£ Maplnfio.

Where Opportunity Is Locatedw

Mapinfo MapBasic
v. 8.0

Reference Guide

Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor or its representatives. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, without the written permission of MapInfo Corporation,
One Global View, Troy, New York 12180-8399.

© 2005 Maplnfo Corporation. All rights reserved. Maplnfo, MapInfo Professional, MapBasic, StreetPro and the MapInfo logo are trademarks of MapInfo Corporation and/or
its affiliates.

Maplnfo Corporate Headquarters:

Voice: (518) 285-6000

Fax: (518) 285-6060

Sales Info Hotline: (800) 327-8627

Government Sales Hotline: (800) 619-2333

Technical Support Hotline: (518) 285-7283

Technical Support Fax: (518) 285-6080

Contact information for North American offices is located at: http://www.mapinfo.com/company/company_profile/index.cfm.
Contact information for worldwide offices is located at: http://www.mapinfo.com/company/company_profile/worldwide_offices.cfm.
Contact information for European and Middle East offices is located at: http://www.mapinfo.co.uk.

Contact information for Asia Pacific offices is located at: http://www.mapinfo.com.au.

Adobe Acrobat® is a registered trademark of Adobe Systems Incorporated in the United States.

Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the benefit of the trademark
owner, with no intent to infringe on the trademark.

libtiff © 1988-1995 Sam Leffler, copyright © Silicon Graphics, Inc.

libgeotiff © 1995 Niles D. Ritter.

Portions © 1999 3D Graphics, Inc. All Rights Reserved.

HIL - Halo Image Library™ © 1993, Media Cybernetics Inc. Halo Imaging Library is a trademark of Media Cybernetics, Inc.
Portions thereof LEAD Technologies, Inc. © 1991-2005. All Rights Reserved.

Portions © 1993-2005 Ken Martin, Will Schroeder, Bill Lorensen. All Rights Reserved.

Blue Marble © 1993-2005

ECW by ER Mapper © 1993-2005

VM Grid by Northwood Technologies, Inc., a Marconi Company © 1995-2004™.

Portions © 2005 Earth Resource Mapping, Ltd. All Rights Reserved.

MrSID, MrSID Decompressor and the MrSID logo are trademarks of LizardTech, Inc. used under license. Portions of this computer program are (c¢) 1995-1998 LizardTech
and/or the university of California or are protected by US patent nos. 5,710,835; 5,130,701; or 5,467,110 and are used under license. All rights reserved. MrSID is protected
under US and international patent & copyright treaties and foreign patent applications are pending. Unauthorized use or duplication prohibited.

Universal Translator by Safe Software, Inc. © 2004.
Crystal Reports ® is proprietary trademark of Crystal Decisions. All Rights Reserved.

Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the benefit of the trademark
owner, with no intent to infringe on the trademark.

May 2005

http://www.mapinfo.com/company/company_profile/index.cfm
http://www.mapinfo.com/company/company_profile/worldwide_offices.cfm

Table of Contents

Chapter 1: New and Enhanced MapBasic Statements and Functions............... 5
Enhanced MapBasic Functions and Statements 22
Enabling Transparent Patterns on Same Layer. i 32
Export Windows to Additional Formats 32
Chapter 2: Introduction 33
Language OVerVieWttt e ettt et eaaa e aaaana e nannnns 34
MapBasic Fundamentals i ittt ettt ennannnnannnnens 34
Variables 34
Looping and BranChing 35
Outputand Printing 35
Procedures (Main and Subs) 35
Error Handling 35
FUNCHIONS it e ettt e 35
Custom FUNCHiONS 36
Data-Conversion FUNCiONS 36
Date and Time FUNCHIONS. e 36
Math FUNCHIONS 37
String FUNCHiONS 37
Working With Tables. i it e e aaee s 38
Creating and Modifying Tables e 38
Querying Tables.o 38
Working With Remote Data 39
Working With Files (Other Than Tables).c i e 40
File Input/Output 40
File and Directory Names 40
Working With Maps and Graphical Objects it 41
Creating Map Objects 41
Modifying Map Objects 41
Querying Map ObjJecCtSo 42
Working With Object Styles e 42
Working With Map WIindows 43
Creatingthe UserInterface it it et ie s 43
ButtonPads (TooIBars). e 43
Dialog BOXESo 44
MENUS . . 44
INAOWS . 44

System Event Handlers 45

the guide title Table of Contents

Communicating With Other Applications i 45
DDE (Dynamic Data Exchange; Windows Only) 45
Integrated Mapping.o oo 45

Special Statements and Functions i i 46

A—Z ReferenCe e e e 46

Appendix A: Character Code Table. e 586
Appendix B: Summary of Operators. i i i 588

Numeric Operatorsttt ettt et e i aa e aa s 589

Comparison Operators ottt it e aaasannnna s nnnaannnnnnnn 590

Logical Operators ettt e 590

Geographical Operatorst et e 591
Precedence 592

Automatic Type CONVerSiONS.ottt ittt aaaaeea s 592

Appendix C: MapBasic Definitions File i ... 594
g o 1= 615

Product Name and version number

© 2005 Mapinfo Corporation. All rights reserved. 4 filename.pdf

New and Enhanced
MapBasic Statements and
Functions

These are the new statements and functions available for the Maplinfo
Professional 8.0 product.

Sections in this Appendix:

+ New MapBasic Functions and Statements............... 6
¢+ Enhanced MapBasic Functions and Statements......... 22

£ Maplnfo.

Reference Guide Chapter 1: CartesianConnectObjects() function

New MapBasic Functions and Statements

CartesianConnectObjects() function

Purpose
Returns an object representing the shortest or longest distance between two objects.

Syntax

CartesianConnectObjects (objectl, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.
Returns
This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object? and object2.
Description

One point of the resulting Polyline object is on object? and the other point is on object2. Note that the
distance between the two input objects can be calculated using the objectLen () function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

CartesianClosestPoints () returns a Polyline object connecting object? and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a cartesian calculation method. If the calculation
cannot be done using a cartesian distance method (e.g., if the MapBasic Coordinate System is Lat
Long), then this function will produce an error.

CartesianObjectDistance() function

Purpose

Returns the distance between two objects.

Syntax

CartesianObjectDistance (objectl, object2, unit name)
object1 and object2 are object expressions.
unit_name is a string representing the name of a distance unit.

Returns
Float

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 6 MB_Ref.pdf

Reference Guide Chapter 1: ConnectObjects() function

Description
CartesianObjectDistance () returns the minimum distance between object1 and object2 using a
cartesian calculation method with the return value in unit_name. If the calculation cannot be done
using a cartesian distance method (e.g., if the MapBasic Coordinate System is Lat Long), then this
function will produce an error.

ConnectObjects() function

Purpose
Returns an object representing the shortest or longest distance between two objects.

Syntax
ConnectObjects (objectl, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object? and object2.

Description
One point of the resulting Polyline object is on object? and the other point is on object2. Note that the
distance between the two input objects can be calculated using the objectLen () function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

ConnectObjects () returns a Polyline object connecting object? and object2 in the shortest (min ==
TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation cannot be
done using a spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then a
cartesian method will be used.

Farthest statement

Purpose
Find the object in a table that is farthest from a particular object. The result is a two-point Polyline
object representing the farthest distance.

Syntax

Farthest [N | ALL] From { Table fromtable | Variable fromvar }

To totable Into intotable

[Type { Spherical | Cartesian }]

[Ignore [Contains] [Min min value] [Max max value] Units unitname]
[Data clause]

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 7 MB_Ref.pdf

Reference Guide Chapter 1: Farthest statement

N optional parameter representing the number of "farthest" objects to find. The defaultis 1. If a11 is
used, then a distance object is created for every combination.

fromtable represents a table of objects that you want to find farthest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the farthest
distances from.

totable represents a table of objects that you want to find farthest distances to.
intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the infotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the intotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max sunclauses within it (e.g., only a Min or only a Max, or both
may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.

Description
Every object in the fromtable is considered. For each object in the fromtable, the farthest object in the
totable is found. If N is present, then the N farthest objects in totable are found. A two-point Polyline
object representing the farthest points between the fromtable object and the chosen fotable object is
placed in the intotable. If All is present, then an object is placed in the intotable representing the
distance between the fromtable object and each fotable object.

If there are multiple objects in the fotable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second farthest object,
and 3 objects are requested, then the object will become the third farthest object.

The types of the objects in the fromtable and totable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 8 MB_Ref.pdf

Reference Guide Chapter 1: Farthest statement

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many
<totable> objects are found for each <fromtable> object. One use of the Min distance could be to
eliminate distances of zero. This may be useful in the case of two point tables to eliminate comparisons
of the same point. For example, if there are two point tables representing Cities, and we want to find
the closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the tofable. This may be most useful in
conjunction with N or All. For example, we may want to search for the five airports that are closest to a
set of cities (where the fromtable is the set of cities and the fotable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the All parameter, where we would
find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Farthest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Farthest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).

Data Clause
Data IntoColumnl=columnl, IntoColumn2=column2
The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both fotable and fromtable, then the column in totable will

be used (e.g., totable is searched first for column names on the right hand side of the equals). To avoid
any conflicts such as this, the column names can be qualified using the table alias:

Data namel=states.state_ _name, name2=county.state name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN...
functionality from the menu or by using the Update MapBasic statement.

See Also
Nearest statement, ObjectDistance() function, ConnectObjects() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 9 MB_Ref.pdf

Reference Guide Chapter 1: Nearest statement

Nearest statement

Purpose
Find the object in a table that is closest to a particular object. The result is a 2 point Polyline object
representing the closest distance.

Syntax

Nearest [N | ALL] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min value] [Max max value] Units unitname]
[Data clause]
N optional parameter representing the number of "nearest" objects to find. The defaultis 1. If a11 is

used, then a distance object is created for every combination.
fromtable represents a table of objects that you want to find closest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the closest
distances from.

totable represents a table of objects that you want to find closest distances to.
intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the infotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the infotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The 1gnore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max subclauses within it (e.g., only a Min or only a Max, or both
may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 10 MB_Ref.pdf

Reference Guide Chapter 1: Nearest statement

Description

Every object in the fromtable is considered. For each object in the fromtable, the nearest object in the
totable is found. If N is present, then the N nearest objects in totable are found. A two-point Polyline
object representing the closest points between the fromtable object and the chosen totable object is
placed in the intotable. If All is present, then an object is placed in the <intotable> representing the
distance between the fromtable object and each fotable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second closest object,
and three objects are requested, then the object will become the third closest object.

The types of the objects in the fromtable and fotable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many totable
objects are found for each fromtable object. One use of the Min distance could be to eliminate
distances of zero. This may be useful in the case of two point tables to eliminate comparisons of the
same point. For example, if there are two point tables representing Cities, and we want to find the
closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the <totable>. This may be most useful
in conjunction with N or a11. For example, we may want to search for the five airports that are closest
to a set of cities (where the fromtable is the set of cities and the tfotable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the 211 parameter, where we
would find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Nearest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min value < distance <= max value

This can allow ranges or distances to be returned in multiple passes using the Nearest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 11 MB_Ref.pdf

Reference Guide Chapter 1: Nearest statement

Data Clause
Data IntoColumnl=columnl, IntoColumn2=column?2
The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both fotable and fromtable, then the column in totable will
be used (e.g., totable is searched first for column names on the right hand side of the equals). To avoid
any conflicts such as this, the column names can be qualified using the table alias:

Data namel=states.state_name, name2=county.state_ name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN...
functionality from the menu or by using the Update MapBasic statement.

Examples

Assume that we have a point table representing locations of ATM machines and that there are at least
two columns in this table: business which represents the name of the business which contains the ATM
and Address which represents the street address of that business. Assume that the current selection

represents our current location. Then the following will find the closest ATM to where we currently are:

Nearest From selection To atm Into result Data where=buisness,address=address

If we wanted to find the closest five ATM machines to our current location:

Nearest 5 From selection To atm Into result Data where=business,address=address

If we want to find all ATM machines within a 5 mile radius:

Nearest All From selection To atm Into result Ignore Max 5 Units "mi" Data
where=buisness, address=address
Assume we have a table of house locations (the fromtable) and a table representing the coastline (the
totable). To find the distance from a given house to the coastline:
Nearest From customer To coastline Into result Data

who=customer.name, where=customer.address, coast_loc=coastline.county, type=coastli
ne.designation

If we don't care about customer locations which are greater than 30 miles from any coastline:

Nearest From customer To coastline Into result Ignore Max 30 Units "mi" Data
who=customer.name, where=customer.address, coast loc=coastline.county, type=coastli
ne.designation

Assume we have a table of cities (the fromtable) and another table of state capitals (the totable), and
we want to find the closest state capital to each city, but we want to ignore the case where the city in
the fromtable is also a state capital:

Nearest From uscty 1k To usa_caps Into result Ignore Min 0 Units "mi" Data
city=uscty lk.name,capital=usa_ caps.capital

See Also
Farthest statement, ObjectDistance() function, ConnectObjects() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 12 MB_Ref.pdf

Reference Guide Chapter 1: ObjectDistance() function

ObjectDistance() function

Purpose
Returns the distance between two objects.

Syntax

ObjectDistance (objectl, object2, unit name)

object1 and object2 are object expressions.
unit_name is a string representing the name of a distance unit.

Returns
Float

Description

ObjectDistance () returns the minimum distance between object? and object2 using a spherical
calculation method with the return value in unit_name. If the calculation cannot be done using a
spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then a cartesian
distance method will be used.

ObjectNodeM() function

Purpose

Returns the m-value of a specific node in a region, polyline or multipoint object.

Syntax

ObjectNodeM(object, polygon num, node num)
object is an Object expression

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read

Return Value
Float

Description

The ObjectNodeM() function returns the m-value of a specific node from a region, polyline or multipoint
object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the Objectinfo()
function to determine the number of polygons or sections in an object. The ObjectNodeM() function
supports Multipoint objects and returns the m-value of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the object's
nodes should be queried. You can use the Objectinfo() function to determine the number of nodes in
an object.

If object does not support m values or m-value for this node is not defined, then, error is set.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 13 MB_Ref.pdf

Reference Guide Chapter 1: ObjectNodeZ() function

Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i _obj type As Smalllnt,
z, m As Float
Open Table "routes"
Fetch First From routes
' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.
i obj type = ObjectInfo(routes.obj, OBJ INFO TYPE)
If i obj type = OBJ PLINE Then
! . then the object is a polyline...
ObjectNodeZ (routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM (routes.obj, 1, 1) ' read m-value
End If

Z

See Also

Querying map objects

ObjectNodeZ() function

Purpose
Returns the z-coordinate of a specific node in a region, polyline, or multipoint object.
Syntax
ObjectNodeZ (object, polygon num, node num)
object is an Object expression
polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).
node_num is a positive Integer value indicating which node to read

Return Value
Float

Description

The ObjectNodeZ() function returns the z-value of a specific node from a region, polyline or multipoint
object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the Objectinfo()
function to determine the number of polygons or sections in an object. The ObjectNodeZ() function
supports Multipoint objects and returns the z-coordinate of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the object's

nodes should be queried. You can use the Objectinfo() function to determine the number of nodes in
an object.

If object does not support Z values or Z-value for this node is not defined then an error is thrown.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 14 MB_Ref.pdf

Reference Guide Chapter 1: Server Create Workspace statement

Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i _obj type As Smalllnt,
z, m As Float
Open Table "routes"
Fetch First From routes
' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.
i obj type = ObjectInfo(routes.obj, OBJ INFO TYPE)
If i obj type = OBJ PLINE Then
! then the object is a polyline...
ObjectNodeZ (routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM (routes.obj, 1, 1) ' read m-value
End If

Z

See Also

Querying map objects

Server Create Workspace statement

Purpose
Creates a new workspace in the database (Oracle 9i or later).

Syntax

Server ConnectionNumber Create
Workspace WorkspaceName
[Description Description]
[Parent ParentWorkspaceName]

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive, and it must be
unique.The length of a workspace name must not exceed 30 characters.

Description is a string to describe the workspace.

ParentWorkspaceName is the name of the workspace which will be the parent of the new workspace

WorkspaceName. By default, when a workspace is created, it is created from the topmost, or LIVE,
database workspace.

Description

This statement only applies to Oracle9i or later. The new workspace WorkspaceName is a child of the
parent workspace ParentWorkspaceName or LIVE if the Parent is not specified.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 15 MB_Ref.pdf

Reference Guide Chapter 1: Server Remove Workspace statement

Examples

The following example creates a workspace named GARYG in the database.

Dim hdbc As Integer

hdbc = Server Connect ("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create

Workspace "MIUSER"

Description "MIUser private workspace"

The following example creates a child workspace under MIUSER in the database.

Dim hdbc As Integer

hdbc = Server_Connect("ORAINET", "SRVR=TROYNY ; UID=MIUSER; PWD=MIUSER")
Server hdbc Create Workspace "MBPROG" Description "MapBasic project" Parent
"MIUSER"

See also

Server Remove Workspace statement, Server Versioning statement

Server Remove Workspace statement

Purpose
Discards all row versions associated with a workspace and deletes the workspace in the database
(Oracle 9i or later).

Syntax

Server ConnectionNumber Remove
Workspace WorkspaceName

ConnectionNumber is an integer value that identifies the specific connection.
WorkspaceName is the name of the workspace. The name is case sensitive.

Description

This statement only applies to Oracle9i or later. This operation can only be performed on leaf
workspaces (the bottom-most workspaces in a branch in the hierarchy). There must be no other users
in the workspace being removed.

Examples
The following example removes the MIUSER workspace in the database.

Dim hdbc As Integer
hdbc = Server Connect ("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Remove Workspace "MIUSER"

See also

Server Create Workspace statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 16 MB_Ref.pdf

Reference Guide Chapter 1: Server Versioning statement

Server Versioning statement

Purpose

Version-enable or disable a table on Oracle 9i or later, which creates or deletes all the necessary
structures to support multiple versions of rows to take advantage of Oracle Workspace Manager.

Syntax

Server ConnectionNumber Versioning

{

ON

[History {SRV_WM HIST NONE|SRV_WM HIST OVERWRITE|SRV_WM HIST NO OVERWRITE}]
| OFF

[Force {OFF | ON }]
}

Table ServerTableName

oN | oFF indicates to enable (when it is ON) a table versioning or disable (when it is OFF) a table
versioning.

ConnectionNumber is an integer value that identifies the specific connection.

ServerTableName is the name of the table on Oracle server to be version-enabled/disabled. The length
of a table name must not exceed 25 characters. The name is not case sensitive.

When version-enabling a table (ON), History is an optional parameter.

History clause specifies how to track modifications to ServerTableName, i.e., lets you timestamp
changes made to all rows in a version-enabled table and to save a copy of either all changes or only
the most recent changes to each row. Must be one of the following constant values:

* srv_wM_HIST NONE (0): No modifications to the table are tracked. (This is the default.)

* SRV_WM HIST OVERWRITE (1): The with overwrite (W_OVERWRITE) option. A view named
ServerTableName _HIST is created to contain history information, but it will show only the most
recent modifications to the same version of the table. A history of modifications to the version
is not maintained; that is, subsequent changes to a row in the same version overwrite earlier
changes. (The CREATETIME column of the TableName_HIST view contains only the time of
the most recent update.)

* SRV_WM HIST NO OVERWRITE (2): The without overwrite (WO_OVERWRITE) option. A view
named ServerTableName_HIST is created to contain history information, and it will show all
modifications to the same version of the table. A history of modifications to the version is
maintained; that is, subsequent changes to a row in the same version do not overwrite earlier
changes.

However, there are many restrictions on tables to use this option. Please refer the Oracle9i

Application Developer’s Guide - Workspace Manager for more information.
When disabling a version-enabled table (OFF), Force is an optional parameter.

If Force is set ON, all data in workspaces other than LIVE to be discarded before versioning is
disabled. OFF (the default) prevents versioning from being disabled if ServerTableName was modified
in any workspace other than LIVE and if the workspace that modified ServerTableName still exists.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 17 MB_Ref.pdf

Reference Guide Chapter 1: Server Workspace Merge statement

Description
This statement only applies to Oracle9i or later. The table, ServerTableName, that is being version-
enabled must have a primary key defined. Only the owner of a table or a user with the WM_ADMIN role
can enable or disable versioning on the table. Tables that are version-enabled and users that own
version-enabled tables cannot be deleted. You must first disable versioning on the relevant table or
tables. Tables owned by SYS cannot be version-enabled. Refer to the Oracle9i Application
Developer’s Guide - Workspace Manager for more information.

Examples
The following example enables versioning on the MIUUSAS table.
Dim hdbc As Integer

hdbc = Server_Connect("ORAINET", "SRVR=TROYNY ; UID=MIUSER; PWD=MIUSER")
Server hdbc Versioning ON Table "MIUUSA3"

or

Server hdbc Versioning ON History 1 Table "MIUUSA3"

The following example disables versioning on the MIUUSAS table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY ; UID=MIUSER; PWD=MIUSER")
Server hdbc Versioning OFF Force ON Table "MIUUSA3"

See also

Server Create Workspace statement

Server Workspace Merge statement

Purpose
Applies changes to a table (all rows or as specified in the Where clause) in a workspace to its parent
workspace in the database (Oracle 9i or later).

Syntax

Server Workspace Merge
Table TableName
[Where WhereClausel
[RemoveData {OFF | ON }]
[{Interactive | Automatic merge keyword}]
TableName is the name (alias) of an open Maplnfo table from an Oracle9i or later server. The table

contains rows to be merged into its parent workspace.

WhereClause identifies the rows to be merged into the parent workspace. The clause itself should omit
the WHERE keyword.

Example:

‘MI_PRINX = 20’.Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are merged.

If RemoveData is set ON, the data in the table (as specified by WhereClause) in the child workspace
will be removed. This option is permitted only if workspace has no child workspaces (that is, it is a leaf
workspace). OFF (the default) does not remove the data in the table in the child workspace.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 18 MB_Ref.pdf

Reference Guide Chapter 1: Server Workspace Merge statement

If there are conflicts between the workspace being merged and its parent workspace, the user must
resolve conflicts first in order for merging to succeed. Maplinfo Professional allows the user to resolve
the conflicts first and then to perform the merging within the process. The following clauses let you
control what happens when there is a conflict. These clauses have no effect if there is no conflict
between the workspace being merged and its parent workspace.

Interactive

In the event of a conflict, MapInfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one or all together based on user choices. After all the conflicts are resolved, the table
is merged into its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict
In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase

In the event of a conflict, Mapinfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged, the base rows are copied to the parent workspace
too.) Note that BASE is ignored for insert-insert conflicts where a base row does not exist; in this case
the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, Mapinfo uses the parent workspace values.

Description
This statement only applies to Oracle9i or later. All data that satisfies the WhereClause in TableName
is applied to the parent workspace. Any locks that are held by rows being merged are released. If there
are conflicts between the workspace being merged and its parent workspace, this operation provides
user options on how to solve the conflict. The merge operation was executed only after all the conflicts
were resolved. A table cannot be merged in the LIVE workspace (because that workspace has no
parent workspace). A table cannot be merged or refreshed if there is an open database transaction
affecting the table.

Refer to Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples
The following example merge changes to USA where MI_PRINX=5 in MIUSER to its parent
workspace.
Server Workspace Merge
Table "GWMUSA2"

Where "MI PRINX = 60"
Automatic UseCurrent

See Also
Server Workspace Refresh statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 19 MB_Ref.pdf

Reference Guide Chapter 1: Server Workspace Refresh statement

Server Workspace Refresh statement

Purpose

Applies all changes made to a table (all rows or as specified in the Where clause) in its parent
workspace to a workspace in the database (Oracle 9i or later).

Syntax

Server Workspace Refresh
Table TableName
[Where WhereClausel
[{Interactive | Automatic merge keyword}]
TableName is the name (alias) of an open Maplnfo table from an Oracle9i or later server. The table
contains rows to be refreshed using values from its parent workspace.

WhereClause identifies the rows to be refreshed from the parent workspace. The clause itself should
omit the WHERE keyword.

Example:

'MI_PRINX = 20’.Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are refreshed. If
there are conflicts between the workspace being refreshed and its parent workspace, the user must
resolve conflicts first in order for refreshing to succeed. MaplInfo Professional allows the user to resolve
the conflicts first and then to perform the refreshing within the process. The following clauses let you
control what happens when there is a conflict. These clauses has no effect if there is no conflict
between the workspace being refreshed and its parent workspace.

Interactive

In the event of a conflict, Mapinfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one based on user choices. After all the conflicts are resolved, the table is refreshed
from its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict

In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase

In the event of a conflict, Mapinfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged to it parent, the base rows will be copied to the
parent workspace.) Note that BASE is ignored for insert-insert conflicts where a base row does not
exist; in this case the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, Mapinfo uses the parent workspace values.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 20 MB_Ref.pdf

Reference Guide Chapter 1: SphericalConnectObjects() function

Description
This statement only applies to Oracle9i or later. It applies to workspace all changes in rows that satisfy
the WhereClause in the table in the parent workspace from the time the workspace was created or last
refreshed. If there are conflicts between the workspace being refreshed and its parent workspace, this
operation provides user options on how to solve the conflict. The refresh operation is executed only
after all the conflicts are resolved. A table cannot be refreshed in the LIVE workspace (because that
workspace has no parent workspace). A table cannot be merged or refreshed if there is an open
database transaction affecting the table.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples

The following example refreshes MIUSER by applying changes made to USA where MI_PRINX=5 in
its parent workspace.

Server Workspace Refresh
Table "GWMUSA2"
Where "MI PRINX = 60"
Automatic UseParent

See also

Server Workspace Merge statement

SphericalConnectObjects() function

Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax

SphericalConnectObjects (objectl, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object? and object2.

Description

One point of the resulting Polyline object is on object? and the other point is on object2. Note that the
distance between the two input objects can be calculated using the cbjectLen () function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

SphericalConnectObjects () returns a Polyline object connecting object? and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation
cannot be done using a spherical distance method (e.g., if the MapBasic Coordinate System is
NonEarth), then this function will produce an error.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 21 MB_Ref.pdf

Reference Guide Chapter 1: SphericalObjectDistance() function

SphericalObjectDistance() function

Purpose

Returns the distance between two objects.

Syntax

SphericalObjectDistance (objectl, object2, unit name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float

Description

SphericalObjectDistance () returns the minimum distance between object? and object2 using a
spherical calculation method with the return value in unit_name. If the calculation cannot be done using
a spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then this function
will produce an error.

Enhanced MapBasic Functions and Statements

Add Cartographic Frame statement

[Window legend window_ id]

[Custom]

[Default Frame Title { def frame title } [Font...]]

[Default Frame Subtitle { def frame subtitle } [Font...]]
[Default Frame Style { def frame style } [Font...]]
[
F
[

Default Frame Border Pen... pen expr]
rame From Layer { map layer id | map layer name
Using

[Column { column | object [FromMapCatalog { On | Off }1} 1

The syntax indicates that if you specify Using Column object, there is a new FromMapCatalog clause
you can use that is only applicable to live access tables.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table must
be a live access table that supports per record styles for this to occur. If the live table does not support
per record styles than the behavior is to revert to the default behavior for live tables, which is to get the
default styles from the MapCatalog (FromMapCatalog ON).

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 22 MB_Ref.pdf

Reference Guide Chapter 1: Add Cartographic Frame statement

Examples
Creating on live access table that supports per record styles with map styles:

Create Cartographic Legend From Window 168811024
Scrollbars On

Portrait Style Size Large

Default Frame

Title "# Legend"

Font ("Arial",0,10,0)

Default Frame Style "%"

Font ("Arial",0,8,0)

Frame From Layer 1

Title "nyalbap Legend"

Using column object FromMapCatalog OFF label default

Creating on live access table with MapCatalog:

Create Cartographic Legend From Window 168811024
Scrollbars On

Portrait Style Size Large

Default Frame

Title "# Legend"

Font ("Arial",0,10,0)

Default Frame Style "&"

Font ("Arial",0,8,0)

Frame From Layer 1

Title "tony nyalbap Legend"

Using column object FromMapCatalog ON label default

Creating on live access table with MapCatalog:

Create Cartographic Legend From Window 168811024
Scrollbars On

Portrait Style Size Large

Default Frame Title "# Legend"

Font ("Arial",0,10,0)

Default Frame Style "%"

Font ("Arial",0,8,0)

Frame From Layer 1 Title "nyalbap Legend"

Using column class label default

Workspace Behavior

When you save to a workspace, the new FromMapCatalog OFF clause is written to the workspace
when specified. This requires the workspace to bumped up to 800. If the FromMapCatalog ON clause is
specified we do not write it to the workspace since it is default behavior. This lets us avoid bumping up
the workspace version in this case.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 23 MB_Ref.pdf

Reference Guide Chapter 1: Alter Object statement

Alter Object statement

Syntax

Alter Object obj
{ Info object info code, new_info value |
Geography object geo code, new _geo_value |
Node { Add [Position polygon num, node num] (x, y) |
Set Position polygon num, node num (x, y) |
Remove Position polygon num, node num

}

polygon _num is an Integer value (one or larger), identifying one polygon from a region object or one
section from a polyline object.

Create Cartographic Legend statement

Syntax

Create Cartographic Legend

From Window map window id]

Behind]

Position (x , y) [Units paper units]]
Width win width [Units paper units]]
Height win height [Units paper units]]
Window Title { legend window title }
ScrollBars { On | Off }]

Portrait | Landscape | Custom]

Style Size {Small | Large}

Default Frame Title { def frame title } [Font...] }]
Default Frame Subtitle { def frame subtitle } [Font...] }]
Default Frame Style { def frame style } [Font...] }]
Default Frame Border Pen [[pen expr]

Frame From Layer { map layer id | map layer name

[Using

[Column { column | object [FromMapCatalog { On | Off }1} 1

The syntax indicates that if you specify Using Column object, there is a new FromMapCatalog clause
you can use that is only applicable to live access tables.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog 0ff (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table must
be a live access table that supports per record styles for this to occur. If the live table does not support
per record styles than the behavior is to revert to the default behavior for live tables, which is to get the
default styles from the MapCatalog (FromMapCatalog ON).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 24 MB_Ref.pdf

Reference Guide Chapter 1: Create Collectio

n statement

Create Collection statement

Syntax

Create Collection [num parts]
[Into { Window window_id | Variable var name }]
Multipoint
[num points]
(x1, v1) (x2, v2) [...]
[Symbol . . .]
Region
num polygons
[num pointsl (x1, y1) (x2, y2) [... 1]
[num points2 (x1, y1) (x2, y2) [... 1 ... 1
[Pen ...]
[Brush ...]
[Center (center x, center y)]
Pline
[Multiple num sections]
num_points
(x1, v1) (x2, v2) [...]
[Pen ...]
[Smooth ...]

num_polygons is the number of polygons inside the Collection object.

num_sections specifies how many sections the multi-section polyline will contain.

Create Pline statement

Syntax

Create Pline
[Into { Window window_id | Variable var name }]
[Multiple num sections]

num points
(x1, v1) (x2, y2) [...]
[Pen ...]
[Smooth]

num_sections specifies how many sections the multi-section polyline will contain.

Create Region statement

Syntax

Create Region
[Into { Window window_id | Variable var name }]
num polygons

[num pointsl (x1, y1) (x2 , y2) [... 1]

[num points2 (x1, y1) (x2 , y2) [... 1 ... 1]
[Pen ...]
[Brush ...]

[Center (center x, center y)]

num_polygons specifies the number of polygons that will make up the region (zero or more).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 25

MB_Ref.pdf

Reference Guide Chapter 1: Commit Table statement

Commit Table statement
Here is the syntax with the new convertobjects keyword in bold:

Commit Table table
[As filespec
[Type { NATIVE |

DBF [Charset char set] |

Access Database database filespec

Version version Table tablename
[Password pwd] [Charset char set] |

QUERY
ODBC Connection ConnectionNumber Table tablename

}l
[CoordSys...]
[Version version] 1]
[{ Interactive | Automatic commit keyword }]
[ConvertObjects {ON | OFF | INTERACTIVE }]

ExtractNodes() function

ExtractNodes (object, polygon index, begin node, end node, b _region)

polygon_index is an Integer value, 1 or larger: for region objects. This indicates which polygon (for
regions) or section (for polylines) to query.

Import statement

Syntax

Import file name
[Type "GML21"]
[Layer layer name]
[Into table name]
[Overwrite]
[Coordsys clause]

file_name is the name of the GML 2.1 file to import.
Type is "aML21" for GML 2.1 files.

layer_name is the name of the GML layer.
table_name is the MaplInfo table name.

overwrite causes the TAB file to be automatically overwritten. If Overwrite is not specified, an error
will result if the TAB file already exists.

The Coordsys clause is optional. If the GML file contains a supported projection and the Coordsys
clause is not specified, the projection from the GML file will be used. If the GML file contains a
supported projection and the Coordsys clause is specified, the projection from the Coordsys clause will
be used. If the GML file does not contain a supported projection, the Coordsys clause must be
specified.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 26 MB_Ref.pdf

Reference Guide Chapter 1: ObjectGeography() function

Note: If the Coordsys clause does not match the projection of the GML file, your data may not import
correctly. The coordsys must match the coordsys of the data in the GML file. It will not
transform the data from one projection to another.

Example

Import "D:\midata\GML\GML2.1l\mi usa.xml" Type "GML21" layer "USA" Into
"D:\midata\GML\GML2.1\mi_usa USA.TAB" Overwrite CoordSys Earth Projection 1, 104

The following functions have been updated for this release.

ObjectGeography() function

attribute setting Return value (Float)
OBJ_GEO_POINTZ z-value of a Point object.
OBJ_GEO_POINTM m-value of a Point object.

If object does not support z/m values or z/m-value for this node is not defined, then an error is thrown.

Objectinfo() function
Syntax
ObjectInfo(object, attribute)

object is an Object expression

attribute is an integer code specifying which type of information should be returned.

Return value

OBJ_INFO NPOLYGONS (21) is an Integer that indicates the number of polygons (in the case of a region)
or sections (in the case of a polyline) which make up an object.

OBJ_INFO NPOLYGONS+N (21) is an Integer that indicates the number of nodes in the Nth polygon of a
region or the Nth section of a polyline.

Note: With region objects, Maplnfo Professional counts the starting node twice (once as the start
node and once as the end node). For example, Objectinfo returns a value of 4 for a triangle-
shaped region.

attribute setting Return value

OBJ_INFO_Z UNIT_SET(12) | Logical, indicating whether Z units are defined.

OBJ_INFO_Z UNIT(13) String result: indicates distance units used for Z-values. Return
empty string if units are not specified.
OBJ_INFO_HAS_Z(14) Logical, indicating whether object has Z values.
OBJ_INFO_HAS_M(15) Logical, indicating whether object has M values.
MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 27 MB_Ref.pdf

Reference Guide Chapter 1: ObjectNodeX() function

ObjectNodeX() function

Syntax

ObjectNodeX(object, polygon num, node num)
object is an Object expression.

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

ObjectNodeY() function

Syntax

ObjectNodeY(object, polygon num, node num)

object is an Object expression.

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

Register Table statement

Syntax

Register Table source file

Type "ODBC" [Cache { On | OFF }]
Connection { Handle ConnectionNumber | ConnectionString }
Toolkit toolkitname
Table SQLQuery
[Versioned {Off | On}]
[Workspace WorkspaceName]
[ParentWorkspace ParentWorkspaceName]

Versioned indicates if the table to be opened is an version-enabled (ON) table or not (OFF).

WorkspaceName is the name of the current workspace in which the table will be operated. The name
is case sensitive.

ParentWorkspaceName is the name of parent workspace of the current workspace.

Note: In order to have this statement be effective, the table has to be version-enabled, that is,
Versioned is set ON.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 28 MB_Ref.pdf

Reference Guide Chapter 1: Set Cartographic Legend statement

Examples

The following example create a tab file and then open the tab file.

Register Table "Gwmusa" TYPE ODBC
TABLE "Select * From ""MIUSER"".""GWMUSA"""
CONNECTION "SRVR=troyny;UID=miuser;PWD=miuser"
toolkit "ORAINET"
Versioned On
Workspace "MIUSER"
ParentWorkspace "LIVE"
Into "C:\projects\data\testscripts\english\remote\Gwmusa.tab"

Open Table "C:\Projects\Data\TestScripts\English\remote\Gwmusa.TAB" Interactive
Map From Gwmusa

Note: INTERACTIVE is not a valid parameter to use when registering SHP files.
See Also

Server Create Workspace statement

Set Cartographic Legend statement
Syntax

Set Cartographic Legend
[Window window_id]
[Refresh]
[Portrait | Landscapel
[Columns number of columns | Lines number of lines]

number_of-columns specifies the width of the legend.

number_of_lines specifies the height of the legend.

Set Legend statement

Purpose

The Set Legend command is used to provide custom ordering of legend categories or items. The new
syntax is in bold.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 29 MB_Ref.pdf

Reference Guide Chapter 1: Set Legend statement

Syntax

Set Legend
[Window window_id]
[Layer { layer id | layer name | Prev }
Display { On | Off }]
Shades { On | Off } 1
Symbols { On | Off } 1
Lines { On | Off }]
Count { On | Off }]
Title { Auto | layer title [Font . . . 1 } 1
SubTitle { Auto | layer subtitle [Font . . .] }]
Style Size {Large | Small | Fontsize}]
Columns number of columns]
Ascending { On | Off } | Order { Ascending | Descending | Custom }]
Ranges { [Font . . .]
[Range { range identifier | default }]
range title [Display { On | Off } 1 }
L, .. .1

L, . . .1

There are four new clauses: Order, Range, Style Size, and Columns. When you want custom order,
include order custom in the MapBasic statement as well as a range identifier for each category in the
theme. The order of ranges dictates the order of categories in the legend. The range identifier is the
same const string or value used by the Values clause in the Shade statement that creates the
Individual Value theme.

The Order and Range clauses will increase the workspace version to 8.0. Old workspaces will still
parse correctly as there is still support for the original Ascending clause. If the order is not custom,
Mapinfo Professional will write out the original Ascending clause and NOT increase the workspace
version.

The Order clause is a new way to specify legend label order of ascending or descending as well as
new custom order. However, the original Ascending { On | Off } clause is still available for backwards
compatibility. You can use either the new Order clause, or the old Ascending clause, but not both (both
clauses cannot be included in the same MapBasic statement or you will get a syntax error).

The Custom option for the Order clause is allowed only for Individual Value themes. An error will occur
if you try to custom order other theme types. The error is “Custom legend label order is only

allowed for Individual Value themes.”

When the Order is Custom, each range in the Ranges clause must include a range identifier, otherwise
a syntax error will occur. The range identifier must come before the range title and Display clause. The
range identifier is the same const string or value used by the Values clause in the Shade statement that
creates the Individual Value theme. The range identifier for the "all others" category is 'default'.

Every category in the theme must be included, including the default or "all others" category, otherwise

an error will occur. The error is "Incorrect number of ranges specified for custom order.'

The default or "all others" category may also be reordered, although the best place to place this
argument is at the end or beginning of the Ranges clause.

If the range identifier does not refer to a valid category an error will occur. The erroris "Invalid range

value for custom order."

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 30 MB_Ref.pdf

Reference Guide

Chapter 1: Set Legend statement

The Style Size clause facilitates thematic swatches to appear in different sizes.

The Columns clause allows you to specify the width of the legend. number_of-columns indicates the

column width.

Examples

The example workspace below needs the following shade statement:

shade 1 with Province Name values
"Alberta" Brush (2,16711680,16777215) Pen (1,2,0) ,

"British Columbia" Brush (2,65280,16777215) Pen (1,2,0) ,

"Manitoba" Brush (2,255,16777215) Pen (1,2,0) ,

"New Brunswick" Brush (2,16711935,16777215) Pen (1,2,0) ,

"Newfoundland" Brush (2,16776960,16777215) Pen (1,2,0)

’

"Northwest Territories" Brush (2,65535,16777215) Pen (1,2,0) ,

"Nova Scotia" Brush (2,8388608,16777215) Pen (1,2,0)
"Nunavut" Brush (2,32768,16777215) Pen (1,2,0) ,
"Ontario" Brush (2,128,16777215) Pen (1,2,0) ,

"Prince Edward Island" Brush (2,8388736,16777215) Pen

"Quebec" Brush (2,8421376,16777215) Pen (1,2,0) ,
"Saskatchewan" Brush (2,32896,16777215) Pen (1,2,0)

’

(1,2,0) ,

"Yukon Territory" Brush (2,16744576,16777215) Pen (1,2,0)

default Brush (1,0,16777215) Pen (1,2,0) # color 1 #

The Set Legend statement includes the Order Custom tokens and a Range identifier for each category.
The Range identifier is the same string found in the shade statement and the order of ranges is what is

displayed in the Legend. (New information is in bold.)

set legend
layer 1
display on
shades on
symbols off
lines off
count on
title auto Font ("Arial",0,9,0)
subtitle auto Font ("Arial",0,8,0)
order custom
ranges Font ("Arial",0,8,0)
range "Prince Edward Island" auto display on ,

range "Northwest Territories" auto display on ,

range "British Columbia" auto display on ,
range "Yukon Territory" auto display on ,
range "New Brunswick" auto display on ,
range "Newfoundland" auto display on ,
range "Saskatchewan" auto display on ,
range "Nova Scotia" auto display on ,
range "Manitoba" auto display on ,

range "Nunavut" auto display on ,

range "Ontario" auto display on ,

range "Quebec" auto display on ,

range "Alberta" auto display on ,

range default auto display off

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 31

MB_Ref.pdf

Reference Guide Chapter 1: Tablelnfo() function

Enabling Transparent Patterns on Same Layer

In order to facilitate a multi-thetatic analysis on a particular layer, transparent patterns are necessary.
To facilitate this, the Shade statement and the Set Shade statement now have the addition of a style
Replace clause for use with for Range and Individual Value themes. The syntax for the new clause is
as follows:

{style Replace { On | Off } }
Style Replace On (default) specifies the layers under the theme are not drawn.

Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

Export Windows to Additional Formats

The Save Window statement now supports three additional formats for image export. The new values
for type include: "TIFFG4", "TIFFLZW", and "GIF".

Examples

save window frontwindow() as "untitled.gif" type "gif™"
save window frontwindow() as "untitled.tif" type "tiffg4"
save window frontwindow() as "untitled.tif" type "tifflzw"

Tablelnfo() function

attribute code Tablelnfo() returns

TAB_INFO_SUPPORT_MZ Logical result: TRUE if table supports M and Z values.

TAB_INFO_Z UNIT_SET Logical result: TRUE is unit is set for Z-values.

TAB_INFO_Z UNIT String result: indicates distance units used for Z-values. Return
empty string if units are not specified.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 32 MB_Ref.pdf

Introduction

This manual describes every statement and function in the MapBasic
Development Environment programming language. To learn about the
concepts behind MapBasic programming, or to learn about using the
MapBasic development environment, see the MapBasic User Guide.

In this chapter...

¢ TypeConventions..............c.ciiiiiiiinnnnnnnnn. 34
¢ Language Overviewoviiininnnnnennnnennn 34
¢ MapBasicFundamentals 34
¢ Functions e 35
¢ WorkingWithTables 38
¢+ Working With Files (Other Than Tables)................ 40
¢+ Working With Maps and Graphical Objects 41
¢ Creatingthe Userinterface 43
¢ Communicating With Other Applications. 45
¢+ Special Statements and Functions 46

¢ A-ZReferenceciiiiiiiiiii it 46

£ Maplnfo.

Reference Guide

Chapter 2: Introduction

Type Conventions

This manual uses the following conventions to designate specific items in the text:

Convention

Meaning

If, Call, Map, Browse,
Area

Bold words with the first letter capitalized are MapBasic keywords.
Within this manual, the first letter of each keyword is capitalized;
however, when you write MapBasic programs, you may enter key-
words in upper-, lower-, or mixed-case.

Main, Integer, Pen, Object

Non-bold words with the first letter capitalized are usually special
procedure names or variable types.

table, handler, window._id

Italicized words represent parameters to MapBasic statements.
When you construct a MapBasic statement, you must supply an
appropriate

expression for each parameter.

[window_id], [Interactive

]

Keywords or parameters which appear inside square brackets are
optional.

{On | Off}

When a syntax expression appears inside braces, the braces con-
tain a list of keywords or parameters, separated by the vertical bar
character (|). You must choose one of the options listed. For
example, in the sample shown on the left ({ On | Off }), you should
choose either On or Off.

Note "Hello,world!"

Actual program samples are shown in this font (Courier).

Language Overview

The following pages provide an overview of the MapBasic language. Task descriptions appear on the
left; corresponding statement names and function names appear on the right, in bold. Function names
are followed by parentheses ().

