

Similarly, \prflineextra=-.4em and \prfrulenameskip=.8em produce:

[A] [¬A] ⊃E⊥ ⊃I¬¬A ⊃I
A ⊃ ¬¬A

6 MARCO BENINI

Also, \prflinethickness=3pt and \prfdoublelineinterspace=2pt in the up-
per sub-proof generate:

[A] [¬A]
⊃E

⊥ ⊃I¬¬A ⊃I
A ⊃ ¬¬A

The corresponding code is

\prftree[r]{\supsetI}

{\prftree[r]{\supsetI}

{\prflinethickness=3pt

\prfdoublelineinterspace=2pt

\prftree[r,d]{\supsetE}

{\prfboundedassumption{A}}

{\prfboundedassumption{\neg A}}

{\bot}}

{\neg\neg A}}

{A \supset \neg\neg A}

Line thickness does not affect dashed, dotted, and fancy lines, but interline space
does: in the example, \prfdoublelineinterspace=4pt on a fancy line produces

[A] [¬A]∼∼∼∼∼∼∼∼∼∼∼∼∼∼ ⊃E
⊥ ⊃I¬¬A ⊃I

A ⊃ ¬¬A

Fancy lines are drawn by the \prffancyline command. This can be redefined:
as a guideline, the package defines it as

\def\prffancyline{\cleaders\hbox to .63em%

{\hss\raisebox{-.5ex}[.2ex][0pt]{\sim}\hss}\hfill}

Label spacing works exactly as rule name spacing. Actually, it is possible to
have a proof with both a label and a rule name:

[A] [¬A] ⊃E⊥
[⊥E will not work here!] ⊃I¬¬A ⊃I

A ⊃ ¬¬A
which has been typeset by

\prftree[r]{\supsetI}

{\prflabelskip=.7em

\prftree[r,l]{\supsetI}

{[\textsl{$\bot\mathrm{E}$ will not work here!}]}

{\prftree[r]{\supsetE}

{\prfboundedassumption{A}}

{\prfboundedassumption{\neg A}}

{\bot}}

{\neg\neg A}}

PROOF TREES IN LATEX 7

{A \supset \neg\neg A}

The \prfinterspace controls the distance between assumptions. Specifically,
this is the space between the boxes containing two assumptions.

Consider the following example

[A→ (B → C)] [A]

B → C

[A→ B] [A]

B

C

A→ C

(A→ B)→ (A→ C)

(A→ (B → C))→ ((A→ B)→ (A→ C))

Although the assumptions in the top line are well spaced, the two sub-proofs on
the top are too close. This can be corrected in two different ways: by putting
an explicit space, via \hspace, in front of the second sub-proof, or after the first
sub-proof—remember, they are just boxes

[A→ (B → C)] [A]

B → C

[A→ B] [A]

B

C

A→ C

(A→ B)→ (A→ C)

(A→ (B → C))→ ((A→ B)→ (A→ C))

otherwise, putting \prfinterspace = 1.5em before the sub-proof whose conclusion
is C, one obtains the more pleasant

[A→ (B → C)] [A]

B → C

[A→ B] [A]

B

C

A→ C

(A→ B)→ (A→ C)

(A→ (B → C))→ ((A→ B)→ (A→ C))

The rendering of bounded assumptions is modified by \prfboundedstyle. When
\prfboundedstyle = 0, the format of the assumption is [formula], which is the
default behaviour; with \prfboundedstyle = 1, the formula is cancelled by a hor-
izontal line; with \prfboundedstyle > 1, the custom \prfdiscargedassumption

command is invoked:

[A(x)] A(x) 〈A(x)〉
The \prfdiscargedassumption can be freely redefined. The package provides

a reference implementation:

\def\prfdiscargedassumption#1{\left\langle{#1}\right\rangle}

Proof summaries are drawn according to \prfsummarystyle. The default value
is 0, which produces a vertical dotted line. Setting \prfsummarystyle = 1 produces
a huge Π, while \prfsummarystyle = 2 produces a

∏
. The value 3 uses a D as

the derivation symbol. Values greater than 3 force the summary to be rendered by

8 MARCO BENINI

the \prffancysummarybox command.