MapBasic Fundamentals

Variables

Declare local or global variables: Dim, Global

Resize array variables:

ReDim, UBound(), UnDim

Declare custom data structure: Type

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 34

MB_Ref.pdf

Reference Guide Chapter 2: Introduction

Looping and Branching

Looping: For...Next, Exit For, Do...Loop, Exit Do, While...Wend
Branching: If...Then, Do Case, GoTo
Other flow control: End Program, Terminate Application, End Maplnfo

Output and Printing

Print a window’s contents: PrintWin

Print text to message window: Print

Set up a Layout window: Layout, Create Frame, Set Window
Export a window to a file: Save Window

Controlling the Printer: Set Window, Window Info()

Procedures (Main and Subs)

Define a procedure: Declare Sub, Sub...End Sub
Call a procedure: Call

Exit a procedure: Exit Sub

Main procedure: Main

Error Handling

Set up an error handler: OnError
Return current error information: Err(), Error$()
Return from error handler: Resume
Simulate an error: Error
Functions
MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 35 MB_Ref.pdf

Reference Guide Chapter 2: Introduction

Custom Functions

Define a custom function: Declare Function, Function...End Function

Exit a function: Exit Function

Data-Conversion Functions

Convert strings to codes: Asc()
Convert codes to strings: Chr$()
Convert strings to numbers: Val()

Convert numbers to strings: Str$(), Format$()

Convert a number or a string to a date:

NumberToDate(), StringToDate()

Converting to a 2-Digit Year:

Set Date Window, DateWindow()

Convert object types: ConvertToRegion(), ConvertToPling(
)
Convert labels to text: Labelinfo()
Convert a point object to an MGRS PointToOMGRS$()
coordinate:
Convert a MGRS coordinate to a point object: | MGRSToPoint()
Date and Time Functions
Obtain the current date: CurDate()

Extract parts of a date: Day(), Month(), Weekday(), Year()

Read system timer: Timer()

Convert a number or a string to a
date:

NumberToDate(), StringToDate()

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 36 MB_Ref.pdf

Reference Guide

Chapter 2: Introduction

Math Functions

Trigonometric functions:

Cos(), Sin(), Tan(), Acos(), Asin(), Atn()

Geographic functions:

Area(), Perimeter(), Distance(), ObjectLen(), CartesianArea(), CartesianPerime-
ter(), CartesianDistance(), CartesianObjectLen(), SphericalArea(),
SphericalPerimeter(), SphericalDistance(), SphericalObjectLen()

Random numbers:

Randomize, Rnd()

Sign-related functions:

Abs(), Sgn()

Truncating fractions:

Fix(), Int(), Round()

Other math functions:

Exp(), Log(), Minimum(), Maximum(), Sqr()

String Functions

Upper / lower case:

UCase$(), LCase$(), Proper$()

Find a sub-string:

InStr()

Extract part of a string:

Left$(), Right$(), Mid$(), MidByte$()

Trim blanks from a string:

LTrim$(), RTrim$()

Format numbers as strings:

Format$(), Str$(), Set Format, FormatNum-
ber$(),
DeformatNumber$()

Determine string length:

Len()

Convert character codes:

Chr$(), Asc()

Compare strings:

Like(), StringCompare(), StringComparelntl()

Repeat a string sequence:

Space$(), String$()

Return unit name:

UnitAbbr$(), UnitName$()

Convert a point object to an MGRS coordi- | PointToMGRS$()
nate:
Convert a MGRS coordinate to a point MGRSToPoint()
object:
MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 37 MB_Ref.pdf

Reference Guide

Chapter 2: Introduction

Working With Tables

Creating and Modifying Tables

Open an existing table:

Open Table

Close one or more tables:

Close Table, Close All

Create a new, empty table:

Create Table

Turn a file into a table:

Register Table

Import/export tables/files:

Import, Export

Modify a table’s structure:

Alter Table, Add Column, Create Index, Drop Index,
Create Map, Drop Map

Create a Crystal Reports file:

Create Report From Table

Load a Crystal Report:

Open Report

Add, edit, delete rows:

Insert, Update, Delete

Pack a table:

Pack Table

Control table settings:

Set Table

Save recent edits:

Commit Table

Discard recent edits:

Rollback

Rename a table:

Rename Table

Delete a table:

Drop Table

Querying Tables

Position the row cursor:

Fetch, EOT()

Select data, work with Selection:

Select, Selectioninfo()

Find map objects by address:

Find, Find Using, CommandInfo()

Find map objects at location:

SearchPoint(), SearchRect(), Searchinfo()

Obtain table information:

NumTables(), Tablelnfo()

Obtain column information:

NumCols(), Columninfo()

Query a table’s metadata:

GetMetadata$(), Metadata

Query seamless tables:

Tablelnfo(), GetSeamlessSheet()

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

38

MB_Ref.pdf

Reference Guide

Chapter 2: Introduction

Working With Remote Data

Create a new table

Server_Create Table

Communicate with data server:

Server_Connect(),Server_Connectinfo()

Begin work with remote server:

Server Begin Transaction

Assign local storage:

Server Bind Column

Obtain column information:

Server_Columninfo(), Server_NumCols()

Send an SQL statement:

Server_Execute()

Position the row cursor:

Server Fetch, Server EOT()

Save changes:

Server Commit

Discard changes:

Server Rollback

Free remote resources:

Server Close

Make remote data mappable:

Server Create Map

Change object styles:

Server Set Map

Synchronize a linked table:

Server Refresh

Create a linked table:

Server Link Table

Unlink a linked table:

Unlink

Disconnect from server:

Server Disconnect

Retrieve driver information:

Server_Driverinfo(), Server_NumbDrivers()

Get ODBC connection handle:

Server GetodbcHConn()

Get ODBC statement handle:

Server GetodbcHStmt()

Set Object styles

Server Create Style

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

39

MB_Ref.pdf

Reference Guide

Chapter 2: Introduction

Working With Files (Other Than Tables)

File Input/Output

Open or create a file: Open File
Close afile: Close File
Delete a file: Kill

Rename a file: Rename File
Copy a file: Save File

Read from a file:

Get, Seek, Input #, Line Input #

Write to a file:

Put, Print #, Write #

Determine file’s status:

EOF(), LOF(), Seek(), FileAttr(), FileExists()

Turn a file into a table:

Register Table

Retry on sharing error:

Set File Timeout

File and Directory Names

Return system directories:

ProgramDirectory$(), HomeDirectory$(), ApplicationDirec-
tory$()

Extract part of a filename:

PathToTableName$(), PathToDirectory$(), PathToFileName$()

Return a full filename:

TrueFileName$()

Let user choose a file:

FileOpenDilg(), FileSaveAsDIg()

Return temporary filename:

TempFileName$()

Locate files:

LocateFile$(), GetFolderPath$()

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 40

MB_Ref.pdf

Reference Guide Chapter 2: Introduction

Working With Maps and Graphical Objects

Creating Map Objects

Creation statements: Create Arc, Create Ellipse, Create Frame, Create Line, Create
PLine, Create Point, Create Rect, Create Region, Create Roun-
dRect, Create Text, AutoLabel, Create Multipoint,Create Collection

Creation functions: CreateCircle(), CreateLine(), CreatePoint(), CreateText()

Advanced operations: Create Object, Buffer(), CartesianBuffer(), CartesianOffset(), Carte-
sianOffsetXY(), ConvexHull(), Offset(), OffsetXY(), SphericalOff-
set(), SphericalOffsetXY(),

Store object in table: Insert, Update

Create regions: Objects Enclose

Modifying Map Objects

Modify object attribute: Alter Object

Change object type: ConvertToRegion(), ConvertToPLine()
Offset objects: Objects Offset, Objects Move

Set the editing target: Set Target

Erase part of an object: CreateCutter, Objects Erase, Erase()

Objects Intersect, Overlap()

Merge objects: Objects Combine, Combine(), Create Object
Rotate objects: Rotate(), RotateAtPoint()
Split objects: Objects Pline, Objects Split

Add nodes at intersections: | Objects Overlay, OverlayNodes()

Control object resolution: Set Resolution

Store an object in a table: Insert, Update

Check Objects for bad Objects Check

data:

Object processing: ObjectsDisaggregate statement, Objects Snap statement,

Objects Clean statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 41 MB_Ref.pdf

Reference Guide Chapter 2: Introduction

Querying Map Objects

Return calculated values: Area(), Perimeter(), Distance(), ObjectLen(), Overlap(),
AreaOverlap(), ProportionOverlap()

Return coordinate values: ObjectGeography(), MBR(), ObjectNodeX(), ObjectNodeY(
),Centroid(), CentroidX(), CentroidY(), ExtractNodes(),
IntersectNodes()

Return settings for coordinates, | Sessioninfo()
distance, area and paper units:

Configure units of measure: Set Area Units, Set Distance Units, Set Paper Units, Unit-
Abbr$(), UnitName$()

Configure coordinate system: Set CoordSys

Return style settings: Objectinfo()

Query a map layer’s labels: LabelFindByID(), LabelFindFirst(), LabelFindNext(),
Labelinfo()

Working With Object Styles

Return current styles: CurrentPen(),CurrentBorderPen(), CurrentBrush(), CurrentFont(),
CurrentLinePen(), CurrentSymbol(), Set StyleTextSize()

Return part of a style: StyleAttr()

Create style values: MakePen(), MakeBrush(), MakeFont(), MakeSymbol(), MakeCus-
tomSymbol(), MakeFontSymbol(), Set Style, RGB()

Query object’s style: Objectinfo()

Modify object’s style: Alter Object

Reload symbol styles: Reload Symbols

Style clauses: Pen clause, Brush clause, Symbol clause, Font clause

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 42 MB_Ref.pdf

Reference Guide

Chapter 2: Introduction

Working With Map Windows

Open a map window:

Map

Create/edit 3DMaps:

Create Map3D, Set Map3D,Map3Dinfo(), Create PrismMap,
Set PrismMap, PrismMaplnfo()

Add a layer to a map:

Add Map

Remove a map layer:

Remove Map

Label objects in a layer:

AutoLabel

Query a map’s settings:

Mapperinfo(), Layerinfo()

Change a map’s settings:

Set Map

Create or modify thematic lay-
ers:

Shade, Set Shade, Create Ranges, Create Styles, Create Grid,
Relief Shade

Query a map layer’s labels:

LabelFindByID(), LabelFindFirst(), LabelFindNext(),
Labelinfo()

Creating the User Interface

ButtonPads (ToolBars)

Create a new ButtonPad:

Create ButtonPad

Modify a ButtonPad:

Alter ButtonPad

Modify a button:

Alter Button

Query the status of a pad:

ButtonPadInfo()

Respond to button use:

Commandinfo()

Restore standard pads:

Create ButtonPads As Default

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 43

MB_Ref.pdf

Reference Guide

Chapter 2: Introduction

Dialog Boxes

Display a standard dialog:

Ask(), Note, ProgressBar, FileOpenDIg(), FileSaveAs-
DIg(), GetSeamlessSheet()

Display a custom dialog:

Dialog

Dialog handler operations:

Alter Control, TriggerControl(),
ReadControlValue(),Dialog Preserve, Dialog Remove

Determine whether user clicked OK:

Commandinfo(CMD_INFO_DLG_OK)

Disable progress bars:

Set ProgressBars

Modify a standard MapInfo Profes-

sional dialog:

Alter MaplInfoDialog

Menus

Define a new menu:

Create Menu

Redefine the menu bar:

Create Menu Bar

Modify a menu:

Alter Menu, Alter Menu ltem

Modify the menu bar:

Alter Menu Bar, Menu Bar

Invoke a menu command:

Run Menu Command

Query a menu item’s status:

MenuitemInfoByHandler(), MenuitemInfoByID()

Windows

Show or hide a window:

Open Window, Close Window, Set Window

Open a new window:

Map, Browse, Graph, Layout, Create Redistricter, Create Legend,
Create Cartographic Legend, LegendFramelnfo

Determine a window’s ID:

FrontWindow(), WindowID()

Modify an existing window:

Set Map, Shade, Add Map, Remove Map, Set Browse, Set Graph,
Set Layout, Create Frame, Set Legend, Set Cartographic Legend,
Set Redistricter, StatusBar, Alter Cartographic Frame, Add Carto-
graphic Frame, Remove Cartographic Frame

Return a window’s set-
tings:

WindowInfo(), Mapperlinfo(), LayerInfo()

Print a window:

PrintWin

Control window redrawing:

Set Event Processing, Update Window, Control DocumentWindow

Count number of windows:

NumWindows(), NumAIllWindows()

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 44

MB_Ref.pdf

Reference Guide

Chapter 2: Introduction

System Event Handlers

React to selection: SelChangedHandler

React to window closing: WinClosedHandler

React to map changes: WinChangedHandler
React to window focus: WinFocusChangedHandler

React to DDE request:

RemoteMsgHandler, RemoteQueryHandler()

React to OLE Automation method:

RemoteMapGenHandler

Provide custom tool:

ToolHandler

React to termination of application:

EndHandler

React to MaplInfo Professional getting
or losing focus:

ForegroundTaskSwitchHandler

Disable event handlers:

Set Handler

Communicating With Other Applications

DDE (Dynamic Data Exchange; Windows Only)

Start a DDE conversation: DDElnitiate()

Send a DDE command: DDEExecute

Send a value via DDE: DDEPoke

Retrieve a value via DDE: DDERequest$()

Close a DDE conversa- DDETerminate, DDETerminateAll
tion:
Respond to a request: RemoteMsgHandler, RemoteQueryHandler(), Command-

Info(CMD_INFO_MSG)

Integrated Mapping

Set Maplnfo Professional ’s parent win-
dow:

Set Application Window

Set a Map window’s parent:

Set Next Document

Create a Legend window:

Create Legend

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

45

MB_Ref.pdf

Reference Guide Chapter 2: Introduction

Special Statements and Functions

Launch another program: Run Program
Return information about the system: Systeminfo(')

Run a string as an interpreted command: Run Command
Save a workspace file: Save Workspace
Load a workspace file or an MBX: Run Application
Configure a digitizing tablet: Set Digitizer

Send a sound to the speaker: Beep

Set data to be read by CommandInfo: Set Command Info
Set duration of the drag-object delay: Set Drag Threshold

A — Z Reference

The next section describes the MapBasic language in detail. You will find both statements and function
descriptions arranged alphabetically. Each is described in the following format:

Purpose

Brief description of the function or statement.

Restrictions
Information about limitations (for example, “The DDElInitiate function is only available under Microsoft
Windows,” “You cannot issue a For...Next statement through the MapBasic window”).

Syntax
The format in which you should use the function or statement and explanation of argument(s).

Return Value

The type of value returned by the function.

Description
Thorough explanation of the function or statement’s role and any other pertinent information.

Example
A brief example.

See Also
Related functions or statements. Most MapBasic statements can be typed directly into Mapinfo
Professional, through the MapBasic window. If a statement may not be entered through the MapBasic
window, the Restrictions section identifies the limitation. Generally, flow-control statements (such as
looping and branching statements) cannot be entered through the MapBasic window.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 46 MB_Ref.pdf

Reference Guide Chapter 3: Abs() function

Abs() function

Purpose
Returns the absolute value of a number.

Syntax
Abs (num _expr)
num_expr is a numeric expression

Return Value
Float

Description
The Abs() function returns the absolute value of the expression specified by num_expr.

If num_expr has a value greater than or equal to zero, Abs() returns a value equal to num_expr. If
num_expr has a negative value, Abs() returns a value equal to the value of num_expr multiplied by
negative one.

Example
Dim £ x, £ y As Float
f x=-2.5
f y = Abs(f x)

" f_y now equals 2.5

See Also

Sgn() function

Acos() function

Purpose

Returns the arc-cosine value of a number.

Syntax

Acos (num expr)
num_expr is a numeric expression between one and minus one, inclusive

Return Value
Float

Description
The Acos() function returns the arc-cosine of the numeric num_expr value. In other words, Acos()
returns the angle whose cosine is equal to num_expr.

The result returned from Acos() represents an angle, expressed in radians. This angle will be
somewhere between zero and Pi radians (given that Pi is equal to approximately 3.141593, and given
that Pi/2 radians represents 90 degrees).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 47 MB_Ref.pdf

Reference Guide Chapter 3: Add Cartographic Frame statement

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. Your program must Include “MAPBASIC.DEF” in
order to reference DEG_2 RAD or RAD_2 DEG.

Since cosine values range between one and minus one, the expression num_expr should represent a
value no larger than one and no smaller than minus one.

Example

Include "MAPBASIC.DEF”

Dim x, y As Float

x = 0.5

y = Acos(x) * RAD 2 DEG

' v will now be equal to 60,

' since the cosine of 60 degrees is 0.5

See Also
Asin() function, Atn() function, Cos() function, Sin() function, Tan() function

Add Cartographic Frame statement

The Add Cartographic Frame statement allows you to add cartographic frames to an existing
cartographic legend created with the Create Cartographic Legend statement.

Syntax

Add Cartographic Frame
Window legend window_id]
Custom]
Default Frame Title { def frame title } [Font...]]
Default Frame Subtitle { def frame subtitle } [Font...]]
Default Frame Style { def frame style } [Font...]]
Default Frame Border Pen... pen expr]
Frame From Layer { map layer id | map_layer name }
[Position (x , y) [Units paper units]]
[Using
[Column { column | object [FromMapCatalog { On | Off }1}]
[Label { expression | default }]
Title [frame title] [Font...]]
SubTitle [frame subtitle] [Font...]]
Border Pen...]
Style [Font...] [NoRefresh]
[Text { style name } { Line Pen... | Region Pen... Brush...

| Symbol Symbol... }]

[, ...]
]
L, ...]
legend_window _id is an Integer window identifier which you can obtain by calling the FrontWindow()
and Windowld() functions.

def_frame_title is a string which defines a default frame title. It can include the special character “#”
which will be replaced by the current layer name.

def_frame_subtitle is a string which defines a default frame subtitle. It can include the special character
“#” which will be replaced by the current layer name.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 48 MB_Ref.pdf

Reference Guide Chapter 3: Add Cartographic Frame statement

def_frame_style is a string that displays next to each symbol in each frame. The "#” character will be
replaced with the layer name. The % character will be replaced by the text “Line”, “Point, “Region”, as
appropriate for the symbol. For example, “% of #’ will expand to “Region of States” for the states.tab
layer.

pen_expris a Pen expression, e.g., MakePen(width, pattern, color). If a default border pen is defined,
then it will be become the default for the frame. If a border pen clause exists at the frame level, then it
is used instead of the default.

map_layer_id or map_layer_name identifies a map layer; can be a Smallint (e.g., use 1 to specify the
top map layer other than Cosmetic) or a string representing the name of a table displayed in the map.
For a theme layer you must specify the map_layer id.

frame_title is a string which defines a frame title. If a title clause is defined here for a frame, then it will
be used instead of the def frame _title.

frame_subtitle is a string which defines a frame subtitle. If a subtitle clause is defined here for a frame,
then it will be used instead of the def _frame_subtitle.

Column is an attribute column name from the frame layer’s table, or the object column (meaning that
legend styles are based on the unique styles in the mapfile). The default is 'object’.

style_name is a string which displays next to a symbol, line, or region in a custom frame.

Description
If the Custom keyword is included, then each frame section must include a Position clause. If
Custom is omitted and the legend is laid out in portrait or landscape, then the frames will be added to
the end.

The Position clause controls the frame’s position on the legend window. The upper left corner of the
legend window has the position 0, 0. Position values use paper units settings, such as “in” (inches) or
“‘cm” (centimeters). MapBasic has a current paper units setting, which defaults to inches; a MapBasic
program can change this setting through the Set Paper Units statement.You can override the current
paper units by including the optional Units subclause within the Position clause.

The defaults in this statement apply only to the frames being created in this statement. They have no
affect on existing frames. Frame defaults used in the Create Cartographic Legend or previous have
no affect on frames created in this statement.

When you save to a workspace, the FromMapCatalog OFF clause is written to the workspace when
specified. This requires the workspace to bumped up to 800. If the FromMapCatalog ON clause is
specified we do not write it to the workspace since it is default behavior. This lets us avoid bumping up
the workspace version in this case.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table
must be a live access table that supports per record styles for this to occur. If the live table does not
support per record styles than the behavior is to revert to the default behavior for live tables, which is to

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 49 MB_Ref.pdf

Reference Guide Chapter 3: Add Column statement

get the default styles from the MapCatalog (FromMapCatalog ON).Label is a valid expression or
default (meaning that the default frame style pattern is used when creating each style’s text, unless the
style clause contains text). The default is default.

The Style clause and the NoRefresh keyword allow you to create a custom frame that will not be
overwritten when the legend is refreshed. If the NoRefresh keyword is used in the Style clause, then
the table is not scanned for styles. Instead, the Style clause must contain your custom list of definitions
for the styles displayed in the frame. This is done with the Text and appropriate Line, Region, or
Symbol clause.

See Also

Create Cartographic Legend statement, Set Cartographic Legend statement, Alter Cartographic
Frame statement, Remove Cartographic Frame statement

Add Column statement

Purpose
Adds a new, temporary column to an open table, or updates an existing column with data from another
table.

Syntax

Add Column table (column [datatype])
{ values const [, const ...] |
From source table
Set To expression
[Where { dest column = source column | Within | Contains | Intersects }]
[Dynamic] }

table is the name of the table to which a column will be added
column is the name of a new column to add to that table

datatype is the data type of the column, defined as Char (width), Float, Integer, Smallint,
Decimal(width, decimal_places), Date or Logical; if not specified, type defaults to Float

source_table is the name of a second open table

expression is the expression used to calculate values to store in the new column; this expression
usually extracts data from the source_table, and it can include aggregate functions

dest_column is the name of a column from the destination table (fable)
source_column is the name of a column from the source_table

Dynamic specifies a dynamic (hot) computed column that can be automatically update: if you include
this keyword, then subsequent changes made to the source table are automatically applied to the
destination table

Description
The Add Column statement creates a temporary new column for an existing MapInfo Professional
table. The new column will not be permanently saved to disk. However, if the temporary column is
based on base tables, and if you save a workspace while the temporary column is in use, the

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 50 MB_Ref.pdf

Reference Guide Chapter 3: Add Column statement

workspace will include information about the temporary column, so that the temporary column will be
rebuilt if the workspace is reloaded. To add a permanent column to a table, use the Alter Table and
Update statements.

Filling The New Column With Explicit Values
Using the Values clause, you can specify a comma-separated list of explicit values to store in the new
column.

The following example adds a temporary column to a table of “ward” regions. The values for the new
column are explicitly specified, through the Value clause.
Open Table ”"wards”

Add Column wards (percent dem)
Values 31,17,22,24,47,41,66,35,32,88

Filling The New Column With Values From Another Table

If you specify a From clause instead of a Values clause, MapBasic derives the values for the new
column from a separate table (source_table). Both tables must already be open.

When you use a From clause, MaplInfo Professional joins the two tables. To specify how the two tables
are joined, include the optional Where clause. If you omit the Where clause, Mapinfo Professional
automatically tries to join the two tables using the most suitable method.

A Where clause of the form:

Where column = column
joins the two tables by matching column values from the two tables. This method is appropriate if a

column from one of your tables has values matching a column from the other table (e.g., you are
adding a column to the States table, and your other table also has a column containing state names).

If both tables contain map objects, the Where clause can specify a geographic join. For example, if you
specify the clause Where Contains, Maplinfo Professional constructs a join by testing whether objects
from the source_table contain objects from the table that is being modified.

The following example adds a “County” column to a “Stores” table. The new column will contain county
names, which are extracted from a separate table of county regions:

Add Column

stores (county char(20) "add ”county” column

From counties "derive data from counties table...

Set to cname ‘using the counties table’s ”“cname” column
Where Contains "join: where a county contains a store site

The Where Contains method is appropriate when you add a column to a table of point objects, and the
secondary table represents objects that contain the points.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 51 MB_Ref.pdf

Reference Guide Chapter 3: Add Column statement

The following example adds a temporary column to the States table. The new column values are
derived from a second table (City_1K, the table of major U.S. cities). After the completion of the Add
Column statement, each row in the States table will contain a count of how many major cities are in
that state.

Open Table ”states” Interactive
Open Table ”“city 1k” Interactive

Add Column states (num cities)

From city 1k "derive values from other table
Set To Count (*) ’‘count cities in each state
Where Within "join: where cities fall within states

The Set To clause in this example specifies an aggregate function: Count(*). Aggregate functions are
described below.

Filling An Existing Column With Values From Another Table

To update an existing column instead of adding a new column, omit the datatype parameter and
specify a From clause instead of a Values clause. When updating an existing column, MapBasic
ignores the Dynamic clause.

Filling The New Column With Aggregate Data

If you specify a From clause, you can calculate values for the new column by aggregating data from
the second table. To perform data aggregation, specify a Set To clause that includes an aggregate
function.

The following table lists the available aggregate functions.

Function Value Stored In The New Column
Avg(col) average of values from rows in the source table
Count(*) number of rows in the source table that correspond to the

row in the table being updated

Max(col) largest of the values from rows in the source table

Min(col) smallest of the values from rows in the source table

Sum(col) sum of the values from rows in the source table

WtAvg(col, weight_col) weighted average of the values from the source table; the

averaging is weighted so that rows having a large
weight_col value have more of an impact than rows having a
small weight_col value

Proportion Avg(col) average calculation that makes adjustments based on how
much of an object is within another object

Proportion Sum(col) sum calculation that makes adjustments based on how
much of an object is within another object

Proportion WtAvg(col , weighted average calculation that makes adjustments
weight_col) based on how much of an object is within another object
MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 52 MB_Ref.pdf

Reference Guide Chapter 3: Add Column statement

Most of the aggregate functions operate on data values only. The last three functions (Proportion Sum,
Proportion Avg, Proportion WtAvg) perform calculations that take geographic relationships into
account. This is best illustrated by example.

Suppose you have a Towns table, containing town boundary regions and demographic information
(e.g., population) about each town. You also have a Risk table, which contains a region object. The
object in the Risk table represents some sort of area that is at risk; perhaps the region object
represents an area in danger of flooding due to proximity to a river.

< Dok |

Town boundary regions

Risk buffer region

Given these two tables, you might want to calculate the population that lives within the risk region. If
half of a town’s area falls within the risk region, you will consider half of that town’s population to be at
risk; if a third of a town’s area falls within the risk region, you will consider a third of that town’s
population to be at risk; etc.

The following example calculates the population at risk by using the Proportion Sum aggregate
function, then stores the calculation in a new column (population_at_risk):

Add Column Risk (population at risk Integer)
From towns
Set To Proportion Sum(town pop)
Where Intersects
For each town that is at least partly within the risk region, Maplnfo Professional adds some or all of the

town’s town_pop value to a running total.

The Proportion Sum function produces results based on an assumption - the assumption that the
number being totalled is distributed evenly throughout the region. If you use Proportion Sum to
process population statistics, and half of a region falls within another region, Maplinfo Professional
adds half of the region’s population to the total. In reality, however, an area representing half of a region
does not necessarily contain half of the region’s population. For example, the population of New York
State is not evenly distributed, because a very large percentage of the population lives in New York
City.

If you use Proportion Sum in cases where the data values are not evenly distributed, the results may
not be realistic. To ensure accurate results, work with smaller region objects (e.g., operate on county
regions instead of state regions).

The Proportion Avg aggregate function performs an average calculation which takes into account the
percentage of an object that is covered by another object. Continuing the previous example, suppose
the Towns table contains a column, median_age, that indicates the median age in each town.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 53 MB_Ref.pdf

Reference Guide Chapter 3: Add Map statement

The following statement calculates the median age within the risk zone:

Add Column Risk (age Float)
From Towns

Set To Proportion Avg(median age)

Where Intersects
For each row in the Towns table, Mapinfo Professional calculates the percentage of the risk region that
is covered by the town; that calculation produces a number between zero and one, inclusive. Maplinfo
Professional multiplies that number by the town’s median_age value, and adds the result to a running
total. Thus, if a town has a median_age value of 50, and if the town region covers 10% of the risk
region, Maplnfo Professional adds 5 (five) to the running total, because 10% of 50 is 5.

Proportion WtAvg is similar to Proportion Avg, but it also lets you specify a data column for
weighting the average calculation; the weighting is also proportionate.

Using Proportion... Functions With Non-Region Objects

When you use Proportion functions and the source table contains region objects, MapInfo
Professional calculates percentages based on the overlap of regions. However, when the source table
contains non-region objects, Maplnfo Professional treats each object as if it were completely inside or
completely outside of the destination region (depending on whether the non-region object’s centroid is
inside or outside of the destination region).

Dynamic Columns

If you include the optional Dynamic keyword, the new column becomes a dynamic computed column,
meaning that subsequent changes made to the source table are automatically applied to the
destination table.

If you create a dynamic column, and then close the source table used to calculate the dynamic column,
the column values are frozen (the column is no longer updated dynamically).

Similarly, if a geographic join is used in the creation of a dynamic column, and you close either of the
maps used for the geographic join, the column values are frozen.

See Also

Alter Table statement, Update statement

Add Map statement

Purpose

Adds another layer to a Map window.

Syntax
Add Map
[Window window id]
[Auto]
Layer table [, table ...]
[Animate]

window_id is the window identifier of a Map window

table is the name of a mappable, open table to add to a Map window

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 54 MB_Ref.pdf

Reference Guide Chapter 3: Add Map statement

Description

The Add Map statement adds one or more open tables to a Map window. Maplnfo Professional then
automatically redraws the Map window, unless you have suppressed redraws through a Set Event
Processing Off statement or Set Map...Redraw Off statement.

The window _id parameter is an Integer window identifier representing an open Map window; you can
obtain a window identifier by calling the FrontWindow() and WindowlID() functions. If the Add Map
statement does not specify a window _id value, the statement affects the topmost Map window.

If you include the optional Auto keyword, MapInfo Professional tries to automatically position the map
layer at an appropriate place in the set of layers. A raster table or a map of region objects would be
placed closer to the bottom of the map, while a map of point objects would be placed on top.

If you omit the Auto keyword, the specified fable becomes the topmost layer in the window; in other
words, when the map is redrawn, the new table layer will be drawn last. You can then use the Set Map
statement to alter the order of layers in the Map window.

Adding Layers of Different Projections

If the layer added is a raster table, and the map does not already contain any raster map layers, the
map adopts the coordinate system and projection of the raster image. If a Map window contains two or
more raster layers, the window dynamically changes its projection, depending on which image
occupies more of the window at the time.

If the layer added is not a raster table, Maplnfo Professional continues to display the Map window
using whatever coordinate system and projection were used before the Add Map statement, even if
the table specified is stored with a different native projection or coordinate system. When a table’s
native projection differs from the projection of the Map window, MaplInfo Professional converts the table
coordinates “on the fly” so that the entire Map window appears in the same projection.

Note: When Maplinfo Professional converts map layers in this fashion, map redraws take longer,
since Maplnfo Professional must perform mathematical transformations while drawing the
map.

Using Animation Layers to Speed Up Map Redraws

If the Add Map statement includes the Animate keyword, the added layer becomes a special layer
known as the animation layer. When an object in the animation layer is moved, the Map window
redraws very quickly, because MaplInfo Professional only redraws the one animation layer.

For an example of animation layers, see the sample program ANIMATOR.MB.

The animation layer is useful in real-time applications, where map features are updated frequently. For
example, you can develop a fleet-management application that represents each vehicle as a point
object. You can receive current vehicle coordinates by using GPS (Global Positioning Satellite)
technology, and then update the point objects to show the current vehicle locations on the map. In this
type of application, where map objects are constantly changing, the map redraws much more quickly if
the objects being updated are stored in the animation layer instead of a conventional layer.

The following example opens a table (Vehicles) and makes the table an animation layer:

Open Table ”vehicles” Interactive
Add Map Layer vehicles Animate

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 55 MB_Ref.pdf

Reference Guide Chapter 3: Alter Button statement

If the Add Map statement specifies two or more layers and it includes the Animate keyword, the first
layer named becomes the animation layer, and the remaining layers are added to the map as
conventional layers.

To terminate the animation layer processing, issue a Remove Map ... Layer Animate statement.

Animation layers have special restrictions. For example, users cannot use the Info tool to click on
objects in an animation layer. Also, each Map window can have only one animation layer. For more
information about animation layers, see the MapBasic User’s Guide

Example

Open Table ”"world”

Map From world

Open Table ”custl1l992” As customers
Open Table ”“leadl992” As leads

Add Map Auto Layer customers, leads

See Also
Map statement, Remove Map statement, Set Map statement

Alter Button statement

Purpose
Enables, disables, selects, or deselects a button from a ButtonPad (toolbar).

Syntax
Alter Button { handler | ID button id }
[{ Enable | Disable }]
[{ Check | Uncheck }]
handler is the handler that is already assigned to an existing button. The handler can be the name of a
MapBasic procedure, or a standard command code (e.g., M_TOOLS_RULER or
M_WINDOW_LEGEND) from MENU.DEF.

button_id is a unique Integer button identification number

Description
If the Alter Button statement specifies a handler (e.g., a procedure name), Mapinfo Professional
modifies all buttons that call that handler. If the statement specifies a button ID number, MaplInfo
Professional modifies only the button that has that ID.

The Disable keyword changes the button to a grayed-out state, so that the user cannot select the
button.

The Enable keyword enables a button that was previously disabled.

The Check and Uncheck keywords select and deselect ToggleButton type buttons, such as the
Show Statistics Window button. The Check keyword has the effect of “pushing in” a ToggleButton
control, and the Uncheck keyword has the effect of releasing the button. For example, the following
statement selects the Show Statistics Window button:

Alter Button M WINDOW STATISTICS Check

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 56 MB_Ref.pdf

Reference Guide Chapter 3: Alter ButtonPad statement

Note: Checking or unchecking a standard Maplnfo Professional button does not automatically invoke
that button’s action; thus, checking the Show/Hide Statistics button does not actually show the
Statistics window - it only affects the appearance of the button. To invoke an action as if the
user had checked or unchecked the button, issue the appropriate statement; in this example,
the appropriate statement is Open Window Statistics.

Similarly, you can use the Check keyword to change the appearance of a ToolButton. However,

checking a ToolButton does not actually select that tool, it only changes the appearance of the button.

To make a standard tool the active tool, issue a Run Menu Command statement, such as the

following:

Run Menu Command M_TOOLS RULER

To make a custom tool the active tool, use the syntax Run Menu Command ID /Dnum.

See Also
Alter ButtonPad statement, Create ButtonPad statement, Run Menu Command statement

Alter ButtonPad statement

Purpose
Displays / hides a ButtonPad (toolbar), or adds / removes buttons.

Syntax

Alter ButtonPad { current title | ID pad num }

Add button definition [button definition ...]]
Remove { handler num | ID button id } [, ... 1]
Title new title]

Width w]

Position (x , y) [Units unit name]]
ToolbarPosition (row , column)]

{ Show | Hide }]

{ Fixed | Float }]

Destroy 1]

current_title is the toolbar’s title string (e.g., “Main”)

pad_num is the ID number for a standard toolbar: 1 for Main, 2 for Drawing, 3 for Tools, 4 for Standard,
5 for ODBC

button_id is a custom button’s unique identification number

handler_num is an Integer handler code (e.g., M_TOOLS_RULER) from MENU.DEF
new_title is a string that becomes the toolbar’s new title; visible when toolbar is floating
w is the pad width, in terms of the number of buttons across

x , y specify the toolbar’s position when floating; specified in paper units (e.g., inches)
unit_name is a String paper unit name (e.g., “in” for inches, “cm” for centimeters)

row, column specify the toolbar’s position when docked (e.g., 0, 0 places the pad at the left edge of the
top row of toolbars, and 0, 1 represents the second toolbar on the top row)

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 57 MB_Ref.pdf

Reference Guide Chapter 3: Alter ButtonPad statement

Each button_definition clause can consist of the keyword Separator, or it can have the following
syntax:

{ PushButton | ToggleButton | ToolButton }
Calling { procedure | menu code | OLE methodname | DDE server , topic }
ID button id]
Icon n [File file spec 1]
Cursor n [File file spec] 1
DrawMode dm code]
HelpMsg msg]
ModifierKeys { On | Off }]
{ Enable | Disable }]

[
[
(
[
[
[
[
[{ Check | Uncheck }]

procedure is the handler procedure to call when a button is used.

menu_code is a standard MaplInfo Professional menu code from MENU.DEF (e.g., M_FILE_OPEN);
Maplinfo Professional runs the menu command when the user uses the button.

methodname is a string specifying an OLE method name. For details on the Calling OLE syntax, see
Create ButtonPad.

server , topic are strings specifying a DDE server and topic name. For details on the Calling DDE
syntax, see Create ButtonPad.

button_id specifies the unique button number. This number can be used: as a tag in help; as a
parameter to allow the handler to determine which button is in use (in situations where different buttons
call the same handler); or as a parameter to be used with the Alter Button statement.

Icon n specifies the icon to appear on the button; n can be one of the standard Maplnfo icon codes
listed in ICONS.DEF (e.g., MI_ICON_RULER). If the File sub-clause specifies the name of a file
containing icon resources, n is an Integer resource ID identifying a resource in the file.

Cursor n specifies the shape the mouse cursor should adopt whenever the user chooses a ToolButton
tool; cursor_code is a code (e.g., MI_ CURSOR_ARROW) from ICONS.DEF. This clause applies only
to ToolButtons. If the File sub-clause specifies the name of a file containing icon resources, n is an
Integer resource ID identifying a resource in the file.

dm_code specifies whether the user can click and drag, or only click with the tool; dm_code is a code
(e.g., DM_CUSTOM_LINE) from ICONS.DEF. Applies only to ToolButtons.

msg is a String that specifies the button’s status bar help and, optionally, ToolTip help. The first part of
msg is the status bar help message. If the msg string includes the letters \n then the text following the
\n is used as the button’s ToolTip help.

The ModifierKeys clause applies only to ToolButtons; it controls whether the shift and control keys
affect “rubber-band” drawing if the user drags the mouse while using a ToolButton. Default is Off
(modifier keys have no effect).

Description

Use the Alter ButtonPad statement to show, hide, modify, or destroy an existing ButtonPad. For an
introduction to ButtonPads, see the MapBasic User Guide.

To show or hide a ButtonPad, include the Show or Hide keyword; see example below. The user also
can show or hide ButtonPads by choosing the Options > Toolbars command.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 58 MB_Ref.pdf

Reference Guide Chapter 3: Alter ButtonPad statement

To set whether the pad is fixed to the top of the screen (“docked”) or floating like a window, include the
Fixed or the Float keyword. The user can also control whether the pad is docked or not by dragging the
pad to or from the top of the screen.

When a pad is floating, its position is controlled by the Position clause; when a pad is docked, its
position is controlled by the ToolbarPosition clause.

To destroy a ButtonPad, include the Destroy keyword. Once a ButtonPad is destroyed, it no longer
appears in the Options > Toolbars dialog.

The Alter ButtonPad statement can add buttons to existing ButtonPads, such as Main and Drawing.
There are three types of button controls you can add: PushButton controls (which the user can click
and release -for example, to display a dialog); ToggleButton controls (which the user can select by
clicking, then deselect by clicking again); and ToolButton controls (which the user can select, and then
use for clicking on a Map or Layout window).

If you include the optional Disable keyword when adding a button, the button is disabled (grayed out)
when it appears. Subsequent Alter Button statements can enable the button. However, if the button’s
handler is a standard MapInfo Professional command, MaplInfo Professional automatically enables or
disables the button depending on whether the command is currently enabled.

If you include the optional Check keyword when adding a ToggleButton or a ToolButton, the button is
automatically selected (“checked”) when it first appears.

If the user clicks while using a custom ToolButton tool, Mapinfo Professional automatically calls the
tool’s handler, unless the user cancels (e.g., by pressing the Esc key while dragging the mouse). A
handler procedure can call Commandinfo() to determine where the user clicked. If two or more tools
call the same handler procedure, the procedure can call Commandinfo() to determine the ID of the
button currently in use.

Custom Icons and Cursors

The Icon clause specifies the icon that appears on the button. If you omit the File clause, the
parameter n must refer to one of the icon codes listed in ICONS.DEF (e.g., MI_ICON_RULER).

Note: Maplinfo Professional has many built-in icons that are not part of the normal user interface. To
see a demonstration of these icons, run the sample program ICONDEMO.MBX. This sample
program displays icons, and also lets you copy any icon’s define code to the clipboard (so that
you can then paste the code into your program).

The File file_spec sub-clause refers to a DLL file that contains bitmap resources; the n parameter

refers to the ID of a bitmap resource. For more information on creating Windows icons, see the

MapBasic User Guide.

A ToolButton definition also can include a cursor clause, which controls the appearance of the mouse
cursor while the user is using the custom tool. Available cursor codes are listed in ICONS.DEF (e.g.,
MI_CURSOR_CROSSHAIR or MI_CURSOR_ARROW). The procedure for specifying a custom cursor
is similar to the procedure for specifying a custom icon.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 59 MB_Ref.pdf

Reference Guide Chapter 3: Alter ButtonPad statement

Custom Drawing Modes

A ToolButton definition can include a DrawMode clause, which controls whether the user can drag
with the tool (e.g., to draw a line) or only click (e.g., to draw a point). The following table lists the
available drawing modes. Codes in the left column are defined in ICONS.DEF.

dm_code parameter Description
DM_CUSTOM_POINT The user cannot drag while using the custom tool.
DM_CUSTOM_LINE As the user drags, a line connects the cursor with the location
where the user clicked.
DM_CUSTOM_RECT As the user drags, a rectangular marquee appears.
DM_CUSTOM_CIRCLE As the user drags, a circular marquee appears.
DM_CUSTOM _ELLIPSE As the user drags, an elliptical marquee appears; if you include the

ModifierKeys clause, the user can force the marquee to a circular
shape by holding down the Shift key.

DM_CUSTOM_POLYGON The user may draw a polygon. To retrieve the object drawn by the
user, use the function call: Command-
Info(CMD_INFO_CUSTOM_OBJ)

DM_CUSTOM_POLYLINE The user may draw a polyline. To retrieve the object drawn by the
user, use the function call: Command-
Info(CMD_INFO_CUSTOM_OBJ)

All of the draw modes except for DM_CUSTOM_POINT support the autoscroll feature, which allows
the user to scroll a Map or Layout by clicking and dragging to the edge of the window. To disable
autoscroll, see Set Window.

Note: MapBasic supports an additional draw mode that is not available to Maplinfo Professional
users. If a custom ToolButton has the following Calling clause...

Calling M _TOOLS_SEARCH POLYGON

...then the tool allows the user to draw a polygon. When the user double-clicks to close the polygon,
Maplinfo Professional selects all objects (from selectable map layers) within the polygon. The polygon
is not saved.

Examples
The following example shows the Main ButtonPad and hides the Drawing ButtonPad:

Alter ButtonPad “Main” Show
Alter ButtonPad “Drawing” Hide

The next example docks the Main ButtonPad and sets its docked position to 0,0 (upper left):
Alter ButtonPad ”“Main” Fixed ToolbarPosition(0,0)

The next example moves the Main ButtonPad so that it is floating instead of docked, and sets its
floating position to half an inch inside the upper-left corner of the screen.

Alter ButtonPad ”"Main” Float Position(0.5,0.5) Units ”in”

The sample program, ScaleBar, contains the following Alter ButtonPad statement, which adds a
custom ToolButton to the Tools ButtonPad. (Note that “ID 3” identifies the Tools ButtonPad.)

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 60 MB_Ref.pdf

Reference Guide Chapter 3: Alter Cartographic Frame statement

Alter ButtonPad ID 3

Add
Separator
ToolButton
Icon MI_ICON_CROSSHAIR
HelpMsg “Draw a distance scale on a map\nScale Bar”
Cursor MI_CURSOR_CROSSHAIR
DrawMode DM CUSTOM POINT
Calling custom tool routine
Show

Note: The Separator keyword, which inserts space between the last button on the Tools ButtonPad
and the new “+” button.

See Also

Alter Button statement, ButtonPadInfo() function, Create ButtonPad statement

Alter Cartographic Frame statement

Purpose
The Alter Cartographic Frame statement changes a frame(s) position, title, subtitle, border and style
of an existing cartographic legend created with the Create Cartographic Legend statement. (To
change the size, position or title of the legend window, use the Set Window statement.)

Syntax

Alter Cartographic Frame
[Window legend window id]
Id { frame id }

Position (x , y) [Units paper units]]
Title [frame title] [Font...]]
SubTitle [frame subtitle] [Font...]]

Border Pen... |
Style [Font...]
[ID { id } Text { style name }] [Line Pen... | Region Pen... Brush...
| Symbol Symbol...]]

L, ... 1

legend_window_id is an Integer window identifier which you can obtain by calling the FrontWindow()
and Windowld() functions.

frame_id is the ID of the frame on the legend. You cannot use a layer name. For example, three frames
on a legend would have the successive ID’s 1, 2, and 3.

frame_title is a string which defines a frame title.
frame_subtitle is a string which defines a frame subtitle.

id is the position within the style list for that frame. Currently there is no MapBasic function to get
information about the number of styles in a frame.

style_name is a string that displays next to each symbol for the frame specified in ID. The "#” character
will be replaced with the layer name. The % character will be replaced by the text “Line”, “Point,
“Region”, as appropriate for the symbol. For example, “% of #” will expand to “Region of States” for the
frame corresponding to the states.tab layer.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 61 MB_Ref.pdf

Reference Guide Chapter 3: Alter Control statement

Description

If a Window clause is not specified MaplInfo Professional will use the topmost legend window.

The Position clause controls the frame’s position on the legend window. The upper left corner of the
legend window has the position 0, 0. Position values use paper units settings, such as “in” (inches) or
‘cm” (centimeters). MapBasic has a current paper units setting, which defaults to inches; a MapBasic
program can change this setting through the Set Paper Units statement. An Alter Cartographic
Legend statement can override the current paper units by including the optional Units subclause
within the Position clause.

The Title and SubTitle clauses accept new text, new font or both.

The Style clause must contain a list of definitions for the styles displayed in frame. You can only update
the Style type for a custom style. You can update the Text of any style. There is no way to add or
remove styles from any type of frame.

See Also

Create Cartographic Legend statement, Set Cartographic Legend statement, Add Cartographic
Frame statement, Remove Cartographic Frame statement

Alter Control statement

Purpose

Changes the status of a control in the active custom dialog.

Syntax

Alter Control id num
[Title { title | From Variable array name }]
[Value value]
[{ Enable | Disable }]
[{ Show | Hide }]
[Active]

id_num is an integer identifying one of the controls in the active dialog
title is a String representing the new title to assign to the control

array_name is the name of an array variable; used to reset the contents of ListBox, MultiListBox, and
PopupMenu controls

value is the new value to associate with the specified control

Restrictions

You cannot issue this statement through the MapBasic window.

Description
The Alter Control statement modifies one or more attributes of a control in the active dialog;
accordingly, the Alter Control statement should only be issued while a dialog is active (i.e. from within
a handler procedure that is called by one of the dialog controls). If there are two or more nested dialogs
on the screen, the Alter Control statement only affects controls within the topmost dialog.

The id_num specifies which dialog control should be modified; this corresponds to the id_num
parameter specified within the ID clause of the Dialog statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 62 MB_Ref.pdf

Reference Guide Chapter 3: Alter Control statement

Each of the optional clauses (Title, Value, Enable/Disable, Hide/Show, Active) modifies a different
attribute of a dialog control. Note that all of these clauses can be included in a single statement; thus, a
single Alter Control statement could change the name, the value, and the enabled/disabled status of a
dialog control.

Some attributes do not apply to all types of controls. For example, a Button control may be enabled or
disabled, but has no value attribute.

The Title clause resets the text that appears on most controls (except for Picker controls and EditText
controls; to reset the contents of an EditText control, set its Value). If the control is a ListBox,
MultiListBox, or PopupMenu control, the Title clause can read the control’'s new contents from an array
of String variables, by specifying a From Variable clause.

The Active keyword applies only to EditText controls. An Alter Control ... Active statement puts the
keyboard focus on the specified EditText control.

Use the Hide and Show keywords to make controls disappear or reappear.

To de-select all items in a MultiListBox control, use a value setting of zero. To add a list item to the set
of selected MultiListBox items, issue an Alter Control statement with a positive integer value
corresponding to the number of the list item.

Note: In this case, do not issue the Alter Control statement from within the MultiListBox control’'s
handler.

You can use an Alter Control statement to modify the text that appears in a StaticText control. However,

Maplinfo Professional cannot increase the size of the StaticText control after it is created. Therefore, if

you plan to alter the length of a StaticText control, you may want to pad it with spaces when you first

define it. For example, your Dialog statement could include the following clause:

Control StaticText ID 1 Title ”"Message goes here” + Space$(30)

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 63 MB_Ref.pdf

Reference Guide Chapter 3: Alter MapInfoDialog statement

Example

The following example creates a dialog containing two check-boxes, an OK button, and a Cancel

button. Initially, the OK button is disabled (grayed out). The OK button is only enabled if the user
selects one or both of the check boxes.

Include "mapbasic.def”
Declare Sub Main
Declare Sub checker
Sub Main
Dim browse it, map it As Logical
Dialog
Title ”Display a file”
Control CheckBox
Title ”"Display in a Browse window”
Value 0
Calling checker
ID 1
Into browse it
Control CheckBox
Title ”"Display in a Map window”
Value 0
Calling checker
ID 2
Into map it
Control CancelButton
Control OKButton
ID 3
Disable
If CommandInfo (CMD_ INFO DLG OK) Then
’ then the user clicked OK...
End If
End Sub
Sub checker
' If either check box is checked,
'’ enable the OK button; otherwise, Disable it.
If ReadControlValue(l) Or ReadControlValue (2) Then
Alter Control 3 Enable
Else
Alter Control 3 Disable
End If
End Sub

See Also

Dialog statement, Dialog Preserve statement, ReadControlValue() function

Alter MapinfoDialog statement
Purpose

Disables, hides, or assigns new values to controls in MaplInfo Professional’s standard dialog boxes.
Restrictions

Caution: The Alter MapInfoDialog statement may not be supported in future versions of Maplinfo
Professional. As a result, MapBasic programs that use this statement may not work correctly when run
using future versions of MapInfo Professional. Use this statement with caution.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 64 MB_Ref.pdf

Reference Guide Chapter 3: Alter MapInfoDialog statement

Syntax 1 (assigning non-default settings)

Alter MapInfoDialog dialog ID
Control control ID
{ Disable | Hide | Value new value } [, { Disable... }]
[Control...]

Syntax 2 (restoring default settings)
Alter MapInfoDialog dialog ID Default
dialog_ID is an Integer ID number, indicating which Mapinfo Professional dialog to alter. control_ID is
an Integer ID number, 1 or larger, indicating which control to modify. new_value is a new value
assigned to the dialog control.

Description

Use this statement if you need to disable, hide, or assign new values to controls—buttons, check
boxes, etc.—in MaplInfo Professional’s standard dialog boxes.

Note: Use this statement to modify Maplnfo Professional’s standard dialog boxes.

To modify custom dialog boxes that you create using the Dialog statement, use the Alter Control
statement.

Determining ID Numbers
To determine a dialog’s ID number, run MapInfo Professional with this command line:

mapinfow.exe -helpdiag

After you run Maplinfo Professional with the -helpdiag argument, display a Maplinfo Professional dialog
and click the Help button. Ordinarily, the Help button launches Help, but because you used the -
helpdiag argument, MapInfo Professional displays the ID number of the current dialog box.

Note: There are different “common dialogs” (such as the Open and Save dialogs) for different
versions of Windows. If you want to modify a common dialog, and if your application will be
used under different versions of Windows, you may need to issue two Alter MapinfoDialog
statements - one for each version of the common dialog.

Each individual control has an ID number. For example, most OK buttons have an ID number of 1, and

most Cancel buttons have an ID number of 2. To determine the ID number for a specific control, you

must use a third-party developer’s utility, such as the Spy++ utility that Microsoft provides with its C

compiler. The MapBasic software does not provide a Spy++ utility.

Although the Alter MaplnfoDialog statement changes the initial appearance of a dialog box, the
changes do not have any effect unless the user clicks OK. For example, you can use Alter
MaplinfoDialog to store an address in the Find dialog box; however, MapInfo Professional will not
perform the Find operation unless you display the dialog box and the user clicks OK.

Types of Changes Allowed

Use the Disable keyword to disable (gray out) the control.
Use the Hide keyword to make the control disappear.
Use the Value clause to change the setting of the control.

When you alter common dialog boxes (e.g., the Open dialog), you may reset the item selected in a
combo box control, or you may assign new text to static text, button, and edit box controls.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 65 MB_Ref.pdf

Reference Guide Chapter 3: Alter MapInfoDialog statement

You can change the orientation control in the Page Setup dialog box. The Portrait and Landscape
buttons are 1056 and 1057, respectively._

When you alter other Mapinfo Professional dialog boxes, the following list summarizes the types of
changes you may make.

Button, static text, edit box, editable combo box: You may assign new text by using a text string in
the new_value parameter.

List box, combo box: You may set which item is selected by using a numeric new_value.
Check box: You may set the checkbox (specify a value of 1) or clear it (value of zero).
Radio button: Setting a button’s value to 1 selects that button from the radio group.

Symbol style button: You may assign a new symbol style (e.g., use the return value from the
MakeSymbol() function).

Pen style button: You may assign a new Pen value.
Brush style button: You may assign a new Brush value.
Font style button: You may assign a new Font value.

Combined Pen/Brush style button: Specify a Pen value to reset the Pen style, or specify a Brush
value to reset the Brush style. (For an example of this type of control, see Maplinfo Professional’s
Region Style dialog box, which appears when you double-click an editable region.)

Example
The following example alters MaplInfo Professional’s Find dialog box by storing a text string (“23 Main
St.”) in the first edit box and hiding the Respecify button.

If SystemInfo(SYS INFO MIVERSION) = 400 Then
Alter MapInfoDialog 2202
Control 5 Value ”23 Main St.”
Control 12 Hide
End If
Run Menu Command M_ANALYZE FIND
The ID number 2202 refers to the Find dialog. Control 5 is the edit box where the user types an
address. Control 12 is the Respecify button, which this example hides. All ID numbers are subject to
change in future versions of Maplinfo Professional; therefore, this example calls Systeminfo() to

determine the Maplinfo Professional version number.

See Also
Alter Control statement, Dialog statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 66 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu statement

Alter Menu statement

Purpose
Adds or removes items from an existing menu.
Syntax1

Alter Menu { menuname | ID menu id }
Add menudef [, menudef...]

Where each menudef defines a menu item, according to the syntax:

newmenuitem
[ID menu_ item id]
[HelpMsg help]
[{ calling handler | As menuname }]

menuname is the name of an existing menu (e.g., “File”).
menu_id is a standard Integer menu ID from 1 to 22; 1 represents the File menu.
newmenuitem is a String: the name of an item to add to the specified menu.

menu_item_id is a custom Integer menu item identifier, which can be used in subsequent Alter Menu
Item statements.

help is a String that will appear on the status bar while the menu item is highlighted.

handler is the name of a procedure, or a code for a standard menu command (e.g., M_FILE_NEW), or
a special syntax for handling the menu event by calling OLE or DDE. If you specify a command code
for a standard Maplnfo Professional Show/Hide command (such as M_WINDOW_STATISTICS), the
newmenuitem string must start with an exclamation point and include a caret (%), to preserve the item’s
Show/Hide behavior. For more details on the different types of handler syntax, see the Create Menu
statement.

Syntax2

Alter Menu { menuname | ID menu id }
Remove { handler | submenuname | ID menu item id }
[, { handler | submenuname | ID menu item id } ...]

menuname is the name of an existing menu
menu_id is an Integer menu ID from 1 to 22; 1 represents the File menu

handler is either the name of a sub procedure or the code for a standard MaplInfo Professional
command

submenuname is the name of a hierarchical submenu to remove from the specified menu
menu_item_id is a custom Integer menu item identifier

Description

The Alter Menu statement adds menu items to an existing menu or removes menu items from an
existing menu.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 67 MB_Ref.pdf

Reference Guide

Chapter 3: Alter Menu statement

The statement can identify the menu to be modified by specifying the name of the menu (e.g., “File”)
through the menuname parameter. Note that if the application is running on a non-English language
version of Maplinfo, and if the menu names have been translated, the Alter Menu statement must
specify the translated version of the menu name.

If the menu to be modified is one of the standard Mapinfo Professional menus, the Alter Menu
statement can identify which menu to alter by using the ID clause. The ID clause identifies the menu by
a number from 1 to 22 (one represents the File menu).

The following table lists the names and ID numbers of all standard MapInfo Professional menus.

Note: Menus 16 through 22 are shortcut menus, which appear if the user clicks with the right mouse
button. Shortcut menus are only available on Windows.
Menu Name Description
“File” File menu (can also be referred to as ID 1)
“Edit” Edit menu (ID 2)
“Objects” Objects menu (ID 14)
“Query” Query menu (ID 3)
“Table” Table menu (ID 15)
“Options” Options menu (ID 5)
“Window” Window menu (ID 6)
“Help” Help menu (ID 7)
“Browse” Browse menu (ID 8). Ordinarily, this only appears when a Browser window is the active win-
dow. See WinSpecific, below.
“Map” Map menu (ID 9). Ordinarily, this menu is only available when a Map window is active.
“Graph” Graph menu (ID 11). Available when a Graph window is active.
“Layout” Layout menu (ID 10). Available when a Layout window is active.
“Redistrict” Redistrict menu (ID 13). Available when a Districts Browser is active.
“MapBasic” MapBasic menu (ID 12). Available when the MapBasic window is active.
“Tools” Tools menu (ID 4). A menu used by MapBasic utilities such as ScaleBar.
“WinSpecific’ | The generic name for the window-specific menu, which changes dynamically depending on
which type of window is the active window.
“Raster” The hierarchical menu located on the Table menu.
“Mainte- The hierarchical menu located on the Table menu.
nance”
“Default- The default shortcut menu. This menu appears if the user right-clicks on a window that does
Shortcut” not have its own shortcut menu defined. (ID16)

© 2005 Mapinfo Corporation. All rights reserved. 68

MapBasic 8.0
MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu statement

Menu Name Description

“Mapper- The Map window shortcut menu. (ID 17)
Shortcut”

“Browser- The Browse window shortcut menu. (ID 18)
Shortcut”

“Layout- The Layout window shortcut menu. (ID 19)
Shortcut”

“Grapher- The Graph window shortcut menu. (ID 20)
Shortcut”

“CmdShort- The MapBasic window shortcut menu. (ID 21)
cut”

“Redistrict- The Redistricting shortcut menu; available when the Districts Browser is active. (ID 22)
Shortcut”

Examples
The following statement adds an item to the File menu.

Alter Menu "File” Add
"Special” Calling sub_procedure_name

In the following example, the menu to be modified is identified by its number.

Alter Menu ID 1 Add
"Special” Calling sub_procedure_name

In the following example, the menu item that is added contains an ID clause. The ID number (300) can
be used in subsequent Alter Menu Item statements.

Alter Menu ID 1 Add
"Special” ID 300 Calling sub procedure name

The following example removes the custom item from the File menu.

Alter Menu ID 1 Remove sub procedure name

The sample program, TextBox, uses a Create Menu statement to create a menu called “TextBox,” and
then issues the following Alter Menu statement to add the TextBox menu as a hierarchical menu
located on the Tools menu:

Alter Menu ”"Tools” Add

” (_ "
"TextBox” As “TextBox”

The following example adds a custom command to the Map window’s shortcut menu (the menu that

appears when an Maplnfo Professional user right-clicks on a Map window).

Alter Menu ID 17 Add
"Find Nearest Site” Calling sub_ procedure name

See Also
Alter Menu Bar statement, Alter Menu Iltem statement, Create Menu statement, Create Menu Bar
statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 69 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu Bar statement

Alter Menu Bar statement

Purpose
Adds or removes menus from the menu bar.

Syntax

Alter Menu Bar { Add | Remove }
{ menuname | ID menu_ id }
[, { menuname | ID menu id } ...]

menuname is the name of an available menu (e.g., “File”)

menu_id is a standard menu ID from one to fifteen; one represents the File menu. winspecific removes
all menu bar items that are window specific such as mappers, browsers, layouts, etc.

Description

The Alter Menu Bar statement adds or removes one or more menus from the current menu bar.

The menuname parameter is a string representing the name of a menu, such as “File” or “Edit”. The
menuname parameter may also refer to the name of a custom menu created by a Create Menu
statement (see example below)

Note: If the application is running on a non-English language version of Maplnfo, and if the menu
names have been translated, the Alter Menu Bar statement must specify the translated
version of the menu name. However, each of MapInfo Professional’s standard menus (File,
Edit, etc.) also has a menu ID, which you can use regardless of whether the menu names have
been translated. For example, specifying ID 2 always refers to the Edit menu, regardless of
whether the menu has been translated.

For a list of MapInfo Professional’s standard menu names and their corresponding ID numbers, see

the Alter Menu statement.

Adding Menus to the Menu Bar

An Alter Menu Bar Add statement adds a menu to the right end of the menu bar. If you need to insert
a menu at another position on the menu bar, use the Create Menu Bar statement to redefine the entire
menu bar.

If you add enough menus to the menu bar, the menu bar wraps down onto a second line of menu
names.

Removing Menus from the Menu Bar

An Alter Menu Bar Remove... statement removes a menu from the menu bar. However, the menu
remains part of the “pool” of available menus. Thus, the following pair of statements would first remove
the “Query” menu from the menu bar, and then add the “Query” menu back onto the menu bar (at the
right end of the bar).

Alter Menu Bar Remove ”Query”

Alter Menu Bar Add ”Query”
After an Alter Menu Bar Remove... statement removes a menu, Maplnfo Professional ignores any
hotkey sequences corresponding to items that were on the removed menu. For example, a Mapinfo
Professional user might ordinarily press Ctrl + O to bring up the File menu’s Open dialog; however, if
an Alter Menu Bar Remove statement removed the File menu, Maplnfo Professional would ignore
any Ctrl + O key-presses.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 70 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu ltem statement

Example
The following example creates a custom menu, called DataEntry, then uses an Alter Menu Bar Add
statement to add the DataEntry menu to Maplinfo Professional’s menu bar.
Declare Sub addsub

Declare Sub editsub
Declare Sub delsub

Create Menu ”"DataEntry” As
"Add” Calling addsub,
"Edit” Calling editsub,
"Delete” Calling delsub

'Remove the Window menu and Help menu
Alter Menu Bar Remove ID 6, ID 7

"Add the custom menu, then the Window & Help menus
Alter Menu Bar Add ”DataEntry”, ID 6, ID 7

Before adding the custom menu to the menu bar, this program removes the Help menu (menu ID 7)
and the Window menu (ID 6) from the menu bar. The program then adds the custom menu, the
Window menu, and the Help menu to the menu bar. This technique guarantees that the last two menus
will be Window and Help.

See Also
Alter Menu statement, Alter Menu Iltem statement, Create Menu statement, Create Menu Bar
statement, Menu Bar statement

Alter Menu Item statement

Purpose
Alters the status of a specific menu item.

Syntax

Alter Menu Item { handler | ID menu item id }
{ [Check | Uncheck] |
[Enable | Disable] |
[Text itemname] |
[calling handler | As menuname] }

handler is either the name of a Sub procedure or the code for a standard MapInfo Professional
command

menu_item_id is an Integer that identifies a menu item; this corresponds to the menu_item_id
parameter specified in the statement that created the menu item (Create Menu or Alter Menu)

itemname is the new text for the menu item (may contain embedded codes)
menuname is the name of an existing menu

Description
The Alter Menu Item statement alters one or more of the items that make up the available menus. For
example, you could use the Alter Menu Item statement to check or disable (gray out) a menu item.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 71 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu ltem statement

The statement must either specify a handler (e.g., the name of a procedure in the same program), or
an ID clause to indicate which menu item(s) to modify. Note that it is possible for multiple, separate
menu items to call the same handler procedure. If the Alter Menu Item statement includes the name of
a handler procedure, Maplnfo Professional alters all menu items that call that handler. If the statement
includes an ID clause, Maplnfo Professional alters only the menu item that was defined with that ID.

The Alter Menu Item statement can only refer to a menu item ID if the statement which defined the
menu item included an ID clause. A MapBasic application cannot refer to menu item IDs created by
other MapBasic applications.

The Check clause and the Uncheck clause affect whether the item appears with a checkmark on the
menu. Note that a menu item may only be checked if it was defined as “checkable” (i.e. if the Create
Menu statement included a “I” as the first character of the menu item name).

The Disable clause and the Enable clause control whether the item is disabled (grayed out) or
enabled. Note that Maplnfo Professional automatically enables and disables various menu items
based on the current circumstances. For example, the File > Close command is disabled whenever
there are no tables open. Therefore, MapBasic applications should not attempt to enable or disable
standard Maplnfo Professional menu items. Similarly, although you can treat specific tools as menu
items (by referencing defines from MENU.DEF, such as M_TOOLS_RULER), you should not attempt
to enable or disable tools through the Alter Menu Item statement.

The Text clause allows you to rename a menu item.

The Calling clause specifies a handler for the menu item. If the user chooses the menu item, Maplnfo
Professional calls the item’s handler.
Examples

The following example creates a custom “DataEntry” menu.

Declare Sub addsub
Declare Sub editsub
Declare Sub delsub

Create Menu ”"DataEntry” As
"Add” Calling addsub,
"Edit” Calling editsub,
"Delete” ID 100 Calling delsub,
"Delete All” ID 101 Calling delsub

'Remove the Help menu
Alter Menu Bar Remove ID 7

'Add both the new menu and the Help menu
Alter Menu Bar Add ”"DataEntry” , ID 7

The following Alter Menu Item statement renames the “Edit” item to read “Edit...”

Alter Menu Item editsub Text ”"Edit...”

The following statement disables the “Delete All” menu item.

Alter Menu Item ID 101 Disable

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 72 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement

The following statement disables both the “Delete” and the “Delete All” items, because it identifies the
handler procedure delsub, which is the handler for both menu items.
Alter Menu Item delsub Disable
See Also

Alter Menu statement, Alter Menu Bar statement, Create Menu statement

Alter Object statement

Purpose

Modifies the shape, position, or graphical style of an object.

Syntax

Alter Object obj
{ Info object info code , new info value |
Geography object _geo code , new geo value |
Node { Add [Position polygon num , node num] (x, y) |
Set Position polygon num , node num (x , y) |
Remove Position polygon num , node num

}
obj is an object variable
object_info_code is an integer code relating to the Objectinfo() function (e.g., OBJ_INFO_PEN)
new_info_value specifies the new object_info_code attribute to apply (e.g., a new Pen style)

object_geo_code is an integer code relating to the ObjectGeography() function (e.g.,
OBJ_GEO_POINTX)

new_geo_value specifies the new object_geo_code value to apply (e.g., the new x-coordinate)

polygon _num is a integer value (one or larger), identifying one polygon from a region object or one
section from a polyline object

node_num is a integer value (one or larger), identifying one node from a polyline or polygon
x , y are x- and y-coordinates of a node

Description

The Alter Object statement alters the shape, position, or graphical style of an object.

The effect of an Alter Object statement depends on whether the statement includes an Info clause, a
Node clause, or a Geography clause. If the statement includes an Info clause, MapBasic alters the
object’s graphical style (e.g., the object’s Pen and Brush styles). If the statement includes a Node
clause, MapBasic adds, removes, or repositions a node (this applies only to polyline or region objects).
If the statement includes a Geography clause, MapBasic alters a geographical attribute for objects
other than polylines and regions (e.g., the x- or y-coordinate of a point object).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 73 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement

Info clause

By issuing an Alter Object statement with an Info clause, you can reset an object’s style (e.g., the Pen
or Brush). The Info clause lets you modify the same style attributes that you can query through the
Objectinfo() function. For example, you can determine an object’s current Brush style by calling the
Objectinfo() function:

Dim b _fillstyle As Brush
b fillstyle = ObjectInfo(Selection.obj, OBJ_INFO_BRUSH)

Conversely, the following Alter Object statement allows you to reset the Brush style:

Alter Object obj variable name
Info OBJ_INFO BRUSH, b fillstyle

Note that you use the same code (e.g., OBJ_INFO_BRUSH) in both the Objectinfo() function and the
Alter Object statement.

The table below summarizes the values you can specify in the Info clause to perform various types of
style alterations. Note that the obj_info_code values are defined in the standard MapBasic definitions

file, MAPBASIC.DEF. Accordingly, your program should Include “MAPBASIC.DEF” if you intend to
use the Alter Object...Info statement.

obj_info_code value

Result of Alter Object

OBJ_INFO_PEN

Resets object’s Pen style; new_info_value must be a Pen expres-
sion

OBJ_INFO_BRUSH

Resets object’s Brush style; new_info_value must be a Brush
expression

OBJ_INFO_TEXTFONT

Resets a Text object’s Font style; new_info_value must be a Font
expression

OBJ_INFO_SYMBOL

Resets a Point object’s Symbol style; new_info_value must be a
Symbol expression

OBJ_INFO_SMOOTH

Resets a Polyline object’s smoothed/unsmoothed setting;
new_info_value must be a Logical expression

OBJ_INFO_FRAMEWIN

Changes which window is displayed in a Layout frame;
new_info_value must be an Integer window ID

OBJ_INFO_FRAMETITLE

Changes the title of a Frame object; new_info_value must be a
String

OBJ_INFO_TEXTSTRING

Changes the text string that comprises a Text object;
new_info_value must be a String expression

OBJ_INFO_TEXTSPACING

Changes a Text object’s line spacing; new_info_value must be a
Float value of 1, 1.5, or 2

OBJ_INFO_TEXTJUSTIFY

Changes a Text object’s alignment; new_info_value must be 0 for
left-justified, 1 for center-justified, or 2 for right-justified

OBJ_INFO_TEXTARROW

Changes a Text object’s label line setting; new_info_value must be
0 for no line, 1 for simple line, or 2 for a line with an arrow

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 74

MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement

Geography clause

By issuing an Alter Object statement with a Geography clause, you can alter an object’s geographical
coordinates. The Geography clause applies to all object types except for polylines and regions. To
alter the coordinates of a polyline or region object, use the Node clause (described below) instead of
the Geography clause.

The Geography clause lets you modify the same attributes that you can query through the
ObjectGeography() function. For example, you can obtain a line object’s end coordinates by calling
the ObjectGeography() function:

Dim o _cable As Object

Dim x, y As Float

X = ObjectGeography (o _cable, OBJ_GEO_LINEENDX)
y = ObjectGeography (o cable, OBJ GEO_LINEENDY)

Conversely, the following Alter Object statements let you alter the line object’s end coordinates:

Alter Object o_cable

Geography OBJ GEO LINEENDX, x
Alter Object o_cable

Geography OBJ GEO LINEENDY, y

Note: You use the same codes (e.g., OBJ_GEO_LINEENDX) in both the ObjectGeography()
function and the Alter Object statement.

The table below summarizes the values you can specify in the Geography clause in order to perform

various types of geographic alterations. Note that the obj geo_code values are defined in the standard

MapBasic definitions file, MAPBASIC.DEF. Your program should Include “MAPBASIC.DEF” if you

intend to use the Alter Object...Geography statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 75 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement

attribute setting Result of Alter Object
OBJ_GEO_MINX alters object’s minimum bounding rectangle
OBJ_GEO_MINY alters object’'s MBR
OBJ_GEO_MAXX alters object’s MBR; does not apply to Point objects
OBJ_GEO_MAXY alters object’'s MBR; does not apply to Point objects

OBJ_GEO_ARCBEGANGLE | alters beginning angle of an Arc object

OBJ_GEO_ARCENDANGLE | alters ending angle of an Arc object

OBJ_GEO_LINEBEGX alters a Line object’s starting node
OBJ_GEO_LINEBEGY alters a Line object’s starting node
OBJ_GEO_LINEENDX alters a Line object’s ending node
OBJ_GEO_LINEENDY alters a Line object’s ending node
OBJ_GEO_POINTX alters a Point object’s x coordinate
OBJ_GEO_POINTY alters a Point object’s y coordinate

OBJ_GEO_ROUNDRADIUS | alters the diameter of the circle that defines the rounded corner
of a Rounded Rectangle object

OBJ_GEO_TEXTLINEX alters x coordinate of the end of a Text object’s label line
OBJ_GEO_TEXTLINEY alters y coordinate of the end of a Text object’s label line
OBJ_GEO_TEXTANGLE alters rotation angle of a Text object

Node clause

By issuing an Alter Object statement with a Node clause, you can add, remove, or reposition nodes in
a polyline or region object.

If the Node clause includes an Add sub-clause, the Alter Object statement adds a node to the object.
If the Node clause includes a Remove sub-clause, the statement removes a node. If the Node clause
includes a Set Position sub-clause, the statement repositions a node.

The Alter Object statement’s Node clause is often used in conjunction with the Create PLine and
Create Region statements. Create statements allow you to create new polyline and region objects.
However, Create statements are somewhat restrictive, because they force you to state at compile time
the number of nodes that will comprise the object. In some situations, you may not know how many
nodes should go into an object until run-time.

If your program will not know until run-time how many nodes should comprise an object, you can issue
a Create Pline or Create Region statement which creates an “empty” object (an object with zero
nodes). Your program can then issue an appropriate number of Alter Object ... Node Add statements,
to add nodes as needed.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 76 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement

Within the Node clause, the Position sub-clause includes two parameters - polygon_num and
node_num - that let you specify exactly which node you want to reposition or remove. The Position
sub-clause is optional when you are adding a node. The polygon_num and node_num parameters
should always be 1 (one) or greater.

The polygon_num parameter specifies which polygon in a multiple-polygon region (or which section in
a multiple-section polyline) should be modified.

Region Centroids
The Centroid of a Region can be set by using the Alter Object command with the syntax noted below:

Alter Object Obj Geography OBJ GEO CENTROID, PointObj

Note that PointObj is a point object. This differs from other values input by Alter Object Geography,
which are all scalars. A point is needed in this instance because we need two values which define a
point. The Point that is input is checked to make sure it is a valid Centroid (i.e., it is inside the region). If
the Obj is not a region, or if PointObj is not a point object, or if the point is not a valid centroid, then an
error is returned.

An easy way to center an X and Y value for a centroid is as follows:

Alter Object Obj Geography OBJ GEO CENTROID, CreatePoint (X, Y)

The user can also query the centroid by using the ObjectGeography function as follows:
PointObj = ObjectGeography (Obj, OBJ_GEO CENTROID)

There are other ways to get the Centroid, including the Centroid(), CentroidX(), and CentroidY()
functions.

OBJ_GEO_CENTROID is defined in mapbasic.def.

Multipoint Objects and Collections

The Alter Object statement has been extended to support the following new object types.
Multipoint: sets a Multipoint symbol as shown in the following:

Alter Object obj variable mpoint
Info OBJ INFO_SYMBOL, NewSymbol
Collection: By issuing an Alter Object statement with an Info clause, you can reset collection parts
(Region, Polyline or Multipoint) inside the collection object. The Info clause allows you to modify the
same attributes that you can query through the Objectinfo() function. For example, you can determine
a collection object's region part by calling the Objectinfo() function:

Dim ObjRegion As Object
ObjRegion = ObjectInfo(Selection.obj, OBJ_ INFO REGION)

Also, the following Alter Object statement allows you to reset the region part of a collection object:

Alter Object obj variable name
Info OBJ_INFO REGION, ObjRegion

Note: You use the same code (e.g., OBJ_INFO_REGION) in both the Objectinfo() function and the
Alter Object statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 77 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement

Support has also been added to the Alter Object statement that allows you to insert and delete nodes
to/from Multipoint objects.
Alter Object obj Node statement.

To insert nodes within a Multipoint object:

Dim mpoint obj as object

Create Multipoint Into Variable mpoint obj 0
Alter Object mpoint obj Node Add (0,1)

Alter Object mpoint obj Node Add (2,1)

Note: Nodes for Multipoint are always added at the end.
To delete nodes from a Multipoint object:
Alter Object mpoint obj Node Remove Position polygon num, node num

mpoint_obj - Multipoint object variable

polygon_num - is ignored for Multipoint, it is advisable to set it to 1
node_num - number of a node to be removed

To set nodes inside a Multipoint object:

Alter Object mpoint_obj Node Set Position polygon _num, node_num (x,y)
mpoint_obj - Multipoint object variable

polygon_num - is ignored for Multipoint, it is advisable to set it to 1
node_num - number of a node to be changed

(x,y) - new coordinates of node node_num

Example

Dim myobj As Object, i As Integer
Create Region Into Variable myobj 0
For 1 = 1 to 10
Alter Object myobj
Node Add (Rnd (1) * 100, Rnd(l) * 100)
Next

Note: After using the Alter Object statement to modify an object, use an Insert statement or an
Update statement to store the object in a table.

See Also

Create Pline statement, Create Region statement, Insert statement, ObjectGeography()
function, Objectinfo() function, Update statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 78 MB_Ref.pdf

Reference Guide Chapter 3: Alter Table statement

Alter Table statement

Purpose
Alters the structure of a table. Cannot be used on linked tables.

Syntax

Alter Table table (
[Add columnname columntype [, ...]]
[Modify columnname columntype [, ...]]
[Drop columnname [, ...]]
[Rename oldcolumnname newcolumnname [, ...] 1]
[0rder columnname, columnname [,...] 1]

)

[Interactive]

table is the name of an open table

columnname is the name of a column; column names can be up to 31 characters long, and can contain
letters, numbers, and the underscore character, and column names cannot begin with numbers

columntype indicates the datatype of a table column (including the field width if necessary)
oldcolumnname represents the previous name of a column to be renamed
newcolumnname represents the intended new name of a column to be renamed

Description

The Alter Table statement lets you modify the structure of an open table, allowing you to add columns,
change column widths or datatypes, drop (delete) columns, rename columns, and change column
ordering.

Note: If you have edited a table, you must save or discard your edits before you can use the Alter
Table statement.

Each columntype should be one of the following: Integer, Smallint, Float, Decimal(size, decplaces),

Char(size), Date, or Logical.

By including an Add clause in an Alter Table statement, you can add new columns to your table. By
including a Modify clause, you can change the datatypes of existing columns. A Drop clause lets you
delete columns, while a Rename clause lets you change the names of existing columns. The Order
clause lets you specify the order of the columns. Altogether, an Alter Table statement can have up to
five clauses. Note that each of these five clauses can operate on a list of columns; thus, with a single
Alter Table statement, you can make all of the structural changes that you need to make (see example
below).

The Order clause affects the order of the columns, not the order of rows in the table. Column order

dictates the relative positions of the columns when you browse the table; the first column appears at
the left edge of a Browser window, and the last column appears at the right edge. Similarly, a table’s
first column appears at the top of an Info tool window.

If a MapBasic application issues an Alter Table statement affecting a table which has memo fields, the
memo fields will be lost. No warning will be displayed.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 79 MB_Ref.pdf

Reference Guide Chapter 3: ApplicationDirectory$() function

An Alter Table statement may cause map layers to be removed from a Map window, possibly causing
the loss of themes or cosmetic objects. If you include the Interactive keyword, Maplinfo Professional
prompts the user to save themes and/or cosmetic objects (if themes or cosmetic objects are about to
be lost).

Example

In the following example, we have a hypothetical table, “gcpop.tab” which contains the following
columns: pop_88, metsize, fipscode, and utmcode. The Alter Table statement below makes several
changes to the gcpop table. First, a Rename clause changes the name of the pop_88 column to
population. Then the Drop clause deletes the metsize, fipscode, and utmcode columns. An Add
clause creates two new columns: a small (2-byte) integer column called schoolcode, and a floating
point column called federalaid. Finally, an Order clause specifies the order for the new set of columns:
the schoolcode column comes first, followed by the population column, etc.
Open Table "gcpop”
Alter Table gcpop
(Rename pop 88 population
Drop metsize, fipscode, utmcode

Add schoolcode Smallint, federalaid Float
Order schoolcode, population, federalaid)

See Also

Add Column statement, Create Index statement, Create Map statement, Create Table statement

ApplicationDirectory$() function

Purpose
Returns a string containing the path from which the current MapBasic application is executing.

Syntax
ApplicationDirectory$()
Return Value

String expression, representing a directory path.

Description

By calling the ApplicationDirectory$() function from within a compiled MapBasic application, you can
determine the directory or folder from which the application is running. If no application is running (e.g.,
if you call the function by typing into the MapBasic window), ApplicationDirectory$() returns a null
string.

To determine the directory or folder where the Mapinfo Professional software is installed, call the
ProgramDirectory$() function.

Example

Dim sAppPath As String
sAppPath = ApplicationDirectorys$()
' At this point, sAppPath might look like this:

7

* "C:\MAPBASIC\CODE\”
See Also
ProgramDirectory$() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 80 MB_Ref.pdf

Reference Guide Chapter 3: Area() function

Area() function

Purpose
Returns the geographical area of an Object.

Syntax
Area (obj expr , unit name)

obj_expr is an object expression

unit_name is a string representing the name of an area unit (e.g., “sq km”)

Return Value
Float

Description

The Area() function returns the area of the geographical object specified by obj_expr.

The function returns the area measurement in the units specified by the unit_name parameter; for
example, to obtain an area in acres, specify “acre” as the unit_name parameter. See the Set Area
Units statement for the list of available unit names.

Only regions, ellipses, rectangles, and rounded rectangles have any area. By definition, the Area() of
a point, arc, text, line, or polyline object is zero. The Area() function returns approximate results when
used on rounded rectangles. MapBasic calculates the area of a rounded rectangle as if the object were
a conventional rectangle.

For the most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a
spherical operation is performed unless the coordinate system is NonEarth, in which case, a Cartesian
operation is performed.

Examples

The following example shows how the Area() function can calculate the area of a single geographic
object. Note that the expression tablename.obj (as in states.obj) represents the geographical object of
the current row in the specified table.

Dim f sqg miles As Float

Open Table ”"states”

Fetch First From states
f sq miles = Area(states.obj, “sq mi”)

You can also use the Area() function within the SQL Select statement, as shown in the following
example.

Select state, Area(obj, "sqg km”)
From states Into results

See Also

ObjectLen() function, Perimeter() function, CartesianArea() function, SphericalArea()
function, Set Area Units statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 81 MB_Ref.pdf

Reference Guide Chapter 3: AreaOverlap() function

AreaOverlap() function

Purpose
Returns the area resulting from the overlap of two closed objects.

Syntax
AreaOverlap (objectl, object2)

object1 and object?2 are closed objects.

Return Value

A Float value representing the area (in MapBasic’s current area units) of the overlap of the two objects.

See Also
Overlap() function, ProportionOverlap() function, Set Area Units statement

Asc() function

Purpose

Returns the character code for the first character in a string expression.

Syntax

Asc (string expr)
string_expr is a String expression

Return Value

Integer

Description

The Asc() function returns the character code representing the first character in the string specified by
string_expr.

If string_expr is a null string, the Asc() function returns a value of zero.

Note: All MapInfo Professional environments have common character codes within the range of 32
(space) to 126 (tilde).

On a system that supports double-byte character sets (e.g., Windows Japanese): if the first character

of string_expr is a single-byte character, Asc() returns a number in the range 0 - 255; if the first
character of string_expr is a double-byte character, Asc() returns a value in the range 256 - 65,535.

On systems that do not support double-byte character sets, Asc() returns a number in the range O -
255.

Example

Dim code As SmallInt

code = Asc(”Afghanistan”)

" code will now be equal to 65,

' gince 65 is the code for the letter A

See Also
Chr$() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 82 MB_Ref.pdf

Reference Guide Chapter 3: Asin() function

Asin() function

Purpose
Returns the arc-sine value of a number.

Syntax

Asin (num expr)
num_expr is a numeric expression from one to minus one, inclusive

Return Value
Float

Description
The Asin() function returns the arc-sine of the numeric num_expr value. In other words, Asin()
returns the angle whose sine is equal to num_expr.

The result returned from Asin() represents an angle, expressed in radians. This angle will be
somewhere between -Pi/2 and Pi/2 radians (given that Pi is approximately equal to 3.141593, and
given that Pi/2 radians represents 90 degrees).

To convert a degree value to radians, multiply that value by DEG_2_ RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. (Note that your program will need to Include
“MAPBASIC.DEF” in order to reference DEG_2_RAD or RAD_2_DEG).

Since sine values range between one and minus one, the expression num_expr should represent a
value no larger than one and no smaller than minus one.

Example

Include ”"MAPBASIC.DEF”
Dim x, y As Float

x = 0.5

y = Asin(x) * RAD 2 DEG

" v will now be equal to 30,
' since the sine of 30 degrees is 0.5

See Also
Acos() function, Atn() function, Cos() function, Sin() function, Tan() function

Ask() function

Purpose
Displays a dialog, asking the user a yes or no (OK or Cancel) question.

Syntax
Ask (prompt , ok text , cancel text)

prompt is a String to appear as a prompt in the dialog box
OK_textis a String (e.g., “OK”) that appears on the confirmation button

cancel_textis a String (e.g., “Cancel”) that appears on the cancel button

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 83 MB_Ref.pdf

Reference Guide Chapter 3: Atn() function

Return Value

Logical

Description
The Ask() function displays a dialog box, asking the user a yes-or-no question. The prompt parameter
specifies a message, such as “File already exists; do you want to continue?” The prompt string can be
up to 300 characters long.

The dialog contains two buttons; the user can click one button to give a Yes answer to the prompt, or
click the other button to give a No answer. The ok_text parameter specifies the name of the Yes-
answer button (e.g., “OK” or “Continue”), and the cancel_text parameter specifies the name of the No-
answer button (e.g., “Cancel” or “Stop”).

If the user selects the ok_text button, the Ask() function returns TRUE. If the user clicks the
cancel_text button or otherwise cancels the dialog (e.g., by pressing the Escape key), the Ask()
function returns FALSE. Since the buttons are limited in size, the ok _text and cancel_text strings
should be brief. If you need to display phrases that are too long to fit in small dialog buttons, you can
use the Dialog statement instead of calling the Ask() function. The ok_text button is the default button
(the button which will be selected if the user presses ENTER instead of clicking with the mouse).

Example

Dim more As Logical

more = Ask(”Do you want to continue?”, ”OK”, "Stop”)
See Also

Dialog statement, Note statement, Print statement

Atn() function

Purpose

Returns the arc-tangent value of a number.

Syntax

Atn(num expr)
num_expr is a numeric expression

Return Value
Float

Description
The Atn() function returns the arc-tangent of the numeric num_expr value. In other words, Atn()
returns the angle whose tangent is equal to num_expr. The num_expr expression can have any
numeric value.

The result returned from Atn() represents an angle, expressed in radians, in the range -Pi/2 radians to
Pi/2 radians.

To convert a degree value to radians, multiply that value by DEG_2_ RAD. To convert a radian value
into degrees, multiply that value by RAD_2 DEG. (Note that your program will need to Include
“MAPBASIC.DEF” in order to reference DEG_2_RAD or RAD_2_DEG).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 84 MB_Ref.pdf

Reference Guide Chapter 3: AutoLabel statement

Example

Include "MAPBASIC.DEF”
Dim val As Float

val = Atn(1) * RAD 2 DEG
'val is now 45, since the
"Arc tangent of 1 is 45 degrees

See Also
Acos() function, Asin() function, Cos() function, Sin() function, Tan() function

AutoLabel statement

Purpose

Draws labels in a Map window, and stores the labels in the Cosmetic layer.

Syntax

AutoLabel
[Wwindow window id]
[{ selection | Layer layer id }]
[overlap [{ on | Off }]]
[Duplicates [{ On | Off }]]

window_id is an Integer window identifier for a Map window
layer_id is a table name (e.g., World) or a Smallint layer number (e.g., 1 to draw labels for the top layer)

Description

The AutoLabel statement draws labels (text objects) in a Map window. Only objects that are currently
visible in the Map window are labeled. The Window clause controls which Map window is labeled. If
you omit the Window clause, Maplnfo Professional draws labels in the front-most Map window. If you
specify Selection, only selected objects are labeled. If you omit both the Selection clause and the
Layer clause, all layers are labeled.

The Overlap clause controls whether Mapinfo Professional draws labels that overlap other labels. This
setting defaults to Off (MaplInfo Professional will not draw overlapping labels). To force MaplInfo
Professional to draw a label for every map object, regardless of whether the labels overlap, specify
Overlap On. The Duplicates clause controls whether Maplnfo Professional draws a new label for an
object that has already been labeled. This setting defaults to Off (duplicates not allowed). The
AutoLabel statement uses whatever font and position settings are in effect. Set label options by
choosing Map > Layer Control. To control font and position settings through MapBasic, issue a Set
Map statement.

Example

Open Table ”"world” Interactive
Open Table ”"worldcap” Interactive
Map From world, worldcap
AutoLabel

Window FrontWindow()

Layer world

See Also

Set Map statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 85 MB_Ref.pdf

Reference Guide Chapter 3: Beep statement

Beep statement

Purpose
Makes a beeping sound.

Syntax
Beep
Description
The Beep statement sends a sound to the speaker.

Browse statement

Purpose
Opens a new Browser window.

Syntax

Browse expression list From table

Position (x , y) [Units paperunits] 1
Width window width [Units unitname]]
Height window_height [Units unitname]]
Row n]

Column n]

Min | Max]

expression_list is either an asterisk or a comma-separated list of column expressions
table is the name of an open table

unitname is a String representing the name of a paper unit (e.g., “mm”)

x , y specifies the position of the upper left corner of the Browser, in paper units
window_width and window_height specify the size of the Browser, in paper units

n is a positive integer value

Description

The Browse statement opens a Browse window to display a table.

If the expression_list is simply an asterisk (*), the new Browser includes all fields in the table.
Alternately, the expression_list clause can consist of a comma-separated list of expressions, each of
which defines one column that is to appear in the Browser. Expressions in the list can contain column
names, operators, functions, and variables. Each column’s name is derived from the expression that
defines the column. Thus, if a column is defined by the expression population / area(obj, “acre”) ,
that expression will appear on the top row of the Browser, as the column “name.” To assign an alias to
an expression, follow the expression with a String; see example below.

An optional Position clause lets you specify where on the screen to display the Browser. The x
coordinate specifies the distance (in paper units) from the left edge of the MaplInfo Professional
application window to the left edge of the Browser. The y coordinate specifies the distance from the top
of the MaplInfo Professional window down to the top of the Browser. The optional Width and Height
clauses specify the size of the Browser window, in paper units. If no Width and Height clauses are

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 86 MB_Ref.pdf

Reference Guide Chapter 3: Brush clause

provided, Maplinfo Professional assigns the Browser window a default size which depends on the table
in question: the Browser height will generally be one quarter of the screen height, unless the table does
not have enough rows to fill a Browser window that large; and the Browser width will depend on the
widths of the fields in the table.

If the Browse statement includes the optional Max keyword, the resultant Browser window is
maximized, taking up all of the screen space available to MapInfo. Conversely, if the Browse
statement includes the Min keyword, the Browser window is minimized immediately; note that certain
hardware platforms do not support minimized windows.

The Row clause dictates which row of the table should appear at the top of the Browser. If the Browse
statement does not include a Row clause, the first row of the table will be the top row in the Browser.

Similarly, the Column clause dictates which of the table’s columns should appear at the left edge of the
Browser. If the Browse statement does not include a Column clause, the table’s first column will
appear at the left edge of the Browser window.

Example
The following example opens the World table and displays all columns from the table in a Browser
window.

Open Table ”"world”
Browse * From world

The next example specifies exactly which column expressions from the World table should be
displayed in the Browser.
Open Table ”"world”
Browse
country,
population,
population/area (obj, ”"sg km”) ”Density”
From world
The resultant Browser has three columns. The first two columns represent data as it is stored in the
World table, while the third column is derived. Through the third expression, MapBasic divides the
population of each country record with the geographic area of the region associated with that record.
The derived column expression has an alias (“Density”) which appears on the top row of the Browse
window.

See Also
Set Browse statement, Set Window statement

Brush clause

Purpose
Specifies a fill style for graphic objects.

Syntax

Brush brush expr

brush_expr is a Brush expression, such as MakeBrush(pattern, fgcolor, bgcolor)

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 87 MB_Ref.pdf

Reference Guide Chapter 3: Brush clause

Description
The Brush clause specifies a brush style - in other words, a set of color and pattern settings that
dictate the appearance of a filled object, such as a circle or rectangle. Brush is a clause, not a
complete MapBasic statement. Various object-related statements, such as Create Ellipse, allow you to
specify a brush value. The keyword Brush may be followed by an expression which evaluates to a
Brush value. This expression can be a Brush variable:

Brush br var

or a call to a function which returns a Brush value:

Brush MakeBrush (64, CYAN, BLUE)

With some MapBasic statements (e.g., Set Map), the keyword Brush can be followed immediately by
the three parameters that define a Brush style (pattern, foreground color, and background color) within
parentheses:

Brush (64, CYAN, BLUE)

Some MapBasic statements take a Brush expression as a parameter (e.g., the name of a Brush
variable), rather than a full Brush clause (the keyword Brush followed by the name of a Brush
variable). The Alter Object statement is one example.

The following table summarizes the three components (pattern, foreground color, background color)
that define a Brush:

Component Description

pattern Integer value from 1 to 8 or from 12 to 71; see table below.

foreground color | Integer RGB color value; see the RGB() function. The definitions file,
MAPBASIC.DEF, includes Define statements for BLACK, WHITE, RED,
GREEN, BLUE, CYAN, MAGENTA, and YELLOW.

background color | Integer RGB color value.

To specify a transparent background, use pattern 3 or larger, and omit the background color from the
Brush clause. For example, specify Brush(5, BLUE) to see thin blue stripes with no background fill
color. Omitting the background parameter is like clearing the Background check box in MapInfo
Professional’'s Region Style dialog.

To specify a transparent background when calling MakeBrush(), specify -1 as the background color.

The available patterns appear below. Pattern 2 produces a solid fill; pattern 1 produces no fill.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 88 MB_Ref.pdf

Reference Guide

Chapter 3: Buffer() function

o2 [
53 =
a4 [
85 |/
86 [N

FRERR)
BS000

B8 perrsd

==}

12

See Also

—
w3

ll

20

21

22

23

24

25

26

21

28

29

38

3

32

L LUNNEEEES M

64 {2580

35

B

36) [A

iy

3

Feedend
o s
69 freaed

39

EHH
FoF

40

?EI
il

1

CurrentBrush() function, MakeBrush() function, Pen clause, Font clause, Symbol clause

Buffer() function

Purpose

Returns a region object that represents a buffer region (the area within a specified buffer distance of an

existing object).

Syntax

Buffer (inputobject, resolution, width, unit name)

inputobject is an object expression

resolution is a Smallint value representing the number of nodes per circle at each corner

width is a Float value representing the radius of the buffer; if width is negative, and if inputobject is a
closed object, the object returned represents an object smaller than the original object. If the width is
negative, and the object is a linear object (line, polyline, arc) or a point, then the absolute value of width
is used to produce a positive buffer

unit_name is the name of the distance unit (e.g., “mi” for miles, “km” for kilometers) used by width

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0
89 MB_Ref.pdf

Reference Guide Chapter 3: ButtonPadinfo() function

Return Value

Returns a region object

Description

The Buffer() function returns a region representing a buffer.

The Buffer() function operates on one single object at a time. To create a buffer around a set of
objects, use the Create Object As Buffer statement. The object will be created using the current
MapBasic coordinate system. The method used to calculate the buffer depends on the coordinate
system. If it is NonEarth, then a Cartesian method will be used. Otherwise, a spherical method will be
used.

Example
The following program creates a line object, then creates a buffer region surrounding the line. The
buffer region extends ten miles in all directions from the line.

Dim o _line, o region As Object
o_line = CreateLine(-73.5, 42.5, -73.6, 42.8)
o_region = Buffer(o_line, 20, 10, "mi”)

See Also

Create Object statement

ButtonPadinfo() function

Purpose

Returns information about a ButtonPad.

Syntax
ButtonPadInfo (pad name , attribute)
pad_name is a string representing the name of an existing ButtonPad; use “Main”, “Drawing”, “Tools” or
“Standard” to query the standard pads, or specify the name of a custom pad.

attribute is a code indicating which information to return; see table below.

Return Value
Depends on the attribute parameter specified

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 90 MB_Ref.pdf

Reference Guide Chapter 3: Call statement

Description
The attribute parameter specifies what to return. Codes are defined in MAPBASIC.DEF

attribute code ButtonPadinfo() returns:

BTNPAD_INFO_FLOATING | Logical: TRUE means the pad is floating, FALSE means the pad

is docked.
BTNPAD_INFO_NBTNS Smallint: The number of buttons on the pad.
BTNPAD_INFO_WIDTH Smallint: The width of the pad, expressed as a number of buttons
(not including separators).
BTNPAD_INFO_WINID Integer: The window ID of the specified pad.
BTNPAD_INFO_X A number indicating the x-position of the upper-left corner of the

pad. If pad is docked, this is an Integer, zero or greater; if pad is
floating, this is a Float value, in paper units such as inches.

BTNPAD_INFO_Y A number indicating the y-position of the upper-left corner of the
pad.

Example

Include "mapbasic.def”

If ButtonPadInfo(”Main”, BTNPAD_INFO_FLOATING) Then
'...then the Main pad is floating; now let’s dock it.
Alter ButtonPad ”"Main” ToolbarPosition(0,0) Fixed

End If

See Also
Alter ButtonPad statement

Call statement

Purpose
Calls a sub procedure or an external routine (DLL, XCMD).

Restrictions
You cannot issue a Call statement through the MapBasic window.

Syntax
Call subproc [([parameter 1 [, ... 1)]

subproc is the name of a sub procedure
parameter is a parameter expression to pass to the sub procedure

Description
The Call statement calls a procedure. The procedure is usually a conventional MapBasic sub
procedure (defined through the Sub statement). Alternately, a program running under Maplnfo
Professional for Windows can call a Windows Dynamic Link Library (DLL) routine through the Call
statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 91 MB_Ref.pdf

Reference Guide Chapter 3: Call statement

When a Call statement calls a conventional MapBasic procedure, MapBasic begins executing the
statements in the specified sub procedure, and continues until encountering an End Sub or an Exit
Sub statement. At that time, MapBasic returns from the sub procedure, then executes the statements
following the Call statement. The Call statement can only access sub procedures which are part of the
same application.

A MapBasic program must issue a Declare statement to define the name and parameter list of any
procedure which is to be called. This requirement is independent of whether the procedure is a
conventional MapBasic Sub procedure, a DLL procedure or an XCMD.

Parameter Passing

Sub procedures may be defined with no parameters. If a particular sub procedure has no parameters,
then calls to that sub procedure may appear in either of the following forms:

Call subroutine

or

Call subroutine()

By default, each sub procedure parameter is defined “by reference.” When a sub procedure has a by-
reference parameter, the caller must specify the name of a variable to pass as the parameter.

If the procedure then alters the contents of the by-reference parameter, the caller’s variable is
automatically updated to reflect the change. This allows the caller to examine the results returned by
the sub procedure.

Alternately, any or all sub procedure parameters may be passed “by value” if the keyword ByVal
appears before the parameter name in the Sub and Declare Sub declarations. When a parameter is
passed by value, the sub procedure receives a copy of the value of the parameter expression; thus, the
caller can pass any expression, rather than having to pass the name of a variable.

A sub procedure can take an entire array as a single parameter. When a sub procedure expects an
array as a parameter, the caller should specify the name of an array variable, without parentheses.

Calling External Routines

When a Call statement calls a DLL routine, MapBasic executes the routine until the routine returns.
The specified DLL routine is actually located in a separate file (e.g., “KERNEL.EXE”). The specified
DLL file must be present at run-time for MapBasic to complete a DLL Call.

Similarly, if a Call statement calls an XCMD, the file containing the XCMD must be present at run-time.
When calling XCMDs, you cannot specify array variables or variables of custom data Types as
parameters.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 92 MB_Ref.pdf

Reference Guide Chapter 3: CartesianArea() function

Example

In the following example, the sub procedure Cube cubes a number (raises the number to the power of
three), and returns the result. The sub procedure takes two parameters; the first parameter contains
the number to be cubed, and the second parameter passes the results back to the caller.
Declare Sub Cube (ByVal original As Float, cubed As Float)

Dim x, result As Float

Call Cube(2, result)

' result now contains the value: 8 (2 x 2 x 2)

x =1

Call Cube(x + 2, result)

' result now contains the value: 27 (3 x 3 x 3)
End Program

Sub Cube (ByVal original As Float, cubed As Float)
' Cube the ”"original” parameter, and store
' the result in the ”cubed” parameter.

A

cubed = original 3
End Sub

See Also

Declare Sub statement, Exit Sub statement, Global statement, Sub...End Sub statement

CartesianArea() function

Purpose
Returns the area as calculated in a flat, projected coordinate system using a Cartesian algorithm.
Syntax
CartesianArea(expr, unit name)
expr is an object expression
unit_name is a string representing the name of an area unit (e.g., "sq km”)

Return Value
Float

Description

The CartesianArea() function returns the Cartesian area of the geographical object specified by
obj_expr.

The function returns the area measurement in the units specified by the unit_name parameter; for
example, to obtain an area in acres, specify "acre” as the unit_name parameter. See the Set Area
Units statement for the list of available unit names.

The CartesianArea()function will always return the area using a cartesian algorithm. A value of -1 will
be returned for data that is in a Latitude/Longitude since the data is not projected.

Only regions, ellipses, rectangles, and rounded rectangles have any area. By definition, the
CartesianArea() of a point, arc, text, line, or polyline object is zero. The CartesianArea() function
returns approximate results when used on rounded rectangles. MapBasic calculates the area of a
rounded rectangle as if the object were a conventional rectangle.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 93 MB_Ref.pdf

Reference Guide Chapter 3: CartesianBuffer() function

Examples

The following example shows how the CartesianArea() function can calculate the area of a single
geographic object. Note that the expression tablename.obj (as in states.obj) represents the
geographical object of the current row in the specified table.

Dim f sqg miles As Float

Open Table ”“counties”

Fetch First From counties

f sq miles = CartesianArea(counties.obj, ”“sq mi”)

You can also use the CartesianArea() function within the SQL Select statement, as shown in the
following example.

Select lakes, CartesianArea(obj, ”sg km”)
From lakes Into results

See Also
Area() function, SphericalArea() function

CartesianBuffer() function

Purpose
Returns a region object that represents a buffer region (the area within a specified buffer distance of an
existing object).
Syntax
CartesianBuffer (inputobject, resolution, width, unit name)

inputobject is an object expression
resolution is a Smallint value representing the number of nodes per circle at each corner

width is a Float value representing the radius of the buffer; if width is negative, and if inputobject is a
closed object, the object returned represents an object smaller than the original object

unit_name is the name of the distance unit (e.g., "mi” for miles, "’km” for kilometers) used by width
Return Value

Region Object
Description

The CartesianBuffer() function returns a region representing a buffer and operates on one single

object at a time.

To create a buffer around a set of objects, use the Create Object As Buffer statement. If the width is
negative, and the object is a linear object (line, polyline, arc) or a point, then the absolute value of width
is used to produce a positive buffer.

The CartesianBuffer() function will calculate the buffer by assuming the object is in a flat projection
and using the width to calculate a cartesian distance calculated buffer around the object.

If the inputobject is in a Latitude/Longitude Projection, then Spherical calculations will be used
regardless of the Buffer function used.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 94 MB_Ref.pdf

Reference Guide Chapter 3: CartesianConnectObjects() function

Example
The following program creates a line object, then creates a buffer region that extends 10 miles
surrounding the line.

Dim o_line, o_region As Object
o _line = CreateLine(-73.5, 42.5, -73.6, 42.8)
o _region = CartesianBuffer(o line, 20, 10, "mi”)

See Also
Buffer() function, Creating Map Objects

CartesianConnectObjects() function

Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax

CartesianConnectObjects (objectl, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.
Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object? and object2.

Description

One point of the resulting Polyline object is on object? and the other point is on object2. Note that the
distance between the two input objects can be calculated using the objectLen () function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

CartesianClosestPoints () returns a Polyline object connecting object? and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a cartesian calculation method. If the calculation
cannot be done using a cartesian distance method (e.g., if the MapBasic Coordinate System is Lat
Long), then this function will produce an error.

CartesianDistance() function

Purpose

Returns the distance between two locations.

Syntax

CartesianDistance (x1, yl, x2, y2, unit name)

x1 and x2 are x-coordinates

y1 and y2 are y-coordinates

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 95 MB_Ref.pdf

Reference Guide Chapter 3: CartesianObjectDistance() function

unit_name is a string representing the name of a distance unit (e.g., ’km”)

Return Value
Float

Description

The CartesianDistance() function calculates the Cartesian distance between two locations. It returns
the distance measurement in the units specified by the unit_name parameter; for example, to obtain a
distance in miles, specify "mi” as the unit_name parameter. See the Set Distance Units statement for
the list of available unit names.

The CartesianDistance() function will always return a value using a cartesian algorithm. A value of -1
will be returned for data that is in a Latitude/longitude coordinate system, since Latitude/Longitude data
is not projected and not cartesian.

The x- and y-coordinate parameters must use MapBasic’s current coordinate system. By default,
MaplInfo Professional expects coordinates to use a longitude, latitude coordinate system. You can
reset MapBasic’s coordinate system through the Set CoordSys statement.

Example

Dim dist, start x, start y, end x, end y As Float

Open Table ”“cities”

Fetch First From cities

start x = CentroidX(cities.obj)

start y = CentroidY(cities.obj)

Fetch Next From cities

end x = CentroidX(cities.obj)

end y = CentroidY(cities.obj)

dist = CartesianDistance(start_x,start_y,end x,end_y,”"mi”)

See Also

Math Functions, CartesianDistance() function, Distance() function

CartesianObjectDistance() function

Purpose

Returns the distance between two objects.

Syntax

CartesianObjectDistance (objectl, object2, unit name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns
Float

Description

CartesianObjectDistance () returns the minimum distance between object1 and object2 using a
cartesian calculation method with the return value in unit_name. If the calculation cannot be done
using a cartesian distance method (e.g., if the MapBasic Coordinate System is Lat Long), then this
function will produce an error.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 96 MB_Ref.pdf

Reference Guide Chapter 3: CartesianObjectLen() function

CartesianObjectLen() function

Purpose
Returns the geographic length of a line or polyline object.

Syntax

CartesianObjectLen(expr , unit name)

obj_expr is an object expression

unit_name is a string representing the name of a distance unit (e.g., ’km”)

Return Value
Float

Description

The CartesianObjectLen() function returns the length of an object expression. Note that only line and
polyline objects have length values greater than zero; to measure the circumference of a rectangle,
ellipse, or region, use the Perimeter() function.

The CartesianObjectLen() function will always return a value using a cartesian algorithm. A value of -
1 will be returned for data that is in a Latitude/Longitude coordinate system, since Latitude/Longitude
data is not projected and not cartesian.