\prfsummarystyle = 0

·····
∀x. x = x

B(x)
·····

A(x)

A(y) D(x)
·····
name

B(x) ∧ C(x)

\prfsummarystyle = 1
Π

∀x. x = x

B(x)

Π
A(x)

A(y) D(x)

Π name

B(x) ∧ C(x)

\prfsummarystyle = 2

∏
∀x. x = x

B(x)∏
A(x)

A(y) D(x)∏
name

B(x) ∧ C(x)

\prfsummarystyle = 3
D

∀x. x = x

B(x)
D
A(x)

A(y) D(x)
D name

B(x) ∧ C(x)

\prfsummarystyle = 4

5
∀x. x = x

B(x)5
A(x)

A(y) D(x)5 name

B(x) ∧ C(x)

The fancy summary box is composed by the \prffancysummarybox command.
This can be modified at will. The package defines it as

\newbox\prf@@fancysummarybox\newdimen\prf@@fancysymmarylen

\def\prffancysummarybox{%

\sbox{\prf@@fancysummarybox}{\Huge\bigtriangledown}%

\prf@@fancysymmarylen\ht\prf@@fancysummarybox%

\advance\prf@@fancysymmarylen\dp\prf@@fancysummarybox%

\sbox{\prf@@fancysummarybox}{%

\raisebox{.25\prf@@fancysymmarylen}[.8\prf@@fancysymmarylen]%

[0pt]{\usebox{\prf@@fancysummarybox}}}%

\prf@@fancysymmarylen\wd\prf@summary@label%

\ifdim\prf@@fancysymmarylen>\z@\relax%

\prf@@fancysymmarylen\wd\prf@@fancysummarybox%

\wd\prf@summary@label.4em%

\hbox to\prf@@fancysymmarylen{%

\usebox\prf@@fancysummarybox}\kern-.4em%

\box\prf@summary@label%

\else\usebox\prf@@fancysummarybox\fi}

The assumptions, conclusions, labels, and rule names are drawn using the fol-
lowing commands, which may be redefined:

\def\prfConclusionBox#1{\hbox%

{$\displaystyle\begingroup#1\endgroup\mathstrut$}}

\def\prfAssumptionBox#1{\hbox%

{$\displaystyle\begingroup#1\endgroup\mathstrut$}}

\def\prfRuleNameBox#1{\hbox{\begingroup#1\endgroup\strut}}

\def\prfLabelBox#1{\hbox{\begingroup#1\endgroup\strut}}

It is not advisable to change these commands in a radical way, unless one under-
stands how the graphical engine works.

PROOF TREES IN LATEX 9

4. Labels and References

As discharged assumptions are often hard to track in a proof, the package pro-
vides a mechanism to label them and to reference them inside a proof tree. A
reference is made up of three pieces: the label, which is the name to denote the
reference inside the text, the reference value, which is the value denoted by the la-
bel, and the anchor, which is the graphical rendering of the value aside the labelled
point of the proof.

For example,

[A]
1

[¬A]
2

⊃E⊥ ⊃ I2¬¬A ⊃ I1A ⊃ ¬¬A
is generated by the following code

\begin{prooftree}

\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:A>}$}

{\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:not_A>}$}

{\prftree[r]{\supsetE}

{\prfboundedassumption<assum:A>{A}}

{\prfboundedassumption<assum:not_A>{\neg A}}

{\bot}}

{\neg\neg A}}

{A \supset \neg\neg A}

\end{prooftree}

The labels are assum:A and assum:not_A, the reference values are 1 and 2, respec-
tively, and the anchors are these values on the discharged assumptions on the top
of the proof. The references to these labels are the values in the rule names.

The prooftree environment delimits the scope of labels: the \end{prooftree}

declaration makes the labels still available for reference, but numbering of new
labels will restart from 1. Enclosing a proof tree in a prooftree environment is
not mandatory: in such case, labels will be global to the document.

Sometimes, labels require two compilation steps to be correctly generated: in
fact, as LATEX labels, forward references may be undefined in the first compilation
step. The package issues a warning in this case, and display a ?? for the invalid
reference. Also, notice how the assumption reference mechanism is analogous to
LATEX labels, but it is independent from it.