The CartesianObjectLen() function returns a length measurement in the units specified by the
unit_name parameter; for example, to obtain a length in miles, specify "mi” as the unit_name
parameter. See the Set Distance Units statement for the list of valid unit names.

Example

Dim geogr length As Float

Open Table ”"streets”

Fetch First From streets

geogr_length = CartesianObjectLen(streets.obj, ”"mi”)
' geogr_length now represents the length of the

' street segment, in miles

See Also

SphericalObjectLen() function, CartesianObjectLen() function, ObjectLen() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 97 MB_Ref.pdf

Reference Guide Chapter 3: CartesianOffset() Function

CartesianOffset() Function

Purpose
Returns a copy of the input object offset by the specified distance and angle using a Cartesian
DistanceType.

Syntax

CartesianOffset (object, angle, distance, units)

object is the object being offset,

angle is the angle to offset the object,

distance is the distance to offset the object, and

units is a string representing the unit in which to measure distance.

Return Value
Object

Description
This function produces a new object that is a copy of the input object offset by distance along angle (in
degrees with horizontal in the positive X-axis being 0 and positive being counterclockwise). The unit
string, similar to that used for ObjectLen or Perimeter, is the unit for the distance value. The
DistanceType used is Cartesian. If the Coordinate System of the input object is Lat/Long, an error will
occur, since Cartesian DistanceTypes are not valid for Lat/Long. This is signified by returning a NULL
object. The coordinate system used is the coordinate system of the input object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (e.g., the
center of the bounding box), and then that value is converted from the input units into the Coordinate
System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the fixed point.
The actual converted distance measurement could vary at different locations on the object. The
distance from the input object and the new offset object is only guaranteed to be exact at the single
fixed point used.

Example
CartesianOffset (Rect, 45, 100, “mi”)

See Also
CartesianOffsetXY() Function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 98 MB_Ref.pdf

Reference Guide Chapter 3: CartesianOffsetXY() Function

CartesianOffsetXY() Function

Purpose

Returns a copy of the input object offset by the specified X and Y offset values using a cartesian
DistanceType.

Syntax

CartesianOffsetXY (object, xoffset, yoffset, units)

object is the object being offset,
xoffset and yoffset are the distance along the x and y axes to offset the object, and
units is a string representing the unit in which to measure distance.

Return Value
Object

Description
This function produces a new object that is a copy of the input object offset by xoffset along the X-axis
and yoffset along the Y-axis. The unit string, similar to that used for ObjectLen or Perimeter, is the unit
for the distance values. The DistanceType used is Cartesian. If the Coordinate System of the input
object is Lat/Long, an error will occur, since Cartesian DistanceTypes are not valid for Lat/Long. This is
signified by returning a NULL object. The coordinate system used is the coordinate system of the input
object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (e.g., the
center of the bounding box), and then that value is converted from the input units into the Coordinate
System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the fixed point.
The actual converted distance measurement could vary at different locations on the object. The
distance from the input object and the new offset object is only guaranteed to be exact at the single
fixed point used.

Example
CartesianOffset (Rect, 45, 100, “mi”)

See Also

CartesianOffset() Function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 99 MB_Ref.pdf

Reference Guide Chapter 3: CartesianPerimeter() function

CartesianPerimeter() function

Purpose
Returns the perimeter of a graphical object.

Syntax

CartesianPerimeter (obj expr , unit name)

obj_expr is an object expression
unit_name is a string representing the name of a distance unit (e.g., ’km”)

Return Value
Float

Description

The CartesianPerimeter() function calculates the perimeter of the obj_expr object. The Perimeter()
function is defined for the following object types: ellipses, rectangles, rounded rectangles, and
polygons. Other types of objects have perimeter measurements of zero.

The CartesianPerimeter() function will always return a value using a cartesian algorithm. A value of -
1 will be returned for data that is in a Latitude/longitude coordinate system, since Latitude/Longitude
data is not projected and not cartesian.

Returns a length measurement in the units specified by the unit_name parameter; for example, to
obtain a length in miles, specify "mi” as the unit_name parameter. See the Set Distance Units
statement for the list of valid unit names. Returns approximate results when used on rounded
rectangles. MapBasic calculates the perimeter of a rounded rectangle as if the object were a
conventional rectangle.

Example

The following example shows how you can use the CartesianPerimeter() function to determine the
perimeter of a particular geographic object.

Dim perim As Float

Open Table ”"world”

Fetch First From world

perim = CartesianPerimeter (world.obj, “km”)

' The variable perim now contains

' the perimeter of the polygon that’s attached to
' the first record in the World table.

You can also use the CartesianPerimeter() function within the SQL Select statement. The following
Select statement extracts information from the States table, and stores the results in a temporary table

called Results. Because the Select statement includes the CartesianPerimeter() function, the
Results table will include a column showing each state’s perimeter.

Open Table ”states”

Select state, CartesianPerimeter (obj, "mi”)
From states
Into results

See Also
CartesianPerimeter() function, SphericalPerimeter() function, Perimeter() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 100 MB_Ref.pdf

Reference Guide Chapter 3: Centroid() function

Centroid() function

Purpose
Returns the centroid (center point) of an object.

Syntax
Centroid (obj expr)

obj_expr is an object expression

Return Value

Point object

Description
The Centroid() function returns a point object, which is located at the centroid of the specified
obj_expr object. A region’s centroid does not represent its center of mass. Instead, it represents the
location used for automatic labeling, geocoding, and placement of thematic pie and bar charts. If you
edit a map in reshape mode, you can reposition region centroids by dragging them.

If the obj_expr parameter represents a point object, the Centroid() function returns the position of the
point. If the obj_expr parameter represents a line object, the Centroid() function returns the point
midway between the ends of the line.

If the obj_expr parameter represents a polyline object, the Centroid() function returns a point located
at the mid point of the middle segment of the polyline.

If the obj_expr parameter represents any other type of object, the Centroid() function returns a point
located at the true centroid of the original object. For rectangle, arc, text, and ellipse objects, the
centroid position is halfway between the upper and lower extents of the object, and halfway between
the left and right extents. For region objects, however, the centroid position is always “on” the object in
question, and therefore may not be located halfway between the object’s extents.

Example

Dim pos As Object

Open Table ”"world”

Fetch First From world
pos = Centroid(world.obj)

See Also
Alter Object statement, CentroidX() function, CentroidY() function

CentroidX() function

Purpose

Returns the x-coordinate of the centroid of an object.

Syntax
CentroidX(obj expr)

obj_expr is an object expression

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 101 MB_Ref.pdf

Reference Guide Chapter 3: CentroidY() function

Return Value
Float

Description

The CentroidX() function returns the X coordinate (e.g., Longitude) component of the centroid of the
specified object. See the Centroid() function for a discussion of what the concept of a centroid
position means with respect to different types of graphical objects (lines vs. regions, etc.).

The coordinate information is returned in MapBasic’s current coordinate system; by default, MapBasic
uses a longitude, latitude coordinate system. The Set CoordSys statement allows you to change the
coordinate system used.

Examples
The following example shows how the CentroidX() function can calculate the longitude of a single
geographic object.

Dim x As Float

Open Table ”"world”
Fetch First From world
x = CentroidX (world.obj)

You can also use the CentroidX() function within the SQL Select statement. The following Select
statement extracts information from the World table, and stores the results in a temporary table called
Results. Because the Select statement includes the CentroidX() and CentroidY() functions, the
Results table will include columns which display the longitude and latitude of the centroid of each
country.

Open Table ”"world”
Select country, CentroidX(obj), CentroidY (obj)
From world Into results

See Also

Centroid() function, CentroidY() function, Set CoordSys statement

CentroidY() function

Purpose
Returns the y-coordinate of the centroid of an object.
Syntax
CentroidY(obj _expr)
obj_expr is an object expression

Return Value
Float

Description
The CentroidY() function returns the Y-coordinate (e.g., latitude) component of the centroid of the

specified object. See the Centroid() function for a discussion of what the concept of a centroid
position means, with respect to different types of graphical objects (lines vs. regions, etc.).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 102 MB_Ref.pdf

Reference Guide Chapter 3: CharSet clause

The coordinate information is returned in MapBasic’s current coordinate system; by default, MapBasic
uses a longitude, latitude coordinate system. The Set CoordSys statement allows you to change the
coordinate system used.

Example

Dim y As Float

Open Table ”"world”
Fetch First From world
y = CentroidY¥ (world.obj)

See Also
Centroid() function, CentroidX() function, Set CoordSys statement

CharSet clause

Purpose
Specifies which character set MapBasic uses for interpreting character codes.

Syntax

CharSet char set

char_set is a String that identifies the name of a character set; see table below

Description
The CharSet clause specifies which character set MapBasic should use when reading or writing files
or tables. Note that CharSet is a clause, not a complete statement. Various file-related statements,
such as Open File, can incorporate optional CharSet clauses.

What Is A Character Set?
Every character on a computer keyboard corresponds to a numeric code. For example, the letter “A”
corresponds to the character code 65. A character set is a set of characters that appear on a computer,
and a set of numeric codes that correspond to those characters.

Different character sets are used in different countries. For example, in the version of Windows for
North America and Western Europe, character code 176 corresponds to a degrees symbol; however, if
Windows is configured to use a different character set, character code 176 may represent a different
character.

Call SystemInfo(SYS_INFO_CHARSET) to determine the character set in use at run-time.

How Do Character Sets Affect MapBasic Programs?

If your files use only standard ASCII characters in the range of 32 (space) to 126 (tilde), you do not
need to worry about character set conflicts, and you do not need to use the CharSet clause.

Even if your files include “special’ characters (i.e. characters outside the range 32 to 126), if you do all
of your work within one environment (e.g., Windows) using only one character set, you do not need to
use the CharSet clause.

If your program needs to read an existing file that contains “special” characters, and if the file was
created in a character set that does not match the character set in use when you run your program,
your program should use the CharSet clause. The CharSet clause should indicate what character set
was in use when the file was created.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 103 MB_Ref.pdf

Reference Guide Chapter 3: CharSet clause

The CharSet clause takes one parameter: a String expression which identifies the name of the
character set to use. The following table lists all character sets available.

Character Set Comments
“Neutral” no character conversions performed
“1SO8859_1” ISO 8859-1 (UNIX)

“1ISO8859 2" ISO 8859-2 (UNIX)
“1S0O8859_3” ISO 8859-3 (UNIX)
“1ISO8859 4~ ISO 8859-4 (UNIX)
“1SO8859 5" ISO 8859-5 (UNIX)
“1ISO8859 6" ISO 8859-6 (UNIX)
“1S0O8859_7” ISO 8859-7 (UNIX)
“1ISO8859_8” ISO 8859-8 (UNIX)
“1SO8859 9” ISO 8859-9 (UNIX)
“PackedEUCJapanese” UNIX, standard Japanese implementation
“WindowsLatin2” Windows Eastern Europe
“WindowsArabic”

“WindowsCyrillic”

“WindowsGreek”

“WindowsHebrew”

“WindowsTurkish”

“WindowsTradChinese”

Windows Traditional Chinese

“WindowsSimpChinese”

Windows Simplified Chinese

“WindowsJapanese”

“WindowsKorean”

“CodePage437” DOS Code Page 437 = IBM Extended ASCII
“CodePage850” DOS Code Page 850 = Multilingual
“CodePage852” DOS Code Page 852 = Eastern Europe
“CodePage855” DOS Code Page 855 = Cyrillic
“CodePage857”

“CodePage860” DOS Code Page 860 = Portuguese
“CodePage861” DOS Code Page 861 = Icelandic
“CodePage863” DOS Code Page 863 = French Canadian
“CodePage864” DOS Code Page 864 = Arabic

© 2005 Maplinfo Corporation

MapBasic 8.0

. All rights reserved. 104

MB_Ref.pdf

Reference Guide Chapter 3: ChooseProjection$() function

Character Set Comments
“CodePage865” DOS Code Page 865 = Nordic
“CodePage869” DOS Code Page 869 = Modern Greek
“LICS” Lotus worksheet release 1,2 character set
“LMBCS” Lotus worksheet release 3,4 character set

Note: You never need to specify a CharSet clause in an Open Table statement. Each table’s .TAB file
contains information about the character set used by the table. When opening a table, MapInfo
Professional reads the character set information directly from the .TAB file, then automatically
performs any necessary character translations.

To force Maplnfo Professional to save a table in a specific character set, include a CharSet clause in
the Commit Table...As statement.

MapBasic 2.x CharSet Syntax

MapBasic version 2.x supported three character sets: “XASCII”, “ANSI” and “MAC”. Older programs
that refer to those three character-set names will still compile and run in later versions of MapBasic;
however, continued use of the 2.x-era character set names is discouraged.

CharSet “XASCII” specifies the same character set as CharSet “CodePage437”.
CharSet “MAC” specifies the same character set as CharSet “MacRoman”.

When a program runs on Windows, CharSet “ANSI” specifies whatever character set Windows is
currently using. Example: When reading a file created by a DOS application, you should specify the
“CodePage437” character set, as shown in the following example.

Open File ”"parcel.txt”
For INPUT As #1
CharSet ”CodePage437”

See Also

Commit Table statement, Create Table statement, Export statement, Open File statement,
Register Table statement

ChooseProjection$() function

Purpose

Displays the Choose Projection dialog and returns the coordinate system selected by the user.

Syntax

ChooseProjection$ (initial coordsys, get bounds)

initial _coordsys is a string value in the form of a Coordsys clause. It is used to set which coordinate
system is selected when the dialog is first displayed. If initial_coordsys is empty or an invalid coordsys
clause, then the default longitude-latitude coordinate system is used as the initial selection.

get _bounds is a logical value that determines whether the users is prompted for boundary values when
a non-earth projection is selected. If get_bounds is true then the boundary dialog is displayed. If false,
then the dialog is not displayed and the default boundary is used.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 105 MB_Ref.pdf

Reference Guide Chapter 3: Chr$() function

Description
This function displays the Choose Projection dialog and returns the selected coordinate system as a
string. The returned string is in the same format as the CoordSys clause. Use this function if you wish
to allow the user to set a projection within your application.
Example
Dim strNewCoordSys As String
strNewCoordSys = ChooseProjection$(“”, True)

strNewCoordSys = ”Set ” + strNewCoordSys
Run Command strNewCoordSys

See Also
Mapperinfo() function

Chr$() function

Purpose
Returns a one-character string corresponding to a specified character code.

Syntax
Chr$ (num expr)
num_expr is an Integer value from 0 to 255 (or, if a double-byte character set is in use, from 0 to
65,535), inclusive
Return Value

String

Description

The Chr$() function returns a string, one character long, based on the character code specified in the
num_expr parameter. On most systems, num_expr should be a positive Integer value between 0 and
255. On systems that support double-byte character sets (e.g., Windows Japanese), num_expr can
have a value from 0 to 65,535.

Note: All Mapinfo Professional environments have common character codes within the range of 32
(space) to 126 (tilde).

If the num_expr parameter is fractional, MapBasic rounds to the nearest integer.

Character 12 is the form-feed character. Thus, you can use the statement Print Chr$(12) to clear the
Message window. Character 10 is the line-feed character; see example below.

Character 34 is the double-quotation mark (*). If a string expression includes the function call Chr$(34),
MapBasic embeds a double-quote character in the string.

Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 106 MB_Ref.pdf

Reference Guide Chapter 3: Close All statement

Example

Dim s_letter As String * 1

s_letter = Chr$(65)

Note s_letter ' This displays the letter ”A”

Note ”This message spans” + Chr$(10) + ”"two lines.”

See Also
Asc() function

Close All statement

Purpose

Closes all open tables.

Syntax
Close All [Interactive]
Description

If a MapBasic application issues a Close All statement, and the affected table has edits pending (the
table has been modified but the modifications have not yet been saved to disk), the edits will be
discarded before the table is closed. No warning will be displayed. If you do not want to discard
pending edits, use the optional Interactive clause to prompt the user to save or discard changes.

See Also
Close Table statement

Close File statement

Purpose

Closes an open file.

Syntax
Close File [#] filenum

filenum is an integer number identifying which file to close

Description
The Close File statement closes a file which was opened through the Open File statement.
Note: The Open File and Close File statements operate on files in general, not on Maplnfo

Professional tables. MapBasic provides a separate set of statements (e.g., Open Table) for
manipulating Maplnfo tables.

Example

Open File ”cxdata.txt” For INPUT As #1

7

' read from the file... then, when done:

7

Close File #1
See Also
Open File statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 107 MB_Ref.pdf

Reference Guide Chapter 3: Close Table statement

Close Table statement

Purpose
Closes an open table.

Syntax

Close Table table [Interactive]

table is the name of a table that is open

Description

The Close Table statement closes an open table. To close all tables, use Close All.

If a table is displayed in one or more Grapher or Browser windows, those windows disappear
automatically when the table is closed. If the Close Table statement closes the only table in a Map
window, the window closes. If you use the Close Table statement to close a linked table that has edits
pending, MaplInfo Professional keeps the edits pending until a later session.

Saving Edits
If you omit the optional Interactive keyword, MapBasic closes the table regardless of whether the table
has unsaved edits; any unsaved edits are discarded. If you include the Interactive keyword, and if the
table has unsaved edits, MapBasic displays a dialog allowing the user to save or discard the edits or
cancel the close operation.

To guarantee that pending edits are discarded, omit the Interactive keyword or issue a RollBack
statement before calling Close Table. To guarantee that pending edits are saved, issue a Commit
statement before the Close Table statement. To determine whether a table has unsaved edits, call the
Tablelnfo(table, TAB_INFO_EDITED) function.

Saving Themes and Cosmetic Objects
When you close the last table in a Map window, the window closes. However, the user may want to
save thematic layers or cosmetic objects before closing the window. To prompt the user to save
themes or cosmetic objects, include the Interactive keyword.

If you omit the Interactive keyword, the Close Table statement will not prompt the user to save
themes or cosmetic objects. If you include the Interactive keyword, dialog boxes will prompt the user
to save themes and/or cosmetic objects, if such prompts are appropriate. (The user is not prompted if
the window has no themes or cosmetic objects.)

Examples

Open Table ”"world”

' ... when done using the WORLD table,
" close it by saying:

Close Table world

To deselect the selected rows, close the Selection table.

Close Table Selection
See Also

Close All statement, Commit Table statement, Open Table statement, Rollback statement,
Tablelnfo() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 108 MB_Ref.pdf

Reference Guide Chapter 3: Close Window statement

Close Window statement

Purpose
Closes or hides a window.

Syntax
Close Window window spec [Interactive]
window_spec is a window name (e.g., Ruler), a window code (e.g., WIN_RULER), or an Integer
window identifier
Description
The Close Window statement closes or hides a MaplInfo Professional window.
To close a document window (Map, Browse, Graph, or Layout), specify an Integer window identifier as

the window_spec parameter. You can obtain Integer window identifiers through the FrontWindow()
and WindowID() functions.

To close a special MaplInfo Professional window, specify one of the window names from the table
below as the window_spec parameter. You can identify a special window by name (e.g., Ruler) or by
code (e.g., WIN_RULER).

The following table lists the available window_spec values:

Window name Window description

MapBasic The MapBasic window. You can also refer to this window by its define code:
WIN_MAPBASIC

Help The Help window. Its define code: WIN_HELP

Statistics The Statistics window. Its define code: WIN_STATISTICS

Legend The Theme Legend window. Its define code: WIN_LEGEND

Info The Info tool window. Its define code: WIN_INFO

Ruler The Ruler tool window. Its define code: WIN_RULER

Message The Message window (which appears when you issue a Print statement). Its
define code: WIN_MESSAGE

Saving Themes and Cosmetic Objects

The user may want to save thematic layers or cosmetic objects before closing the window. To prompt
the user to save themes or cosmetic objects, include the Interactive keyword.

If you omit the Interactive keyword, the Close Window statement will not prompt the user to save
themes or cosmetic objects. If you include the Interactive keyword, dialog boxes will prompt the user
to save themes and/or cosmetic objects, if such prompts are appropriate. (The user will not be
prompted if the window has no themes or cosmetic objects.)

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 109 MB_Ref.pdf

Reference Guide Chapter 3: Columninfo() function

Example

Close Window Legend
See Also
Open Window statement, Print statement, Set Window statement

Columninfo() function

Purpose
Returns information about a column in an open table.

Syntax

ColumnInfo ({ tablename | tablenum } ,
{ columnname | “coLn”} ,
attribute)

tablename is a string representing the name of an open table
tablenum is an integer representing the number of an open table
columnname is the name of a column in that table

n is the number of a column in the table

attribute is a code indicating which aspect of the column to read

Return Value

Depends on the attribute parameter specified

Description
The Columninfo() function returns information about one column in an open table.
The function’s first parameter specifies either the name or the number of an open table. The second

parameter specifies which column to query. The attribute parameter dictates which of the column’s
attributes the function should return. The attribute parameter can be any value from this table.

attribute setting Columninfo() returns:
COL_INFO_NAME String identifying the column name
COL_INFO_NUM Smallint indicating the number of the column
COL_INFO_TYPE Smallint indicating the column type (see table below)
COL_INFO_WIDTH Smallint indicating the column width; applies to Character or Deci-

mal columns only

COL_INFO_DECPLACES | Smallint indicating the number of decimal places in a Decimal col-
umn

COL_INFO_INDEXED Logical value indicating if column is indexed

COL_INFO_EDITABLE Logical value indicating if column is editable

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 110 MB_Ref.pdf

Reference Guide Chapter 3: Combine() function

If the Columninfo() function call specifies COL_INFO_TYPE as its attribute parameter, MapBasic
returns one of the values from the table below:

Columnlinfo() returns: Type of column indicated:

COL_TYPE_CHAR Character

COL_TYPE_DECIMAL Fixed-point decimal

COL_TYPE_FLOAT Floating-point decimal

COL_TYPE_INTEGER | Integer (4-byte)

COL_TYPE_SMALLINT | Small Integer (2-byte)

COL_TYPE_DATE Date

COL_TYPE_LOGICAL | Logical (TRUE or FALSE)

COL_TYPE_GRAPHIC special column type Obj; this represents the graphical objects
attached to the table

The codes listed in both of the above tables are defined in the standard MapBasic definitions file,
MAPBASIC.DEF. Your program must Include “MAPBASIC.DEF” if you intend to reference these
codes.

Error Conditions
ERR_TABLE_NOT_FOUND error generated if the specified table is not available

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Example

Include "MAPBASIC.DEF”

Dim s_col name As String, i col type As SmalllInt
Open Table ”"world”

s _col name = ColumnInfo (”world”,”coll”,COL_INFO NAME)
i col type = ColumnInfo (”world”,”coll”,COL INFO TYPE)

See Also
NumCols() function, Tablelnfo() function

Combine() function

Purpose
Returns a region or polyline representing the union of two objects. The objects cannot be Text objects

Syntax
Combine (objectl, object2)

object1, object2 are two object expressions; both objects can be closed (e.g., a region and a circle), or
both objects can be linear (e.g., a line and a polyline)

Return Value
An object that is the union of object1 and object2.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 111 MB_Ref.pdf

Reference Guide Chapter 3: Commandinfo() function

Description

The Combine() function returns an object representing the geographical union of two object
expressions. The union of two objects represents the entire area that is covered by either object.

The Combine() MapBasic function has been updated to allow heterogeneous combines, and to allow
Points, MultiPoints, and Collections as input objects. Previously, both objects had to be either linear
objects (Lines, Polylines, or Arcs) and produce Polylines as output; or both input objects had to be
closed (Regions, Rectangles, Rounded Rectangles, or Ellipses) and produce Regions as output.
Heterogeneous combines are not allowed, as are combines containing Point, MultiPoint and Collection
objects. Text objects are still not allowed as input to Combine().

MultiPoint and Collection objects, introduced in Maplnfo Professional 6.5, extend the Combine
operation. The following table details the possible combine options available and the output results:

OutputObject

Input Object Type Input Object Type Type
Point or MultiPoint Point or MultiPoint MultiPoint
Linear (Line, Polyline, Arc) Linear Polyline
Closed (Region, Rectangle, Rounded Rectan- | Closed Region
gle, Ellipse)
Point, MultiPoint, Linear, Closed, Collection Point, MultiPoint, Linear, Collection

Closed, Collection

The results returned by Combine() are similar to the results obtained by choosing MapInfo
Professional’s Objects > Combine menu item, except that the Combine menu item modifies the original
objects; the Combine() function does not alter the object? or object2 expressions. Also, the
Combine() function does not perform data aggregation.

The object returned by the Combine() function retains the styles (e.g., color) of the object1 parameter

when possible. Collection objects produced as output will get those portions of style that are possible

from object1, and the remaining portions of style from objects2. For example, if object is a Region and

object?2 is a Polyline, then the output collection will use the brush and boarder pen of object1 for the

Region style contained in the collection, and the pen from object2 for the Polyline style in the collection.
See Also

Objects Combine statement

Commandinfo() function
Purpose
Returns information about recent events.

Syntax

CommandInfo(attribute)

attribute is an Integer code indicating what type of information to return

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 112 MB_Ref.pdf

Reference Guide Chapter 3: Commandinfo() function

Return Value
Logical, Float, Integer, or String, depending on circumstances
Description
The Commandinfo() function returns information about recent events that affect Maplnfo

Professional—for example, whether the “Selection” table has changed, where the user clicked with the
mouse, or whether it was a simple click or a “shift click.”

After Displaying a Dialog Box
When you call CommandInfo() after displaying a custom dialog box, the attribute parameter can be
one of these codes:

attribute code Commandinfo(attribute) returns:

CMD_INFO_DLG_OK | Logical value: TRUE if the user dismissed a custom dialog box by click-
ing OK; FALSE if user canceled by clicking Cancel, pressing Esc, etc.
(This call is only valid following a Dialog statement.)

CMD_INFO_STATUS | Logical value: TRUE if the user allowed a progress-bar operation to
complete, or FALSE if the user pressed the Cancel button to halt.

Within a Custom Menu or Dialog Handler

When you call Commandinfo() from within the handler procedure for a custom menu command or a
custom dialog box, the attribute parameter can be one of these codes:

attribute code CommandIinfo(attribute) returns:

CMD_INFO_MENUITEM | Integer value, representing the ID of the menu item the user chose.
This call is only valid within the handler procedure of a custom menu
item.

CMD_INFO_DLG_DBL Logical value: TRUE if the user double-clicked on a ListBox or
MultiListBox control within a custom dialog. This call is only valid
within the handler procedure of a custom dialog box.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 113 MB_Ref.pdf

Reference Guide Chapter 3: Commandinfo() function
Within a Standard Handler Procedure

When you call Commandinfo() from within a standard system handler procedure (such as
SelChangedHandler), the attribute parameter can be any of the codes from the following table. For
details, see the separate discussions of SelChangedHandler, RemoteMsgHandler,
WinChangedHandler and WinClosedHandler. From within SelIChangedHandler:

attribute code Commandinfo(attribute) returns:

CMD_INFO_SELTYPE 1 if one row was added to the selection;

2 if one row was removed from the selection;
3 if multiple rows were added to the selection;
4 if multiple rows were de-selected.

CMD_INFO_ROWID Integer value: The number of the row that was selected or de-
selected (only applies if a single row was selected or de-selected).

CMD_INFO_INTERRUP Logical value: TRUE if the user interrupted a selection by pressing
T Esc, FALSE otherwise.

From within RemoteMsgHandler, RemoteQueryHandler(), or RemoteMapGenHandler:

CMD_INFO_MSG String value, representing the execute string or the item name sent to
Maplnfo Professional by a client program. For details, see
RemoteMsgHandler, RemoteQueryHandler(), or RemoteMapGen-
Handler.

From within WinChangedHandler or WinClosedHandler:

CMD_INFO_WIN Integer value, representing the ID of the window that changed or the
window that closed. For details, see WinChangedHandler or Win-
ClosedHandler.

From within ForegroundTaskSwitchHandler:

CMD_INFO_TASK_SWITC Integer value, indicating whether Mapinfo Professional just

H became the active application or just stopped being the active
application. The return value matches one of these codes:
SWITCHING_INTO_MI Pro (If Maplnfo Professional received the
focus) SWITCHING_OUT_OF_Maplnfo Professional (If Maplnfo
Professional lost the focus).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 114 MB_Ref.pdf

Reference Guide

Chapter 3: Commandinfo() function

After a Find Operation

Following a Find statement, the attribute parameter can be one of these codes:

attribute code

Commandinfo(attribute) returns:

CMD_INFO_FIND_RC

Integer value, indicating whether the Find statement found a
match.

CMD_INFO_FIND_ROWID

Integer value, indicating the Row ID number of the row that
was found.

CMD_INFO_X or
CMD_INFO_Y

Floating-point number, indicating x- or y-coordinates of the
location that was found.

Within a Custom ToolButton’s Handler Procedure

Within a custom ToolButton’s handler procedure, you can specify any of these codes:

attribute code

Commandinfo(attribute) returns:

CMD_INFO_X

x coordinate of the spot where the user clicked:

If the user clicked on a Map, the return value represents a map
coordinate (e.g., longitude), in the current coordinate system unit.

If the user clicked on a Browser, the value represents the number
of a column in the Browser (e.g., one for the leftmost column, or
zero for the select-box column).

If the user clicked in a Layout, the value represents the distance
from the left edge of the Layout (e.g., zero represents the left
edge), in MapBasic’s current paper units.

CMD_INFO_Y

y-coordinate of the spot where the user clicked:

If the user clicked on a map, the value represents a map coordi-
nate (e.g., Latitude).

If the user clicked on a Browser, the value represents a row num-
ber; a value of one represents the top row, and a value of zero rep-
resents the row of column headers at the top of the window.

If the user clicked on a Layout, the value represents the distance
from the top edge of the Layout.

CMD_INFO_X2

x-coordinate of the spot where the user released the mouse but-
ton. This only applies if the toolbutton was defined with a draw
mode that allows dragging, e.g., DM_CUSTOM_LINE.

CMD_INFO_Y2

y-coordinate of the spot where the user released the mouse but-
ton.

CMD_INFO_SHIFT

Logical value: TRUE if the user held down the Shift key while click-
ing.

CMD_INFO_CTRL

Logical value: TRUE if the user held down the Ctrl key while click-
ing.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 115

MB_Ref.pdf

Reference Guide Chapter 3: Commit Table statement

attribute code Commandinfo(attribute) returns:

CMD_INFO_TOOLBTN Integer value, representing the ID of the button the user clicked.

CMD_INFO_CUSTOM_O Object value: a polyline or polygon drawn by the user. Applies to
BJ drawing modes DM_CUSTOM_POLYLINE or
DM_CUSTOM_POLYGON.

Hotlink Support

MapBasic applications launched via the Hotlink Tool can use the CommandInfo function to obtain
information about the object that was activated. The following is a table of the attributes that can be
queried:

attribute code CommandIinfo(attribute) returns:

CMD_INFO_HL_WINDOW_ID Id of map or browser window.

CMD_INFO_HL_TABLE_NAME Name of table associated with the map layer or browser

CMD_INFO_HL_ROWID Id of the table row corresponding to the map object or
browser row.
CMD_INFO_HL_LAYER ID Layer id, if the program was launched from a map window.
CMD_INFO_HL_FILE_NAME Name of file launched.
See Also

FrontWindow() function, SelectionInfo() function, Set Command Info statement, WindowInfo()
function

Commit Table statement

Purpose
Saves recent edits to disk, or saves a copy of a table.

Syntax

Commit Table table
[As filespec
[Type { NATIVE |
DBF [Charset char set] |
Access Database database filespec [Version version] Table tablename
[Password pwd] [Charset char set] |
QUERY
3l
ODBC Connection ConnectionNumber Table tablename
[CoordSys...]
[Version version]]
[{ Interactive | Automatic commit_ keyword }]
[ConvertObjects {ON | OFF | INTERACTIVE }]

table is the name of the table you are saving.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 116 MB_Ref.pdf

Reference Guide Chapter 3: Commit Table statement

filespec is a file specification (optionally including directory path). This is where the MaplInfo .TAB file is
saved.

version is an expression that specifies the version of the Microsoft Jet database format to be used by
the new database. Acceptable values are 4.0 (for Access 2000) or 3.0 (for Access '95/'97). If omitted,
the default version is 4.0. If the database in which the table is being created already exists, the
specified database version is ignored

char_set is the name of a character set; see the separate CharSet discussion.

database_filespec is a string that identifies the name and path of a valid Access database. If the
specified database does not exist, Maplnfo Professional creates a new Access .MDB file.

tablename is a String that indicates the name of the table as it will appear in Access.

pwd is the database-level password for the database, to be specified when database security is turned
on.

ODBC indicates a copy of the Table will be saved on the DBMS specified by ConnectionNumber.
ConnectionNumber is an integer value that identifies the specific connection to a database.
tablename is the name of the table as you want it to appear in the database.

CoordSys is a coordinate system clause; see the separate CoordSys discussion.

version is 100 (to create a table that can be read by versions of Maplnfo Professional) or 300 (MapInfo
Professional3.0 format) for non-Access tables. For Access tables, version is 410.

commit_keyword is one of the following keywords: NoCollision, ApplyUpdates, DiscardUpdates

Description
If no As clause is specified, the Commit statement saves any pending edits to the table. This is
analogous to the user choosing File > Save.

A Commit statement that includes an As clause has the same effect as a user choosing File > Save
Copy As. The As clause can be used to save the table with a different name, directory, file type, or
projection.

To save the table under a new name, specify the new name in the filespec string. To save the table in a
new directory path, specify the directory path at the start of the filespec string.

To save the table using a new file type, include a Type clause within the As clause. By default, the type
of the new table is NATIVE, but can also be saved as DBF.

The CharSet clause specifies a character set. The char_set parameter should be a string constant,
such as “WindowsLatin1”. If no CharSet clause is specified, MapBasic uses the default character set
for the hardware platform that is in use at runtime. See the discussion of the CharSet clause for more
information.

To save the table using a different coordinate system or projection, include a CoordSys clause within
the As clause. Note that only a mappable table may have a coordinate system or a projection.

To save a Query use the QUERY type for the table. Only queries made from the user interface and
queries created from Run Command statements in MapBasic can be saved. The Commit Table
statement will create a .TAB file and a .QRY file.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 117 MB_Ref.pdf

Reference Guide Chapter 3: Commit Table statement

The Version clause controls the table’s format. If you specify Version 100, MaplInfo Professional stores
the table in a format readable by versions of Maplnfo Professional. If you specify Version 300, MaplInfo
Professional stores the table in Mapinfo Professional 3.0 format. Note that region and polyline objects
having more than 8,000 nodes and multiple-segment polyline objects require version 300. If you omit

the Version clause, the table is saved in the version 300 format.

Note: If a MapBasic application issues a Commit Table...As statement affecting a table which has
memo fields, the memo fields will not be retained in the new table. No warning will be
displayed. If the table is saved to a new table through Mapinfo Professional’s user interface (by
choosing File > Save Copy As), MaplInfo Professional warns the user about the loss of the
memo fields. However, when the table is saved to a new table name through a MapBasic
program, no warning appears.

Saving Linked Tables

Saving a linked table can generate a conflict, when another user may have edits the same data in the
same table Maplinfo Professional will detect if there were any conflicts and allows the user to resolve
them. The following clauses let you control what happens when there is a conflict. (These clauses have
no effect on saving a conventional Maplinfo table.)

Interactive

In the event of a conflict, Mapinfo Professional displays the Conflict Resolution dialog. After a
successful Commit Table Interactive statement, MapInfo Professional displays a dialog allowing the
user to refresh.

Automatic NoCollision

In the event of a conflict, MapInfo Professional does not perform the save. (This is the default behavior
if the statement does not include an Interactive clause or an Automatic clause.)

Automatic ApplyUpdates

In the event of a conflict, MaplInfo Professional saves the local updates. (This is analogous to ignoring
conflicts entirely.)

Automatic DiscardUpdates

In the event of a conflict, MaplInfo Professional saves the local updates already in the RDBMS
(discards your local updates). You can copy a linked table by using the As clause; however, the new
copy is not a linked table and no changes are updated to the server.

ODBC Connection

The length of fablename varies with databases. We recommend 14 or fewer characters for a table
name in order to work correctly for all databases. The statement limits the length of the tablename to a
maximum of 31 characters.

If the AS clause is used and ODBC is the Type, a copy of the table will be saved on the database
specified by ConnectionNumber and named as fablename. If the source table is mappable, three more
columns, Key column, Object column, and Style column, may be added to the destination database
table, tablename, whether or not the source table has those columns. If the source table is not
mappable, one more column, Key column, may be added to the database table, tablename, even if
the source table does not have a Key column. The Key column will be used to create a unique index.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 118 MB_Ref.pdf

Reference Guide Chapter 3: ConnectObjects() function

A spatial index will be created on the Object column if one is present. Unsupported object types will not
be saved to the destination table, but the rest of the attributes will be saved. The supported databases
include Oracle, SQL Server, 1IS (Informix Universal Server), and Microsoft Access. However, to save a
table with a spatial geometry/object, (including saving a point-only table) the SpatialWare/Blade is
required for SQL Server and IUS, in addition to the spatial option for Oracle. The XY schema is not
supported in this statement.

Example
The following example opens the table STATES, then uses the Commit statement to make a copy of
the states table under a new name (ALBERS). The optional CoordSys clause causes the ALBERS
table to be saved using the Albers equal-area projection.
Open Table ”STATES”
Commit Table STATES
As "ALBERS”

CoordSys Earth
Projection 9,7, "m”, -96.0, 23.0, 20.0, 60.0, 0.0, 0.0

The following example illustrates an ODBC connection:

dim hodbc as integer
hodbc = server connect ("ODBC", "dlg=1")
Open table "C:\MapInfol\USA"
Commit Table USA
as "c:\temp\as\USA"
Type ODBC Connection hodbc Table "USA"

See Also

Rollback statement

ConnectObjects() function

Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax

ConnectObjects (objectl, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object? and object2.

Description

One point of the resulting Polyline object is on object? and the other point is on object2. Note that the
distance between the two input objects can be calculated using the objectLen () function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 119 MB_Ref.pdf

Reference Guide Chapter 3: Continue statement

ConnectObjects () returns a Polyline object connecting object? and object2 in the shortest (min ==
TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation cannot be
done using a spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then a
cartesian method will be used.

Continue statement

Purpose
Resumes the execution of a MapBasic program (following a Stop statement).

Syntax
Continue
Restrictions

The Continue statement may only be issued from the MapBasic window; it may not be included as
part of a compiled program.

Description

The Continue statement resumes the execution of a MapBasic application which was suspended
because of a Stop statement.

You can include Stop statements in a program for debugging purposes. When a MapBasic program
encounters a Stop statement, the program is suspended, and the File menu automatically changes to
include a Continue Program option instead of a Run option. You can resume the suspended
application by choosing File > Continue Program. Typing the Continue statement into the MapBasic
window has the same effect as choosing Continue Program.

Control Button / OKButton / CancelButton clause

Purpose
Part of a Dialog statement; adds a push-button control to a dialog.

Syntax

Control { Button | OKButton | CancelButton }
[Position x , y] [Width w] [Height h]
[ID control ID]
[Calling handler]
[Title title string]
[Disable] [Hide]

X, y specifies the button’s position in dialog units

w specifies the width of the button in dialog units; default width is 40

h specifies the height of the button in dialog units; default height is 18

control_ID is an Integer; cannot be the same as the ID of another control in the dialog
handler is the name of a procedure to call if the user clicks on the button

title_string is a text string to appear on the button

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 120 MB_Ref.pdf

Reference Guide Chapter 3: Control CheckBox clause

Description
If a Dialog statement includes a Control Button clause, the dialog includes a push-button control. If
the OKButton keyword appears in place of the Button keyword, the control is a special type of button;
the user chooses an OKButton control to “choose OK” and dismiss the dialog. Similarly, the user
chooses a CancelButton control to “choose Cancel” and dismiss the dialog. Each dialog should have
no more than one OKButton control, and have no more than one CancelButton control. Disable
makes the control disabled (grayed out) initially. Hide makes the control hidden initially.

Use the Alter Control statement to change a control’s status (e.g., whether the control is enabled,
whether the control is hidden).

Example

Control Button
Title ”"&Reset”
Calling reset_sub
Position 10, 190

See Also

Alter Control statement, Dialog statement

Control CheckBox clause

Purpose

Part of a Dialog statement; adds a check box control to a dialog.

Syntax

Control CheckBox

Position x , y] [Width w]
ID control ID]

Calling handler]

Title title string]

Value log value]

Into log variable]

Disable] [Hide]

X , y specifies the control’s position in dialog units

w specifies the width of the control in dialog units

control_ID is an Integer; cannot be the same as the ID of another control in the dialog
handler is the name of a procedure to call if the user clicks on the control

title_string is a text string to appear in the label to the right of the check-box
log_value is a logical value: FALSE sets the control to appear un-checked initially
log_variable is the name of a Logical variable

Description

If a Dialog statement includes a Control CheckBox clause, the dialog includes a check-box control.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 121 MB_Ref.pdf

Reference Guide Chapter 3: Control DocumentWindow clause

The Value clause controls the initial appearance. If the Value clause is omitted, or if it specifies a value
of TRUE, the check-box is checked initially. If Value clause specifies a FALSE value, check-box is
clear initially. Disable makes the control disabled (grayed out) initially. Hide makes the control hidden
initially.

Example

Control CheckBox
Title "Include &Legend”
Into showlegend
ID 6
Position 115, 155

See Also

Alter Control statement, Dialog statement, ReadControlValue() function

Control DocumentWindow clause

Purpose
Part of a Dialog statement; adds a document window control to a dialog which can be re-parented for
integrated mapping.

Syntax

Control DocumentWindow
[Position x , y 1]

[(Width w] [Height h]
[ID control ID]
[Disable] [Hide]

X, y specifies the control's position in dialog units

w specifies the width of the control in dialog units; default width is 100

h specifies the height of the control in dialog units; default height is 100

control_ID is an Integer; cannot be the same as the ID of another control in the dialog
Disable grays out the control initially

Hide initially hides the control

Description

If a Dialog statement includes a Control DocumentWindow clause, the dialog includes a document
window control that can be re-parented using Set Next Document.

Example

The following example draws a legend in a dialog:

Control DocumentWindow
ID ID LEGENDWINDOW
Position 160, 20
Width 120 Height 150

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 122 MB_Ref.pdf

Reference Guide Chapter 3: Control DocumentWindow clause

The dialog handler will need to re-parent the window as in the following example:

Sub DialogHandler

OnError Goto HandleError
Dim iHwnd As Integer
Alter Control ID LEGENDWINDOW Enable Show
' draw the legend
iHwnd = ReadControlValue (ID LEGENDWINDOW)
Set Next Document Parent iHwnd Style WIN_STYLE CHILD
Create Legend

Exit Sub

HandleError:

Note "DialogHandler: " + Errors$()
End Sub

See Also

Dialog statement

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 123 MB_Ref.pdf

Reference Guide Chapter 4: Control EditText clause

Control EditText clause

Purpose
Part of a Dialog statement; adds an EditText control box (input text) to a dialog.

Syntax

Control EditText
[Position x , y 1] [Width w] [Height h]
[ID control ID]
[Value initial value]
[Into variable]
[Disable] [Hide] [Password]

x , y specifies the control’s position in dialog units.
w specifies the width of the control in dialog units.

h specifies the height of the control in dialog units; if the height is greater than 20, the control becomes
a multiple-line control, and text wraps down onto successive lines.

control_ID is an Integer; cannot be the same as the ID of another control in the dialog.
initial_value is a String or a numeric expression that appears in the box initially.

variable is the name of a string variable or a numeric variable; MapInfo Professional stores the final
value of the field in the variable if the user clicks OK.

the Disable keyword makes the control disabled (grayed out) initially.
the Hide keyword makes the control hidden initially.
the Password keyword creates a password field, which displays asterisks as the user types.

Description

If the user types more text than can fit in the box at one time, MapInfo Professional automatically
scrolls the text to make room. An EditText control can hold up to 32,767 characters.

If the height is large enough to fit two or more lines of text (for example, if the height is larger than 20),
MaplInfo Professional automatically wraps text down to successive lines as the user types. If the user
enters a line-feed into the EditText box (for example, on Windows, if the user presses Ctrl-Enter while
in the EditText box), the string associated with the EditText control will contain a Chr$(10) value at the
location of each line-feed. If the str_value expression contains embedded Chr$(10) values, the text
appears formatted when the dialog appears.

To make an EditText control the active control, use an Alter Control...Active statement.

Example

Control EditText
Value "Franchise Locations”
Position 65, 8 Width 90
ID 1
Into s_map title

See Also
Alter Control statement, Dialog statement, ReadControlValue() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 124 MB_Ref.pdf

Reference Guide Chapter 4: Control GroupBox clause

Control GroupBox clause

Purpose
Part of a Dialog statement; adds a rectangle with a label to a dialog.

Syntax

Control GroupBox

Position x , y] [Width w] [Height h]
ID control ID]

Title title string]

[
[
[
[Hide]

x , y specifies the control’s position in dialog units

w specifies the width of the control in dialog units

h specifies the height of the control in dialog units

control_ID is an Integer; cannot be the same as the ID of another control in the dialog
title_string is a text string to appear at the upper-left corner of the box

the Hide keyword makes the control hidden initially

Example

Control GroupBox
Title "Level of Detail”
Position 5, 30
Height 40 Width 70

See Also
Alter Control statement, Dialog statement

Control ListBox / MultiListBox clause

Purpose
Part of a Dialog statement; adds a list to a dialog.

Syntax

Control { ListBox | MultiListBox }

Position x , y] [Width w] [Height h]

ID control ID]

Calling handler]

Title { str expr | From Variable str array var }]
Value i selected]

Into i _variable]

Disable] [Hide]

x , y specifies the control’s position in dialog units

w specifies the width of the control in dialog units; default width is 80

h specifies the height of the control in dialog units; default height is 70

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a procedure to call if the user clicks or double-clicks on the list

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 125 MB_Ref.pdf

Reference Guide Chapter 4: Control ListBox / MultiListBox clause

str_expr is a String expression, containing a semicolon-delimited list of items to appear in the control
str_array_var is the name of an array of String variables

i_selected is a Smallint value indicating which list item should appear selected when the dialog first
appears: a value of one selects the first list item; if the clause is omitted, no items are selected initially

i_variable is the name of a Smallint variable which stores the user’s final selection
the Disable keyword makes the control disabled (grayed out) initially
the Hide keyword makes the control hidden initially

Description
If a Dialog statement includes a Control ListBox clause, the dialog includes a listbox control. If the list
contains more items than can be shown in the control at one time, MapBasic automatically adds a
scroll-bar at the right side of the control.

A MultiListBox control is identical to a ListBox control, except that the user can shift-click to select
multiple items from a MultiListBox control.

The Title clause specifies the contents of the list. If the Title clause specifies a String expression
containing a semicolon-delimited list of items, each item appears as one item in the list. The following
sample Title clause demonstrates this syntax:

Title ”1st Quarter;2nd Quarter;3rd Quarter;4th Quarter”

Alternately, if the Title clause specifies an array of String variables, each entry in the array appears as
one item in the list. The following sample Title clause demonstrates this syntax:

Title From Variable s optionlist

Processing a MultiListBox control
To read what items the user selected from a MultiListBox control, assign a handler procedure that is
called when the user dismisses the dialog (for example, assign a handler to the OKButton control).
Within the handler procedure, set up a loop to call ReadControlValue() repeatedly.

The first call to ReadControlValue() returns the number of the first selected item; the second call to
ReadControlValue() returns the number of the second selected item; etc. When
ReadControlValue() returns zero, you have exhausted the list of selected items. If the first call to
ReadControlValue() returns zero, there are no list items selected.

Processing Double-click events
If you assign a handler procedure to a list control, MapBasic calls the procedure every time the user
clicks or double-clicks an item in the list. In some cases, you may want to provide special handling for
double-click events. For example, when the user double-clicks a list item, you may want to dismiss the
dialog as if the user had clicked on a list item and then clicked OK.

To see an example, click here: Letting the user double-click

To determine whether the user clicked or double-clicked, call the Commandinfo() function within the
list control’s handler procedure, as shown in the following sample handler procedure:

Sub 1b handler
Dim i As SmalllInt
If CommandInfo (CMD_INFO_DLG_DBL) Then
'’ ... then the user double-clicked.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 126 MB_Ref.pdf

Reference Guide Chapter 4: Control PenPicker/BrushPicker/SymbolPicker/FontPicker clause

i = ReadControlValue(TriggerControl())
Dialog Remove
' at this point, the variable i represents
' the selected list item...
End If
End Sub

Example
Control ListBox
Title ”"1st Quarter;2nd Quarter;3rd Quarter;4th Quarter”
ID 3
Value 1
Into i quarter
Position 10, 92 Height 40

See Also
Alter Control statement, Dialog statement, ReadControlValue() function

Control PenPicker/BrushPicker/SymbolPicker/FontPicker clause

Purpose
Part of a Dialog statement; adds a button showing a pen (line), brush (fill), symbol (point), or font (text)
style.

Syntax

Control { PenPicker | BrushPicker | SymbolPicker | FontPicker }
Position x , y] [Width w] [Height h]

ID control ID]

Calling handler]

Value style expr]

Into style var]

Disable] [Hide]

X , y specifies the control’s position, in dialog units

w specifies the control’s width, in dialog units; default width is 20

h specifies the control’s height, in dialog units; default height is 20

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a handler procedure; if the user clicks on the Picker control, and then clicks OK
on the style dialog which appears, MapBasic calls the handler procedure

style_expris a Pen, Brush, Symbol, or Font expression, specifying what style will appear initially in the
control; this expression type must match the type of control (for example, must be a Pen expression if
the control is a PenPicker)

style_var is the name of a Pen, Brush, Symbol, or Font variable; this variable type must match the type
of control (for example, must be a Pen variable if the control is a PenPicker control)

the Disable keyword makes the control disabled (grayed out) initially

the Hide keyword makes the control hidden initially

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 127 MB_Ref.pdf

Reference Guide Chapter 4: Control PopupMenu clause

Description
A Picker control (PenPicker, BrushPicker, SymbolPicker, or FontPicker) is a button showing a pen,
brush, symbol, or font style. If the user clicks on the button, a dialog appears to allow the user to
change the style.

Example

Control SymbolPicker
Position 140,42
Into sym storemarker

See Also
Alter Control statement, Dialog statement, ReadControlValue() function

Control PopupMenu clause

Purpose
Part of a Dialog statement; adds a popup menu control to the dialog.