A reference to a label is made by the \prfref〈label〉 command: its argument is
a label, i.e., a string of text following the same rules as the argument of the LATEX
\label command. As in the \ref command, the resulting value has no formatting.

A labelled assumption is generated by the following commands:

\prfassumption〈[option]label〉{assumption}
\prfboundedassumption〈[option]label〉{assumption}

The first one acts as \prfassumption but also declares the assumption label and
decorates the assumption text with the anchor. The second one does the same on
bounded assumptions.

10 MARCO BENINI

The generation of labels is controlled by the option value:

• n, number, arabic: generates a number (default);
• r, roman: generates a lowercase roman number;
• R, Roman: generates an uppercase roman number;
• a, alph, alpha, alphabetic: produces a lowercase letter;
• A, Alph, Alpha, Alphabetic: produces an uppercase letter;
• f, s, function, symbol, function symbol: produces a footnote symbol,

as in Section C.8.4 of Lamport’s, LATEX: A document preparation system;
• l, label: tells that the label has not to be defined. This is used to generate

a labelled assumption sharing the label with another one, which declares
the value and the format.

Except for l and label, all the options are used to format the anchor following the
standard LATEX way available for counters. No multiple options are allowed.

For example, the disjunction elimination rule is a perfect way to illustrate the
reason behind the label option, i.e., the need to discharge a pair of assumptions:

Γ
·····

A ∨B

Γ, [A]
1

·····
C

Γ, [B]
1

·····
C ∨E1C

\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orE>}$}

{\prfsummary{\Gamma}{A \vee B}}

{\prfsummary{\Gamma,

\prfboundedassumption<assum:orE>{A}}{C}}

{\prfsummary{\Gamma,

\prfboundedassumption<[l]assum:orE>{B}}{C}}{C}

If a label is declared more than once, a warning is issued when the label option
is not used: although this is not a mistake, it may indicate that a label is reused
when it should not.

The same example can be used to show how the other options work:

Γ∏
A ∨B

Γ, [A]
1∏

C

Γ, [B]
1∏

C ∨E1C

Γ∏
A ∨B

Γ, [A]
i∏

C

Γ, [B]
i∏

C ∨EiC

Γ∏
A ∨B

Γ, [A]
I∏

C

Γ, [B]
I∏

C ∨EIC

Γ∏
A ∨B

Γ, [A]
a∏

C

Γ, [B]
a∏

C ∨EaC

Γ∏
A ∨B

Γ, [A]
A∏

C

Γ, [B]
A∏

C ∨EAC

Γ∏
A ∨B

Γ, [A]
∗∏

C

Γ, [B]
∗∏

C ∨E∗C

Also, as the \prfboundedstyle varies, the resulting proof trees are:

Γ5
A ∨B

Γ, [A]
1

5
C

Γ, [B]
1

5
C ∨E1C

Γ5
A ∨B

Γ, A1

5
C

Γ, B1

5
C ∨E1C

Γ5
A ∨B

Γ, 〈A〉15
C

Γ, 〈B〉15
C ∨E1C

The prfassumptioncounter is the LATEX counter used to generate the assump-
tion values. It contains the last used value, and initially, it is set to 0. By modifying

PROOF TREES IN LATEX 11

its value, e.g., to \setcounter{prfassumptioncounter}{1},

Γ∏
A ∨B

Γ, [A]
†∏

C

Γ, [B]
†∏

C ∨E†C

A labelled assumption box is graphically constructed by the package command
\prflabelledassumptionbox which can be redefined if needed. It takes two argu-
ments: the assumption and the anchor. Its standard definition is

\def\prflabelledassumptionbox#1#2{%

\setbox\prf@fancybox\hbox{${#1}$}%

\prf@tmp\wd\prf@fancybox%

\setbox\prf@fancybox\hbox{$\box\prf@fancybox^{#2}$}%

\wd\prf@fancybox\prf@tmp%

\prf@assumption{\box\prf@fancybox}}

Moreover, also a labelled and bounded assumption is graphically rendered by
the same command. There is just one exception: when \prfboundedstyle > 1.
In fact, since that style is controlled by a command that can be redefined, the
same must hold for references in that style. The command which is called in this
case is \prflabelleddiscargedassumption which can be redefined if needed; its
standard definition in the package is

\def\prflabelleddiscargedassumption#1#2{%

\prflabelledassumptionbox{\left\langle{#1}\right\rangle}{#2}}

Also proof summaries can be labelled and referenced. The syntax extends the
\prfsummary command:

\prfsummary〈[option]label〉[name]{assumption1} · · · {assumptionn}{conclusion}

The reference argument works in the same way as the corresponding one for as-
sumptions, and the options are the same.

A B
····· 1

A ∧B

A B

Π2

A ∧B

A B∏
3

A ∧B

A B
D4

A ∧B

A B5
5

A ∧B
These examples have been generated by the following code snippet:

{\prfsummarystyle=X

\prfsummary<proof:aX>{A}{B}{A \wedge B}}

The [option] part of the label specification is optional, and it works exactly as
the option field of labelled assumptions. This is best illustrated by an example:

A B

Πi

A ∧B

A B

ΠII

A ∧B

A B

Π‡
A ∧B

A B

Πd

A ∧B
A B

ΠE

A ∧B

A B

Π‡
A ∧B

12 MARCO BENINI

These examples have been generated by the following code snippet:

{\prfsummarystyle=1

\prfsummary<[r]proof:bX>{A}{B}{A \wedge B}}

and the last line uses the label option.

The value of the summary labelling is controlled by the prfsummarycounter

counter, which is initially 0 and contains the last used value.

PROOF TREES IN LATEX 13

5. Simplified Commands

The basic commands illustrated so far allow to control proof trees in all aspects,
but they tend to be verbose in practise. Thus, a number of abbreviations are
provided to make handier the writing of proofs.

Since they may collide with other packages, these macros are activated by suit-
able options. By loading the package as \usepackage[ND]{prftree.sty}, the fol-
lowing abbreviations are available, which correspond to the inference rule of natural
deduction calculi:

• \NDA: assumption;
• \NDAL: labelled assumption;
• \NDD: bounded assumption;
• \NDDL: labelled bounded assumption;
• \NDP: generic proof tree;
• \NDANDI: conjunction introduction;
• \NDANDER: conjunction elimination, right;
• \NDANDEL: conjunction elimination, left;
• \NDANDE: conjunction elimination, unspecified;
• \NDIMPI: implication introduction;
• \NDIMPIL: implication introduction with the label of the discharged as-

sumption;
• \NDIMPE: implication elimination;
• \NDORIR: disjunction introduction, right;
• \NDORIL: disjunction introduction, left;
• \NDORI: disjunction introduction, unspecified;
• \NDORE: disjunction elimination;
• \NDOREL: disjunction elimination with the label of the discharged assump-

tions;
• \NDALLI: universal quantifier introduction;
• \NDALLE: universal quantifier elimination;
• \NDEXI: existential quantifier introduction;
• \NDEXE: existential quantifier elimination;
• \NDEXE: existential quantifier elimination with the label of the discharged

assumption;
• \NDTI: truth introduction;
• \NDFE: falsity elimination;
• \NDLEM: Law of Excluded Middle.

For example, the proof

lem
A ∨ ¬A

[A]
2

→I¬¬A ⊃ A

[¬¬A]
1

[¬A]
2

→E⊥
⊥E

A
→I1¬¬A ⊃ A
∨I2¬¬A ⊃ A

is typeset in abbreviated form by the following code

\NDOREL{simp:notA}{\NDLEM{A \vee \neg A}}

{\NDIMPI{\NDDL{[l]simp:notA}{A}}{\neg\neg A \supset A}}

{\NDIMPIL{simp:notnotA}

14 MARCO BENINI

{\NDFE{\NDIMPE{\NDDL{simp:notnotA}{\neg\neg A}}

{\NDDL{simp:notA}{\neg A}}{\bot}}{A}}

{\neg\neg A \supset A}}

{\neg\neg A \supset A}

Similarly, by loading the package as \usepackage[SEQ]{prooftree.sty}, the
following abbreviations are available, which roughly correspond to the inference
rule of sequent calculi:

• \SEQA: assumption;
• \SEQD: bounded assumption;
• \SEQP: generic proof;
• \SEQAX: axiom rule;
• \SEQLF: left falsity;
• \SEQLW: left weakening;
• \SEQRW: right weakening;
• \SEQLC: left contraction;
• \SEQRC: right contraction;
• \SEQLAND: left conjunction;
• \SEQRAND: right conjunction;
• \SEQLOR: left disjunction;
• \SEQROR: right disjunction;
• \SEQLIMP: left implication;
• \SEQRIMP: right implication;
• \SEQLALL: left universal quantification;
• \SEQRALL: right universal quantification;
• \SEQLEX: left existential quantification;
• \SEQREX: right existential quantification;
• \SEQCUT: cut rule.

One can load the package with both options at the same time.

Since the implication symbol is usually represented either as → or as ⊃, the
package allows to choose which representation to use. By default, implication
is →, but loading the package with the [IMP] option switches to ⊃. The same
effect is obtained by the commands \prfIMPOptiontrue (implication is ⊃) and
prfIMPOptionfalse (implication is →).

Of course, the reader is encouraged to develop her own abbreviations starting
from the provided ones.

PROOF TREES IN LATEX 15

6. Hints and Tricks

This section shows a few hints and tricks to use the package at its best.

Consider the proof:

lem
A ∨ ¬A

[A]
1

→I¬¬A ⊃ A

[¬¬A]
2

[¬A]
1

→E⊥
⊥E

A
→I2¬¬A ⊃ A
∨I1¬¬A ⊃ A

the space between the axiom and the sub-proof of the positive case is visually much
less than the space between the positive and the negative cases. Looking at boxes,
the space is exactly the same, but the perception is that spacing is wrong.

We can correct this perception in two distinct ways: by adding space between
the axiom and the positive case; or, conversely, by moving the negative case closer
to the positive one.

The first strategy yields:

lem
A ∨ ¬A

[A]
1

→I¬¬A ⊃ A

[¬¬A]
2

[¬A]
1

→E⊥
⊥E

A
→I2¬¬A ⊃ A
∨I1¬¬A ⊃ A

and this effect is given by adding an appropriate \hspace after the axiom, as in

\NDOREL{a:notA}{\NDLEM{A \vee \neg A}\hspace{.4em}}

{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}

{\NDIMPIL{a:notnotA}

{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}

{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}

{\neg\neg A \supset A}}

{\neg\neg A \supset A}

Adding the same space in front of the positive case is equivalent.
The second strategy yields:

lem
A ∨ ¬A

[A]
1

→I¬¬A ⊃ A

[¬¬A]
2

[¬A]
1

→E⊥
⊥E

A
→I2¬¬A ⊃ A
∨I1¬¬A ⊃ A

Again, this is obtained by adding a negative hspace after the positive case, or,
equivalently, before the negative one:

\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}

{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}

{\hspace{-.8em}\NDIMPIL{a:notnotA}

{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}

{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}

{\neg\neg A \supset A}}

{\neg\neg A \supset A}

16 MARCO BENINI

In general, to make a wide proof compact, one can appropriately add negative
spaces in front of sub-proofs so to make them closer and letting them to overlap as
boxes, but not visually, thus tiling the space.

Since proof trees are boxes, it is easy to align them on need. For example the
following proof tree, with the bounding box put in evidence

A B

Π
A ∧B

can be used wherever a box may appear. In the flow of text, it will look like

A B

Π
A ∧B ,

so that the conclusion is aligned with the baseline. This makes easier to align proof
trees, as in

f g

Π
f ∧ g

lem
A ∨ ¬A

[A]
1

→I¬¬A ⊃ A

[¬¬A]
2

[¬A]
1

→E⊥
⊥E

A
→I2¬¬A ⊃ A
∨I1¬¬A ⊃ A

since this is the natural way to put proofs side by side:

\fbox{\prfsummarystyle=1

\prfsummary{f}{g}{f \wedge g}}\qquad

\fbox{$

\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}

{\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}

{\hspace{-.4em}\NDIMPIL{a:notnotA}

{\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}

{\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}}

{\neg\neg A \supset A}}

{\neg\neg A \supset A}$}

But, if really one has to include a proof tree in the flow of text, it is slightly

better to vertically centre the box, as in

A B
·····

A ∧B

. This is obtained by

$\vcenter{\prfsummary{A}{B}{A \wedge B}}$

Of course, the result is not pleasant, because rows are far apart, which is un-
avoidable because of the height of the proof tree. The same principle applies also
to arrays of proof trees:

some text

A B

Πi

A ∧B

A B

ΠII

A ∧B

A B

Π‡
A ∧B

A B

Πd

A ∧B
\begin{array}{lcccc}

\text{some text} &

{\prfsummarystyle=1

\prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &

PROOF TREES IN LATEX 17

{\prfsummarystyle=1

\prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &

{\prfsummarystyle=1

\prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &

{\prfsummarystyle=1

\prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}

\end{array}

vertically aligns the cells to their baselines.
On the contrary

some text

A B

Πi

A ∧B

A B

ΠII

A ∧B

A B

Π‡
A ∧B

A B

Πd

A ∧B
is much better, and it is obtained by

\begin{array}{lcccc}

\text{some text} &

\vcenter{\prfsummarystyle=1

\prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &

\vcenter{\prfsummarystyle=1

\prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &

\vcenter{\prfsummarystyle=1

\prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &

\vcenter{\prfsummarystyle=1

\prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}

\end{array}

The labelling of proof summaries is useful when a proof is very large and there
is the need to split it. The strategy is to select some sub-proofs and to show them
as summaries: instead of writing

lem
A ∨ ¬A

[A]
1

→I¬¬A ⊃ A

[¬¬A]
2

[¬A]
1

→E⊥
⊥E

A
→I2¬¬A ⊃ A
∨I1¬¬A ⊃ A

we may consider to define

Let

[¬¬A]
1 ¬A2

····· 1
¬¬A ⊃ A

≡

[¬¬A]
1 ¬A2

→E⊥
⊥E

A
→I1¬¬A ⊃ A

allowing to abbreviate the whole proof as

lem
A ∨ ¬A

[A]
2

→I¬¬A ⊃ A

[¬¬A]
1

[¬A]
2

····· 1
¬¬A ⊃ A

∨I2¬¬A ⊃ A
The corresponding LATEX code is

18 MARCO BENINI

\setcounter{prfsummarycounter}{0}

\setcounter{prfassumptioncounter}{0}

\mbox{Let }

\vcenter{\vbox{\prfsummary<s:abbrev>

{\NDDL{s:notnotA}{\neg\neg A}}

{\NDAL{s:notA}{\neg A}}

{\neg\neg A \supset A}}}

\equiv

\vcenter{\hbox{$\NDIMPIL{s:notnotA}

{\NDFE{\NDIMPE{\NDDL{[l]s:notnotA}{\neg\neg A}}

{\NDAL{[l]s:notA}{\neg A}}{\bot}}{A}}

{\neg\neg A \supset A}$}}

for the definition of the proof summary, and

\NDOREL{s:notA}{\NDLEM{A \vee \neg A}}

{\NDIMPI{\NDDL{[l]s:notA}{A}}{\neg\neg A \supset A}}

{\prfsummary<s:abbrev>

{\NDDL{[l]s:notnotA}{\neg\neg A}}

{\NDDL{[l]s:notA}{\neg A}}

{\neg\neg A \supset A}}

{\neg\neg A \supset A}

for its use.

PROOF TREES IN LATEX 19

7. More Examples

This section shows a number of examples illustrating the package. See the pre-
vious sections for the description of the features.

The disjunction elimination rule, with various line options:

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C ∨E

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C∨E

C
Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C
∨E

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C

∨E
C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C..........................

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C.......................... ∨E

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C∨E

C
Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C..