Syntax

Control PopupMenu

Position x , y]

Width w]

ID control ID]

Calling handler]

Title { str expr | From Variable str array var } |
Value i selected]

Into i variable]

Disable]

x , y specifies the control’s position in dialog units

w specifies the control’s width, in dialog units; default width is 80

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a procedure to call when the user chooses an item from the menu

str_expr is a String expression, containing a semicolon-delimited list of items to appear in the control
str_array_var is the name of an array of String variables

i_selected is a Smalllnt value indicating which item should appear selected when the dialog first
appears: a value of one selects the first item; if the clause is omitted, the first item appears selected

i_variable is the name of a Smallint variable which stores the user’s final selection (one if the first item
selected, etc.)

the Disable keyword makes the control disabled (grayed out) initially

Description
If a Dialog statement includes a Control PopupMenu clause, the dialog includes a pop-up menu. A
pop-up menu is a list of items, one of which is selected at one time. Initially, only the selected item
appears on the dialog.

If the user clicks on the control, the entire menu appears, and the user can choose a different item from
the menu.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 128 MB_Ref.pdf

Reference Guide Chapter 4: Control RadioGroup clause

The Title clause specifies the list of items that appear in the menu. If the Title clause specifies a String
expression containing a semicolon-delimited list of items, each item appears as one item in the menu.
The following sample Title clause demonstrates this syntax:

Title “Town;County;Territory;Region;Entire state”

Alternately, the Title clause can specify an array of String variables, in which case each entry in the
array appears as one item in the popup menu. The following sample Title clause demonstrates this
syntax:

Title From Variable s optionlist

Example

Control PopupMenu
Title “Town;County;Territory;Region;Entire state”
Value 2
ID 5
Into i map_ scope
Position 10, 150

See Also
Alter Control statement, Dialog statement, ReadControlValue() function

Control RadioGroup clause

Purpose
Part of a Dialog statement; adds a list of radio buttons to the dialog.

Syntax

Control RadioGroup

Position x , y]

ID control ID]

Calling handler]

Title { str expr | From Variable str array var }]
Value i selected]

Into i variable]

Disable] [Hide]

X , y specifies the control’s position in dialog units

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a procedure to call if the user clicks or double-clicks on any of the radio buttons
str_expris a String expression, containing a semicolon-delimited list of items to appear in the control
str_array_var is the name of an array of String variables

i_selected is a Smallint value indicating which item should appear selected when the dialog first
appears: a value of one selects the first item; if the clause is omitted, the first item appears selected

i_variable is the name of a Smallint variable which stores the user’s final selection (one if the first item
selected, etc.)

the Disable keyword makes the control disabled (grayed out) initially

the Hide keyword makes the control hidden initially

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 129 MB_Ref.pdf

Reference Guide Chapter 4: Control StaticText clause

Description

If a Dialog statement includes a Control RadioGroup clause, the dialog includes a group of radio
buttons. Each radio button is a label to the right of a hollow or filled circle. The currently-selected item
is indicated by a filled circle. Only one of the radio buttons may be selected at one time.

The Title clause specifies the list of labels that appear in the dialog. If the Title clause specifies a String
expression containing a semicolon-delimited list of items, each item appears as one item in the list.

The following sample Title clause demonstrates this syntax:

Title ”"&Full Details;&Partial Details”

Alternately, the Title clause can specify an array of String variables, in which case each entry in the
array appears as one item in the list. The following sample Title clause demonstrates this syntax:

Title From Variable s optionlist

Example

Control RadioGroup
Title ”"&Full Details;&Partial Details”
Value 2
ID 2
Into i details
Calling rg handler
Position 15, 42

See Also
Alter Control statement, Dialog statement, ReadControlValue() function

Control StaticText clause

Purpose
Part of a Dialog statement; adds a label to a dialog.

Syntax

Control StaticText

[Position x , y]

[width w] [Height h]
[ID control ID]

[Title title string]

[Hide]

x , y specifies the control’s position, in dialog units

w specifies the control’s width, in dialog units

h specifies the control’s height, in dialog units

control_ID is an Integer; cannot be the same as the ID of another control in the dialog
title_string is a text string to appear in the dialog as a label

the Hide keyword makes the control hidden initially

Description

If you want the text string to wrap down onto multiple lines, include the optional Width and Height
clauses. If you omit the Width and Height clauses, the static text control shows only one line of text.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 130 MB_Ref.pdf

Reference Guide Chapter 4: ConvertToPline() function

Example

Control StaticText
Title ”"Enter map title:”
Position 5, 10

See Also

Alter Control statement, Dialog statement

ConvertToPline() function

Purpose

Returns a polyline object that approximates the shape of another object.
Syntax
ConvertToPline(object)
object is the object to convert; may not be a point object or a text object
Return Value
A polyline object
Description

The ConvertToPline() function returns a polyline object which approximates the object parameter.
Thus, if the object parameter represents a region object, ConvertToPline() returns a polyline that has
the same shape and same number of nodes as the region.

The results obtained by calling ConvertToPline() are similar to the results obtained by choosing
Maplinfo Professional’s Objects > Convert To Polyline command. However, the function
ConvertToPline() does not alter the original object.

See Also

Objects Enclose statement

ConvertToRegion() function

Purpose

Returns a region object that approximates the shape of another object.

Syntax

ConvertToRegion (object)
object is the object to convert; may not be a point, line, or text object

Return Value

A region object

Description
Retains most style attributes. Other attributes are determined by the current pens or brushes. A
polyline whose first and last nodes are identical will not have the last node duplicated. Otherwise,
Maplnfo Professional adds a last node whose vertices are the same as the first node.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 131 MB_Ref.pdf

Reference Guide Chapter 4: ConvexHull() function

The ConvertToRegion() function returns a region object which approximates the object parameter.
Thus, if the object parameter represents a rectangle, ConvertToRegion() returns a region that looks
like a rectangle.

The results obtained by calling ConvertToRegion() are similar to the results obtained by choosing
Maplnfo Professional’s Objects > Convert To Region command. However, the ConvertToRegion()
function does not alter the original object.

See Also

Objects Enclose statement

ConvexHull() function

Purpose

Returns a region object that represents the convex hull polygon based on the nodes from the input
object. The convex hull polygon can be thought of as an operator that places a rubber band around all
of the points. It will consist of the minimal set of points such that all other points lie on or inside the
polygon. The polygon will be convex - no interior angle can be greater than 180 degrees.

Syntax

ConvexHull (inputobject)
inputobject is an object expression.

Return Value

Returns a region object.

Description
The ConvexHull() function returns a region representing the convex hull of the set of points
comprising the input object. The ConvexHull() function operates on one single object at a time. To
create a convex hull around a set of objects, use the Create Object As ConvexHull statement.

Example

The following program selects New York from the States file, then creates a ConvexHull surrounding
the selection.

Dim Resulting object as object

select * from States

where State Name = “New York”

Resulting object = ConvexHull (selection.obj)
Insert Into States(obj) Values (Resulting object)

See Also:
Create Object statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 132 MB_Ref.pdf

Reference Guide Chapter 4: CoordSys clause

CoordSys clause

Purpose
Specifies a coordinate system.

Syntax 1

CoordSys Earth
[Projection type,

datum,
unitname

[, origin longitude]

[, origin latitude]

[, standard parallel 1 [, standard parallel 2]]

[, azimuth]

[, scale factor]

[, false easting]

[, false northingl

[, range 1 1]

[Affine Units unitname, A, B C, D, E, F]

[Bounds (minx, miny) (maxx, maxy)]

Syntax 2

CoordSys Nonearth
[Affine Units unitname, A, B C, D, E, F]
Units unitname
Bounds (minx, miny) (maxx, maxy)

Syntax 3

CoordSys Layout Units paperunitname
Syntax 4

CoordSys Table tablename
Syntax 5

CoordSys Window window_id

type is a positive integer value representing which coordinate system to use
datum is a positive integer value identifying which datum to reference

unitname is a string representing a distance unit of measure (for example, “m” for meters); for a list of
unit names, see Set Distance Units

origin_longitude is a float longitude value, in degrees

origin_latitude is a float latitude value, in degrees

standard_parallel_1 and standard_parallel_2 are float latitude values, in degrees
azimuth is a float angle measurement, in degrees

scale_factor is a float scale factor

range is a float value from 1 to 180, dictating how much of the Earth will be seen
minx is a float specifying the minimum x value

miny is a float specifying the minimum y value

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 133 MB_Ref.pdf

Reference Guide Chapter 4: CoordSys clause

maxx is a float specifying the maximum x value
maxy is a float specifying the maximum y value

paperunitname is a string representing a paper unit of measure (for example, “in” for inches); for a list
of unit names, see Set Paper Units

tablename is the name of an open table

window_id is an Integer window identifier corresponding to a Map or Layout window
A performs scaling or stretching along the X axis.

B performs rotation or skewing along the X axis.

C performs shifting along the X axis.

D performs scaling or stretching along the Y axis.

E performs rotation or skewing along the Y axis.

F performs shifting along the Y axis.

Description

The CoordSys clause specifies a coordinate system, and, optionally, specifies a map projection to use
in conjunction with the coordinate system. Note that CoordSys is a clause, not a complete MapBasic
statement. Various statements may include the CoordSys clause; for example, a Set Map statement
can include a CoordSys clause, in which case the Set Map statement will reset the map projection
used by the corresponding Map window.

Use syntax 1 (above) to explicitly define a coordinate system for an Earth map (a map having
coordinates which are specified with respect to a location on the surface of the Earth). The optional
Projection parameters dictate what map projection, if any, should be used in conjunction with the
coordinate system. If the Projection clause is omitted, MapBasic uses datum 0. The Affine clause
describes the affine transformation for producing the derived coordinate system. If the Projection
clause is omitted, the base coordinate system is Longitude/Latitude. Since the derived coordinates
may be in different units than the base coordinates, the Affine clause requires you to specify the
derived coordinate units.

Use syntax 2 to explicitly define a non-Earth coordinate system, such as the coordinate system used in
a floor plan or other CAD drawing. In the CoordSys Non-Earth case, the base coordinate system is an
arbitrary Cartesian grid. The Units clause specifies the base coordinate units, and the Affine clause
specifies the derived coordinate units.

Use syntax 3 (CoordSys Layout) to define a coordinate system which represents a Maplinfo
Professional Layout window. A MapBasic program must issue a Set CoordSys Layout statement
before querying, creating or otherwise manipulating Layout objects. The unitname parameter is the
name of a paper unit, such as “in” for inches or “cm” for centimeters. The following Set CoordSys
statement assigns a Layout window’s coordinate system, using inches as the unit of measure:

Set CoordSys Layout Units ”in”

Use syntax 4 (CoordSys Table) to refer to the coordinate system in which a table has been saved.

Use syntax 5 (CoordSys Window) to refer to the coordinate system already in use in a window.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 134 MB_Ref.pdf

Reference Guide Chapter 4: CoordSys clause

When a CoordSys clause appears as part of a Set Map statement or Set Digitizer statement, the
Bounds subclause is ignored. The Bounds subclause is required for non-Earth maps when the
CoordSys clause appears in any other statement, but only for non-Earth maps.

Versions of Maplnfo Professional prior to Mapinfo Professional 4.1.2 do not recognize the affine
transformation constants in the CoordSys clause, Mapinfow.prj, or any MAP file. If a MAP file is created
using an affine transformation, older versions of MapInfo Professional will use the base coordinate
system instead of the derived coordinate system.

The Bounds clause defines the map’s limits; objects may not be created outside of those limits. When
specifying an Earth coordinate system, you may omit the Bounds clause, in which case Mapinfo
Professional uses default bounds that encompass the entire Earth.

Note: In a Create Map statement, you can increase the precision of the coordinates in the map by
specifying narrower Bounds.
Every map projection is defined as an equation; and since the different projection equations have
different sets of parameters, different CoordSys clauses may have varying numbers of parameters in
the optional Projection clause. For example, the formula for a Robinson projection uses the Datum,
Units, and Origin Latitude parameters, while the formula for a Transverse Mercator projection uses the
Datum, Units, Origin Longitude, Origin Latitude, Scale Factor, False Easting, and False Northing
parameters.

For more information on projections and coordinate systems, see the MaplInfo Professional
documentation.

Each MapBasic application has its own CoordSys setting that specifies the coordinate system used by
the application. If a MapBasic application issues a Set CoordSys statement, other MapBasic
applications which are also in use will not be affected.

Examples
The Set Map statement controls the settings of an existing Map window. The Set Map statement below
tells MaplInfo Professional to display the Map window using the Robinson projection:
Set Map CoordSys Earth Projection 12, 12, "m”, 0.

The first 12 specifies the Robinson projection; the second 12 specifies the Sphere datum; the “m”
specifies that the coordinate system should use meters; and the final zero specifies that the origin of
the map should be at zero degrees longitude.

The following statement tells MapInfo Professional to display the Map window without any projection.
Set Map CoordSys Earth
The following example opens the table World, then uses a Commit statement to save a copy of World

under the name RWorld. The new RWorld table will be saved with the Robinson projection.

Open Table ”"world” As World
Commit Table world As “RWORLD.TAB”
CoordSys Earth Projection 12, 12, "m”, O.
The following example sets one Map window’s projection to match the projection of another Map
window. This example assumes that two Integer variables (first._ map_id and second_map_id) already
contain the window IDs of the two Map windows.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 135 MB_Ref.pdf

Reference Guide Chapter 4: Cos() function

Set Map
Window second map winid
CoordSys Window first map winid

The following example defines a coordinate system called DCS that is derived from UTM Zone 10
coordinate system using the affine transformation

x1l = 1.57x - 0.21y + 84120.5
yl = 0.19x + 2.81ly - 20318.0

In this transformation, (x1, y1) represents the DCS derived coordinates, and (x, y) represents the
UTM Zone 10 base coordinates. If the DCS coordinates are measured in feet, the CoordSys clause for
DCS would be as follows:

CoordSys Earth

Projection 8, 74, "m”, -123, 0, 0.9996, 500000, O
Affine Units ”ft”, 1.57, -0.21, 84120.5, 0.19, 2.81, -20318.0

See Also
Commit Table statement, Set CoordSys statement, Set Map statement

Cos() function

Purpose
Returns the cosine of a number.

Syntax

Cos (num expr)

num_expr is a numeric expression representing an angle in radians

Return Value
Float

Description
The Cos() function returns the cosine of the numeric num_expr value, which represents an angle in
radians. The result returned from Cos() will be between one and minus one.

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2 DEG. (Note that your program will need to Include
“MAPBASIC.DEF” in order to reference DEG_2_RAD or RAD_2_DEG).

Example
Include “MAPBASIC.DEF”
Dim x, y As Float
X = 60 * DEG 2 RAD
y Cos (x)

" v will now be equal to 0.5
' since the cosine of 60 degrees is 0.5

See Also
Acos() function, Asin() function, Atn() function, Sin() function, Tan() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 136 MB_Ref.pdf

Reference Guide Chapter 4: Create Arc statement

Create Arc statement

Purpose
Creates an arc object.

Syntax

Create Arc
[Into { Window window id | Variable var name }]
(x1 , y1) (x2 , y2)
start_angle end angle
[Pen . . .]

window_id is a window identifier
var_name is the name of an existing object variable

x1, y1 specifies one corner of the minimum bounding rectangle (MBR) of an ellipse; the arc produced
will be a section of this ellipse

x2 , y2 specifies the opposite corner of the ellipse’s MBR
start_angle specifies the arc’s starting angle, in degrees
end_angle specifies the arc’s ending angle, in degrees
The Pen clause specifies a line style

Description
The Create Arc statement creates an arc object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement. Before creating objects on a Layout window, you must issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Arc statement uses the current Mapinfo Professional line style (the
style which appears in the Options > Line Style dialog).

See Also
Insert statement, Pen clause, Update statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 137 MB_Ref.pdf

Reference Guide Chapter 4: Create ButtonPad statement

Create ButtonPad statement

Purpose
Creates a ButtonPad (toolbar).

Syntax

Create ButtonPad { title string | ID pad num } As
button definition [button definition ...]
[Title title string]
[Wwidth w]
[Position (x, y) [Units unit name]]
[ToolbarPosition (row , column)]
[{ Show | Hide }]
[{ Fixed | Float }]

title_string is the ButtonPad title (for example, “Drawing”)

pad_num is the ID number for the standard toolbar you want to re-define: 1 for Main, 2 for Drawing, 3
for Tools, 4 for Standard, 5 for ODBC

w is the pad width, in terms of the number of buttons across
x, y specify the pad’s position when it is floating; specified in paper units (for example, inches)
unit_name is a String paper units name (for example, “in” for inches, “cm” for centimeters)

row, column specify the pad’s position when it is docked as a toolbar (for example, 0, 0 places the pad
at the left edge of the top row of toolbars, and 0, 1 represents the second pad on the top row)

Each button_definition clause can consist of the keyword Separator, or it can have the following
syntax:

{ PushButton | ToggleButton | ToolButton }
Calling { procedure | menu code | OLE methodname | DDE server , topic }
ID button id]
Icon n [File file spec 1]
Cursor n [File file spec] 1
DrawMode dm code]
HelpMsg msg]
ModifierKeys { On | Off }]
Enable] [Disable]
Check] [Uncheck]

procedure is the handler procedure to call when a button is used

menu_code is a standard Maplnfo Professional menu code from MENU.DEF (for example,
M_FILE_OPEN); MaplInfo Professional runs the menu command when the user uses the button

methodname is a string specifying an OLE method name
server , topic are strings specifying a DDE server and topic name

ID button_id specifies a unique button number. This number can be used as a parameter to allow a
handler to determine which button is in use (in situations where different buttons call the same handler)
or as a parameter to be used with the Alter Button statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 138 MB_Ref.pdf

Reference Guide Chapter 4: Create ButtonPad statement

Icon n specifies the icon to appear on the button; n can be one of the standard MapInfo icon codes
listed in ICONS.DEF (for example, MI_ICON_RULER). If the File sub-clause specifies the name of a
file containing icon resources, n is an Integer resource ID identifying a resource in the file.

Cursor n specifies the shape the mouse cursor should adopt whenever the user chooses a ToolButton
tool; n is a cursor code (for example, MI_CURSOR_ARROW) from ICONS.DEF. This clause applies
only to ToolButtons. If the File sub-clause specifies the name of a file containing icon resources, nis an
Integer resource ID identifying a resource in the file.

DrawMode dm_code specifies whether the user can click and drag, or only click with the tool;
dm_code is a code (for example, DM_CUSTOM_LINE) from ICONS.DEF. DrawMode clause applies
only to ToolButtons.

HelpMsg msg specifies the button’s status bar help and, optionally, ToolTip help. The first part of the
msg string is the status bar help message. If the msg string includes the letters \n then the text
following the \n is used as the button’s ToolTip help.

ModifierKeys clause controls whether the shift and control keys affect “rubber-band” drawing if the
user drags the mouse while using a ToolButton. Default is Off, meaning that the shift and control keys
have no effect.

Description

Use the Create ButtonPad statement to create a custom ButtonPad. Once you have created a custom
ButtonPad, you can modify it using Alter Button and Alter ButtonPad statements.

Each toolbar can be hidden. To create a toolbar in the hidden state, include the Hide keyword.Each
toolbar can be floating or fixed to the top of the screen (“docked”). A floating toolbar resembles a
window, such as the Info tool window. To create a fixed toolbar, include the keyword Fixed. To create a
floating toolbar, include the keyword Float. When a toolbar is floating, its position is controlled by the
Position clause; when it is docked, its position is controlled by the ToolbarPosition clause.

For more information on ButtonPads, see the MapBasic User Guide. For additional information about
the capabilities of ToolButtons, see Alter ButtonPad.

Calling Clause Options

The Calling clause specifies what should happen when the user acts on the custom button. The
following table describes the available syntax.

Calling clause example Description

Calling M_FILE_NEW If Calling is followed by a numeric code from MENU.DEF, the event
runs a standard MaplInfo Professional menu command (the File >
New command, in this example).

Calling my_procedure If you specify a procedure name, the event calls the procedure. The
procedure must be part of the same MapBasic program.

Makes a method call to the OLE Automation object set by MaplInfo
Professional’s SetCallback method.See the MapBasic User Guide.

Calling OLE “methodname’

Calling DDE "server”,“topic” Connects through DDE to “server|topic” and sending an Execute
message to the DDE server.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 139 MB_Ref.pdf

Reference Guide Chapter 4: Create ButtonPads As Default statement

In the last two cases, the string sent to OLE or DDE starts with the three letters “MI.” so that the server
can detect that the message came from Maplnfo. The remainder of the string contains a comma-
separated list of the values returned from the function calls Commandinfo(1) through
Commandinfo(8). For complete details on the string syntax, see the MapBasic User Guide.

Example

Create ButtonPad “Utils” As

PushButton
HelpMsg ”Choose this button to display query dialog”
Calling button sub proc
Icon MI_ICON_ZOOM_QUESTION

ToolButton
HelpMsg "Use this tool to draw a new route”
Calling tool sub proc
Icon MI_ICON_CROSSHAIR
DrawMode DM _CUSTOM LINE

ToggleButton
HelpMsg ”“Turn proximity checking on/off”
Calling toggle prox check
Icon MI_ICON RULER
Check

Title ”"Utilities”

Width 3

Show

See Also
Alter Button statement, Alter ButtonPad statement

Create ButtonPads As Default statement

Purpose
Restore standard ButtonPads (for example, the Main ButtonPad) to their default state.
Syntax
Create ButtonPads As Default
Description
This statement destroys any custom ButtonPads and returns Maplnfo Professional’s standard
ButtonPads (Main, Drawing, and Tools) to their default states.

Use this statement with caution. The Create ButtonPads As Default statement destroys all custom
buttons, even buttons defined by other MapBasic applications.

See Also
Alter Button statement, Alter ButtonPad statement, Create ButtonPad statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 140 MB_Ref.pdf

Reference Guide Chapter 4: Create Cartographic Legend statement

Create Cartographic Legend statement

Purpose
The Create Cartographic Legend statement allows you to create and display cartographic style
legends as well as theme legends for an active map window. Each cartographic and thematic styles
legend will be connected to one, and only one, map window so that there can be more than one legend
window open at a time.

You can create a frame for each cartographic or thematic map layer you want to include on the
legend.The cartographic and thematic frames will include a legend title and subtitle. Cartographic
frames display a map layer’s styles; legend frames display the colors, symbols and sizes represented
by the theme. You can create frames that have styles based on the map window’s style or you can
create your own custom frames.

The previous Mapinfo Professional map legend was a single floating window that only displayed
thematic legends for the active map window and was shared by all map windows. The new legend
window will replace the current legend window; however, the current legend window and its
functionality will still be available programmatically through existing MapBasic statements (i.e., Create
Legend, Set Legend, etc....)

Syntax

Create Cartographic Legend

From Window map window id]

Behind]

Position (x , y) [Units paper units]]
Width win width [Units paper units]]
Height win height [Units paper units]]
Window Title { legend window title }
ScrollBars { On | Off }]

Portrait | Landscape | Custom]

Style Size {Small | Large}

Default Frame Title { def frame title } [Font...] }]
Default Frame Subtitle { def frame subtitle } [Font...] }]
Default Frame Style { def frame style } [Font...] }]
Default Frame Border Pen [[pen expr]
Frame From Layer { map layer id | map_ layer name
[Using

[Column { column | object } [FromMapCatalog { On | Off }]]
[Label { expression | default }]

Position (x , y) [Units paper units]]

Title { frame title [Font...] }

SubTitle { frame subtitle [Font...] }]

Border Pen pen expr |

Style [Font...] [Norefresh]
[Text { style name } { Line Pen... | Region Pen... Brush... |

Symbol Symbol... } | Collection [Symbol ...]
[Line Pen ...] [Region Pen... Brush ...] }]

L, ... 1

map_window_id is an Integer window identifier which you can obtain by calling the FrontWindow()
and Windowld() functions.

x states the desired distance from the top of the workspace to the top edge of the window.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 141 MB_Ref.pdf

Reference Guide Chapter 4: Create Cartographic Legend statement

y states the desired distance from the left of the workspace to the left edge of the window.
paper_units is a string representing a paper unit name (for example, “cm” for centimeters).
win_width is the desired width of the window.

win_height is the desired height of the window.

legend_window _title is a string expression representing a title for the window, defaults to “Legend of
xxx” where xxx is the map window title.

def_frame_title is a string which defines a default frame title. It can include the special character “#
which will be replaced by the current layer name.

def_frame_subtitle is a string which defines a default frame subititle. It can include the special character
“#” which will be replaced by the current layer name.

def_frame_style is a string that displays next to each symbol in each frame. The "#” character will be
replaced with the layer name. The % character will be replaced by the text “Line”, “Point, “Region”, as
appropriate for the symbol. For example, “% of #” will expand to “Region of States” for the states.tab

layer.

pen_expris a Pen expression, for example, MakePen(width, pattern, color). If a default border pen is
defined, then it will be become the default for the frame. If a border pen clause exists at the frame level,
then it is used instead of the default.

map _layer _id or map_layer_name identifies a map layer; can be a Smallint (for example, use 1 to
specify the top map layer other than Cosmetic) or a String representing the name of a table displayed
in the map. For a theme layer you must specify the map_layer _id.

frame_title is a string which defines a frame title. If a title clause is defined here for a frame, then it will
be used instead of the def frame _title.

frame_subtitle is a string which defines a frame subtitle. If a subtitle clause is defined here for a frame,
then it will be used instead of the def frame_subtitle.

column is an attribute column name from the frame layer’s table, or the object column (meaning that
legend styles are based on the unique styles in the mapfile). The default is ‘object’.

label is either a valid expression or default (meaning that the default frame style pattern is used when
creating each style’s text, unless the style clause contains text). The default is default.

style_name is a string which displays next to a symbol, line, or region in a custom frame.

Description

At least one Frame clause is required.

All clauses pertaining to the entire legend (scrollbars, width, etc.) must proceed the first Frame clause.
The From Layer clause must be the first clause after Frame.

Behind places the legend behind the thematic map window.

The optional Position clause controls the window’s position on Maplnfo Professional’s workspace. The
upper left corner of Mapinfo Professional’s work space has the position 0, 0. The optional Width and
Height clauses control the window’s size. Window position and size values use paper units settings,
such as “in” (inches) or “cm” (centimeters). MapBasic has a current paper units setting, which defaults

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 142 MB_Ref.pdf

Reference Guide Chapter 4: Create Cartographic Legend statement

to inches; a MapBasic program can change this setting through the Set Paper Units statement. A
Create Cartographic Legend statement can override the current paper units by including the optional
Units subclause within the Position, Width, and/or Height clauses.

Use the ScrollBars clause to show or hide scroll-bars on a Map window.

Portrait or Landscape describes the orientation of the legend frames in the window. Portrait results in
an orientation that is down and across. Landscape results in an orientation that is across and down.

If Custom is specified, you can specify a custom Position clause for a frame.
The Position clause at the frame level specifies the position of a frame if Custom is specified.

The optional Style Size clause controls the size of the samples that appear in legend windows. If you
specify Style Size Small, small-sized legend samples are used in legend windows. If you specify Style
Size Large, larger-sized legend samples are used.

The Position, Title, SubTitle, Border Pen, and Style clauses at the frame level are used only for map
layers. They are not used for thematic layers. For a thematic layer, this information is gotten
automatically from the theme.

The Font clause specifies a text style. If a default frame title, subtitle or style name font is defined, then
it will become the default for the frame. If a frame level title, subtitle or style clause exists and includes
a font clause, then the frame level font is used. If no font is specified at any level, then the current text
style is used and the point sizes are 10, 9 and 8 for title, subtitle and style name.

The Style clause and the NoRefresh keyword allow you to create custom frames that will not be
overwritten when the legend is refreshed. If the NoRefresh keyword is used in the Style clause, then
the table is not scanned for styles. Instead, the Style clause must contain your custom list of definitions
for the styles displayed in the frame. This is done with the Text clause and appropriate Line, Region,
or Symbol clause. Multipoint objects are treated as Point objects.

Collection objects are treated separately. When we create Legend based on object types, we draw
Point symboals first, then Lines, then Regions. Collection objects are drawn last. Inside collection
objects we draw point, then line and then region samples.

If a Column is defined, it must be an attribute column name from the frame layer’s table, or the ‘object’
column (meaning that legend styles are based on the unique styles in the mapfile). The default is
‘object’.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table
must be a live access table that supports per record styles for this to occur. If the live table does not
support per record styles than the behavior is to revert to the default behavior for live tables, which is to
get the default styles from the MapCatalog (FromMapCatalog ON).

If a Label is defined, it is either a valid expression or ’default’ (meaning that the default frame style
pattern is used when creating each style’s text, unless the style clause contains text). The default is
default.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 143 MB_Ref.pdf

Reference Guide Chapter 4: CreateCircle() function

Initially, each frame layer’s TAB file will be searched for metadata values for Title, Subtitle, Column and
Label. If no metadata value exists for Column, the default is object. If no metadata value exists for
Label, the default is the default frame style pattern. If legend metadata keys exist and you want to
override them, you must use the corresponding MapBasic syntax.

Example

The following example shows how to create a frame for a Map window's Cartographic legend. Legend
windows are a special case: To create a frame for a Legend window, you must use the Title clause
instead of the From Window clause.

Dim i layout id, i map id As Integer
Dim s_title As String

' here, you would store the Map window's ID in i map id,
' and store the Layout window's ID in i_layout_ id.
' To obtain an ID, call FrontWindow() or WindowID().

s title = "Legend of " + WindowInfo(i map id, WIN_INFO_NAME)
Set CoordSys Layout Units "in"
Create Frame

Into Window i_layout id

(1,2) (4, 5)

Title s_title

This will create a frame for a Cartographic legend window. To create a frame for a thematic legend
window, change the title to the following.

S_title="Theme Legend of " + WindowInfo (I_map_id, WW_INFO_NAME)
See Also

Set Cartographic Legend statement, Alter Cartographic Frame statement, Add Cartographic
Frame statement, Remove Cartographic Frame statement, Create Legend statement, Set
Window statement, WindowlInfo() function

CreateCircle() function

Purpose

Returns an Object value representing a circle.

Syntax

CreateCircle(x , y , radius)
x is a Float value, indicating the x-position (for example, Longitude) of the circle’s center
y is a Float value, indicating the y-position (for example, Latitude) of the circle’s center
radius is a Float value, indicating the circle radius

Return Value
Object

Description

The CreateCircle() function returns an Object value representing a circle.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 144 MB_Ref.pdf

Reference Guide Chapter 4: CreateCircle() function

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system.

Note: MapBasic’s coordinate system is independent of the coordinate system of any Map window.

The radius parameter specifies the circle radius, in whatever distance unit MapBasic is currently using.
By default, MapBasic uses miles as the distance unit, although the Set Distance Units statement can
re-configure MapBasic to use a different distance unit.

The circle will use whatever Brush style is currently selected. To create a circle object with a specific
Brush, you could issue the Set Style statement before calling CreateCircle(). Alternately, instead of
calling CreateCircle(), you could issue a Create Ellipse statement, which has optional Pen and Brush
clauses.

The circle object created through the CreateCircle() function could be assigned to an Object variable,
stored in an existing row of a table (through the Update statement), or inserted into a new row of a
table (through an Insert statement).

Note: Before creating objects on a Layout window, you must issue a Set CoordSys Layout
statement.
Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Examples
The following example uses the Insert statement to insert a new row into the table Sites. The
CreateCircle() function is used within the body of the Insert statement to specify the graphic object
that will be attached to the new row.

Open Table ”"sites”
Insert Into sites (obj)
Values (CreateCircle(-72.5, 42.4, 20))
The following example assumes that the table Towers has three columns: Xcoord, Ycoord, and Radius.
The Xcoord column contains longitude values, the Ycoord column contains latitude values, and the
Radius column contains radius values. Each row in the table describes a radio broadcast tower, and
the Radius column indicates each tower’s broadcast area.

The Update statement uses the CreateCircle() function to build a circle object for each row in the
table. Following this Update statement, each row in the Towers table will have a circle object attached.
Each circle object will have a radius derived from the Radius column, and each circle will be centered
at the position indicated by the Xcoord, Ycoord columns.

Open Table ”"towers”
Update towers
Set obj = CreateCircle(xcoord, ycoord, radius)

See Also
Create Ellipse statement, Insert statement, Update statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 145 MB_Ref.pdf

Reference Guide Chapter 4: Create Collection statement

Create Collection statement

Purpose

Combine points, linear objects and closed objects into a single object. The collection object displays in
the Browser as a single record.

Syntax

Create Collection [num parts]
[Into { Window window _id | Variable var name }]
Multipoint
[num points]
(x1, v1) (x2, y2) [... 1
[Symbol . . .]
Region
num_polygons
[num pointsl (x1, yl1) (x2, y2) [... 1]
[num points2 (x1, y1) (x2, y2) [... 1 ... 1]
[Pen ...]
[Brush ...]
[Center (center x, center y)]
Pline
[Multiple num sections]
num points

(x1, y1) (x2, y2) [... 1
[Pen ...]
[Smooth ...]

num_parts - number of non-empty parts inside a collection. This number is from 0 to 3 and is optional
for MapBasic code (it is mandatory for MIF files).

num_polygons is the number of polygons inside the Collection object.

num_sections specifies how many sections the multi-section polyline will contain.

Example

create collection multipoint 2 (0,0) (1,1) region 3 3 (1,1) (2,2) (3,4) 4 (11,11)
(12,12) (13,14) (19,20) 3 (21,21) (22,22) (23,24) pline 3 (-1,1) (3,-2) (4,3)

dim a as object

create collection into variable a multipoint 2 (0,0) (1,1) region 1 3 (1,1) (2,2)
(3,4) pline 3 (-1,1) (3,-2) (4,3)

insert into test (obj) values (a)

create collection region 2 4 (-5,-5) (5,-5) (5,5) (-5,5) 4 (-3,-3) (3,-3) (3,3)
(-3,3) pline multiple 2 2 (-6,-6) (6,6) 2 (-6,6) (6,-6) multipoint 6 (2,2) (-2,-
2) (2,-2) (-2,2) (4,1) (-1,-4)

See Also

Create MultiPoint statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 146 MB_Ref.pdf

Reference Guide Chapter 4: Create Cutter statement

Create Cutter statement

Purpose
Given a set of Target objects, and a set of polylines as a selection object, this statement will produce a
Region object that can be used as a cutter for an Object Split operation, as well as a new set of Target
objects which may be a subset of the original set of Target objects.

Syntax

Create Cutter Into Target

Description
Before using Create Cutter, one or more Polyline objects must be selected, and an editable target
must exist. This is set by choosing Objects > Set Target, or using the Set Target statement. The
Polyline objects contained in the selection must represent a single, contiguous section. The Polyline
selection must contain no breaks or self intersections.

The Polyline must intersect the MBR of the Target in order for the Target to be a valid object to split.
The Polyline, however, does not have to intersect the Target object itself. For example, the Target
object could be a series of islands (for example, Hawaii), and the Polyline could be used to divide the
islands into two sets without actually intersecting any of the islands. If the MBR of a Target does not
intersect the Polyline, then that Target will be removed from the Target list.

Given this revised set of Target objects, a cumulative MBR of all of these objects is calculated and
represents the overall space to be split. The polyline is then extended, if necessary, so that it covers
the MBR. This is done by taking the direction of the last two points on each end of the polyline and
extending the polyline in that cartesian direction until it intersects with the MBR. The extended Polyline
should divide the Target space into two portions. One Region object will be created and returned which
represents one of these two portions.

This statement will return the revised set of Target objects (still set as the Target), as well as this new
Region cutter object. This Region object will be inserted into the Target table (which must be an
editable table). The original Polyline object(s) will remain, but will no longer be selected. The new
Region object will now be the selected object. If the resulting Region object is suitable, then this
operation can be immediately followed by an Object Split operation, as appropriate Target objects are
set, and a suitable Region cutter object is selected.

Note: The cutter object still remains in the target layer. You will have to delete the cutter object
manually from your editable layer.

Example

Open Table "C:\MapInfo data\TUT_ USA\USA\STATES.TAB"
Open Table "C: \MapInfo_data\TUT_USA\USA\US_HIWAY . TAB"
Map from States, Us_hiway

select * from States where state = "NY"

Set target On

select * from Us hiway where highway = "I 90"

Create Cutter Into Target

Objects Split Into Target

See Also
Set Target statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 147 MB_Ref.pdf

Reference Guide Chapter 4: Create Ellipse statement

Create Ellipse statement

Purpose
Creates an ellipse or circle object.

Syntax

Create Ellipse
[Into { Window window id | Variable var name }]
(x1, y1) (x2, y2)
[Pen . . . 1]
[Brush . . .]

window_id is a window identifier

var_name is the name of an existing object variable

x1 y1 specifies one corner of the rectangle which the ellipse will fill
x2 y2 specifies the opposite corner of the rectangle

The Pen clause specifies a line style

The Brush clause specifies a fill style

Description
The Create Ellipse statement creates an ellipse or circle object. If the object’s Minimum Bounding
Rectangle (MBR) is defined in such a way that the x-radius equals the y-radius, the object will be a
circle; otherwise, the object will be an ellipse.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a lat/long coordinate system, although the Set CoordSys statement can re-configure
MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement. Before creating objects on a Layout window, you must issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Ellipse statement uses the current Maplnfo Professional line style (the
style which appears in the Options > Line Style dialog). Similarly, the optional Brush clause specifies a
fill style; see the Brush discussion for more details.

See Also
Brush clause, CreateCircle() function, Insert statement, Pen clause, Update statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 148 MB_Ref.pdf

Reference Guide Chapter 4: Create Frame statement

Create Frame statement

Purpose
Creates a new frame in a Layout window.

Syntax

Create Frame

Into { Window layout win id | Variable var name }]
x1l, y1) (x2 , y2)

Pen . . .]

Brush . . .]

Title title]

From Window contents win id]

FillFrame { On | Off }]

— e~

x1, y1 specifies one corner of the new frame to create

x2 , y2 specifies the other corner

layout _win_id is a Layout window’s Integer window identifier
var_name is the name of an Object variable

The Pen clause specifies a line style

The Brush clause specifies a fill style

title is a string identifying the frame contents (for example, “WORLD Map”); not needed if the From
Window clause is used

contents_win_id is an Integer window ID indicating which window will appear in the frame

Description

The Create Frame statement creates a new frame within an existing Layout window. If no
layout_win_id is specified, the new frame is added to the topmost Layout window. Before creating
objects on a Layout window, you must issue a Set CoordSys Layout statement.

Between sessions, Maplinfo Professional preserves Layout window settings by storing Create Frame
statements in the workspace file. To see an example of the Create Frame statement, create a Layout,
save the workspace, and examine the workspace file in a text editor.

The Pen clause dictates what line style will be used to display the frame, and the Brush clause
dictates the fill style used to fill the frame window.

Use the From Window clause to specify which window should appear inside the frame. For example,
to make a Map window appear inside the frame, specify From Window i_map (where i_map is an
Integer variable containing the Map’s window identifier). A window must already be open before you
can create a frame containing the window.

The Title clause provides an alternate syntax for specifying which window appears in the frame. For
example, to identify a Map window which displays the table WORLD, the Title clause should read Title
“WORLD Map”. If the title string does not refer to an existing window, or if title is an empty string (**),
the frame will be empty. If you specify both the Title clause and the From Window clause, the latter
clause takes effect.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 149 MB_Ref.pdf

Reference Guide Chapter 4: Create Grid statement

The FillFrame clause controls how the window fills the frame. If you specify FillFrame On, the entire
frame is filled with an image of the window. (This is analogous to checking the Fill Frame With Contents
check box in Maplnfo Professional’s Frame Object dialog box, which appears if you double-click a
frame.) If you specify FillFrame Off (or if you omit the FillFrame clause entirely), the aspect ratio of the

window affects the appearance of the frame; in other words, re-sizing a Map window to be tall and thin
causes the frame to appear tall and thin.

Example

The following examples show how to create a frame for a Map window’s thematic legend, or
cartographic legend window.

Theme Legend windows are a special case. To create a frame for a Theme Legend window, you must
use the Title clause instead of the From Window clause.:

Dim i layout id, i map id As Integer
Dim s_title As String

' here, you would store the Map window’s ID in i map_ id,
' and store the Layout window’s ID in i_layout_ id.
' To obtain an ID, call FrontWindow() or WindowID().

s _title = ”"Theme Legend of ” + WindowInfo(i map id, WIN INFO NAME)
Set CoordSys Layout Units ”in”
Create Frame

Into Window i_layout_ id

(1,2) (4, 5)

Title s_title

To create a frame for a Map window’s cartographic legend, you should use the From Window clause
since there may be more than one cartographic legend window per map.

Dim i_cartlgnd_id As Integer

' here, you would store the Cartographic Legend window’s ID
in i cartlgnd _id,

'’ To obtain an ID, call FrontWindow() or WindowID().

7

Create Frame
Into Window i_layout id
(1,2) (4, 5)
From Window i cartlgnd id

See Also

Brush clause, Insert statement, Layout statement, Pen clause, Set CoordSys statement, Set
Layout statement, Update statement

Create Grid statement

A grid surface theme is a continuous raster grid produced by an interpolation of point data. The Create
Grid statement takes a data column from a table of points, and passes those points and their data

values to an interpolator. The interpolator produces a raster grid file, which MapBasic displays as a
raster table in a map window.

The Create Grid statement reads (x, y, z) values from the table specified in the From clause. It gets
the z or zed values by evaluating the expression specified in the With clause with respect to the table.

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 150 MB_Ref.pdf

Reference Guide Chapter 4: Create Grid statement

The dimensions of the grid can be specified in two ways. One is by specifying the size of a grid cell in
distance units, such as miles. The other is by specifying a minimum height or width of the grid in terms
of grid cells. For example, if you wanted the grid to be at least 200 cells wide by 200 cells high, you
would specify “cell min 200”. Depending on the aspect ratio of the area covered by the grid, the actual
grid dimensions won’t be 200 by 200, but it will be at least that wide and high.

Syntax

Create Grid
From tablename
With expression [Ignore value to ignore]
Into filespec [Type grid type]
[Coordsys ...]
[Clipping { Object obj } | { Table tablename }]
Inflect num inflections at By Percent]
color : inflection value
[color : inflection value ...]
[Round rounding factor]
{ [cell size cell size [Units distance unit]] | [Cell Min n cells] }
[Border numcells]
Interpolate With interpolator name Version version string Using
num_parameters parameter name : parameter value
[parameter name : parameter value ...]

tablename is the "alias” name of an open table from which to get data points.
expression is the expression by which the table will be shaded, such as a column name.

value_to_ignore is a value to be ignored; this is usually zero. No grid theme will be created for a row if
the row’s value matches the value to be ignored.

filespec specifies the fully qualified path and name of the new grid file. It will have a .MIG extension.

grid_type is a string expression that specifies the type of grid file to create. By default, .MIG files are
created.

Coordsys is an optional coordsys clause which is the coordinate system that the grid will be created
in. If not provided, the grid will be created in the same coordsys as the source table. Refer to the
Coordsys clause for more information.

obj is an object to clip grid cells to. Only the portion of the grid theme within the object will display. If a
grid cell is not within the object, that cell value will not be written out and a null cell is written in its place.

tablename is the name of a table of region objects which will be combined into a single region object
and then used for clipping grid cells.

num_inflections is a numeric expression, specifying the number of color:value inflection pairs.
color is a color expression of, part of a color:value inflection pair.

inflection_value is a numeric expression, specifying the value of a color:value inflection pair.
cell_size is a numeric expression, specifying the size of a grid cell in distance units.

n_cells is a numeric expression that specifies the height or width of the grid in cells.

numcells defines the number of cells to be added around the edge of the original grid bounds. numcells
will be added to the left, right, top and bottom of the original grid dimensions.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 151 MB_Ref.pdf

Reference Guide Chapter 4: Create Grid statement

distance_unit is a string expression, specifying the units for the preceding cell size. This is an optional
parameter. If not present, the distance units from the table’s coordinate system are used.

interpolator_name is a string expression, specifying the name of the interpolator to use to create the
grid.

version_string is a string expression, specifying the version of the interpolator that the parameters are
meant for.

num_parameters is a numeric expression, specifying the number of interpolator parameter name:value
pairs.

parameter_name is a string expression, specifying the name part of a name:value pair.
parameter_value is a numeric expression, specifying the value part of a name:value pair.
By Percent is a string expression, specifying the name part of a name:value pair.

Round is a numeric expression, specifying the value part of a name:value pair.

Example

Open Table ”C:\States.tab” Interactive
Map From States

Open Table “C:\Us_elev.tab” Interactive
Add Map Auto Layer Us elev

set map redraw off

Set Map Layer 1 Display Off

set map redraw on

create grid
from Us_elev
with Elevation FT
into ”C:\Us_elev _grid”
clipping table States
inflect 5 at

RGB(0, 0, 255) : 13
RGB(0, 255, 255) : 3632.5
RGB(0, 255, 0) : 7252
RGB (255, 255, 0) : 10871.5
RGB (255, 0, 0) : 14491
cell min 200
interpolate
with ”IDW” version “100”
using 4
"EXPONENT” : "2"
"MAX POINTS”: "25"
"MIN POINTS”: "1"
"SEARCH RADIUS”: ”100”

See Also
Set Map statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 152 MB_Ref.pdf

Reference Guide Chapter 4: Create Index statement

Create Index statement

Purpose
Creates an index for a column in an open table.

Syntax
Create Index On table (column)

table is the name of an open table
column is the name of a column in the open table

Description

The Create Index statement creates an index on the specified column. Maplinfo Professional uses
Indexes in operations such as Query > Find. Indexes also improve the performance of queries in
general.

Note: Maplinfo Professional cannot create an index if the table has unsaved edits. Use the Commit
statement to save edits.
Example
The following example creates an index for the “Capital” field of the World table.

Open Table ”"world” Interactive
Create Index on World(Capital)

See Also
Alter Table statement, Create Table statement, Drop Index statement

Create Legend statement

Purpose
Creates a new theme legend window tied to the specified Map window.

For versions 5.0 and later, , the Create Cartographic Legend statement allows you to create and
display cartographic style legends. Refer to the Create Cartographic Legend statement for more
information.

Syntax

Create Legend
[From Window window ID]
[{ Show | Hide }]

window_ID is an Integer, representing a Maplnfo Professional window ID for a Map window

Description
This statement creates a special floating, thematic legend window, in addition to the standard Maplnfo
Professional legend window. (To open Maplinfo Professional’s standard legend window, use the Open
Window Legend statement.)

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 153 MB_Ref.pdf

Reference Guide Chapter 4: CreateLine() function

The Create Legend statement is useful if you want the legend of a Map window to always be visible,
even when the Map window is not active. Also, this statement is useful in “Integrated Mapping”
applications, where MaplInfo Professional windows are integrated into another application, such as a
Visual Basic application. For information about Integrated Mapping, see the MapBasic User Guide,
Chapter 11.

If you include the From Window clause, the new theme legend window is tied to the window that you
specify; otherwise, the new window is tied to the most recently used Map.

If you include the optional Hide keyword, the window is created in a hidden state. You can then show
the hidden window by using the Set Window ... Show statement.

After you issue the Create Legend statement, determine the new window’s Integer ID by calling
WindowlID(0). Use that window ID in subsequent statements (such as Set Window).

The new theme legend window is created according to the parent and style settings that you specify
through the Set Next Document statement.

See Also
Create Cartographic Legend statement, Open Window statement, Set Next Document statement

CreateLine() function

Purpose
Returns an Object value representing a line.

Syntax
CreatelLine(x1 , yl1, x2 , y2)

x1 is a Float value, indicating the x-position (for example, Longitude) of the line’s starting point
y1is a Float value, indicating the y-position (for example, Latitude) of the line’s starting point
x2 is a Float value, indicating the x-position of the line’s ending point

y2 is a Float value, indicating the y-position of the line’s ending point

Return Value
Object

Description

The CreateLine() function returns an Object value representing a line. The x and y parameters use
the current coordinate system. By default, MapBasic uses a longitude, latitude coordinate system. Use
the Set CoordSys statement to choose a new system.

The line object will use whatever Pen style is currently selected. To create a line object with a specific
Pen style, you could issue the Set Style statement before calling CreateLine() or you could issue a
Create Line statement, with an optional Pen clause.

The line object created through the CreateLine() function could be assigned to an Object variable,
stored in an existing row of a table (through the Update statement), or inserted into a new row of a
table (through an Insert statement). If you need to create objects on a Layout window, you must first
issue a Set CoordSys Layout statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 154 MB_Ref.pdf

Reference Guide Chapter 4: Create Line statement

Example

The following example uses the Insert statement to insert a new row into the table Routes. The
CreateLine() function is used within the body of the Insert statement.
Open Table ”"Routes”

Insert Into routes (obj)
Values (CreateLine(-72.55, 42.431, -72.568, 42.435))

See Also
Create Line statement, Insert statement, Update statement

Create Line statement

Purpose

Creates a line object.

Syntax

Create Line
[Into { Window window id | Variable var name }]
(x1, y1) (x2, y2)
[Pen . . .]

window_id is a window identifier

var_name is the name of an existing object variable
x1, y1 specifies the starting point of a line

x2, y2 specifies the ending point of the line

The Pen clause specifies a line style

Description

The Create Line statement creates a line object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window ,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 155 MB_Ref.pdf

Reference Guide Chapter 4: Create Map statement

The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Line statement will use the current MaplInfo Professional line style.

See Also
CreateLine() function, Insert statement, Pen clause, Update statement

Create Map statement

Purpose

Modifies the structure of a table, making the table mappable.

Syntax

Create Map
For table
[CoordSys...] Using from table]

table is the name of an open table
CoordSys... is a CoordSys clause

Description

The Create Map statement makes an open table mappable, so that it can be displayed in a Map
window.

This statement does not open a new Map window. To open a new Map window, use the Map
statement.

You should not perform a Create Map statement on a table that is already mappable; doing so will
delete all map objects from the table. If a table already has a map attached, and you wish to
permanently change the projection of the map, use a Commit Table As statement. Alternately, if you
wish to temporarily change the projection in which a map is displayed, issue a Set Map statement with
a CoordSys clause. The Create Map statement does not work on linked tables. To make a linked table
mappable, use the Server Create Map statement.

Specifying the Coordinate System
Use one of the following two methods to specify the coordinate system:

Provide the name of an already open mappable table as the from_table portion of the Using clause. In
this case, the coordinate system used will be identical to that used in the from_table. The from_table
must be a currently open table, and must be mappable or an error will occur.

Explicitly supply the coordinate system information through a CoordSys clause (set in preferences).If
you omit both the CoordSys clause and the Using clause, the table will use the current MapBasic
coordinate system.

Note that the CoordSys clause affects the precision of the map. The CoordSys clause includes a
Bounds clause, which sets limits on the minimum and maximum coordinates that can be stored in the
map. If you omit the Bounds clause, MaplInfo Professional uses default bounds that encompass the
entire Earth (in which case, coordinates are precise to one millionth of a degree, or approximately 4
inches). If you know in advance that the map you are creating will be limited to a finite area (for

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 156 MB_Ref.pdf

Reference Guide Chapter 4: Create Map3D statement

example, a specific metropolitan area), you can increase the precision of the map's coordinates by
specifying bounds that confine the map to that area. For a complete listing of the CoordSys syntax,
see the separate discussion of the CoordSys clause.

See Also
Commit Table statement, CoordSys clause, Create Table statement, Drop Map statement, Map
statement, Server Create Map statement, Set Map statement

Create Map3D statement

Purpose
Creates a 3DMap with the desired parameters.

Syntax

Create Map3D
From Window window id | MapString mapper creation string]
Camera [Pitch angle | Roll angle | Yaw angle | Elevation angle] |

[
[
[
[

Position (x,y,z) | FocalPoint (x,y,z) 1 |

Orientation (vu 1, vu 2, vu 3, vpn 1, vpn 2, vpn 3, clip near,
clip far) 1 1]

Light [Position (x,y,z) | Color lightcolor] 1]

[

[Resolution (res x, res y) 1
[Scale grid scale]

[Background backgroundcolor]
[Units unit name]

window_id is a window identifier a for a mapper window which contains a Grid layer. An error message
is displayed if a Grid layer is not found.

mapper_creation_string specifies a command string that creates the mapper textured on the grid.
Camera specifies the camera position and orientation.

angle is an angle measurement in degrees. The horizontal angle in the dialog ranges from 0-360
degrees and rotates the maps around the center point of the grid. The vertical angle in the dialog
ranges from 0-90 and measures the rotation in elevation from the start point directly over the map.

Pitch adjusts the camera’s current rotation about the X Axis centered at the camera’s origin.

Roll adjusts the camera’s current rotation about the Z Axis centered at the camera’s origin.

Yaw adjusts the camera’s current rotation about the Y Axis centered at the camera’s origin.
Elevation adjusts the current camera’s rotation about the X Axis centered at the camera’s focal point.
Position indicates the camerallight position.

FocalPoint indicates the cameral/light focal point

Orientation specifies the cameras ViewUp, ViewPlane Normal and Clipping Range (used specifically
for persistence of view).

Resolution is the number of samples to take in the X and Y directions. These values can increase to a
maximum of the grid resolution. The resolution values can increase to a maximum of the grid x,y
dimension. If the grid is 200x200 then the resolution values will be clamped to a maximum of 200x200.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 157 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu statement

You can’t increase the grid resolution, only specify a subsample value.
grid_scale is the amount to scale the grid in the Z direction. A value >1 will exaggerate the topology in
the Z direction, a value <1 will scale down the topological features in the Z direction.

backgroundcolor is a color to be used to set the background and is specified using the RGB function.

Units specifies the units the grid values are in. Do not specify this for unitless grids (i.e., grids
generated using temperature or density). This option needs to be specified at creation time. You
cannot change them later with Set Map3D or the Properties dialog.

Description

Once it is created, the 3DMap window is a standalone window. Since it is based on the same tables as
the original Map window, if these tables are changed and the 3DMap window is manually “refreshed” or
re-created from a workspace, these changes will be displayed on the grid.

The creation will fail if the window _id is not a Map window or if the Map window does not contain a Grid
layer. If there are multiple grids in the Map window, each will be represented in the 3DMap window.

A 3DMap keeps a Mapper creation string as its texture generator. This string will also be prevalent in
the workspace when the 3DMap window is persisted. The initialization will read in the grid layer to
create 3D geometry and topology objects.

Example
Create Map3D Resolution(75,75)
Creates a 3DMap window of the most recent Map window. It will fail if the window does not contain any
Continuous Grid layers. Another example is:

Create Map3D From Window FrontWindow() Resolution(100,100) Scale 2 Background
RGB(255,0,0) Units “ft”.

Creates a 3DMap window with a Red background, the z units set to feet, a Z scale factor of 2, and the
grid resolution set to 100x100.

See Also
Set Map3D statement

Create Menu statement

Purpose

Creates a new menu, or redefines an existing menu.

Syntax 1

Create Menu newmenuname [ID menu id] As
menuitem [ID menu item id] [HelpMsg help]
{ calling handler | As menuname }
[, menuitem . . .]

Syntax 2

Create Menu newmenuname As Default

newmenuname is a String representing the name of the menu to define or redefine
menuitem is a String representing the name of an item to include on the new menu

menu_id is a Smalllnt ID number from one to fifteen, identifying a standard menu

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 158 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu statement

menu_item_id is an Integer ID number that identifies a custom menu item
help is a String that appears on the status bar whenever the menu item is highlighted

handler is the name of a procedure, or a code for a standard menu command, or a special syntax for
handling the menu event by calling OLE or DDE; see Calling Clause Options, below. If you specify a
command code for a standard MaplInfo Professional Show/Hide command (such as
M_WINDOW_STATISTICS), the menuitem string must start with an exclamation point and include a
caret ("), to preserve the item’s Show/Hide behavior.

menuname is the name of an existing menu to include as a hierarchical submenu

Description

If the newmenuname parameter matches the name of an existing Maplnfo Professional menu (such as
“File”), the statement re-defines that menu. If the newmenuname parameter does not match the name
of an existing menu, the Create Menu statement defines an entirely new menu. For a list of the
standard MapInfo Professional menu names, see the discussion of the Alter Menu statement.

The Create Menu statement does not automatically display a newly-created menu; a new menu will
only display as a result of a subsequent Alter Menu Bar statement or Create Menu Bar statement.
However, if a Create Menu statement modifies an existing menu, and if that existing menu is already
part of the menu bar, the change will be visible immediately.

Note: Maplnfo Professional can maintain no more than 96 menu definitions at one time, including the
menus defined automatically by Maplnfo Professional (“File”, etc.). This limit is independent of
the number of menus displayed on the menu bar at one time.

The menuitem parameter identifies the name of the menu item. The item’s name can contain special

control characters to define menu item attributes (for example, whether a menu item is checkable).

See tables below for details.

The following characters require special handling: slash (/), back slash(\), and less than (<). If you want
to display any of these special characters in the menu or the status bar help, you must include an extra
back slash in the menuitem string or the help string. For example, the following statement creates a
menu item that reads, “Client/Server.”

Create Menu ”"Data” As
“Client\/Server” Calling cs_proc
If a menuitem parameter begins with the character @, the custom menu breaks into two columns. The
item whose name starts with @ is the first item in the second column.

Assigning Handlers to Custom Menu Items

Most menu items include the Calling handler clause; a handler is either the name of a MapBasic
procedure or a numeric code identifying an Maplnfo Professional operation (such as M_FILE_SAVE to
specify the File > Save command). If the user chooses a menu item which has a handler, MapBasic
automatically calls the handler (whether the handler is a sub procedure or a command code). Your
program must Include the file MENU.DEF if you plan to refer to menu codes such as M_FILE_SAVE.

The optional ID clause lets you assign a unique Integer ID to each custom menu item. Menu item IDs
are useful if you want to allow multiple menu items to call the same handler procedure. Within the
handler procedure, you can determine which menu item the user chose by calling
Commandinfo(CMD_INFO_MENUITEM). Menu item IDs can also be used by other statements, such

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 159 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu statement

as Alter Menu Item. If a menu item has neither a handler nor a menuname associated with it, that
menu item is inert. Inert menu items are used for cosmetic purposes, such as displaying horizontal
lines which break up a menu.

Creating Hierarchical Menus

To include a hierarchical menu on the new menu, use the As sub-clause instead of the Calling sub-
clause. The As sub-clause must specify the name of the existing menu which should be attached to
the new menu. The following example creates a custom menu containing one conventional menu item
and one hierarchical menu.

Create Menu ”“Special” As
"Configure” Calling config sub proc,
"Objects” As "Objects”
When you add a hierarchical menu to the menu, the name of the hierarchical menu appears on the
parent menu instead of the menuitem string.

Properties of a Menu Iltem

Menu items can be enabled or disabled; disabled items appear grayed out. Some menu items are
checkable, meaning that the menu can display a check mark next to the item. At any given time, a
checkable menu item is either checked or unchecked.

To set the properties of a menu item, include control codes (from the table below) at the start of the
menuitem parameter.

Control
code Effect

(The menu item is initially disabled. Example: ”(Close”

(- The menu item is a horizontal separator line; such a menu item cannot have a han-
dler. Example: "(-”

($ This special code represents the File menu’s most-recently-used (MRU) list. It may
only appear once in the menu system, and it may not be used on a shortcut menu.
To eliminate the MRU list from the File menu, either delete this code from MAPIN-

FOW.MNU or re-create the File menu by issuing a Create Menu statement.

> This special code represents the Window menu'’s list of open windows. It may only
appear once in the menu system.

! Menu item is checkable, but it is initially unchecked.
Example: ”"IConfirm Deletions”

T.Ah If a caret (*) appears within the text string of a checkable menu item, the item tog-
gles between alternate text (for example, Show... vs. Hide...) instead of toggling
between checked and unchecked. The text before the caret appears when the item
is “checked.” Example: "Hide Status Bar*Show Status Bar”

1+ Menu item is checkable, and it is initially checked.
Example: "1+Confirm Deletions”

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 160 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu statement

Defining Keyboard Shortcuts

Menu items can have two different types of keyboard shortcuts, which let the user choose menu items
through the keyboard rather than by clicking with the mouse.

One type of keyboard shortcut lets the user drop down a menu or choose a menu item by pressing
keys. For example, on Mapinfo Professional, the user can press Alt-W to show the Window menu, then
press M (or Alt-M) to choose New Map Window. To create this type of keyboard shortcut, include the
ampersand character (&) in the newmenuname or menuitem string (for example, specify “&Map” as the
menuitem parameter in the Create Menu statement). Place the ampersand immediately before the
character to be used as the shortcut.

The other type of keyboard shortcut allows the user to activate an option without going through the
menu at all. If a menu item has a shortcut key sequence of Alt-F5, the user can activate the menu item
by pressing Alt-F5. To create this type of shortcut, use the following key sequences.

Note: The codes in the following tables must appear at the end of a menu item name.

Windows Accelerator
Code Effect

/W {letter | %onumber} | Defines a Windows shortcut key which can be activated by pressing
the appropriate key.
Examples: "Zap /WZ” or "Zap /W%120”

IW# {letter | Y%onumber} | Defines a Windows shortcut key which also requires the shift key.
Examples: "Zap /W#Z” or "Zap /W#%120”

W@ {letter | Y%onum- Defines a Windows shortcut key which also requires the Alt key.
ber} Examples: "Zap /IW@Z” or "Zap IW@%120”

/WA {letter | %onumber} | Defines a Windows shortcut key which also requires the Ctrl key.
Examples: "Zap /WAZ" or "Zap /W"%120”

To specify a function key as a Windows accelerator, the accelerator code must include a percent sign
(%) followed by a number. The number 112 corresponds to F1; 113 corresponds to F2; etc.

Note: The Create Menu Bar As Default statement removes and un-defines all custom menus created
through the Create Menu statement. Alternately, if you need to un-define one, but not all, of the
custom menus that your application has added, you can issue a statement of the form Create
Menu menuname As Default.

After altering a standard Maplinfo Professional menu (for example, “File”), you can restore the menu to

its original state by issuing a Create Menu menuname As Default statement.

Calling Clause Options

The Calling clause specifies what should happen when the user chooses the custom menu command.
The following table describes the available syntax.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 161 MB_Ref.pdf

Reference Guide

Chapter 4: Create Menu statement

Calling clause example

Description

Calling M_FILE_NEW

If Calling is followed by a numeric code from
MENU.DEF, Maplnfo Professional handles the event by
running a

standard MaplInfo Professional menu command (the
File > New command, in this example).

Calling my procedure

If you specify a procedure name, Maplinfo Professional
handles the event by calling the procedure.

Calling OLE “methodname”

Windows only. MaplInfo Professional handles the event
by making a method call to the OLE Automation object
set by the SetCallback method.

Calling DDE ”server”, “topic”

Windows only. MaplInfo Professional handles the event
by connecting through DDE to “server|topic” and send-
ing an Execute message to the DDE server.

In the last two cases, the string sent to OLE or DDE starts with the three letters “MI:” (so that the server
can detect that the message came from Maplinfo). The remainder of the string contains a comma-

separated list of the values returned from relevant CommandIinfo() calls. For complete details on the
string syntax, see the MapBasic User Guide.

Examples

The following example uses the Create Menu statement to create a custom menu, then adds the
custom menu to Maplnfo Professional’s menu bar. This example removes the Window menu (ID 6) and
the Help menu (ID 7), and then adds the custom menu, the Window menu, and the Help menu back to
the menu bar. This technique guarantees that the last two menus will always be Window, Help.

Declare Sub Main

Declare Sub addsub
Declare Sub editsub
Declare Sub delsub

Sub Main

Create Menu ”"DataEntry” As

"Add” Calling addsub,

"Edit” Calling editsub,
"Delete” Calling delsub

Alter Menu Bar Remove ID 6, ID 7
Alter Menu Bar Add ”DataEntry”, ID 6, ID 7

End Sub

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

162

MB_Ref.pdf

Reference Guide Chapter 4: Create Menu Bar statement

The following example creates an abbreviated version of the File menu. The “(” control character
specifies that the Close, Save, and Print options will be disabled initially. The Open and Save options
have Windows accelerator key sequences (Ctrl+O and Ctrl+S, respectively). Note that both the Open
and Save options use the function Chr$(9) to insert a Tab character into the menu item name, so that
the remaining text is shifted to the right.

Include ”MENU.DEF”

Create Menu “File” As
"New” Calling M_FILE NEW,
"Open” +Chrs$ (9) +”"Ctrl+0/W*0" Calling M_FILE OPEN,

" (_Il

" (Close” Calling M FILE CLOSE,
" (Save” +Chr$(9)+”Ctrl+S /W"S” Calling M _FILE SAVE,

" (-
’

" (Print” Calling M_FILE PRINT,

" (_”1

"Exit” Calling M _FILE EXIT

If you want to prevent the user from having access to Mapinfo Professional’s shortcut menus, use a
Create Menu statement to re-create the appropriate menu, and define the menu as just a separator
control code: “(-". The following example uses this technique to disable the Map window’s shortcut
menu.

Create Menu "MapperShortcut” As ” (-”

See Also
Alter Menu Item statement, Create Menu Bar statement

Create Menu Bar statement

Purpose
Rebuilds the entire menu bar, using the available menus.

Syntax 1

Create Menu Bar As
{ menu name | ID menu number }
[, { menu name | ID menu number } . . .]

Syntax 2

Create Menu Bar As Default

menu_name is the name of a standard MapInfo Professional menu, or the name of a custom menu
created through a Create Menu statement

menu_number is the number associated with a standard MaplInfo Professional menu (for example, 1
for the File menu)

Description
A Create Menu Bar statement tells Maplnfo Professional which menus should appear on the menu
bar, and in what order. If the statement omits one or more of the standard menu names, the resultant
menu may be shorter than the standard MapInfo Professional menu. Conversely, if the statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 163 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu Bar statement

includes the names of one or more custom menus (which were created through the Create Menu
statement), the Create Menu Bar statement can create a menu bar that is longer than the standard
MaplInfo Professional menu.

Any menu can be identified by its name (for example, “File”), regardless of whether it is a standard
menu or a custom menu. Each of MaplInfo Professional’s standard menus can also be referred to by its
menu ID; for example, the File menu has an ID of 1.

See the Alter Menu statement for a listing of the names and ID numbers of MaplInfo Professional’s
menus.

After the menu bar has been customized, the following statement:

Create Menu Bar As Default

restores the standard Maplnfo Professional menu bar. Note that the Create Menu Bar As Default
statement removes any custom menu items that may have been added by other MapBasic
applications that may be running at the same time. For the sake of not accidentally disabling other
MapBasic applications, you should exercise caution when using the Create Menu Bar As Default
statement.

Examples
The following example shortens the menu bar so that it includes only the File, Edit, Query, and window-
specific (for example, Map, Browse, etc.) menus.

Create Menu Bar As
"File”, "Edit”, "Query”, "WinSpecific”

Ordinarily, the Maplnfo Professional menu bar only displays a Map menu when a Map window is the
active window. Similarly, MaplInfo Professional only displays a Browse menu when a Browse window is
the active window. The following example redefines the menu bar so that it always includes both the
Map and Browse menus, even when no windows are on the screen. However, all items on the Map
menu will be disabled (grayed out) whenever the current window is not a Map window, and all items on
the Browse menu will be disabled whenever the current window is not a Browse window.

Create Menu Bar As
" Flle" , " Edlt” s " Query" , IlMapll , " Browse"
The following example creates a custom menu, called DataEntry, and then redefines the menu bar so
that it includes only the File, Edit, and DataEntry menus.
Declare Sub AddSub

Declare Sub EditSub
Declare Sub DelSub

Create Menu “DataEntry” As
"Add” calling AddSub,
"Edit” calling EditSub,
"Delete” calling DelSub

Create Menu Bar As
"File”, "Edit”, "DataEntry”

See Also
Alter Menu Bar statement, Create Menu statement, Menu Bar statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 164 MB_Ref.pdf

Reference Guide Chapter 4: Create MultiPoint statement

Create MultiPoint statement

Purpose
Combines a number of points into a single object. All points have the same symbol. The Multipoint
object displays in the Browser as a single record

Syntax:

Create Multipoint
[Into { Window window id | Variable var name }]
[num points]
(x1, y1) (x2, y2) [...]
[Symbol . . .]

window_id is a window identifier

var_name is the name of an existing object variable
num_points - number of points inside Multipoint object.
x y specifies the location of the point

The Symbol clause specifies a symbol style.

Note: One symbol is used for all points contained in a Multipoint object.
Currently MaplInfo Professional uses the following four different syntaxes to define a symbol used for
points:
Syntax 1 (Mapinfo 3.0 Symbol Syntax)
Symbol (shape, color, size)

shape is an Integer, 31 or larger, specifying which character to use from MapInfo Professional’s
standard symbol set. Mapinfo 3.0 symbols refers to the symbol set that was originally published with
Maplnfo for Windows 3.0 and has been maintained in subsequent versions of Maplnfo Professional. To
create an invisible symbol, use 31. The standard set of symbols includes symbols 31 through 67, but
the user can customize the symbol set by using the Symbol application.

color is an Integer RGB color value; see the RGB() function.
size is an Integer point size, from 1 to 48.

Syntax 2 (TrueType Font Syntax)

Symbol (shape, color, size, fontname, fontstyle, rotation)

shape is an Integer, 31 or larger, specifying which character to use from a TrueType font. To create an
invisible symbol, use 31.

color is an Integer RGB color value; see the RGB() function.

size is an Integer point size, from 1 to 48.

fontname is a string representing a TrueType font name (for example, "Wingdings").
fontstyle is an Integer code controlling attributes such as bold.

rotation is a floating-point number representing a rotation angle, in degrees.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 165 MB_Ref.pdf

Reference Guide Chapter 4: Create Object statement

Syntax 3 (Custom Bitmap File Syntax)

Symbol (filename, color, size, customstyle)

filename is a string up to 31 characters long, representing the name of a bitmap file. The file must be in
the CUSTSYMB directory (unless a Reload Symbols statement has been used to specify a different
directory).

color is an Integer RGB color value; see the RGB() function.
size is an Integer point size, from 1 to 48.
customstyle is an Integer code controlling color and background attributes. See table below.

Syntax 4
Symbol symbol expr
symbol_expris a Symbol expression, which can either be the name of a Symbol variable, or a function
call that returns a Symbol value, for example, MakeSymbol

Example:
Create Multipoint 7 (0,0) (1,1) (2,2) (3,4) (-1,1) (3,-2) (4,3)

Create Object statement

Purpose

Creates one or more regions by performing a Buffer, Merge, Intersect, Union or Voronoi operation.

Syntax

Create Object As { Buffer | Union | Intersect | Merge | ConvexHull | Voronoi }
From fromtable
[Into { Table intotable | Variable varname }]

[Wwidth bufferwidth [Units unitname]]] [Type {Spherical | Cartesian}]]
[Resolution smoothness]

[Data column = expression [, column = expression . . .] 1]

[

Group By { column | RowID }]

fromtable is the name of an open table, containing one or more graphic objects
intotable is the name of an open table where the new object(s) will be stored
varname is the name of an Object variable where a new object will be stored

bufferwidth is a number indicating the displacement used in a Buffer operation; if this number is
negative, and if the source object is a closed object, the resulting buffer is smaller than the source
object. If the width is negative, and the object is a linear object (line, polyline, arc) or a point, then the
absolute value of width is used to produce a positive buffer.

unitname is the name of a distance unit (for example, “km” for kilometers)

smoothness is an Integer from 2 to 100, indicating the number of segments per circle in a Buffer
operation

column is the name of a column in the table

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 166 MB_Ref.pdf

Reference Guide Chapter 4: Create Object statement

Description

The Create Object statement creates one or more new region objects, by performing a geographic
operation (Buffer, Merge, Intersect, Union , ConvexHull or Voronoi) on one or more existing
objects.

The Into clause specifies where results are stored. To store the results in a table, specify Into Table.
To store the results in an Object variable, specify Into Variable. If you omit the Into clause, results are
stored in the source table.

Note: If you specify a Group By clause to perform data aggregation, you must store the results to a
table rather than a variable.

The keyword which follows the As keyword dictates what type of objects will be created. Specify

Buffer to generate buffer regions; see below for details. Specify Intersect to create an object

representing the intersection of other objects (for example, if two regions overlap, the intersection is the

area covered by both objects).

Specify Merge to create an object representing the combined area of the source objects. The Merge
operation produces a results object that contains all of the polygons that belonged to the original
objects. If the original objects overlap, the merge operation does not eliminate the overlap. Thus, if you
merge two overlapping regions (each of which contains one polygon), the end result may be a region
object that contains two overlapping polygons. In general, Union should be used instead.

Specify Union to perform a combine operation, which eliminates any areas of overlap. If you perform
the union operation on two overlapping regions (each of which contains one polygon), the end result
may be a region object that contains one polygon.

The union and merge operations are similar, but they behave very differently in cases where objects
are completely contained within other objects. In this case, the merge operation removes the area of
the smaller object from the larger object, leaving a hole where the smaller object was. The union
operation does not remove the area of the smaller object.

Create Objects As Union is similar to the Objects Combine statement. Objects Combine will delete
the input and insert a new combined object. Create Objects As Union will only insert the new combined
object, it will not delete the input objects. Combining using a Target and potentially different tables is
only available with Objects Combine. The Combine Objects using Column functionality is only
available using Create Objects As Union using the Group By clause.

If a Create Object As Union statement does not include a Group By clause, MaplInfo Professional
creates one combined object for all objects in the table. If the statement includes a Group By clause, it
must name a column in the table to allow Maplinfo Professional to group the source objects according
to the contents of the column and produce a combined object for each group of objects.

If you specify a Group By clause, Maplnfo Professional groups all records sharing the same value,
and performs an operation (for example, merge) on the group.

If you specify a Data clause, MapInfo Professional performs data aggregation. For example, if you
perform merge or union operations, you may want to use the Data clause to assign data values based
on the Sum() or Avg() aggregate functions.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 167 MB_Ref.pdf

Reference Guide Chapter 4: Create Object statement

Use Type is the method used to calculate the buffer width around the object. It can either be Spherical
or Cartesian. Note that if the Coordsys of the intotable is NonEarth, then the calculations will be
performed using Cartesian methods regardless of the option chosen, and if the Coordsys of the
intotable is Latitude/Longitude, then calculations will be performed using Spherical methods
regardless of the option chosen.

Convex Hull Geographic Operation for the Create Object statement
Create Object As { Buffer | Union | Intersect | Merge | ConvexHull }

The Create Object statement creates one or more new region objects, by performing a geographic
operation (Buffer, Merge, Intersect, Union, or ConvexHull) on one or more existing objects.

The ConvexHull operator will create a polygon representing a convex hull around a set of points. The
convex hull polygon can be thought of as an operator that places a rubber band around all of the
points. It will consist of the minimal set of points such that all other points lie on or inside the polygon.
The polygon will be convex—no interior angle can be greater than 180 degrees.

The points used to construct the convex hull will be any nodes from Regions, Polylines, or Points in the
From table. If a Create Object As ConvexHull statement does not include a Group By clause,
Maplinfo Professional creates one convex hull polygon. If the statement includes a Group By clause
that names a column in the table, Mapinfo Professional groups the source objects according to the
contents of the column, then creates one convex hull polygon for each group of objects. If the
statement includes a Group By RowID clause, Mapinfo Professional creates one convex hull polygon
for each object in the source table.

Buffering

If the Create Object statement performs a Buffer operation, the statement can include Width and
Resolution clauses. The Width clause specifies the width of the buffer. The optional Units sub-clause
lets you specify a distance unit name (such as “km” for kilometers) to apply to the Width clause. If the
Width clause does not include the Units sub-clause, the buffer width will be interpreted in MapBasic's
current distance unit. By default, MapBasic uses miles as the distance unit; to change this unit, see the
Set Distance Units statement.

The optional Type sub-clause lets you specify the type of distance calculation used to create the buffer.
If the Spherical type is used, then the calculation will be done by mapping the data into a Latitude/
Longitude On Earth projection and using widths measured using Spherical distance calculations. If the
Cartesian type is used, then the calculation is done by considering the data to be projected to a flat
surface and widths are measured using cartesian distance calculations. If the Width clause does not
include the Type sub-clause, then the default distance calculation type Spherical is used. If the data is
in a Latitude/Longitude Projection, then Spherical calculations will be used regardless of the Type
setting. If the data is in a NonEarth Projection, the Cartesian calculations will be used regardless of the
Type setting.

The smoothness parameter lets you specify the number of segments comprising each circle of the
buffer region. By default, a buffer object has a smoothness value of twelve, meaning that there will be
twelve segments in a simple ring-shaped buffer region. By specifying a larger smoothness value, you
can produce smoother buffer regions. Note, however, that the larger the smoothness value, the longer
the Create Object statement takes, and the more disk space the resultant object occupies.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 168 MB_Ref.pdf

Reference Guide Chapter 4: Create Object statement

If a Create Object As Buffer statement does not include a Group By clause, Mapinfo Professional
creates one buffer region. If the statement includes a Group By clause which names a column in the
table, Maplinfo Professional groups the source objects according to the contents of the column, then
creates one buffer region for each group of objects. If the statement includes a Group By RowID
clause, Maplnfo Professional creates one buffer region for each object in the source table.

Voronoi

Specify Voronoi to create regions that represent the Voronoi solutions of the input points. The data
values from the original input points can be assigned to the resultant polygon for that point by
specifying data clauses.

Example

The following example merges region objects from the Parcels table, and stores the resultant regions
in the table Zones. Since the Create Object statement includes a Group By clause, MapBasic will
group the Parcel regions, then perform one merge operation for each group. Thus, the Zones table will
end up with one region object for each group of objects in the Parcels table. Each group will consist of
all parcels having the same value in the zone_id column.

Following the Create Object statement, the parcelcount column in the Zones table will indicate how
many parcels were merged to produce that zone. The zonevalue column in the Zones table will
indicate the sum of the values from the parcels that comprised that zone.

Open Table "PARCELS”

Open Table ”ZONES”

Create Object As Merge
From PARCELS Into Table ZONES Data
parcelcount=Count (*) , zonevalue=Sum (parcelvalue)
Group By zone id

The next example creates a region object, representing a quarter-mile buffer around whatever objects

are currently selected. The buffer object will be stored in the Object variable, corridor. A subsequent
Update or Insert statement could then copy the object to a table.
Dim corridor As Object
Create Object As Buffer
From Selection
Into Variable corridor

Width 0.25 Units "mi”
Resolution 60

The next example shows a multi-object convex hull using the Create Object As statement.

create object as convex hull from state caps into table dump table
See Also

Buffer() function, ConvexHull() function, Objects Combine statement, Objects Erase
statement, Objects Intersect statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 169 MB_Ref.pdf

Reference Guide Chapter 4: Create Pline statement

Create Pline statement

Purpose
Creates a polyline object.

Syntax

Create Pline
[Into { Window window id | Variable var name }]
[Multiple num sections]
num_points
(x1, y1) (x2, y2) [...]
[Pen . . .]
[Smooth]

window_id is a window identifier

var_name is the name of an existing object variable

num_points specifies how many nodes the polyline will contain

num_sections specifies how many sections the multi-section polyline will contain
each x y pair defines a node of the polyline

The Pen clause specifies a line style

Description
The Create Pline statement creates a polyline object. If you need to create a polyline object, but it will
not be known until run-time how many nodes the object should contain, create the object in two steps:
First, use Create Pline to create an object with no nodes, and then use Alter Object to add detail to
the polyline object. See the discussion of the Alter Object statement for more information.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If you omit the
Into clause, Maplinfo Professional attempts to store the object in the topmost window; if objects cannot
be stored in the topmost window; no object is created.

The x and y parameters use whatever coordinate system MapBasic is currently using (longitude,
latitude by default; see Set CoordSys for more information). Objects created on a Layout window,
however, are specified in paper units. By default, MapBasic uses inches as the paper unit. To use a
different paper unit, see the Set Paper Units statement. If you need to create objects on a Layout
window, you must first issue a Set CoordSys Layout statement.

The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Pline statement will use the current line style (the style which appears
in the MaplInfo Professional Options > Line Style dialog). Smooth will smooth the line so that it appears
to be one continuous line with curves instead of angles.

A single-section polyline can contain up to 32,763 nodes. For a multiple-section polyline, the limit is
smaller: for each additional section, reduce the number of nodes by three.

See Also
Alter Object statement, Insert statement, Pen clause, Update statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 170 MB_Ref.pdf

Reference Guide Chapter 4: CreatePoint() function

CreatePoint() function

Purpose
Returns an Object value representing a point.

Syntax

CreatePoint(x , y)

x is a Float value, representing an x-position (for example, Longitude)
y is a Float value, representing a y-position (for example, Latitude)

Return Value
Object

Description

The CreatePoint() function returns an Object value representing a point.

The x and y parameters should use whatever coordinate system MapBasic is currently using. By
default, MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement
can re-configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate
system is independent of the coordinate system of any Map window.

The point object will use whatever Symbol style is currently selected. To create a point object with a
specific Symbol style, you could issue the Set Style statement before calling CreatePoint().
Alternately, instead of calling CreatePoint(), you could issue a Create Point statement, which has an
optional Symbol clause.

The point object created through the CreatePoint() function could be assigned to an Object variable,
stored in an existing row of a table (through the Update statement), or inserted into a new row of a
table (through an Insert statement).

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

Examples

The following example uses the Insert statement to insert a new row into the table Sites. The
CreatePoint() function is used within the body of the Insert statement to specify the graphic object
that will be attached to the new row.

Open Table “sites”
Insert Into sites (obj)
Values (CreatePoint (-72.5, 42.4))

The following example assumes that the table Sites has Xcoord and Ycoord columns, which indicate
the longitude and latitude positions of the data. The Update statement uses the CreatePoint()
function to build a point object for each row in the table. Following the Update operation, each row in
the Sites table will have a point object attached. Each point object will be located at the position
indicated by the Xcoord, Ycoord columns.

Open Table “sites”
Update sites
Set obj = CreatePoint (xcoord, ycoord)

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 171 MB_Ref.pdf

Reference Guide Chapter 4: Create Point statement

The above example assumes that the Xcoord, Ycoord columns contain actual longitude and latitude
degree values. Note that MaplInfo for DOS pointfiles store coordinates in millionths of degrees, not
whole degrees. Also, most Maplinfo for DOS pointfiles store longitude coordinates in the “NorthWest
quadrant,” meaning that longitudes increase as you move westward. Thus, to perform the Update
operation on a Maplnfo for DOS pointfile, you would need to divide the Xcoord and Ycoord fields by
one million, and multiply the Xcoord field by negative one:

Update sites
Set obj = CreatePoint (-xcoord/1000000,ycoord/1000000)

See Also
Create Point statement, Insert statement, Update statement

Create Point statement

Purpose

Creates a point object.

Syntax

Create Point
[Into { Window window id | Variable var name }]
(x, v)
[Symbol . . .]

window_id is a window identifier

var_name is the name of an existing object variable
X y specifies the location of the point

The Symbol clause specifies a symbol style

Description

The Create Point statement creates a point object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 172 MB_Ref.pdf

Reference Guide Chapter 4: Create PrismMap statement

The optional Symbol clause specifies a symbol style; see the Symbol discussion for more details. If
no Symbol clause is specified, the Create Point statement uses the current symbol style (the style
which appears in the Options > Symbol Style dialog).

See Also

CreatePoint() function, Insert statement, Symbol clause, Update statement

Create PrismMap statement

Purpose

Creates a Prism map.

Syntax

Create PrismMap
[From Window window ID |
MapString mapper creation string]
{ layer id | layer name }

With expr
[Camera [Pitch angle | Roll angle | Yaw angle | Elevation angle] |
[Position (x,y,z) | FocalPoint (x,y,z) 1 |

[Orientation
(vu 1, vu 2, vu 3, vpn 1, vpn 2, vpn 3, clip near, clip far) 1 1
[Light Color lightcolor 1 1
[Scale grid scale 1
[Background backgroundcolor 1]

window_id is a window identifier a for a Map window which contains a region layer. An error message
is displayed if a layer with regions is not found.

mapper_creation_string specifies a command string that creates the mapper textured on the Prism
map.

layer_id is the layer identifier of a layer in the map (one or larger)
layer_name is the name of a layer in the map.
Camera specifies the camera position and orientation.

angle is an angle measurement in degrees. The horizontal angle in the dialog ranges from 0-360
degrees and rotates the maps around the center point of the grid. The vertical angle in the dialog
ranges from 0-90 and measures the rotation in elevation from the start point directly over the map.

Pitch adjusts the camera's current rotation about the X-Axis centered at the camera's origin.

Roll adjusts the camera's current rotation about the Z-Axis centered at the camera'’s origin.

Yaw adjusts the camera's current rotation about the Y-Axis centered at the camera's origin.

Elevation adjusts the current camera's rotation about the X-Axis centered at the camera's focal point.
Position indicates the camera and/or light position.

FocalPoint indicates the camera and/or light focal point.

Orientation specifies the cameras ViewUp, ViewPlane Normal and Clipping Range (used specifically
for persistence of view).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 173 MB_Ref.pdf

Reference Guide Chapter 4: Create PrismMap statement

grid_scale is the amount to scale the grid in the Z direction. A value >1 will exaggerate the topology in
the Z direction, a value <1 will scale down the topological features in the Z direction.

backgroundcolor is a color to be used to set the background and is specified using the RGB function.

Description
The Create PrismMap statement creates a Prism Map window. The Prism Map is a way to associate
multiple variables for a single object in one visual. For example, the color associated with a region may
be the result of thematic shading while the height the object is extruded through may represent a
different value. The Create PrismMap statement corresponds to MaplInfo Professional’s Map > Create
Prism Map menu item.

Between sessions, Maplinfo Professional preserves Prism Maps settings by storing a Create
PrismMap statement in the workspace file. Thus, to see an example of the Create PrismMap
statement, you could create a map, choose the Map > Create Thematic Map command, save the
workspace (for example, PRISM.WOR), and examine the workspace in a MapBasic text edit window.
You could then copy the Create PrismMap statement in your MapBasic program. Similarly, you can
see examples of the Create PrismMap statement by opening the MapBasic Window before you
choose Map > Create Thematic Map.

The optional window _id clause identifies which map layer to use in the prism map; if no window_id is
provided, MapBasic uses the topmost Map window. The Create PrismMap statement must specify
which layer to use, even if the Map window has only one layer. The layer may be identified by number
(layer_id), where the topmost map layer has a layer_id value of one, the next layer has a layer_id value
of two, etc. Alternately, the Create PrismMap statement can identify the map layer by name (for
example, “world”).

Each Create PrismMap statement must specify an expr expression clause. Mapinfo Professional
evaluates this expression for each object in the layer; following the Create PrismMap statement,

Maplnfo Professional chooses each object’s display style based on that record’s expr value. The

expression typically includes the names of one or more columns from the table being shaded.

Example

Open Table "STATES.TAB" Interactive

Map From STATES

Create PrismMap From Window FrontWindow() STATES With Pop 1980 Background
RGB(192,192,192)

See Also
Set PrismMap statement, PrismMaplnfo() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 174 MB_Ref.pdf

Reference Guide Chapter 4: Create Ranges statement

Create Ranges statement

Purpose

Calculates thematic ranges and stores the ranges in an array, which can then be used in a Shade
statement.

Syntax

Create Ranges
From table
With expr
[Use {“Equal Ranges” | “Equal Count” | “Natural Break” | “StdDev” }]
[Quantile Using g expr]
[Number num ranges]
[Round rounding factor]
Into Variable array variable

table is the name of the table to be shaded thematically

expr is an expression that is evaluated for each row in the table
q_expr is the expression used to perform quantiling
num_ranges specifies the number of ranges (default is 4)

rounding_factor is factor by which the range break numbers should be rounded (for example, 10 to
round off values to the nearest ten)

array_variable is the Float array variable in which the range information will be stored

Description
The Create Ranges statement calculates a set of range values which can then be used in a Shade
statement (which creates a thematic map layer). For an introduction to thematic maps, see the Maplinfo
Professional documentation.

The optional Use clause specifies how to break the data into ranges. If you specify “Equal Ranges”
each range covers an equal portion of the spectrum of values (for example, 0-25, 25-50, 50-75, 75-
100). If you specify “Equal Count” the ranges are constructed so that there are approximately the
same number of rows in each range. If you specify “Natural Break” the ranges are dictated by natural
breaks in the set of data values. If you specify “StdDev” the middle range breaks at the mean of your
data values, and the ranges above and below the middle range are one standard deviation above or
below the mean. Maplinfo Professional uses the population standard deviation (N - 1).

The Into Variable clause specifies the name of the Float array variable that will hold the range
information. You do not need to pre-size the array; Mapinfo Professional automatically enlarges the
array, if necessary, to make room for the range information. The final size of the array is twice the
number of ranges, because Maplinfo Professional calculates a high value and a low value for each
range.

After calling Create Ranges, call the Shade statement to create the thematic map, and use the Shade
statement’s optional From Variable clause to read the array of ranges. The Shade statement usually
specifies the same table name and column expression as the Create Ranges statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 175 MB_Ref.pdf

Reference Guide Chapter 4: Create Ranges statement

Quantiled Ranges

If the optional Quantile Using clause is present, the Use clause is ignored and range limits are defined
according to the Quantile Using expression.

Quantiled ranges are best illustrated by example. The following statement creates ranges of buying
power index (BPI) values, and uses state population statistics to perform quantiling to set the range
limits.
Create Ranges From states
With BPI 1990 Quantile Using Pop 1990

Number 5
Into Variable f ranges

Because of the Number 5 clause, this example creates a set of five ranges.

Because of the With BPI1_1990 clause, states with the highest BPI values will be placed in the highest
range (the deepest color), and states with the lowest BPI values will be placed in the lowest range (the
palest color).

Because of the Quantile Using clause, the range limits for the intermediate ranges are calculated by
quantiling, using a method that takes state population (Pop_1990) into account. Since the Quantile
Using clause specifies the Pop_1990 column, MapInfo Professional calculates the total 1990
population for the table (which, for the United States, is roughly 250 million). MaplInfo Professional
divides that total by the number of ranges (in this case, five ranges), producing a result of fifty million.
MaplInfo Professional then tries to define the ranges in such a way that the total population for each
range approximates, but does not exceed, fifty million.

Maplinfo Professional retrieves rows from the States table in order of BPI values, starting with the
states having low BPI values. MapInfo Professional assigns rows to the first range until adding another
row would cause the cumulative population to match or exceed fifty million. At that time, Mapinfo
Professional considers the first range “full” and then assigns rows to the second range. Mapinfo
Professional places rows in the second range until adding another row would cause the cumulative
total to match or exceed 100 million; at that point, the second range is full, etc.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 176 MB_Ref.pdf

Reference Guide

Chapter 4: Create Rect statement

Example

Include "mapbasic.def”

Dim range limits() As Float, brush styles() As Brush
Dim col_name As Alias

Open Table ”states” Interactive

Create Styles
From Brush(2, CYAN, 0) ’‘style for LOW range
To Brush (2, BLUE, 0) ’‘style for HIGH range
Vary Color By "RGB”
Number 5
Into Variable brush styles

' Store a column name in the Alias variable:
col name = “Pop_1990”

Create Ranges From states
With col name
Use "Natural Break”
Number 5
Into Variable range limits

Map From states

Shade states
With col name
Ranges
From Variable range limits
Style Variable brush styles

' Show the theme legend window:
Open Window Legend

See Also
Create Styles statement, Set Shade statement, Shade statement

Create Rect statement

Purpose

Creates a rectangle or square object.

Syntax

Create Rect

Into { Window window id | Variable var name }]
x1, y1) (x2, y2)

Pen... |

Brush...]

[
(
[
[
window_id is a window identifier
var_name is the name of an existing object variable
x1 y1 specifies the starting corner of the rectangle

x2 y2 specifies the opposite corner of the rectangle

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 177

MB_Ref.pdf

Reference Guide Chapter 4: Create Redistricter statement

The Pen clause specifies a line style
The Brush clause specifies a fill style

Description

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Rect statement uses the current line style (the style which appears in
the Options > Line Style dialog). Similarly, the optional Brush clause specifies a fill style; see the
Brush discussion for more details.

See Also

Brush clause, Create RoundRect statement, Insert statement, Pen clause, Update statement

Create Redistricter statement

Purpose

Begins a redistricting session.

Syntax
Create Redistricter source table By district_column
With
Count]
, Brush] [, Symbol] [, Pen]

, { Sum | Percent } (expr) . . .]

[

[

[, { Sum | Percent } (expr)]

[

[Order { “MRU” | “Alpha” | “Unordered” }]

source_table is the name of the table containing objects to be grouped into districts

district_column is the name of a column; the initial set of districts is built from the original contents of
this column, and as objects are assigned to different districts, MapInfo Professional stores the object’s
new district name in this column

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 178 MB_Ref.pdf

Reference Guide Chapter 4: Create Region statement

the Count keyword specifies that the Districts Browser will show a count of the objects belonging to
each district

the Brush keyword specifies that the Districts Browser will show each district’s fill style

the Symbol keyword specifies that the Districts Browser will show each district’s symbol style
the Pen keyword specifies that the Districts Browser will show each district’s line style

expris a numeric column expression

the Order clause specifies the order of rows in the Districts Browser (alphabetical, unsorted, or based
on most-recently-used); default is MRU

Description
The Create Redistricter statement begins a redistricting session. This statement corresponds to
choosing Maplnfo Professional’s Window > New Redistrict Window command. For an introduction to
redistricting, see the MapInfo Professional documentation.

To control the set of districts, use the Set Redistricter statement. To end the redistricting session, use
the Close Window statement to close the Districts Browser window.

If you include the Brush keyword, the Districts Browser includes a sample of each district’s fill style.
Note that this is not a complete Brush clause; the keyword Brush appears by itself. Similarly, the
Symbol and Pen keywords are individual keywords, not complete Symbol or Pen clauses. If the
Districts Browser includes brush, symbol, and/or pen styles, the user can change a district’s style by
clicking on the style sample that appears in the Districts Browser.

See Also
Set Redistricter statement

Create Region statement

Purpose

Creates a region object.

Syntax

Create Region
[Into { Window window id | Variable var name }]
num_polygons
[num pointsl (x1, y1) (x2 , y2) [... 11
[num points2 (x1, y1) (x2 , y2) [... 1 ... 1]
[Pen . . .]
[Brush . . .]
[Center (center x, center y) 1]

window_id is a window identifier

var_name is the name of an existing object variable

num_polygons specifies the number of polygons that will make up the region (zero or more)
num_points1 specifies the number of nodes in the region’s first polygon,

num_points2 specifies the number of nodes in the region’s second polygon, etc.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 179 MB_Ref.pdf

Reference Guide Chapter 4: Create Region statement

Each x, y pair specifies one node of a polygon
The Pen clause specifies a line style

The Brush clause specifies a fill style

center_x is the x-coordinate of the object centroid
center_y is the y-coordinate of the object centroid

Description

The Create Region statement creates a region object.

The num_polygons parameter specifies the number of polygons which comprise the region object. If
you specify a num_polygons parameter with a value of zero, the object will be created as an empty
region (a region with no polygons). You can then use the Alter Object statement to add details to the
region.

Depending on your application, you may need to create a region object in two steps, first using Create
Region to create an object with no polygons, and then using Alter Object to add details to the region
object. If your application needs to create region objects, but it will not be known until run-time how
many nodes or how many polygons the regions will contain, you must use Alter Object to add the
variable numbers of nodes. See Alter Object for more information.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style used to draw the outline of the object; see the Pen

discussion for more details. If no Pen clause is specified, the Create Region statement uses the

current line style (the style which appears in the Options > Line Style dialog). Similarly, the optional

Brush clause specifies a fill style; see the Brush discussion for more details.

A single-polygon region can contain up to 1,048,572 nodes. For a multiple-polygon region, the limit is
smaller: for each additional polygon, reduce the number of nodes by three. There can be a maximum
of 32,000 polygons per region (multipolygon region).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 180 MB_Ref.pdf

Reference Guide Chapter 4: Create Report From Table statement

Example

Dim obj region As Object
Dim x(100), y(100) As Float
Dim i, node_ count As Integer

If you store a set of coordinates in the

" x() and y() arrays, the following statements
will create a region object that has a node

at each x,y location:

'’ First, create an empty region object
Create Region Into Variable obj region 0

' Now add nodes to populate the object:
For i = 1 to node_count

Alter Object obj region Node Add (x(i), y(i))
Next

' Now store the object in the Sites table:
Insert Into Sites (Object) Values (obj_region)
See Also

Alter Object statement, Brush clause, Insert statement, Pen clause, Update statement

Create Report From Table statement
Purpose
Creates a report file for Crystal Reports from an open Maplnfo Professional table:
Syntax
Create Report From Table tablename [Into reportfilespec] [Interactive]

tablename is an open table in MapInfo
reportfilespec is a full path and filename for the new report file.

The Interactive keyword signifies that the new report should immediately be loaded into the Crystal
Report Designer module. Interactive mode is implied if the Into clause is missing. You cannot create a
report from a grid or raster table; you will get an error.

See Also

Open Report statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 181 MB_Ref.pdf

Reference Guide Chapter 4: Create RoundRect statement

Create RoundRect statement

Purpose
Creates a rounded rectangle object.

Syntax

Create RoundRect
[Into { Window window id | Variable var name }]
(x1, y1) (x2, y2)
rounding
[Pen . . .]
[Brush . . .]

window_id is a window identifier

var_name is the name of an existing object variable
x1 y1 specifies one corner of the rounded rectangle
x2 y2 specifies the opposite corner of the rectangle

rounding is a Float value, in coordinate units (for example, inches on a Layout or degrees on a Map),
specifying the diameter of the circle which fills the rounded rectangle’s corner

The Pen clause specifies a line style
The Brush clause specifies a fill style

Description
The Create RoundRect statement creates a rounded rectangle object (a rectangle with rounded
corners).

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style used to draw the object’s outline; see the Pen discussion
for more details. If no Pen clause is specified, the Create RoundRect statement uses the current line
style (the style which appears in the Options > Line Style dialog). Similarly, the optional Brush clause
specifies a fill style; see the Brush discussion for more details.

See Also
Brush clause, Create Rect statement, Insert statement, Pen clause, Update statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 182 MB_Ref.pdf

Reference Guide Chapter 4: Create Styles statement

Create Styles statement

Purpose
Builds a set of Pen, Brush or Symbol styles, and stores the styles in an array.

Syntax
Create Styles
From { Pen ... | Brush ... | Symbol ... }
To { Pen ... | Brush ... | Symbol ... }

Vary { Color By { “RGB” | “HSV” } |
Background By { “RGB” | “HSV” } |
Size By { “Log” | “Sqrt” | “Constant” }

}

[Number num styles]
[Inflect At range number With { Pen... | Brush... | Symbol...}]
Into Variable array variable
num_styles is the number of drawing styles (for example, the number of fill styles) to create. The
default number is four.

range_number is a Smalllnt range number; the inflection attribute is placed after this range
array_variable is an array variable that will store the range of pens, brushes, or symbols

Description
The Create Styles statement defines a set of Pen, Brush, or Symbol styles, and stores the styles in an
array variable. The array can then be used in a Shade statement (which creates a thematic map layer).
For an introduction to thematic mapping, see the MapInfo Professional documentation.

The From clause specifies a Pen, Brush, or Symbol style. If the array of styles is later used in a
thematic map, the From style is the style assigned to the “low” range. The To clause specifies a style
that corresponds to the “high” range of a thematic map.

The Create Styles statement builds a set of styles which are interpolated between the From style and
the To style. For example, the From style could be a Brush clause representing a deep, saturated
shade of blue, and the To style could be a Brush clause representing a pale, faint shade of blue. In this
case, Maplnfo Professional builds a set of Brush styles that vary from pale blue to saturated blue.

The optional Number clause specifies the total number of drawing styles needed; this number includes
the two styles specified in the To and From clauses. Usually, this corresponds to the number of ranges
specified in a subsequent Shade statement.

The Vary clause specifies how to spread an attribute among the styles. To spread the foreground color,
use the Color sub-clause. To spread the background color, use the Background sub-clause. In either
case, color can be spread by interpolating the RGB or HSV components of the from and to colors. If
you are creating an array of Symbol styles, you can use the Size sub-clause to vary the symbols’ point
sizes. Similarly, if you are creating an array of Pen styles, you can use the Size sub-clause to vary line
width.

The optional Inflect At clause specifies an inflection attribute that goes between the From and To
styles. If you specify an Inflect At clause, MapInfo Professional creates two sets of styles: one set of
styles interpolated between the From style and the Inflect style, and another set of styles interpolated
between the Inflect style and the To style. For example, using an inflection style, you could create a

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 183 MB_Ref.pdf

Reference Guide Chapter 4: Create Table statement

thematic map of profits and losses, where map regions that have shown a profit appear in various
shades of green, while regions that have shown a loss appear in various shades of red. Inflection only
works when varying the color attribute.

The Into Variable clause specifies the name of the array variable that will hold the styles. You do not
need to pre-size the array; Maplnfo Professional automatically enlarges the array, if necessary, to
make room for the set of styles. The array variable (Pen, Brush, or Symbol) must match the style type
specified in the From and To clauses.

Example
The following example demonstrates the syntax of the Create Styles statement.