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C.. ∨E

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C

∨E ..
C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C ∨E

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C∨E

C
Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C
∨E

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C

∨E
C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C∼∼∼∼∼∼∼∼∼∼∼∼∼

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C∼∼∼∼∼∼∼∼∼∼∼∼∼ ∨E

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C∨E ∼∼∼∼∼∼∼∼∼∼∼∼∼

C
Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C ∨E

C

Γ

Π
A ∨B

Γ, [A]

Π
C

Γ, [B]

Π
C∨E

C

Proof that the Law of Excluded middle implies ¬¬A ⊃ A:

LEM
A ∨ ¬A

[A] ⊃I¬¬A ⊃ A

[¬¬A] [¬A] ⊃E⊥ ⊥E
A ⊃I¬¬A ⊃ A ∨E¬¬A ⊃ A

20 MARCO BENINI

Proof that the Law of Excluded middle implies ¬¬A ⊃ A with labels instead of
rule names, except on axioms:

LEM
A ∨ ¬A

[A]⊃I ¬¬A ⊃ A

[¬¬A] [¬A]⊃E ⊥⊥E
A⊃I ¬¬A ⊃ A∨E ¬¬A ⊃ A

Another simple proof in natural deduction:

[A→ (B → C)] [A]

B → C

[A→ B] [A]

B

C

A→ C

(A→ B)→ (A→ C)

(A→ (B → C))→ ((A→ B)→ (A→ C))

The same proof, under the proposition-as-types interpretation:

u : A→ (B → C) w : A

uw : B → C

v : A→ B w : A

vw : B

uw(vw) : C

λw. uw(vw) : A→ C

λvw. uw(vw) : (A→ B)→ (A→ C)

λuvw. uw(vw) : (A→ (B → C))→ ((A→ B)→ (A→ C))

A deduction in a sequent calculus:

A⇒ A

A⇒ A

B ⇒ B C ⇒ C

B,B → C ⇒ C

A,A→ B,B → C ⇒ C

A,A→ B,A→ (B → C)⇒ C

A→ B,A→ (B → C)⇒ A→ C

A→ (B → C)⇒ (A→ B)→ (A→ C)

⇒ (A→ (B → C))→ ((A→ B)→ (A→ C))

PROOF TREES IN LATEX 21

8. Internals

A proof tree is typeset as a TEX box in horizontal mode. This means that
wherever a character can stay, so does a proof: in principle, there is no need to put
the proof in a math environment. Also, the width of a proof is exactly the width of
the box; the height of the proof is the height of the conclusion plus the total height
of all the matter above it; the depth of the proof is the depth of the conclusion.
The proof is aligned so that the current baseline is the baseline of the conclusion.

For example, the proof of g ⊃ ¬¬g in natural deduction is:

proof ≡

[g] [¬g] ⊃E⊥ ⊃I¬¬g ⊃I
g ⊃ ¬¬g

The proof has been surrounded by a framebox to make evident its bounds. Also,
since the letter g has a depth, the example shows how depth in the conclusion
influences the alignment of the proof with respect to the preceding text.

Actually, the fundamental command in the package is \prftree: the commands
to construct assumptions (\prfassumption and \prfboundedassumption), those
to generate axioms (\prfaxiom and \prfbyaxiom), and \prfsummary are just ap-
propriate instances.

The \prftree command is composed by a parser, which takes care of reading
the various options and parameters, and by a graphical engine, \prf@draw, which
calculates and draw the box containing the proof tree.

It may be useful to understand how the graphical engine works. In the first
place, each proof tree is a box with a structure:

· · ·assumption1 assumptionn

rule namelabel

conclusion

The conclusion, the proof line, and the assumption line are centred. The assump-
tion line is the line whose first element is the conclusion of the first assumption,
and whose last element is the conclusion of the last assumption, properly spaced so
that all the assumptions fit in between. The width of the proof line is calculated
as the maximum of the width of the assumption line and the conclusion, with the
rule name and the label, if present, hanging on the right and the left, respectively.

To calculate the assumption line, the engine keeps track of the position of the
conclusion within a proof tree, which reduces to remember how far is the conclusion
from the left margin (Lassum), and how far it is from the right margin (Rassum).
So, the assumption line starts from the value of Lassum of the first assumption, and
finishes at Rassum of the last assumption.