Dim brush_styles() As Brush

Create Styles
From Brush(2, CYAN, 0) ’‘style for LOW range
To Brush (2, BLUE, 0) ’'style for HIGH range
Vary Color By "RGB”
Number 5
Into Variable brush styles
This Create Styles statement defines a set of five Brush styles, and stores the styles in the b_ranges
array. A subsequent Shade statement could create a thematic map which reads the Brush styles from

the b_ranges array. For an example, see the discussion of the Create Ranges statement.

See Also
Create Ranges statement, Set Shade statement, Shade statement

Create Table statement

Purpose

Creates a new table.

Syntax

Create Table table
(column columntype [, . . . 1) | Using from_table}
[File filespec]
[{ Type NATIVE |
Type DBF [CharSet char set] |
Type {Access | ODBC} database filespec [Version version]
Table tablename
[Password pwd] [CharSet char set]

bl

[Version version |

table is the name of the table as you want it to appear in MapInfo Professional.

column is the name of a column to create. Column names can be up to 31 characters long, and can
contain letters, numbers, and the underscore (_) character. Column names cannot begin with numbers.

from_table is the name of a currently open table in which the column you want to place in a new table
is stored. The from_table must be a base table, and must contain column data. Query tables and raster
tables cannot be used and will produce an error. The column structure of the new table will be identical
to this table.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 184 MB_Ref.pdf

Reference Guide Chapter 4: Create Table statement

filespec specifies where to create the .TAB, .MAP, and .ID files (and in the case of Access, .AID files). If
you omit the File clause, files are created in the current directory.

char_set is the name of a character set; see the separate CharSet discussion.

database_filespec is a string that identifies a valid Access database. If the specified database does not
exist, MaplInfo Professional creates a new Access .MDB file.

version is an expression that specifies the version of the Microsoft Jet database format to be used by
the new database. Acceptable values are 4.0 (for Access 2000) or 3.0 (for Access '95/'97). If omitted,
the default version is 4.0. If the database in which the table is being created already exists, the
specified database version is ignored.

tablename is a String that indicates the name of the table as it will appear in Access.

pwd is the database-level password for the database, to be specified when database security is turned
on.

version is 100 (to create a table that can be read by versions of Maplnfo Professional) or 300 (MaplInfo
Professional 3.0 format). Does not apply when creating an Access table; the version of the Access
table is handled by DAO.

columntype is the data type associated with the column. Each columntype is defined as follows:

Char (width) |

Float |

Integer |

SmallInt |

Decimal (width , decplaces) |

Date |

Logical
width indicates how large each field should be (does not apply to all field types). Char fields can have a
width of up to 254 characters.

decplaces indicates the number of decimal places to use in a Decimal field.

Description

The Create Table statement creates a new empty table with up to 250 columns. Specify ODBC to
create new tables on a DBMS server.

The Using clause allows you to create a new table as part of the "Combine Objects Using Column"
functionality. The from_table must be a base table, and must contain column data. Query tables and
raster tables can't be used and will produce an error. The column structure of the new table being
created will be identical to this table.

The optional filespec clause specifies where to create the new table. If no filespec clause is used, the
table is created in the current directory or folder.

The optional Type clause specifies the table’s data format. The default type is NATIVE, but can
alternately be DBF. The NATIVE format takes up less disk space than the DBF format, but the DBF
format produces base files that can be read in any dBASE-compatible database manager. Also, create
new tables on DBMS Servers from the ODBC Type clause in the Create Table statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 185 MB_Ref.pdf

Reference Guide Chapter 4: CreateText() function

The CharSet clause specifies a character set. The char_set parameter should be a string constant,
such as “WindowsLatin1”. If no CharSet clause is specified, MapBasic uses the default character set
for the hardware platform that is in use at runtime. See the CharSet clause discussion for more
information.

The Smallint column type reserves two bytes for each value; thus, the column can contain values from
-32,767 to +32,767. The Integer column type reserves four bytes for each value; thus, the column can
contain values from -2,147,483,647 to +2,147,483,647.

The Version clause controls the table’s format. If you specify Version 100, Mapinfo Professional
creates a table in a format that can be read by versions of Maplinfo Professional. If you specify Version
300, Maplinfo Professional creates a table in the format used by MapInfo Professional 3.0. Note that
region and polyline objects having more than 8,000 nodes and multiple-segment polyline objects
require version 300. If you omit the Version clause, the table is created in the version 300 format.

Example

The following example shows how to create a table called Towns, containing 3 fields: a character field
called townname, an integer field called population, and a decimal field called median_income. The file
will be created in the subdirectory C:\MAPINFO\DATA. Since an optional Type clause is used, the table
will be built around a dBASE file.

Create Table Towns

(townname Char(30),
population SmallInt,
median_ income Decimal (9,2))
File ”C:\MAPINFO\TEMP\TOWNS”
Type DBF

See Also

Alter Table statement, Create Index statement, Create Map statement, Drop Table statement,
Export statement, Import statement, Open Table statement

CreateText() function

Purpose
Returns a text object created for a specific map window.

Syntax

CreateText (window id , x , y , text , angle , anchor , offset)

window_id is an Integer window identifier that represents a Map window
x, y are Float values, representing the x/y location where the text is anchored
text is a String value, representing the text that will comprise the text object

angle is a Float value, representing the angle of rotation; for horizontal text, specify zero

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 186 MB_Ref.pdf

Reference Guide Chapter 4: CreateText() function

anchor is an Integer value from 0 to 8, controlling how the text is placed relative to the anchor location.
Specify one of the following codes; codes are defined in MAPBASIC.DEF.

LAYER_INFO LBL_POS CC
LAYER_INFO LBL_POS TL
LAYER INFO LBI,_POS_TC
LAYER_INFO LBI, POS_TR
LAYER_INFO LBI,_POS_CL
LAYER_INFO LBI_POS CR
LAYER_INFO LBIL_POS BL
LAYER _INFO LBL_POS BC
LAYER INFO LBI, POS_BR

W J o0 Ul b WDNKFH O

The two-letter suffix indicates the label orientation: T=Top, B=Bottom, C=Center, R=Right, L=Left. For
example, to place the text below and to the right of the anchor location, specify the define code
LAYER_INFO_LBL_POS _BR, or specify the value 8.

offset is an Integer from zero to 50, representing the distance (in points) the text is offset from the
anchor location; offset is ignored if anchor is zero (centered).

Return Value
Object

Description

The CreateText() function returns an Object value representing a text object.

The text object uses the current Font style. To create a text object with a specific Font style, issue the
Set Style statement before calling CreateText().

At the moment the text is created, the text height is controlled by the current Font. However, after the
text object is created, its height depends on the Map window’s zoom; zooming in will make the text
appear larger.

The object returned could be assigned to an Object variable, stored in an existing row of a table

(through the Update statement), or inserted into a new row of a table (through an Insert statement).
Example

The following example creates a text object and inserts it into the map’s Cosmetic layer (given that the

variable i_map_id is an integer containing a Map window’s ID).

Insert Into Cosmeticl (Obj)
Values (CreateText (i map id, -80, 42.4, ”“Sales Map”, 0,0,0))

See Also
AutoLabel statement, Create Text statement, Font clause, Insert statement, Update statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 187 MB_Ref.pdf

Reference Guide Chapter 4: Create Text statement

Create Text statement

Purpose
Creates a text object, such as a title, for a Map or Layout window.

Syntax

Create Text
[Into { Window window id | Variable var name }]
text string
x1, y1) (x2, y2)
Font . . .]
Label Line { Simple | Arrow } (label x , label y)]
Spacing { 1.0 | 1.5 | 2.0 }]
Justify { Left | Center | Right }]
Angle text angle]

— — e~

window_id is an Integer window ID number, identifying a Map or Layout window
var_name is the name of an existing object variable

text_string specifies the string, up to 255 characters long, that will constitute the text object; to create a
multiple-line text object, embed the function call Chr$(10) in the string

x1, y1 are floating-point coordinates, specifying one corner of the rectangular area which the text will
fill

x2, y2 specify the opposite corner of the rectangular area which the text will fill

The Font clause specifies a text style. The point-size element of the Font is ignored if the text object is
created in a Map window; see below.

label_x , label_y specifies the position where the text object’s label line is anchored
text_angle is a Float value indicating the angle of rotation for the text object (in degrees)

Description
The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. If you need to create objects on a Layout
window, you must first issue a Set CoordSys Layout statement.

The x1, y1, x2, and y2 arguments define a rectangular area. When you create text in a Map window,
the text fills the rectangular area, which controls the text height; the point size specified in the Font
clause is ignored. In a Layout window, text is drawn at the point size specified in the Font clause, with
the upper-left corner of the text placed at the (x1, y1) location; the (x2, y2) arguments are ignored.

See Also

AutoLabel statement, CreateText() function, Font clause, Insert statement, Update statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 188 MB_Ref.pdf

Reference Guide Chapter 4: CurDate() function

CurDate() function

Purpose
Returns the current date in YYYYMMDD format.

Syntax
CurDate()
Return Value
Date

Description

The Curdate() function returns a Date value representing the current date. The format will always be
YYYYMMDD. To change the value to a string in the local system format use the FormatDate$() or
Srt$() functions.

Example

Dim d_today As Date
d today = CurDate()

See Also

Day() function, Format$() function, Month() function, StringToDate() function, Timer()
function, Weekday() function, Year() function

CurrentBorderPen() function

Purpose
Returns the current border pen style currently in use.

Syntax
CurrentBorderPen()
Return Value

Pen

Description

The CurrentBorderPen() function returns the current border pen style. Mapinfo Professional assigns
the current style to the border of any region objects drawn by the user. If a MapBasic program creates
an object through a statement such as Create Region, but the statement does not include a Pen
clause, the object uses the current BorderPen style.

The return value can be assigned to a Pen variable, or may be used as a parameter within a statement
that takes a Pen setting as a parameter (such as Set Map).

To extract specific attributes of the Pen style (such as the color), call the StyleAttr() function. For more
information about Pen settings, see the Pen clause.

Example

Dim p_user _pen As Pen p user pen = CurrentBorderPen()

See Also
CurrentPen() function, Pen clause, Set Style statement, StyleAttr() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 189 MB_Ref.pdf

Reference Guide Chapter 4: CurrentBrush() function

CurrentBrush() function

Purpose
Returns the Brush (fill) style currently in use.

Syntax
CurrentBrush()
Return Value
Brush

Description

The CurrentBrush() function returns the current Brush style. This corresponds to the fill style
displayed in the Options > Region Style dialog. MapInfo Professional assigns the current Brush value
to any filled objects (ellipses, rectangles, rounded rectangles, or regions) drawn by the user. If a
MapBasic program creates a filled object through a statement such as Create Region, but the
statement does not include a Brush clause, the object will be assigned the current Brush value.

The return value of the CurrentBrush() function can be assigned to a Brush variable, or may be used
as a parameter within a statement that takes a Brush setting as a parameter (such as Set Map or
Shade).

To extract specific Brush attributes (such as the color), call StyleAttr().
For more information about Brush settings, see the Brush clause.

Example

Dim b_current fill As Brush
b _current fill = CurrentBrush()

See Also
Brush clause, MakeBrush() function, Set Style statement, StyleAttr() function

CurrentFont() function

Purpose
Returns the Font style currently in use for Map and Layout windows.

Syntax

CurrentFont ()

Return Value
Font

Description

The CurrentFont() function returns the current Font style. This corresponds to the text style displayed
in the Options > Text Style dialog when a Map or Layout window is the active window. Maplnfo
Professional will assign the current Font value to any text object drawn by the user. If a MapBasic
program creates a text object through the Create Text statement, but the statement does not include a
Font clause, the text object will be assigned the current Font value.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 190 MB_Ref.pdf

Reference Guide Chapter 4: CurrentLinePen() function

The return value of the CurrentFont() function can be assigned to a Font variable, or may be used as
a parameter within a statement that takes a Font setting as a parameter (such as Set Legend).

To extract specific attributes of the Font style (such as the color), call the StyleAttr() function.

For more information about Font settings, see the Font clause.

Example

Dim f user text As Font

f user text = CurrentFont()
See Also

Font clause, MakeFont() function, Set Style statement, StyleAttr() function

CurrentLinePen() function

Purpose

Returns the Pen (line) style currently in use.

Syntax
CurrentLinePen()
Return Value

Pen

Description

The CurrentLinePen() function returns the current Pen style. MapInfo Professional assigns the
current style to any line or polyline objects drawn by the user. If a MapBasic program creates an object
through a statement such as Create Line, but the statement does not include a Pen clause, the object
uses the current Pen style. The return value can be assigned to a Pen variable, or may be used as a
parameter within a statement that takes a Pen setting as a parameter (such as Set Map).

To extract specific attributes of the Pen style (such as the color), call the StyleAttr() function. For more
information about Pen settings, see the Pen clause.
Example
Dim p user pen As Pen p user pen = CurrentPen()
See Also
CurrentBorderPen() function, Pen clause, Set Style statement, StyleAttr() function

CurrentPen() function

Purpose
Returns the Pen (line) style currently in use and sets the border pen to the same style as the line pen.
Syntax
CurrentPen()

Return Value

Pen

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 191 MB_Ref.pdf

Reference Guide Chapter 4: CurrentSymbol() function

Description

The CurrentPen() function returns the current Pen style. MapInfo Professional assigns the current
style to any line or polyline objects drawn by the user. If a MapBasic program creates an object through
a statement such as Create Line, but the statement does not include a Pen clause, the object uses the
current Pen style. If you want to use the current line pen without re-setting the border pen, use the
CurrentLinePen() function.

The return value can be assigned to a Pen variable, or may be used as a parameter within a statement
that takes a Pen setting as a parameter (such as Set Map).

To extract specific attributes of the Pen style (such as the color), call the StyleAttr() function.
For more information about Pen settings, see the Pen clause.

Example

Dim p_user pen As Pen
p_user pen = CurrentPen()

See Also
MakePen() function, Pen clause, Set Style statement, StyleAttr() function

CurrentSymbol() function

Purpose

Returns the Symbol style currently in use.

Syntax
CurrentSymbol ()
Return Value

Symbol

Description
The CurrentSymbol() function returns the current symbol style. This is the style displayed in the
Options > Symbol Style dialog. Maplnfo Professional assigns the current Symbol style to any point
objects drawn by the user. If a MapBasic program creates a point object through a Create Point
statement, but the statement does not include a Symbol clause, the object will be assigned the current
Symbol value.

The return value of the CurrentSymbol() function can be assigned to a Symbol variable, or may be
used as a parameter within a statement that takes a Symbol setting as a parameter (such as Set Map
or Shade).

To extract specific attributes of the Symbol style (such as the color), call the StyleAttr() function.
For more information about Symbol settings, see the Symbol clause.

Example

Dim sym user symbol As Symbol
sym_user symbol = CurrentSymbol ()

See Also
MakeSymbol() function, Set Style statement, StyleAttr() function, Symbol clause

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 192 MB_Ref.pdf

Reference Guide Chapter 5: DateWindow() function

DateWindow() function

Purpose
Returns the current date window setting as an integer in the range 0 to 99, or (-1) if date windowing is
off.

Syntax

DateWindow (context)
context is a Smallint that can either be DATE_WIN_CURPROG or DATE_WIN_SESSION.

Description

This depends on which context is passed. If contextis DATE_WIN_SESSION, then the current session
setting in effect is returned. If context is DATE_WIN_CURPROG, then the current MapBasic program’s
local setting is returned, if a program is not running the session setting is returned.

MBX’s compiled before v5.5 will still convert 2-digit years to the current century (5.0 and earlier

behavior). To get the new behavior, they must be recompiled with MapBasic v5.5 or later.
Example

In the following example the variable Date1 = 19890120, Date2 = 20101203 and MyYear = 1990.

DIM Datel, Date2 as Date
DIM MyYear As Integer
Set Format Date "US”
Set Date Window 75
Datel = StringToDate (”1/20/89")
Date2 = StringToDate (”12/3/10")
MyYear = Year (”12/30/90")

See Also

Set Date Window statement

Day() function

Purpose

Returns the day component from a Date expression.
Syntax
Day(date expr)
date_expris a Date expression

Return Value
Smallint from 1 to 31

Description

The Day() function returns an integer value from one to thirty-one, representing the day-of-the-month
component of the specified date. For example, if the specified date is 12/17/93, the Day() function
returns a value of 17.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 193 MB_Ref.pdf

Reference Guide Chapter 5: DDEExecute statement

Example

Dim day var As SmallInt, date var As Date
date_var = StringToDate (”05/23/1985")
day var = Day(date_ var)

See Also

CurDate() function, Month() function, Timer() function, Year() function

DDEExecute statement

Purpose

Issues a command across an open DDE channel.

Syntax

DDEExecute channel , command

channel is an Integer channel number returned by DDElnitiate()
command is a String representing a command for the DDE server to execute

Description

The DDEExecute statement sends a command string to the server application in a DDE conversation.

The channel parameter must correspond to the number of a channel opened through a DDElInitiate()
function call.

The command parameter string must represent a command which the DDE server (the passive
application) is able to carry out. Different applications have different requirements regarding what
constitutes a valid command; to learn about the command format for a particular application, see the
documentation for that application.

Error Conditions
ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

ERR_NO_RESPONSE_FROM_APRP error if server application does not respond

Example

Through MapBasic, you can open a DDE channel with Microsoft Excel as the server application. If the
conversation specifies the “System” topic, you can use the DDEExecute statement to send Excel a
command string. Provided that the command string is equivalent to an Excel macro function, and
provided that the command string is enclosed in square brackets, Excel can execute the command.
The example below instructs Excel to open the worksheet “TRIAL.XLS”.

Dim i _chan As Integer

i chan = DDEInitiate (”Excel”, ”System”)
DDEExecute i_chan, 7" [OPEN (””C:\DATA\TRIAL.XLS"”")]"
See Also

DDElInitiate() function, DDEPoke statement, DDERequest$() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 194 MB_Ref.pdf

Reference Guide Chapter 5: DDElInitiate() function

DDElInitiate() function

Purpose
Initiates a new DDE conversation, and returns the associated channel number.

Syntax

DDEInitiate(appl name , topic name)

appl_name is a String representing an application name (for example, “MaplInfo”)
topic_name is a string representing a topic name (for example, “System”)

Return Value

Integer

Description
The DDElnitiate() function initiates a DDE (Dynamic Data Exchange) conversation, and returns the
number that identifies that conversation’s channel.

A DDE conversation allows two Microsoft Windows applications to exchange information. Once a DDE
conversation has been initiated, a MapBasic program can issue DDERequest$() function calls (to
read information from the other application) and DDEPoke statements (to write information to the other
application). Once a DDE conversation has served its purpose and is no longer needed, the MapBasic
program should terminate the conversation through the DDETerminate or DDETerminateAll
statements.

Note: DDE conversations are a feature specific to Microsoft Windows; therefore, MapBasic
generates an error if a program issues DDE-related function calls when running on a non-
Windows platform. To determine the current hardware platform at run-time, call the
Systeminfo() function.

The appl_name parameter identifies a Windows application. For example, to initiate a conversation

with Microsoft Excel, you should specify the appl_name parameter “Excel.” The application named by

the appl_name parameter must already be running before you can initiate a DDE conversation; note
that the MapBasic Run Program statement allows you to run another Windows application. Not all

Windows applications support DDE conversations. To determine if an application supports DDE

conversations, see the documentation for that application.

The topic_name parameter is a string that identifies the topic for the conversation. Each application
has its own set of valid topic names; for a list of topics supported by a particular application, refer to the
documentation for that application. With many applications, the name of a file that is in use is a valid
topic name. Thus, if Excel is currently using the worksheet file “ORDERS.XLS”, you could issue the
following MapBasic statements:

Dim i _chan As Integer
i chan = DDEInitiate(”Excel”, “”C:\ORDERS.XLS")

to initiate a DDE conversation with that Excel worksheet.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 195 MB_Ref.pdf

Reference Guide Chapter 5: DDElInitiate() function

Many applications support a special topic called “System”. If you initiate a conversation using the
“System” topic, you can then use the DDERequest$() function to obtain a list of the strings which the
application accepts as valid topic names (i.e. a list of the files that are currently in use). Knowing what
topics are available, you can then initiate another DDE conversation with a specific document. See the
example below.

The following table lists some sample application and topic names which you could use with the
DDElnitiate() function.

DDElInitiate() call Nature of conversation

DDElnitiate(“Excel” , “System”) DDERequest$() calls can return Excel system information,
such as a list of the names of the worksheets in use; DDE-
Execute statements can send commands for Excel to exe-
cute

DDElnitiate(“Excel” , wks) If wks is the name of an Excel document in use, subsequent
DDEPoke statements can store values in the worksheet,
and DDERequest$() calls can read information from the
worksheet

DDElnitiate(“MaplInfo” , “System” | DDERequest$() calls can provide system information, such
) as a list of the MapBasic applications currently in use by
Maplinfo Professional.

DDElnitiate(“MaplInfo” , mbx) If mbx is the name of a MapBasic application in use, DDE-
Poke statements can assign values to global variables in
the specified application, and DDERequest$() calls can
read the current values of global variables

When a MapBasic program issues a DDElnitiate() function call, the MapBasic program is known as
the “client” in the DDE conversation. The other Windows application is known as the “server.” Within
one particular conversation, the client is always the active party; the server merely responds to actions
taken by the client. A MapBasic program can carry on multiple conversations at the same time, limited
only by memory and system resources. A MapBasic application could act as the client in one
conversation (by issuing statements such as DDElInitiate(), etc.) while acting as the server in another
conversation (by defining a sub procedure named RemoteMsgHandler).

Error Conditions

ERR_CMD_NOT_SUPPORTED error generated if not running on Windows
ERR_INVALID_CHANNEL error generated if the specified channel number is invalid

Example

The following example attempts to initiate a DDE conversation with Microsoft Excel, version 4 or later.
The goal is to store a simple text message (“Hello from Maplnfo!”) in the first cell of a worksheet that
Excel is currently using, but only if that cell is currently empty. If the first cell is not empty, we will not
overwrite its current contents.

Dim chan _num, tab marker As Integer
Dim topiclist, topicname, cell As String

chan num = DDEInitiate (”"EXCEL”, ”System”)
If chan_num = 0 Then

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 196 MB_Ref.pdf

Reference Guide Chapter 5: DDElInitiate() function

Note ”Excel is not responding to DDE conversation.”
End Program
End If

' Get a list of Excel’s valid topics
topiclist = DDERequests$ (chan num, ”topics”)

" If Excel 4 is running, topiclist might look like:
! ”: Sheetl System”

" (i1f spreadsheet is still “unnamed”),or like:

! ”: C:0rders.XLS Sheetl System”

" If Excel 5 is running, topiclist might look like:
! " [Bookl] Sheetl [Book2]Sheet2 ...”

' Next, extract just the first topic (for example,”Sheetl”)
" by extracting the text between the 1lst & 2nd tabs;

" or, in the case of Excel 5, by extracting the text

' that appears before the first tab.

If Left$(topiclist, 1) = ”:” Then
' ...then it’s Excel 4.
tab marker = InStr(3, topiclist, Chrs(9))
If tab_marker = 0 Then
Note ”No Excel documents in use! Stopping.”
End Program
End If
topicname = Mid$ (topiclist, 3, tab marker - 3)
Else
' ... assume it’s Excel 5.
tab marker = Instr(l, topiclist, Chrs$(9))
topicname = Left$(topiclist, tab marker - 1)
End If

' open a channel to the specific document
' (e.g., "Sheetl”)
DDETerminate chan num
chan num = DDEInitiate (”"Excel”, topicname)
If chan num = 0 Then
Note ”Problem communicating with ” + topicname End Program
End If

" Let’s examine the 1st cell in Excel.

" If cell is blank, put a message in the cell.

' If cell isn’t blank, don’t alter it -

' just display cell contents in a MapBasic NOTE.
' Note that a ”“Blank cell” gets returned as a

' carriage-return line-feed sequence:

d Chrs$(13) + Chrs$(10).

cell = DDERequest$(chan num, “R1C1”)

If cell <> Chr$(13) + Chr$(10) Then

Note
"Message not sent; cell already contains:” + cell
Else
DDEPoke chan num, ”“R1C1”, “Hello from MapInfo!”
Note ”Message sent to Excel,”+topicname+ ”,R1C1.”
End If
DDETerminateAll

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 197 MB_Ref.pdf

Reference Guide Chapter 5: DDEPoke statement

Note: This example does not anticipate every possible obstacle. For example, Excel might currently
be editing a chart (for example, “Chart1”) instead of a worksheet, in which case we will not be
able to reference cell “R1C1".

See Also

DDEExecute statement, DDEPoke statement, DDERequest$() function, DDETerminate
statement, DDETerminateAll statement

DDEPoke statement
Purpose
Sends a data value to an item in a DDE server application.

Syntax

DDEPoke channel, itemname, data
channel is an Integer channel number returned by DDEInitiate()
itemname is a String value representing the name of an item
data is a character string to be sent to the item named in the itemname parameter
Description

The DDEPoke statement stores the data text string in the specified DDE item.

The channel parameter must correspond to the number of a channel which was opened through the
DDElnitiate() function.

The itemname parameter should identify an item which is appropriate for the specified channel.
Different DDE applications support different item names; to learn what item names are supported by a
particular Windows application, refer to the documentation for that application.

In a DDE conversation with Excel, a string of the form R1C1 (for Row 1, Column 1) is a valid item
name. In a DDE conversation with another MapBasic application, the name of a global variable in the
application is a valid item name.

Error Conditions
ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

ERR_INVALID_CHANNEL error generated if the specified channel number is invalid

Example

If Excel is already running, the following example stores a simple message ("Hello from MaplInfo!”) in
the first cell of an Excel worksheet.

Dim i chan num As Integer

i chan num = DDEInitiate (”EXCEL”, ”Sheetl”)
DDEPoke i chan num, ”R1C1”, ”"Hello from MapInfo!”
MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 198 MB_Ref.pdf

Reference Guide Chapter 5: DDERequest$() function

The following example assumes that there is another MapBasic application currently in use -
“Dispatch.mbx” - and assumes that the Dispatch application has a global variable called Address. The
example below uses DDEPoke to modify the Address global variable.

i chan num = DDEInitiate (”MapInfo”,”C:\DISPATCH.MBX")
DDEPoke i chan num, ”“Address”, ”23 Main St.”

See Also
DDEExecute statement, DDEInitiate() function, DDERequest$() function

DDERequest$() function

Purpose
Returns a data value obtained from a DDE conversation.
Syntax
DDERequest$ (channel , itemname)
channel is an Integer channel number returned by DDElnitiate()
itemname is a String representing the name of an item in the server application
Return Value
String
Description
The DDERequest$() function returns a string of information obtained through a DDE conversation. If

the request is unsuccessful, the DDERequest$() function returns a null string.

The channel parameter must correspond to the number of a channel which was opened through the
DDElnitiate() function.

The itemname parameter should identify an item which is appropriate for the specified channel.
Different DDE applications support different item names; to learn what item names are supported by a
particular Windows application, refer to the documentation for that application.

The following table lists some topic and item combinations that can be used when conducting a DDE
conversation with Microsoft Excel as the server:

Topic name item names to use with DDERequest

“System” “Systems” returns a list of item names accepted under the “Sys-
tem” topic;

“Topics” returns a list of DDE topic names accepted by Excel,
including the names of all open worksheets;

“Formats” returns a list of clipboard formats accepted by Excel
(for example, “TEXT BITMAP ...”)

wks (name of a worksheet in A string of the form R1C1 (for Row 1, Column 1) returns the
use) contents of that cell

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 199 MB_Ref.pdf

Reference Guide Chapter 5: DDERequest$() function

Note: Through the DDERequest$() function, one MapBasic application can observe the current
values of global variables in another MapBasic application. The following table lists the topic
and item combinations that can be used when conducting a DDE conversation with MaplInfo
Professional as the server.

Topic name item names to use with DDERequest

“System” “Systems” returns a list of item names accepted under the “System”
topic;

“Topics” returns a list of DDE topic names accepted by Maplinfo
Professional, which includes the names of all MapBasic applications
currently in use;

“Formats” returns a list of clipboard formats accepted by MaplInfo
Professional (“TEXT”)

“Version” returns the Maplinfo version number, multiplied by 100

mbx (name of .MBX in “{items}” returns a list of the names of global variables in use by the
use) specified MapBasic application; specifying the name of a global
variable lets DDERequest$() return the value of the variable

Error Conditions
ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

ERR_INVALID_CHANNEL error if the specified channel number is invalid
ERR_CANT_INITIATE_LINK error generated if MapBasic cannot link to the topic

Example

The following example uses the DDERequest$() function to obtain the current contents of the first cell
in an Excel worksheet. Note that this example will only work if Excel is already running.

Dim i chan num As Integer

Dim s_cell As String

i _chan num = DDEInitiate (”EXCEL”, ”Sheetl”)

s_cell = DDERequest$(i_chan num, ”R1C1”)
The following example assumes that there is another MapBasic application currently in use -
“Dispatch” - and assumes that the Dispatch application has a global variable called Address. The
example below uses DDERequest$() to obtain the current value of the Address global variable.

Dim i chan num As Integer, s_addr copy As String
i chan num = DDEInitiate (”MapInfo”,”C:\DISPATCH.MBX")
s _addr_ copy = DDERequests$ (i chan num, ”Address”)

See Also
DDElnitiate() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 200 MB_Ref.pdf

Reference Guide Chapter 5: DDETerminate statement

DDETerminate statement

Purpose
Closes a DDE conversation.

Syntax

DDETerminate channel

channel is an Integer channel number returned by DDElnitiate()

Description

The DDETerminate statement closes the DDE channel specified by the channel parameter.

The channel parameter must correspond to the channel number returned by the DDEInitiate()
function call (which initiated the conversation). Once a DDE conversation has served its purpose and is
no longer needed, the MapBasic program should terminate the conversation through the
DDETerminate or DDETerminateAll statements.

Note: Multiple MapBasic applications can be in use simultaneously, and each application can open
its own DDE channels. However, a given MapBasic application may only close the DDE
channels which it opened. A MapBasic application may not close DDE channels which were
opened by another MapBasic application.

Error Conditions
ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

ERR_INVALID_CHANNEL error generated if the specified channel number is invalid

Example
DDETerminate i chan num
See Also
DDElnitiate() function, DDETerminateAll statement

DDETerminateAll statement

Purpose

Closes all DDE conversations which were opened by the same MapBasic program.

Syntax
DDETerminateAll

Description

The DDETerminateAll statement closes all open DDE channels which were opened by the same
MapBasic application. Note that multiple MapBasic applications can be in use simultaneously, and
each application can open its own DDE channels. However, a given MapBasic application may only
close the DDE channels which it opened. A MapBasic application may not close DDE channels which
were opened by another MapBasic application

Once a DDE conversation has served its purpose and is no longer needed, the MapBasic program
should terminate the conversation through the DDETerminate or DDETerminateAll statements.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 201 MB_Ref.pdf

Reference Guide Chapter 5: Declare Function statement

Error Conditions
ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

See Also
DDElInitiate() function, DDETerminate statement

Declare Function statement

Purpose

Defines the name and parameter list of a function.

Restrictions

This statement may not be issued from the MapBasic window.

Accessing external functions (using syntax 2) is platform-dependent. DLL files may only be accessed
by applications running on Windows.

Syntax 1
Declare Function fname
([[ByVal] parameter As var type]
[, [ByVal] parameter As var type...]) As return type

fname is the name of the function

parameter is the name of a parameter to the function

var_type is a variable type, such as Integer; arrays and custom Types are allowed
return_type is a standard scalar variable type; arrays and custom Types are not allowed

Syntax 2 (external routines in Windows DLLs

Declare Function fname Lib “file name” [Alias “function alias”]
([[ByVal] parameter As var type]
[, [ByVal] parameter As var type...]) As return type

fname is the name by which a function will be called

file_name is the name of a Windows DLL file

function_alias is the original name of the external function

parameter is the name of a parameter to the function

var_type is a data type: with Windows DLLs, this can be a standard variable type or a custom Type
return_type is a standard scalar variable type

Description

The Declare Function statement pre-declares a user-defined MapBasic function or an external
function.

A MapBasic program can use a Function...End Function statement to create a custom function.
Every function defined in this fashion must be preceded by a Declare Function statement. For more
information on creating custom functions, see Function...End Function.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 202 MB_Ref.pdf

Reference Guide Chapter 5: Declare Function statement

Parameters passed to a function are passed by reference unless you include the optional ByVal
keyword. For information on the differences between by-reference and by-value parameters, see the
MapBasic User Guide.

Calling External Functions

Using Syntax 2 (above), you can use a Declare Function statement to define an external function. An
external function is a function that was written in another language (for example, C or Pascal), and is
stored in a separate file. Once you have declared an external function, your program can call the
external function as if it were a conventional MapBasic function.

If the Declare Function statement declares an external function, the file_name parameter must
specify the name of the file containing the external function. The external file must be present at run-
time.

Every external function has an explicitly assigned name. Ordinarily, the Declare Function statement’s
fname parameter matches the explicit routine name from the external file. Alternately, the Declare
Function statement can include an Alias clause, which lets you call the external function by whatever
name you choose. The Alias clause lets you override an external function’s explicit name, in situations
where the explicit name conflicts with the name of a standard MapBasic function.

If the Declare Function statement includes an Alias clause, the function_alias parameter must match
the external function’s original name, and the fname parameter indicates the name by which MapBasic
will call the routine.

Restrictions on Windows DLL parameters

You can pass a custom variable type as a parameter to a DLL. However, the DLL must be compiled
with “structure packing” set to the tightest packing. See the MapBasic User Guide for more information.

Example
The following example defines a custom function, CubeRoot, which returns the cube root of a number
(the number raised to the one-third power).

Declare Sub Main
Declare Function CubeRoot (ByVal x As Float) As Float
Sub Main
Note Str$(CubeRoot (23))
End Sub

Function CubeRoot (ByVal x As Float) As Float

A

CubeRoot = x (1 / 3)
End Function

See Also
Declare Sub statement, Function... End Function statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 203 MB_Ref.pdf

Reference Guide Chapter 5: Declare Sub statement

Declare Sub statement
Purpose

Identifies the name and parameter list of a sub procedure.
Restrictions

This statement may not be issued from the MapBasic window.

Accessing external functions (using syntax 2) is platform-dependent. DLL files may only be accessed
by applications running on Windows.

Syntax 1

Declare Sub sub_proc
[([ByVal] parameter As var type [, ... 1) 1]

sub_proc is the name of a sub procedure
parameter is the name of a sub procedure parameter
var_type is a standard data type or a custom Type

Syntax 2 (external routines in Windows DLLs)

Declare Sub sub proc Lib “file name” [Alias “sub_alias”]
[([ByVal] parameter As var type [, ... 1) 1

sub_proc is the name by which an external routine will be called

file_name is a String; the DLL name;

sub_alias is an external routine’s original name

parameter is the name of a sub procedure parameter

var_type is a data type: with Windows DLLs, this can be a standard variable type or a custom Type

Description
The Declare Sub statement establishes a sub procedure’s name and parameter list. Typically, each
Declare Sub statement corresponds to an actual sub procedure which appears later in the same
program.

A MapBasic program can use a Sub...End Sub statement to create a procedure. Every procedure
defined in this manner must be preceded by a Declare Sub statement. For more information on
creating procedures, see Sub...End Sub.

Parameters passed to a procedure are passed by reference unless you include the optional ByVal
keyword.

Calling External Routines

Using Syntax 2 (above), you can use a Declare Sub statement to define an external routine. An
external routine is a routine that was written in another language (for example, C or Pascal), and is
stored in a separate file. Once you have declared an external routine, your program can call the
external routine as if it were a conventional MapBasic procedure.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 204 MB_Ref.pdf

Reference Guide Chapter 5: Define statement

If the Declare Sub statement declares an external routine, the file_name parameter must specify the
name of the file containing the routine. The file must be present at run-time.

Every external routine has an explicitly assigned name. Ordinarily, the Declare Sub statement’s
sub_proc parameter matches the explicit routine name from the external file. The Declare Sub
statement can include an Alias clause, which lets you call the external routine by whatever name you
choose. The Alias clause lets you override an external routine’s explicit name, in situations where the
explicit name conflicts with the name of a standard MapBasic function.

If the Declare Sub statement includes an Alias clause, the sub_alias parameter must match the
external routine’s original name, and the sub_proc parameter indicates the name by which MapBasic
will call the routine. You can pass a custom variable type as a parameter to a DLL. However, the DLL
must be compiled with “structure packing” set to the tightest packing. For information on custom
variable types, see Type.

Example

Declare Sub Main
Declare Sub Cube (ByVal original As Float, cubed As Float)

Sub Main

Dim x, result As Float

Call Cube (2, result)

' result now contains the value: 8 (2 x 2 x 2)

x =1

Call Cube(x + 2, result)

' result now contains the value: 27 (3 x 3 x 3)
End Sub

Sub Cube (ByVal original As Float, cubed As Float)

’

' Cube the ”"original” parameter value, and store
" the result in the ”cubed” parameter.

7

A

cubed = original 3

End Sub
See Also
Call statement, Sub...End Sub statement

Define statement

Purpose

Defines a custom keyword with a constant value.

Restrictions

You cannot issue a Define statement through the MapBasic window.

Syntax

Define identifier definition

identifier is an identifier up to 31 characters long, beginning with a letter or underscore ()

definition is the text MapBasic should substitute for each occurrence of identifier

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 205 MB_Ref.pdf

Reference Guide Chapter 5: DeformatNumber$() function

Description
The Define statement defines a new identifier. For the remainder of the program, whenever MapBasic
encounters the same identifier the original definition will be substituted for the identifier. For examples
of Define statements, see the standard MapBasic definitions file, MAPBASIC.DEF.

An identifier defined through a Define statement is not case-sensitive. If you use a Define statement to
define the token FOO, your program can refer to the identifier as Foo or foo. You cannot use the
Define statement to re-define a MapBasic keyword, such as Set or Create. For a list of reserved
keywords, see the discussion of the Dim statement.

Examples
Your application may need to reference the mathematical value known as Pi, which has a value of
approximately 3.141593. Accordingly, you might want to use the following definition:

Define PI 3.141593
Following such a definition, you could simply type Pl wherever you needed to reference the value
3.141593.

The definition portion of a Define statement can include quotes. For example, the following statement
creates a keyword with a definition including quotes:

Define FILE NAME “World.tab”
The following define is part of the standard definitions file, mapbasic.def. This define provides an easy

way of clearing the Message window:

Define CLS Print Chr$(12)

DeformatNumber$() function

Purpose
Removes formatting from a string that represents a number.

Syntax

DeformatNumber$ (numeric string)

numeric_string is a string that represents a numeric value, such as “12,345,678”

Return Value
String

Description
Returns a string that represents a number. The return value does not include thousands separators,
regardless of whether the numeric_string argument included thousands separators. The return value
uses a period as the decimal separator, regardless of whether the user’s computer is set up to use
another character as the decimal separator.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 206 MB_Ref.pdf

Reference Guide Chapter 5: Delete statement

Examples
The following example calls Val() to determine the numeric value of a string. Before calling Val(), this
example calls DeformatNumber$() to remove thousands separators from the string. (The string that
you pass to Val(') cannot contain thousands separators.)

Dim s _number As String
Dim f_value As Float

s _number = ”1,222,333.4"
s _number = DeformatNumbers$ (s _number)

' the variable s number now contains the
' string: ”1222333.4"

f value = Val (s_number)

Print f value

See Also
FormatNumber$() function, Val() function

Delete statement

Purpose

Deletes one or more graphic objects, or one or more entire rows, from a table.

Syntax
Delete [Object] From table [Where Rowid = id number]

table is the name of an open table
id_number is the number of a single row (an integer value of one or more)

Description
The Delete statement deletes graphical objects or entire records from an open table.

By default, the Delete statement deletes all records from a table. However, if the statement includes
the optional Object keyword, MapBasic only deletes the graphical objects that are attached to the
table, rather than deleting the records themselves.

By default, the Delete statement affects all records in the table. However, if the statement includes the
optional Where Rowid = ... clause, then only the specified row is affected by the Delete statement.

There is an important difference between a Delete Object From statement and a Drop Map
statement. A Delete Object From statement only affects objects or records in a table, it does not affect
the table structure itself. A Drop Map statement actually modifies the table structure, so that graphical
objects may not be attached to the table.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 207 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement

Examples
The following Delete statement deletes all of the records from a table. At the conclusion of this
operation, the table still exists, but it is completely empty - as if the user had just created it by choosing
File > New.

Open Table ”“clients”
Delete From clients
Commit Table clients

The following Delete statement deletes only the object from the tenth row of the table:

Open Table ”“clients”
Delete Object From clients Where Rowid = 10
Commit Table clients

See Also
Drop Map statement, Insert statement

Dialog statement

Purpose

Displays a custom dialog box.

Restrictions
You cannot issue a Dialog statement through the MapBasic window.

Syntax

Dialog
[Title title]
[width w] [Height h] [Position x , y |
[Calling handler 1|
Control control clause
[Control control clause . . .]

title is a String expression that appears in the title bar of the dialog

h specifies the height of the dialog, in dialog units (8 dialog height units represent the height of one
character)

w specifies the width of the dialog, in dialog units (4 dialog height units represent the width of one
character)

x, y specifies the dialog’s initial position, in pixels, representing distance from the upper-left corner of
Maplnfo Professional’s work area; if the Position clause is omitted, the dialog appears centered

handler is the name of a procedure to call before the user is allowed to use the dialog; this procedure is
typically used to issue Alter Control statements

Each control_clause can specify one of the following types of controls:

e Button

¢ OKButton

¢ CancelButton
e EditText

e StaticText

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 208 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement

e PopupMenu

¢ CheckBox

e MultiListBox

e GroupBox

¢ RadioGroup

¢ PenPickerm

e BrushPicker

e FontPicker

e SymbolPicker
e ListBox

See the separate discussions of those control types for more details (for example, for details on
CheckBox controls, see Control CheckBox clause; for details on Picker controls, see Control
PenPicker/BrushPicker/SymbolPicker/FontPicker clause; etc.).

Each control _clause can specify one of the following control types:

e Button / OKButton / CancelButton

e CheckBox

e GroupBox

¢ RadioGroup

e EditText

e StaticText

e PenPicker / BrushPicker / SymbolPicker / FontPicker

e ListBox / MultiListBox

* PopupMenu

Description

The Dialog statement creates a dialog box, displays it on the screen, and lets the user interact with the
dialog. The dialog box is modal; in other words, the user must dismiss the dialog box (for example, by
clicking OK or Cancel) before doing anything else in MaplInfo Professional. For an introduction to
custom dialogs, see the MapBasic User Guide.

Anything that can appear on a dialog is known as a control. Each dialog must contain at least one
control (for example, an OKButton control). Individual control clauses are discussed in separate entries
(for example, see Control CheckBox for a discussion of check-box controls). As a general rule, every
dialog should include an OKButton control and/or a CancelButton control, so that the user has a way of
dismissing the dialog.

The Dialog statement lets you create a custom dialog box. If you want to display a standard dialog box
(for example, a File > Open dialog), use one of the following statements or functions: Ask(), Note,
ProgressBar, FileOpenDIg(), FileSaveAsDIg(), or GetSeamlessSheet().

For an introduction to the concepts behind MapBasic dialog boxes, see the MapBasic User Guide.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 209 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement

Sizes and Positions of Dialogs and Dialog Controls

Within the Dialog statement, sizes and positions are stated in terms of dialog units. A width of four
dialog units equals the width of one character, and a height of eight dialog units equals the height of
one character. Thus, if a dialog control has a height of 40 and a width of 40, that control is roughly ten
characters wide and 5 characters tall. Control positions are relative to the upper left corner of the
dialog. To place a control at the upper-left corner of a dialog, use x- and y-coordinates of zero and zero.

The Position, Height and Width clauses are all optional. If you omit these clauses, MapBasic places
the controls at default positions in the dialog, with subsequent control clauses appearing further down
in the dialog.

Terminating a Dialog

After a MapBasic program issues a Dialog statement, the user will continue interacting with the dialog
until one of four things happens:

e The user clicks the OKButton control (if the dialog has one);

* The user clicks the CancelButton control (if the dialog has one);

e The user clicks a control with a handler that issues a Dialog Remove statement; or

¢ The user otherwise dismisses the dialog (for example, by pressing Esc on a dialog that has a

CancelButton).

To force a dialog to remain on the screen after the user has clicked OK or Cancel, assign a handler
procedure to the OKButton or CancelButton control and have that handler issue a Dialog Preserve
statement.

Reading the User’s Input

After a Dialog statement, call Commandinfo() to determine whether the user clicked OK or Cancel to
dismiss the dialog. If the user clicked OK, the following function call returns TRUE:

CommandInfo (CMD_ INFO DLG OK)
There are two ways to read values entered by the user: Include Into clauses in the Dialog statement,
or call the ReadControlValue() function from a handler procedure.

If a control specifies the Into clause, and if the user clicks the OKButton, MaplInfo Professional stores
the control’s final value in a program variable.

Note: Maplinfo Professional only updates the variable if the user clicks OK. Also, Mapinfo
Professional only updates the variable after the dialog terminates.

To read a control’s value from within a handler procedure, call ReadControlValue().

Specifying Hotkeys for Controls

When a MapBasic application runs on Maplnfo, dialogs can assign hotkeys to the various controls. A
hotkey is a convenience allowing the user to choose a dialog control by pressing key sequences rather
than clicking with the mouse.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 210 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement

To specify a hotkey for a control, include the ampersand character (&) in the title for that control. Within
the Title clause, the ampersand should appear immediately before the character which is to be used as
a hotkey character. Thus, the following Button clause defines a button which the user can choose by
pressing Alt-R:

Control Button

Title ”“&Reset”

Although an ampersand appears within the Title clause, the final dialog does not show the ampersand.
If you need to display an ampersand character in a control (for example, if you want a button to read
“Find & Replace”), include two successive ampersand characters in the Title clause:

Title ”"Find && Replace”

If you position a StaticText control just before or above an EditText control, and you define the
StaticText control with a hotkey designation, the user is able to jump to the EditText control by pressing
the hotkey sequence.

Specifying the Tab Order

The user can press the Tab key to move the keyboard focus through the dialog. The focus moves from
control to control according to the dialog’s tab order.

Tab order is defined by the order of the Control clauses in the Dialog statement. When the focus is on
the third control, pressing Tab moves the focus to the fourth control, etc. If you want to change the tab
order, change the order of the Control clauses.

Examples
The following example creates a simple dialog with an EditText control. In this example, none of the
Control clauses use the optional Position clause; therefore, MapBasic places each control in a default
position.

Dialog

Title ”Search”

Control StaticText
Title “Enter string to find:”

Control EditText
Value gs_searchfor ’‘this is a Global String variable
Into gs_searchfor

Control OKButton

Control CancelButton

If CommandInfo(CMD_ INFO DLG OK) Then

'’ ...then the user clicked OK, and the wvariable

' gs_searchfor contains the text the user entered.
End If

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 211 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement

The following program demonstrates the syntax of all of MapBasic’s control types.

Include "mapbasic.def”
Declare Sub reset sub '’ resets dialog to default settings
Declare Sub ok sub ‘' notes values when user clicks OK.
Declare Sub Main
Sub Main
Dim s_title As String ’'the title of the map
Dim 1 _showlegend As Logical ’'TRUE means include legend
Dim i_details As SmallInt ‘1 = full details; 2 = partial
Dim i quarter As SmalllInt ’'1=1st grtr, etc.
Dim i _scope As SmallInt ’1=Town;2=County; etc.
Dim sym variable As Symbol

Dialog
Title ”"Map Franchise Locations”

Control StaticText
Title "Enter Map Title:”
Position 5, 10

Control EditText
Value ”"New Franchises, FY 95”
Into s_title
ID 1
Position 65, 8 Width 90

Control GroupBox
Title ”"Level of Detail”
Position 5, 30 Width 70 Height 40

Control RadioGroup
Title ”"&Full Details;&Partial Details”
Value 2
Into i_details
ID 2
Position 12, 42 Width 60

Control StaticText
Title ”"Show Franchises As:” Position 95, 30

Control SymbolPicker
Position 95, 45
Into sym variable
ID 3

Control StaticText
Title ”"Show Results For:”
Position 5, 80
Control ListBox
Title "First Qrtr;2nd Qrtr;3rd Qrtr;4th Qrtr”
Value 4
Into i_quarter
ID 4
Position 5, 90 Width 65 Height 35

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 212 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement

Control StaticText
Title “Include Map Layers:”
Position 95, 80
Control MultiListBox
Title ”Streets;Highways;Towns;Counties;States”
Value 3
ID 5
Position 95, 90 Width 65 Height 35

Control StaticText
Title ”"Scope of Map:”
Position 5, 130
Control PopupMenu
Title “Town;County;Territory;Entire State”
Value 2
Into i scope
ID 6
Position 5, 140

Control CheckBox
Title "Include &Legend”
Into 1 showlegend
ID 7
Position 95, 140

Control Button
Title ”&Reset”
Calling reset sub
Position 10, 165

Control OKButton
Position 65, 165
Calling ok sub

Control CancelButton
Position 120, 165

If CommandInfo(CMD_ INFO DLG OK) Then
' ... then the user clicked OK.
Else
" ... then the user clicked Cancel.
End If
End Sub

Sub reset sub

' here, you could use Alter Control statements

' to reset the controls to their original state.
End Sub

Sub ok sub
' Here, place code to handle user clicking OK
End Sub

The preceding program produces the following dialog box.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 213 MB_Ref.pdf

Reference Guide Chapter 5: Dialog Preserve statement

Map Franchize Locations

Enter Map Title: INew Franchizes, Fy' 95

Show Franchises As

*|

Show Resultz For: Inciude Map Layers:

2nd Qirtr =]

3rd Qrtr I

Scope of Map:

IEount_l.J vl ¥ Include Legend
Reset | Cancel |

— Level of Detaill
= Full Details

% Partial Details

See Also
Alter Control statement, Ask() function, Dialog Preserve statement, Dialog Remove statement,
FileOpenDlg() function, FileSaveAsDIg() function, Note statement, ReadControlValue()
function

Dialog Preserve statement

Purpose
Reactivates a custom dialog after the user clicked OK or Cancel.

Syntax

Dialog Preserve

Restrictions
This statement may only be issued from within a sub procedure that acts as a handler for an OKButton
or CancelButton dialog control.

You cannot issue this statement from the MapBasic window.

Description
The Dialog Preserve statement allows the user to resume using a custom dialog (which was created
through a Dialog statement) even after the user clicked the OKButton or CancelButton control.