Thus, with these values it is not difficult to figure out the mathematics to place
the various boxes around, so to combine them into a proof tree. This is exactly
what the graphical engine does.

Unfortunately, when one writes assumptions as simple formulae, without the
\prfassumption command, the corresponding Lassum and Rassum are not set to 0,

22 MARCO BENINI

which is the right value. In fact, the recursive expansion of the \prf@draw macro
follows the natural order in the construction of the proof box, which is extremely
useful because it allows to locally modify parameters in sub-proofs; but this order
conflicts with proper rendering of assumptions which are not proof trees.

Also, the hints on how to put space between assumptions, see Section 6, may
have strange effects: if space is added in front of the first assumption or behind the
last one, this space makes invalid the values of Lassum and Rassum, respectively,
yielding hard to predict results.

It is worth remarking that the mathematics of the graphical engine is sound,
which means that zero or negative values for the various dimensions specified as
parameters, or using bizarre boxes in the fancy commands, yields the expected
results, as far as boxes do not have parts which extends beyond the bounds.

The implementation of references mimics the implementation of \label and \ref

in LATEX. Whenever a reference is defined, through a command with the 〈label〉 as
the first argument, the reference value is created according to the options, and it gets
stored in the .aux file, by writing \prfauxvalue{label}{value} in the file. Then,
when the source code will be recompiled, and the .aux file read, this command will
be executed before any occurrence of a reference, which can be resolved.

Most difficulties in the implementation of references lie in the way to construct
the boxes to be used in the proof tree. But, the tricky part is the interaction with
the LATEX and TEX kernel for error reporting. Actually, it is in this part that the
bugs signalled in the next section have their origin.

PROOF TREES IN LATEX 23

9. Future Features and Bugs

Essentially, all the features of Buss’s package have been implemented but one:
alignment of proofs according to the ` (or equivalent) sign. While this feature is
occasionally useful in the writing of sequent proofs, it requires some trickery in the
graphical engine, so it has been postponed for the moment.

Moreover, automatic compact proofs have been analysed, but not implemented.
A compact proof minimises the amount of space between subsequent assumptions,
eventually making the upper trees to overlap as boxes, but not as typed text.

The algorithm to obtain this result is not immediate: one should keep track of the
left and right skylines of a proof. Comparing the left skyline of an assumption with
the right skyline of the next one, one can calculate what is the distance between
the boxes so that the distance between the closest points in the skylines is exactly
\prfinterspace.

It is not simple to code such an algorithm in TEX, but the real difficulty is how
to represent skylines and how to store them, since TEX provides no abstract data
structures. Hence, the implementation of this feature has been postponed to a
remote future, or to the will of a real TEX magician.

There are three bugs in the packages.
The first one is that \mathrm and similar may break a proof tree when used in the

rule name. I have not been able to track down why this happens. The effect is that
the proof tree is correctly constructed but it cannot be used as a box, e.g., it cannot
be put inside a \fbox or used in normal text. Although disappointing this bug can
be easily circumvented by typesetting the proof tree in a math environment, e.g.,
by putting it into a math display or by enclosing it in a pair of dollar signs.

The second bug is minimal and in a future version it could be solved. If one
considers the following proof:

[¬¬A] [¬A]
1

⊥
A

¬¬A ⊃ A
the anchor of assumption (1) is out of the bounding box. Usually, this is not a
problem and, in case, it can be manually corrected

[¬¬A] [¬A]
1

⊥
A

¬¬A ⊃ A

as in the following code:

\prfassumption{\prftree{\prftree{\prftree

{\prfboundedassumption{\neg\neg A}}

{\prfboundedassumption<bug:1>{\neg A}}{\bot}}

{A}}{\neg\neg A \supset A}\hspace{.34em}}}

The third bug happens the first time a reference is created: if it is referred by
\prfref in the rule name, a strange “immediate” follows it. This is not a problem,

24 MARCO BENINI

since the code has to be recompiled anyway to complete the definition of references,
and this is enough to make the problem to disappear. Since it is a transient problem,
I have not investigated any further.

Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via

Valleggio 11, I-22100 Como, Italy
E-mail address: marco.benini@uninsubria.it

URL: http://marcobenini.wordpress.com