The Dialog Preserve statement lets you “confirm” the user’s OK or Cancel action. For example, if the
user clicks Cancel, you may wish to display a dialog asking a question such as “Do you want to lose
your changes?” If the user chooses “No” on the confirmation dialog, the application should reactivate
the original dialog. You can provide this functionality by issuing a Dialog Preserve statement from
within the CancelButton control’s handler procedure.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 214 MB_Ref.pdf

Reference Guide Chapter 5: Dialog Remove statement

Example

The following procedure could be used as a handler for a CancelButton control.

Sub confirm cancel

If Ask(”"Do you really want to lose your changes?”,

"Yes”, "No”) = FALSE Then
Dialog Preserve
End If
End Sub
See Also

Alter Control statement, Dialog statement, Dialog Remove statement, ReadControlValue()
function

Dialog Remove statement

Purpose

Removes a custom dialog from the screen.

Syntax
Dialog Remove
Restrictions

This statement may only be issued from within a sub procedure that acts as a handler for a dialog
control. You cannot issue this statement from the MapBasic window.

Description

The Dialog Remove statement removes the dialog created by the most recent Dialog statement. A
dialog disappears automatically after the user clicks on an OKButton control or a CancelButton control.
Use the Dialog Remove statement (within a dialog control’s handler routine) to remove the dialog
before the user clicks OK or Cancel. This is useful, for example, if you have a dialog with a ListBox
control, and you want the dialog to come down if the user double-clicks an item in the list.

Note: Dialog Remove signals to remove the dialog after the handler sub procedure returns. It does
not remove the dialog instantaneously.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 215 MB_Ref.pdf

Reference Guide Chapter 5: Dim statement

Example
The following procedure is part of the sample program NVIEWS.MB. It handles the ListBox control in
the Named Views dialog. When the user single-clicks a list item, this handler procedure enables
various buttons on the dialog. When the user double-clicks a list item, this handler uses a Dialog
Remove statement to dismiss the dialog.

Note: Maplnfo Professional calls this handler procedure for click events and for double-click events.

Sub listbox handler
Dim i As SmalllInt
Alter Control 2 Enable
Alter Control 3 Enable
If CommandInfo(CMD_ INFO DLG DBL) = TRUE Then

7

’ ... then the user double-clicked.

7

i = ReadControlvalue (1)
Dialog Remove
Call go to view(i)
End If
End Sub

See Also
Alter Control statement, Dialog statement, Dialog Preserve statement, ReadControlValue()
function

Dim statement

Purpose
Defines one or more variables.

Restrictions
When you issue Dim statements through the MapBasic window, you can only define one variable per
Dim statement, although a Dim statement within a compiled program may define multiple variables.
You cannot define array variables using the MapBasic window.

Syntax

Dim var name [, var name ...] As var type
[, var name [, var name ...] As var type ...]

var_name is the name of a variable to define
var_type is a standard or custom variable Type

Description
A Dim statement declares one or more variables. The following table summarizes the types of
variables which you can declare through a Dim statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 216 MB_Ref.pdf

Reference Guide

Chapter 5: Dim statement

Location of Dim Statements and Scope of Variables

Variable Type Description

Smallint Whole numbers from -32768 to 32767 (inclusive); stored in 2 bytes

Integer Whole numbers from -2,147,483,647 to +2,147,483,647 (inclusive); stored in 4
bytes

Float Floating point value; stored in eight-byte IEEE format

String Variable-length character string, up to 32768 bytes long

String * length

Fixed-length character string (where length dictates the length of the string, in
bytes, up to 32768 bytes); fixed-length strings are padded with trailing blanks

Logical TRUE or FALSE, stored in 1 byte: zero=FALSE, non-zero=TRUE

Date Date, stored in four bytes: two bytes for the year, one byte for the month, one
byte for the day

Object Graphical object (Point, Region, Line, Polyline, Arc, Rectangle, Rounded Rect-
angle, Ellipse, Text, or Frame)

Alias Column name

Pen Pen (line) style setting

Brush Brush (fill) style setting

Font Font (text) style setting

Symbol Symbol (point-marker) style setting

The Dim statement which defines a variable must precede any other statements which use that
variable. Dim statements usually appear at the top of a procedure or function.

If a Dim statement appears within a Sub...End Sub construct or within a Function...End Function
construct, the statement defines variables that are local in scope. Local variables may only be
accessed from within the procedure or function that contained the Dim statement.

If a Dim statement appears outside of any procedure or function definition, the statement defines
variables that are module-level in scope. Module-level variables can be accessed by any procedure or
function within a program module (i.e. within the .MB program file).

To declare global variables (variables that can be accessed by any procedure or function in any of the
modules that make up a project), use the Global statement.

Declaring Multiple Variables and Variable Types

A single Dim statement can declare two or more variables that are separated by commas. You also
can define variables of different types within one Dim statement by grouping like variables together,
and separating the different groups with a comma after the variable type:

Dim jointer,

i min, i max As Integer, s _name As String

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

217

MB_Ref.pdf

Reference Guide Chapter 5: Dim statement

Array Variables
MapBasic supports one-dimensional array variables. To define an array variable, add a pair of
parentheses immediately after the variable name. To specify an initial array size, include a constant
integer expression between the parentheses.

The following example declares an array of ten Float variables, then assigns a value to the first
element in the array:

Dim f_stats(10) As Float

f stats (1) = 17.23
The number that appears between the parentheses is known as the subscript. The first element of the
array is the element with a subscript of one (as shown in the example above).

To re-size an array, use the ReDim statement. To determine the current size of an array, use the
UBound() function. If the Dim statement does not specify an initial array size, the array will initially
contain no members; in such a case, you will not be able to store any data in the array until re-sizing
the array with a ReDim statement.A MapBasic array can have up to 32,767 items.

String Variables
A String variable can contain a text string up to 32 kilobytes in length. However, there is a limit to how
long a string constant you can specify in a simple assignment statement. The following example
performs a simple String variable assignment, where a constant string expression is assigned to a
String variable:

Dim status As String

status = ”"This is a string constant ... ”
In this type of assignment, the constant string expression to the right of the equal sign has a maximum
length of 256 characters.

MapBasic, like other BASIC languages, pads fixed-length String variables with blanks. In other words,
if you define a 10-byte String variable, then assign a five-character string to that variable, the variable
will actually be padded with five spaces so that it fills the space allotted. (This feature makes it easier to
format text output in such a way that columns line up).

Variable-length String variables, however, are not padded in this fashion. This difference can affect
comparisons of strings; you must exercise caution when comparing fixed-length and variable-length
String variables. In the following program, the If...Then statement would determine that the two strings
are not equal:

Dim s _var len As String
Dim s fixed len As String * 10

s_var len = "testing”
s_fixed len = ”"testing”
If s var len = s_fixed len Then

Note ”strings are equal” ' this won’t happen
Else

Note ”strings are NOT equal” ' this WILL happen
End If

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 218 MB_Ref.pdf

Reference Guide

Chapter 5: Dim statement

Restrictions on Variable Names

Variable names are case-insensitive. Thus, if a Dim statement defines a variable called abc, the

program may refer to that variable as abc, ABC, or Abc.

Each variable name can be up to 31 characters long, and can include letters, numbers, and the
underscore character (_). Variable names can also include the punctuation marks $,% , & ,!,#, and
@ , but only as the final character in the name. A variable name may not begin with a number.

Many MapBasic language keywords, such as Open, Close, Set, and Do, are reserved words which
may not be used as variable names. If you attempt to define a variable called Set, MapBasic will
generate an error when you compile the program. The table below summarizes the MapBasic

keywords which may not be used as variable names.

Add
Close
DDEExecute
Declare
Do

End
Export
Function
Graph
Layout
Objects
Print
ReDim
Rename
Save

Shade

Type

Alter
Commit
DDEPoke
Delete
Drop
Error
Fetch

Get

If

Map
OnError
PrintWin
Register
Resume
Seek
StatusBar

Update

Browse

Create

DDETerminate

Dialog
Else
Event
Find
Global
Import
Menu
Open
ProgressBar
Reload
Rollback
Select
Stop

While

Call

DDE

DDETerminateAll

Dim

Elself

Exit

For

Goto

Insert

Note

Pack

Put

Remove

Run

Set

Sub

In some BASIC languages, you can dictate a variable’s type by ending the variable with one of the
punctuation marks listed above. For example, some BASIC languages assume that any variable
named with a dollar sign (for example, LastName$) is a String variable. In MapBasic, however, you
must declare every variable’s type explicitly, through the Dim statement.

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

219

MB_Ref.pdf

Reference Guide Chapter 5: Distance() function

Initial Values of Variables

MapBasic initializes numeric variables to a value of zero when they are defined. Variable-length string
variables are initialized to an empty string, and fixed-length string variables are initialized to all spaces.

Object and style variables are not automatically initialized. You must initialize Object and style
variables before making references to those variables.

Example

' Below is a custom Type definition, which creates
'’ a new data type known as Person
Type Person
Name As String
Age As Integer
Phone As String
End Type

' The next Dim statement creates a Person variable
Dim customer As Person

’ This Dim creates an array of Person variables:
Dim users(10) As Person

" this Dim statement defines an integer variable
' "counter”, and an integer array ”“counters”
Dim counter, counters(10) As Integer

' the next statement assigns the ”Name” element
' of the first member of the "users” array
users(1l) .Name = “Chris”

See Also
Global statement, ReDim statement, Type statement, UBound() function

Distance() function

Purpose

Returns the distance between two locations.

Syntax

Distance (x1 , y1 , x2 , y2 , unit _name)

x1 and x2 are x-coordinates (for example, longitude)
y1 and y2 are y-coordinates (for example, latitude)
unit_name is a string representing the name of a distance unit (for example, “km”)

Return Value
Float

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 220 MB_Ref.pdf

Reference Guide Chapter 5: Do Case...End Case statement

Description

The Distance() function calculates the distance between two locations.

The function returns the distance measurement in the units specified by the unit_name parameter; for
example, to obtain a distance in miles, specify “mi” as the unit_name parameter. See the Set Distance
Units statement for the list of available unit names.

The x- and y-coordinate parameters must use MapBasic’s current coordinate system. By default,
Maplinfo Professional expects coordinates to use a longitude, latitude coordinate system. You can
reset MapBasic’s coordinate system through the Set CoordSys statement.

If the current coordinate system is an earth coordinate system, Distance() returns the great-circle
distance between the two points. A great-circle distance is the shortest distance between two points on
a sphere. (A great circle is a circle that goes around the earth, with the circle’s center at the center of
the earth; a great-circle distance between two points is the distance along the great circle which
connects the two points.)

For the most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a
spherical operation is performed unless the coordinate system is NonEarth, in which case, a Cartesian
operation is performed.

Example

Dim dist, start_x, start_y, end x, end y As Float
Open Table "cities”

Fetch First From cities

start x = CentroidX(cities.obj)

start_y = CentroidY(cities.obj)

Fetch Next From cities

end x = CentroidX(cities.obj)

end y CentroidY (cities.obj)

dist = Distance(start x,start y,end x,end y,”mi”)

See Also

Area() function, ObjectLen() function, Set CoordSys statement, Set Distance Units statement

Do Case...End Case statement

Purpose

Decides which group of statements to execute, based on the current value of an expression.

Restrictions

You cannot issue a Do Case statement through the MapBasic window.

Syntax

Do Case do expr
Case case expr [, case expr]
statement list
[Case ...]
[Case Else
statement list]
End Case

do_expris an expression

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 221 MB_Ref.pdf

Reference Guide Chapter 5: Do Case...End Case statement

case_expr is an expression representing a possible value for do_expr
statement _list is a group of statements to carry out under the appropriate circumstances

Description

The Do Case statement is similar to the If ... Then ... Else statement, in that Do Case tests for the
existence of certain conditions, and decides which statements to execute (if any) based on the results
of the test. MapBasic’s Do Case statement is analogous to the BASIC language’s Select Case
statement. (In MapBasic, the name of the statement was changed to avoid conflicting with the Select
statement).

In executing a Do Case statement, MapBasic examines the first Case case_expr clause. If one of the
expressions in the Case case_expr clause is equal to the value of the do_expr expression, that case is
considered a match. Accordingly, MapBasic executes the statements in that Case’s statement_list, and
then jumps down to the first statement following the End Case statement.

If none of the expressions in the first Case case_expr clause equal the do_expr expression, MapBasic
tries to find a match in the following Case case_expr clause. MapBasic will test each Case case_expr
clauses in succession, until one of the cases is a match or until all of the cases are exhausted.

MapBasic will execute at most one statement_list from a Do Case statement. Upon finding a matching
Case, MapBasic will execute that Case’s statement _list, and then jump immediately down to the first
statement following End Case.

If none of the case_expr expressions are equal to the do_expr expression, none of the cases will
match, and thus no statement _list will be executed. However, if a Do Case statement includes a Case
Else clause, and if none of the Case case_expr clauses match, then MapBasic will carry out the
statement list from the Case Else clause.

Note that a Do Case statement of this form:

Do Case exprl
Case expr2
statement listl
Case expr3, expr4
statement_list2
Case Else
statement 1ist3
End Case

would have the same effect as an If ... Then ... Else statement of this form:

If exprl = expr2 Then
statement listl

Elself exprl = expr3 Or exprl = expr4 Then
statement_list2

Else
statement list3

End If

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 222 MB_Ref.pdf

Reference Guide Chapter 5: Do...Loop statement

Example

The following example builds a text string such as “First Quarter”, “Second Quarter”, etc., depending
on the current date.

Dim cur month As Integer, msg As String
cur_month = Month(CurDate())
Do Case cur month

Case 1, 2, 3

msg = ”"First Quarter”
Case 4, 5, 6

msg = ”Second Quarter”
Case 7, 8, 9

msg = “Third Quarter”
Case Else

msg = ”"Fourth Quarter”

End Case

See Also
If...Then statement

Do...Loop statement

Purpose
Defines a loop which will execute until a specified condition becomes TRUE (or FALSE).

Restrictions

You cannot issue a Do Loop statement through the MapBasic window.

Syntax 1

Do
statement list
Loop [{ Until | While } condition]
Syntax 2

Do [{ Until | While } condition]
statement list
Loop

statement _list is a group of statements to be executed zero or more times
condition is a conditional expression which controls when the loop terminates

Description

The Do ... Loop statement provides loop control. Generally speaking, the Do ... Loop repeatedly
executes the statements in a statement _list as long as a While condition remains TRUE (or,
conversely, the loop repeatedly executes the statement _list until the Until condition becomes TRUE).

If the Do ... Loop does not contain the optional Until / While clause, the loop will repeat indefinitely. In
such a case, a flow control statement, such as Goto or Exit Do, will be needed to halt or exit the loop.
The Exit Do statement halts any Do ... Loop immediately (regardless of whether the loop has an Until
/ While clause), and resumes program execution with the first statement following the Loop clause.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 223 MB_Ref.pdf

Reference Guide Chapter 5: Drop Index statement

As indicated above, the optional Until / While clause may either follow the Do keyword or the Loop
keyword. The position of the Until / While clause dictates whether MapBasic tests the condition before
or after executing the statement _list. This is of particular importance during the first iteration of the
loop. A loop using the following syntax :

Do

statement_list

Loop While condition
will execute the statement list and then test the condition. If the condition is TRUE, MapBasic will
continue to execute the statement_list until the condition becomes FALSE. Thus, a Do ... Loop using
the above syntax will execute the statement _list at least once.

By contrast, a Do ... Loop of the following form will only execute the statement _list if the condition is
TRUE.

Do While condition
statement list
Loop

Example

The following example uses a Do..Loop statement to read the first ten records of a table.

Dim sum As Float, counter As Integer
Open Table ”"world”
Fetch First From world
counter =1
Do
sum = sum + world.population
Fetch Next From world
counter = counter + 1
Loop While counter <= 10

See Also
Exit Do statement, For...Next statement

Drop Index statement

Purpose
Deletes an index from a table.
Syntax
Drop Index table(column)

table is the name of an open table
column is the name of a column in that table

Description

The Drop Index statement deletes an existing index from an open table. Dropping an index reduces
the amount of disk space occupied by a table. (To re-create that index at a later time, issue a Create
Index statement.)

Note: Maplinfo Professional cannot drop an index if the table has unsaved edits. Use the Commit
statement to save edits.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 224 MB_Ref.pdf

Reference Guide Chapter 5: Drop Map statement

The Drop Index statement takes effect immediately; no Save operation is required. You cannot undo
the effect of a Drop Index statement by selecting File > Revert or Edit > Undo. Similarly, the MapBasic
Rollback statement will not undo the effect of a Drop Index.

Example
The following example deletes the index from the Name field of the World table.

Open Table ”"world”
Drop Index world (name)

See Also
Create Index statement

Drop Map statement

Purpose
Deletes all graphical objects from a table. Cannot be used on linked tables.

Syntax
Drop Map table

table is the name of an open table

Description
A Drop Map statement deletes all graphical objects (points, lines, regions, circles, etc.) from an open
table, and modifies the table structure so that graphical objects may not be attached to the table.

Note: The Drop Map statement takes effect immediately; no Save operation is required. You cannot
undo the effect of a Drop Map statement by selecting File > Revert or Edit > Undo. Similarly,
the MapBasic Rollback statement will not undo the effect of a Drop Map statement.
Accordingly, you should be extremely cautious when using the Drop Map statement.

After performing a Drop Map operation, you will no longer be able to display the corresponding table in

a Map window; the Drop Map statement modifies the table’s structure so that objects may no longer be

associated with the table. (A subsequent Create Map statement will restore the table’s ability to contain

graphical objects; however, a Create Map statement will not restore the graphical objects which were
discarded during a Drop Map operation.) The Drop Map statement does not affect the number of
records in a table. You still can browse a table after performing Drop Map.

If you wish to delete all of the graphical objects from a table, but you intend to attach new graphical
objects to the same table, use Delete Object instead of Drop Map.

The Drop Map statement does not work on linked tables.

Example

Open Table “clients”
Drop Map clients

See Also
Create Map statement, Create Table statement, Delete statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 225 MB_Ref.pdf

Reference Guide Chapter 5: Drop Table statement

Drop Table statement

Purpose
Deletes a table in its entirety.

Syntax
Drop Table table

table is the name of an open table

Description

The Drop Table statement completely erases the specified table from the computer’s disk. The table
must already be open.

Note that if a table is based on a pre-existing database or spreadsheet file, the Drop Table statement
will delete the original file as well as the component files which make it a table. In other words, a Drop
Table operation may have the effect of deleting a file which is used outside of MapInfo Professional.

The Drop Table statement takes effect immediately; no Save operation is required. You cannot undo
the effect of a Drop Table statement by selecting File > Revert or Edit > Undo. Similarly, the MapBasic
Rollback statement will not undo the effect of a Drop Table statement. You should be extremely
cautious when using the Drop Table statement.

Note: Many Maplinfo table operations (for example, Select) store results in temporary tables (for

example, Query1). Temporary tables are deleted automatically when you exit MaplInfo
Professional ; you do not need to use the Drop Table statement to delete temporary tables.

The Drop Table statement cannot be used to delete a table that is actually a “view.” For example, a
Streetinfo table (such as SF_STRTS) is actually a view, combining two other tables (SF_STRT1 and
SF_STRT2). So, you could not delete the SF_STRTS table by using the Drop Table statement.

Example

Open Table ”"clients”
Drop Table clients

See Also

Create Table statement, Delete statement, Kill statement

End Mapinfo statement

Purpose

This statement halts MaplInfo Professional.

Syntax
End MapInfo [Interactive]
Description

The End Maplnfo statement halts MaplInfo Professional.

An application can define a special procedure called EndHandler, which is executed automatically
when Maplnfo Professional terminates. Accordingly, when an application issues an End Maplinfo
statement, MapInfo Professional automatically executes any sleeping EndHandler procedures before
shutting down. See the discussion of the EndHandler procedure for more information.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 226 MB_Ref.pdf

Reference Guide Chapter 5: End Program statement

If an application issues an End Maplinfo statement, and one or more tables have unsaved edits,
Maplinfo Professional prompts the user to save or discard the table edits.

If you include the Interactive keyword, and if there are unsaved themes or labels, Mapinfo
Professional prompts the user to save or discard the unsaved work. However, if the user’s system is
set up so that it automatically saves MAPINFOW.WOR on exit, this prompt does not appear. If you omit
the Interactive keyword, this prompt does not appear.

To halt a MapBasic application without exiting MaplInfo Professional, use the End Program statement.

See Also
End Program statement, EndHandler procedure

End Program statement

Purpose
Halts a MapBasic application.

Restrictions
The End Program statement may not be issued from the MapBasic window.

Syntax
End Program

Description
The End Program statement halts execution of a MapBasic program. A MapBasic application can add
items to Maplnfo Professional menus, and even add entirely new menus to the menu bar. Typically, a
menu item added in this fashion calls a sub procedure from a MapBasic program. Once a MapBasic
application has connected a procedure to the menu in this fashion, the application is said to be
“sleeping.”
If any procedure in a MapBasic application issues an End Program statement, that entire application
is halted - even if “sleeping” procedures have been attached to custom menu items. When an
application halts, MaplInfo Professional automatically removes any menu items created by that
application.

If an application defines a procedure named EndHandler, MapBasic automatically calls that procedure
when the application halts, for whatever reason the application halts.

See Also
End Maplinfo statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 227 MB_Ref.pdf

Reference Guide Chapter 5: EndHandler procedure

EndHandler procedure

Purpose
A reserved procedure name, called automatically when an application terminates.
Syntax
Declare Sub EndHandler
Sub EndHandler

statement_list
End Sub

statement _list is a list of statements to execute when the application terminates

Description
EndHandler is a special-purpose MapBasic procedure name.
If the user runs an application containing a sub procedure named EndHandler, the EndHandler

procedure is called automatically when the application ends. This happens whether the user exited
Maplinfo Professional or another procedure in the application issued an End Program statement.

Note: Multiple MapBasic applications can be “sleeping” at the same time. When Maplnfo
Professional terminates, MapBasic automatically calls all sleeping EndHandler procedures,
one after another.

See Also

RemoteMsgHandler procedure, SelChangedHandler procedure, ToolHandler procedure,
WinChangedHandler procedure, WinClosedHandler procedure

EOF() function
Purpose
Returns TRUE if MapBasic tried to read past the end of a file, FALSE otherwise.

Syntax
EOF(filenum)

filenum is the number of a file opened through the Open File statement
Return Value

Logical
Description

The EOF() function returns a logical value indicating whether the End-Of-File condition exists for the
specified file. The integer filenum parameter represents the number of an open file.

If a Get statement tries to read past the end of the specified file, the EOF() function returns a value of
TRUE; otherwise, EOF() returns a value of FALSE.

The EOF() function works with open files; when you wish to check the current position of an open
table, use the EOT() function.

For an example of calling EOF(), see the sample program NVIEWS.MB (Named Views).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 228 MB_Ref.pdf

Reference Guide Chapter 5: EOT() function

Error Conditions
ERR_FILEMGR_NOTOPEN error generated if the specified file is not open

See Also
EOT() function, Open File statement

EOT() function

Purpose
Returns TRUE if MapBasic has reached the end of the specified table, FALSE otherwise.

Syntax
EOT (table)

table is the name of an open table

Return Value
Logical

Description

The EOT() function returns TRUE or FALSE to indicate whether MaplInfo Professional has tried to
read past the end of the specified table. The table parameter represents the name of an open table.

Error Conditions
ERR_TABLE_NOT_FOUND error generated if the specified table is not available

Example

The following example uses the logical result of the EOT() function to decide when to terminate a loop.
The loop repeatedly fetches the next record in a table, until the point when the EOT() function
indicates that the program has reached the end of the table.

Dim f total As Float
Open Table ”customer”
Fetch First From customer
Do While Not EOT (customer)

f total = £ total + customer.order
Fetch Next From customer
Loop

See Also
EOF() function, Fetch statement, Open File statement, Open Table statement

Erase() function

Purpose

Returns an object created by erasing part of another object.

Syntax

Erase (source object , eraser object)

source_object is an object, part of which is to be erased; cannot be a point or text object

eraser_object is a closed object, representing the area that will be erased

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 229 MB_Ref.pdf

Reference Guide Chapter 5: Err() function

Return Value

Returns an object representing what remains of source_object after erasing eraser_object.

Description

The Erase() function erases part of an object, and returns an object expression representing what
remains of the object.

The source_object parameter can be a linear object (line, polyline, or arc) or a closed object (region,
rectangle, rounded rectangle, or ellipse), but cannot be a point object or text object. The eraser_object
must be a closed object. The object returned retains the color and pattern styles of the source object.

Example

' In this example, ol and o2 are Object variables
' that already contain Object expressions.
If ol Intersects o2 Then
If ol Entirely Within o2 Then
Note ”Cannot Erase; nothing would remain.”

Else
03 = Erase(ol, o2)
End If
Else
Note ”Cannot Erase; objects do not intersect.”
End If

See Also
Objects Erase statement, Objects Intersect statement

Err() function

Purpose

Returns a numeric code, representing the current error.

Syntax
Err()

Return Value

Integer

Description

The Err() function returns the numeric code indicating which error occurred most recently.

By default, a MapBasic program which generates an error will display an error message and then halt.
However, by issuing an OnError statement, a program can set up an error handling routine to respond
to error conditions. Once an error handling routine is specified, MapBasic jumps to that routine
automatically in the event of an error. The error handling routine can then call the Err() function to
determine which error occurred.

The Err() function can only return error codes while within the error handler. Once the program issues
a Resume statement to return from the error handling routine, the error condition is reset. This means
that if you call the Err() function outside of the error handling routine, it returns zero.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 230 MB_Ref.pdf

Reference Guide Chapter 5: Error statement

Some statement and function descriptions within this document contain an Error Conditions heading
(just before the Example heading), listing error codes related to that statement or function. However,
not all error codes are identified in the Error Conditions heading.

Some MapBasic error codes are only generated under narrowly-defined, specific circumstances; for
example, the ERR_INVALID _CHANNEL error is only generated by DDE-related functions or
statements. If a statement might generate such an “unusual” error, the discussion for that statement
will identify the error under the Error Conditions heading.

However, other MapBasic errors are “generic”, and might be generated under a variety of broadly-
defined circumstances. For example, many functions, such as Area() and ObjectInfo(), take an
Object expression as a parameter. Any such function will generate the
ERR_FCN_OBJ_FETCH_FAILED error if you pass an expression of the form tablename.obj as a
parameter, when the current row from that table has no associated object. In other words, any function
which takes an Object parameter might generate the ERR_FCN_OBJ_FETCH_FAILED error. Since
the ERR_FCN_OBJ_FETCH_FAILED error can occur in so many different places, individual functions
do not explicitly identify the error.

Similarly, there are two math errors - ERR_FP_MATH_LIB_DOMAIN and
ERR_FP_MATH_LIB_RANGE - which can occur as a result of an invalid numeric parameter. These
errors might be generated by calls to any of the following functions: Asin(), Acos(), Atn(), Cos(),
Exp(), Log(), Sin(), Sqr(), or Tan().

The complete list of potential MapBasic error codes is included in the file ERRORS.DOC.

See Also
Error statement, Error$() function, OnError statement

Error statement

Purpose

Simulates the occurrence of an error condition.

Syntax

Error error num

error_num is an Integer error number

Description
The Error statement simulates the occurrence of an error.

If an error-handling routine has been enabled through an OnError statement, the simulated error will
cause MapBasic to perform the appropriate error-handling routine. If no error handling routine has
been enabled, the error simulated by the Error statement will cause the MapBasic application to halt
after displaying an appropriate error message.

See Also
Err() function, Error$() function, OnError statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 231 MB_Ref.pdf

Reference Guide Chapter 5: Error$() function

Error$() function

Purpose

Returns a message describing the current error.
Syntax

Error$()

Return Value

String
Description

The Error$() function returns a character string describing the current run-time error, if an error has

occurred. If no error has occurred, the Error$() function returns a null string.

The Error$() function should only be called from within an error handling routine. See the discussion
of the Err() function for more information.

See Also

Err() function, Error statement, OnError statement

Exit Do statement

Purpose

Exits a Do loop prematurely.

Restrictions
You cannot issue an Exit Do statement through the MapBasic window.
Syntax
Exit Do
Description

An Exit Do statement terminates a Do...Loop statement. Upon encountering an Exit Do statement,
MapBasic will jump to the first statement following the Do...Loop statement. Note that the Exit Do
statement is only valid within a Do...Loop statement.

Do...Loop statements can be nested; that is, a Do...Loop statement can appear within the body of
another, “outer” Do...Loop statement. An Exit Do statement only halts the iteration of the nearest
Do...Loop statement. Thus, in an arrangement of this sort:

Do While conditionl
Do While conditionZ2
If error condition
Exit Do
End If
Loop

Loop

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 232 MB_Ref.pdf

Reference Guide Chapter 5: Exit For statement

the Exit Do statement will halt the inner loop (Do While condition2) without necessarily affecting the
outer loop (Do While conditionT).

See Also
Do...Loop statement, Exit For statement, Exit Sub statement

Exit For statement

Purpose
Exits a For loop prematurely.
Restrictions
You cannot issue an Exit For statement through the MapBasic window.
Syntax
Exit For

Description

An Exit For statement terminates a For...Next loop. Upon encountering an Exit For statement,
MapBasic will jump to the first statement following the For...Next statement. Note that the Exit For
statement is only valid within a For...Next statement.

For...Next statements can be nested; that is, a For...Next statement can appear within the body of
another, “outer” For...Next statement. Note that an Exit For statement only halts the iteration of the
nearest For...Next statement. Thus, in an arrangement of this sort:

For x = 1 to 5
For vy = 2 to 10 step 2

If error condition
Exit For
End If

Next

Next

the Exit For statement will halt the inner loop (For y = 2 to 10 step 2) without necessarily affecting the
outer loop (For x =1 to 5).

See Also
Exit Do statement, For...Next statement

Exit Function statement

Purpose

Exits a Function...End Function construct.

Restrictions

You cannot issue an Exit Function statement through the MapBasic window.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 233 MB_Ref.pdf

Reference Guide Chapter 5: Exit Sub statement

Syntax
Exit Function
Description
An Exit Function statement causes MapBasic to exit the current function. Accordingly, an Exit
Function statement may only be issued from within a Function...End Function definition.

Function calls may be nested; in other words, one function can call another function, which, in turn, can

call yet another function. Note that a single Exit Function statement exits only the current function.
See Also

Function... End Function statement

Exit Sub statement

Purpose

Exits a Sub procedure.
Restrictions

You cannot issue an Exit Sub statement through the MapBasic window.
Syntax

Exit Sub

Description

An Exit Sub statement causes MapBasic to exit the current sub procedure. Accordingly, an Exit Sub

statement may only be issued from within a sub procedure.

Sub procedure calls may be nested; in other words, one sub procedure can call another sub
procedure, which, in turn, can call yet another sub procedure, etc. Note that a single Exit Sub
statement exits only the current sub procedure.

See Also
Call statement, Sub...End Sub statement

Exp() function
Purpose
Returns the number e raised to a specified exponent.

Syntax
Exp (num expr)
num_expr is a numeric expression
Return Value
Float
Description
The Exp() function raises the mathematical value e to the power represented by num_expr. e has a
value of approximately 2.7182818.

Note: MapBasic supports general exponentiation through the caret operator (*).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 234 MB_Ref.pdf

Reference Guide Chapter 5: Export statement

Example

Dim e As Float

e = Exp (1)

' the local variable e now contains
' approximately 2.7182818

See Also

Cos() function, Sin() function, Log() function

Export statement

Purpose

Exports a table to another file format.

Syntax 1 (for exporting MIF/MID files, DBF files, or ASCII text files)

Export table
Into file name

[Type
{ "MIF" |
"DBF" Charset char set] |
"ASCII" Charset char set] [Delimiter “d ”] [Titles] }]
ncsve [Charset char set] [Titles] }]

[Overwrite]

Syntax 2 (for exporting DXF files)

Export table
Into file name
[Type “DXF”]
[Overwrite]
[Preserve
[AttributeData] [Preserve] [MultiPolygonRgns [As Blocks]] 1]
[{ Binary | ASCII [DecimalPlaces decimal places] }]
[Version { 12 | 13 }]

[Transform
(MI x1 , MI_yl1) (MI x2 , MI y2)
(DXF_x1 , DXF yl1) (DXF x2 , DXF y2) |

table is the name of an open table; do not use quotation marks around this name

file_name is a String specifying the filename to contain the exported data; if the file name does not
include a path, the export file is created in the current working directory

char_set is a String that identifies a character set, “WindowsLatin1”; see the separate CharSet
discussion for details

d is a character used as a delimiter when exporting an ASCII file

decimal_places is a small integer (from 0 to 16, default value is 6), which controls the number of
decimal places used when exporting floating-point numbers in ASCII

MI_x1, Ml_y1, etc. are numbers that represent bounds coordinates in the MapInfo Professional table

DXF_x1, DXF_y1, etc. are numbers that represent bounds coordinates in the DXF file

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 235 MB_Ref.pdf

Reference Guide Chapter 5: Export statement

Description
The Export statement copies the contents of a MaplInfo table to a separate file, using a file format
which other packages could then edit or import. For example, you could export the contents of a table
to a DXF file, then use a CAD software package to import the DXF file. The Export statement does not
alter the original table.

Specifying the File Format

The optional Type clause specifies the format of the file you want to create.

Type clause File Format Specified

Type "MIF” Maplnfo Interchange File format. For information on the MIF file format, see the
Maplnfo Professional documentation.

Type "DXF” DXF file (a format supported by CAD packages, such as AutoCAD).

Type "DBF” dBASE file format.
Note: Map objects are not exported when you specify DBF format.

Type "ASCII” | Text file format.
Note: Map objects are not exported when you specify ASCII format.

Type "CSV" Comma-delimited text file format.
Note: Map objects are not exported when you specify CSV format.

If you omit the Type clause, Maplnfo Professional assumes that the file extension indicates the desired
file format. For example, if you specify the file name “PARCELS.DXF” Maplinfo Professional creates a
DXF file.

If you include the optional Overwrite keyword, MapInfo Professional creates the export file, regardless
of whether a file by that name already exists. If you omit the Overwrite keyword, and the file already
exists, Maplnfo Professional does not overwrite the file.

Exporting ASCII Text Files

When you export a table to an ASCII or CSV text file, the text file will contain delimiters. A delimiter is a
special character that separates the fields within each row of data. CSV text files automatically use a
comma (“,”) as the delimiter. No other delimiter can be specified for CSV export.

The default delimiter for an ASCII text file is the TAB character (Chr$(9)). To specify a different
delimiter, include the optional Delimiter clause. The following example uses a colon (:) as the
delimiter:

Export sites Into ”“sitedata.txt” Type “ASCII”

Delimiter ”:” Titles

When you export to an ASCIl or CSV text file, you may want to include the optional Titles keyword. If
you include Titles, the first row of the text file will contain the table’s column names. If you omit Titles,
the column names will not be stored in the text file (which could be a problem if you intend to re-import
the file later).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 236 MB_Ref.pdf

Reference Guide Chapter 5: Export statement

Exporting DXF Files

If you export a table into DXF file, using Syntax 2 as shown above, the Export statement can include
the following DXF-specific clauses:

Preserve AttributeData

Include this clause if you want to export the table’s tabular data as attribute data in the DXF file.

Preserve MultiPolygonRgns As Blocks

Include this clause if you want MapInfo Professional to export each multiple-polygon region as a DXF
block entity. If you omit this clause, each polygon from a multiple-polygon region is stored separately.

Binary or ASCII [DecimalPlaces decimal_places]

Include the Binary keyword to export into a binary DXF file; or, include the ASCII clause to export into
an ASCII text DXF file. If you do not include either keyword, MapInfo Professional creates an ASCII
DXF file. Binary DXF files are generally smaller, and can be processed much faster than ASCIIl. When
you export as ASCII, you can specify the number of decimal places used to store floating-point
numbers (0 to 16 decimal places; 6 is the default).

Version 12 or Version 13

This clause controls whether Mapinfo Professional creates a DXF file compliant with AutoCAD 12 or
13. If you omit the clause, MapInfo Professional creates a version 12 DXF file.

Transform

Specifies a coordinate transformation. In the Transform clause, you specify the minimum and
maximum x- and y- bounds coordinates of the Maplnfo table, and then specify the minimum and
maximum coordinates that you want to have in the DXF file.

Example
The following example takes an existing Maplnfo table, Facility, and exports the table to a DXF file
called “FACIL.DXF”.

Open Table “facility”

Export facility
Into "FACIL.DXF”
Type "DXF”
Overwrite
Preserve AttributeData
Preserve MultiPolygonRgns As Blocks
ASCII DecimalPlaces 3
Transform (0, 0) (1, 1) (0, 0) (1, 1)

See Also
Import statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 237 MB_Ref.pdf

Reference Guide Chapter 5: ExtractNodes() function

ExtractNodes() function

Purpose
Returns a polyline or region created from a subset of the nodes in an existing object.

Syntax

ExtractNodes(object, polygon index, begin node, end node, b region)
object is a polyline or region object

polygon_index is an Integer value, 1 or larger: for region objects. This indicates which polygon (for
regions) or section (for polylines) to query.

begin_node is a Smalllnt node number, 1 or larger; indicates the beginning of the range of nodes to
return

end_node is a Smalllnt node number, 1 or larger; indicates the end of the range of nodes to return

b_region is a Logical value that controls whether a region or polyline object is returned; use TRUE for a
region object or FALSE for a polyline object
Return Value

Returns an object with the specified nodes. MapBasic applies all styles (color, etc.) of the original
object; then, if necessary, MapBasic applies the current drawing styles.

Description
If the begin_node is equal to or greater than end_node, the nodes are returned in the following order:

e begin_node through the next-to-last node in the polygon;
e First node in polygon through end_node.
If object is a region object, and if begin_node and end_node are both equal to 1, MapBasic returns the
entire set of nodes for that polygon. This provides a simple mechanism for extracting a single polygon
from a multiple-polygon region. To determine the number of polygons in a region, call Objectinfo().
Error Conditions

ERR_FCN_ARG_RANGE error generated if b_region is FALSE and the range of nodes contains fewer
than two nodes, or if b_region is TRUE and the range of nodes contains fewer than three nodes.

See Also
ObjectNodeX() function, ObjectNodeY() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 238 MB_Ref.pdf

Reference Guide Chapter 5: Farthest statement

Farthest statement

Purpose
Find the object in a table that is farthest from a particular object. The result is a two-point Polyline
object representing the farthest distance.

Syntax

Farthest [N | ALL] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min value] [Max max value] Units unitname]
[Data clause]
N optional parameter representing the number of "farthest" objects to find. The defaultis 1. If a11 is

used, then a distance object is created for every combination.
fromtable represents a table of objects that you want to find farthest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the farthest
distances from.

totable represents a table of objects that you want to find farthest distances to.
intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the infotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the infotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max sunclauses within it (e.g., only a Min or only a Max, or both
may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 239 MB_Ref.pdf

Reference Guide Chapter 5: Farthest statement

Description

Every object in the fromtable is considered. For each object in the fromtable, the farthest object in the
totable is found. If N is present, then the N farthest objects in totable are found. A two-point Polyline
object representing the farthest points between the fromtable object and the chosen fotable object is
placed in the intotable. If All is present, then an object is placed in the intotable representing the
distance between the fromtable object and each tfotable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second farthest object,
and 3 objects are requested, then the object will become the third farthest object.

The types of the objects in the fromtable and fotable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many
<totable> objects are found for each <fromtable> object. One use of the Min distance could be to
eliminate distances of zero. This may be useful in the case of two point tables to eliminate comparisons
of the same point. For example, if there are two point tables representing Cities, and we want to find
the closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the tofable. This may be most useful in
conjunction with N or All. For example, we may want to search for the five airports that are closest to a
set of cities (where the fromtable is the set of cities and the fofable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the All parameter, where we would
find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Farthest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Farthest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 240 MB_Ref.pdf

Reference Guide Chapter 5: Fetch statement

Data Clause
Data IntoColumnl=columnl, IntoColumn2=column?2
The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or

fromtable. If the same column name exists in both totable and fromtable, then the column in totable will
be used (e.g., fofable is searched first for column names on the right hand side of the equals).

To avoid any conflicts such as this, the column names can be qualified using the table alias:

Data namel=states.state_name, name2=county.state_ name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN...
functionality from the menu or by using the Update MapBasic statement.

See Also

Nearest statement, CartesianObjectDistance() function, ObjectDistance() function,
SphericalObjectDistance() function, CartesianConnectObjects() function, ConnectObjects()
function, SphericalConnectObjects() function

Fetch statement

Purpose
Sets a table’s cursor position (i.e., which row is the current row).
Syntax
Fetch { First | Last | Next | Prev | Rec n } From table

n is the number of the record to read
table is the name of an open table

Description
Use the Fetch statement to retrieve records from an open table. By issuing a Fetch statement, your
program places the table cursor at a certain row position in the table; this dictates which of the records
in the table is the “current” record.

Note: The term “cursor” is used here to signify a row’s position in a table. This has nothing to do with
the on-screen mouse cursor.

After you issue a Fetch statement, you can retrieve data from the current row by using one of the
following expression types:

Syntax Example
table.column World.Country
table.col# World.col1
table.col(number) World.col(variable_name)

A Fetch First statement positions the cursor at the first un-deleted row in the table.

A Fetch Last statement positions the cursor at the last un-deleted row in the table.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 241 MB_Ref.pdf

Reference Guide Chapter 5: Fetch statement

A Fetch Next statement moves the cursor forward to the next un-deleted row.
A Fetch Prev statement moves the cursor backward to the previous un-deleted row.
A Fetch Rec n statement positions the cursor on a specific row, even if that row is deleted.

Note: If the specified record is deleted, the statement generates run-time error 404.

Various MaplInfo Professional and MapBasic operations (for example, Select, Update, and screen
redraws) automatically reset the current row. Accordingly, Fetch statements should be issued just
before any statements that make assumptions about which row is current.

Reading Past the End of the Table

After you issue a Fetch statement, you may need to call the EOT() function to determine whether you
fetched an actual row.

If the Fetch statement placed the cursor on an actual row, the EOT() function returns FALSE
(meaning, there is not an end-of-table condition).

If the Fetch statement attempted to place the cursor past the last row, the EOT() function returns
TRUE (meaning, there is an end-of-table condition; therefore there is no “current row”).

The following example shows how to use a Fetch Next statement to loop through all rows in a table.
As soon as a Fetch Next statement attempts to read past the final row, EOT() returns TRUE, causing
the loop to halt.

Dim i As Integer

i=0
Fetch First From world
Do While Not EOT (world)

i=1+1
Fetch Next From world
Loop
Print “Number of undeleted records: ” + 1

Examples
The following example shows how to fetch the 3rd record from the table States:
Open Table ”“states”

Fetch Rec 3 From states ’‘position at 3rd record
Note states.state name ’‘display name of state

As illustrated in the example below, the Fetch statement can operate on a temporary table (for
example, Selection).

Select * From states Where pop 1990 < pop_ 1980
Fetch First From Selection
Note Selection.coll + ” has negative net migration”

See Also
EOT() function, Open Table statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 242 MB_Ref.pdf

Reference Guide Chapter 5: FileAttr() function

FileAttr() function

Purpose
Returns information about an open file.

Syntax
FileAttr(filenum , attribute)

filenum is the number of a file opened through an Open File statement
attribute is a code indicating which file attribute to return; see table below

Return Value

Integer

Description
The FileAttr() function returns information about an open file.

The attribute parameter must be one of the codes in this table:

attribute parameter Return Value

FILE_ATTR_MODE Small Integer, indicating the mode in which the file was opened.
Return value will be one of these:

+ MODE_INPUT

+ MODE_OUTPUT

+ MODE_APPEND

+ MODE_RANDOM

+ MODE_BINARY

FILE_ATTR_FILESIZE | Integer, indicating the file size in bytes.

Error Conditions
ERR_FILEMGR_NOTOPEN error generated if the specified file is not open

See Also
EOF() function, Get statement, Open File statement, Put statement

FileExists() function
Purpose

Returns a logical value indicating whether or not a file exists.

Syntax
FileExists(filespec)
filespec is a string that specifies the file path and name.
Return Value
Logical: TRUE if the file already exists

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 243 MB_Ref.pdf

Reference Guide Chapter 5: FileOpenDIg() function

Example
If FileExists (”C:\MapInfo\TODO.TXT”) Then

Open File “C:\MapInfo\TODO.TXT” For INPUT As #1

End If
See Also
TempFileName$() function

FileOpenDlIg() function

Purpose

Displays a File Open dialog, and returns the name of the file the user selected.

Syntax
FileOpenDlg(path , filename , filetype , prompt)

path is a String value, indicating the directory or folder to choose files from
filename is a String value, indicating the default file name for the user to choose

filetype is a String value, three or four characters, indicating a file type (for example, “TAB” to specify
tables)

prompt is a String title that appears on the bar at the top of the dialog

Return Value

String value, representing the name of the file the user chose (or an empty string if the user cancelled).

Description

The FileOpenDlg() function displays a dialog similar to the one that displays when the user chooses
File > Open.

To choose a file from the list that appears in the dialog, the user can either click a file in the list and click
the OK button, or simply double-click a file in the list. In either case, the FileOpenDIg() function
returns a character string representing the full path and name of the file the user chose. Alternately, if
the user clicks the Cancel button instead of picking a file, the dialog returns a null string (”).

The FileOpenDlIg() function does not actually open any files; it merely presents the user with a dialog,
and lets the user choose a filename. If your application then needs to actually open the file chosen by
the user, the application must issue a statement such as Open Table. If you want your application to
display an Open dialog, and then you want Maplnfo Professional to automatically open the selected
file, you can issue a statement such as Run Menu Command M_FILE_OPEN or Run Menu
Command M_FILE_ADD_WORKSPACE.

The path parameter specifies the directory or folder from which the user will choose an existing file.
Note that the path parameter only dictates the initial directory, it does not prevent the user from
changing directories once the dialog appears. If the path parameter is blank (a null string), the dialog
will present a list of files in the current working directory.

The filename parameter specifies the default filename for the user to choose.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 244 MB_Ref.pdf

Reference Guide Chapter 5: FileOpenDIg() function

The filetype parameter is a string, usually three or four characters long, which indicates the type of files
that should appear in the dialog. Some filetype settings have special meaning; for example, if the
filetype parameter is “TAB”, the dialog will present a list of MaplInfo tables, and if the filetype parameter
is “WOR?”, the dialog will present a list of MaplInfo workspace files.

There are also a variety of other three-character filetype values, summarized in the table below. If you
specify one of the special type values from the table below, the dialog will include a control that lets the
user choose between seeing a list of table files or a list of all files (“*.*”).

type parameter Type of files that appear

“TAB” Maplnfo tables

“WOR” Maplnfo workspaces

“MIF” Maplnfo Interchange Format files, used for importing / exporting maps from /
to ASCII text files.

“DBF” dBASE or compatible data files

“WKS”, “WK1” Lotus spreadsheet files

“XLS” Excel spreadsheet files

“DXF” AutoCAD data interchange format files

“MMI”, “MBI” Maplnfo for DOS interchange files

“MB” MapBasic source program files

“MBX” Compiled MapBasic applications

“TXT” Text files

“BMP” Windows bitmap files

“WMF” Windows metafiles

Each of the three-character file types listed above corresponds to an actual DOS file extension; in
other words, specifying a filetype parameter of “WOR” tells MapBasic to display a list of files having the
DOS “WOR?” file extension, because that is the extension used by Mapinfo Professional workspaces.

To help you write portable applications, MapBasic lets you use the same three-character filetype
settings on all platforms. On Windows, a control in the lower left corner of the dialog lets the user
choose whether to see a list of files with the .TAB extension, or a list of all files in the current directory.
If the FileOpenDIg() call specifies a filetype parameter which is not listed in the table of file extensions
above, the dialog would appear without that control.

Example

Dim s_filename As String

s filename = FileOpenDlg(””,””,”TAB”,”Open Table”)
See Also

FileSaveAsDIg() function, Open File statement, Open Table statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 245 MB_Ref.pdf

Reference Guide Chapter 5: FileSaveAsDIg() function

FileSaveAsDIg() function

Purpose
Displays a Save As dialog, and returns the name of the file the user entered.

Syntax
FileSaveAsDlg (path , filename, filetype, prompt)

path is a String value, indicating the default destination directory

filename is a String value, indicating the default file name

filetype is a String value, indicating the type of file that the dialog should let the user choose
prompt is a String title that appears at the top of the dialog

Return Value

String value, representing the name of the file the user entered (or an empty string if the user
cancelled).

Description

The FileSaveAsDIg() function displays a Save As dialog, similar to the dialog that displays when the
user chooses File > Save Copy As.

The user can type in the name of the file they want to save. Alternately, the user can double-click from
the list of grayed-out filenames that appears in the dialog. Since each filename in the list represents an
existing file, MapBasic asks the user to verify that they want to overwrite the existing file.

If the user specifies a filename and clicks OK, the FileSaveAsDIg() function returns a character string
representing the full path and name of the file the user chose. If the user clicks the Cancel button
instead of picking a file, the function returns a null string (”).

The path parameter specifies the initial directory path. The user can change directories once the dialog
appears. If the path parameter is blank (a null string), the dialog presents a list of files in the current
directory.

The filename parameter specifies the default filename for the user to choose.

The filetype parameter is a three-character (or shorter) string which identifies the type of files that
should appear in the dialog. To display a dialog that lists workspaces, specify the string “WOR” as the
filetype parameter; to display a dialog that lists table names, specify the string “TAB.” See the
discussion of the FileOpenDIg() function for more information about three-character filetype codes.

The FileSaveAsDIg() function does not actually save any files; it merely presents the user with a
dialog, and lets the user choose a filename to save. To save data under the filename chosen by the
user, issue a statement such as Commit Table As.

See Also
Commit Table statement, FileOpenDIg() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 246 MB_Ref.pdf

Reference Guide Chapter 5: Find statement

Find statement

Purpose
Finds a location in a mappable table.

Syntax

Find address [, region] [Interactive]

address is a String expression representing the name of a map object to find; to find the intersection of
two streets, use the syntax: streetname && streetname

region is the name of a region object which refines the search

Description
The Find statement searches a mappable table for a named location (represented by the address
parameter). MapBasic stores the search results in system variables, which a program can then access
through the Commandinfo() function. If the Find statement includes the optional Interactive
keyword, and if MapBasic is unable to locate the specified address, a dialog displays a list of “near
matches.”

The Find statement can only search a mappable table (for example, a table which has graphic objects
attached). The table must already be open. The Find statement operates on whichever column is
currently chosen for searching. A MapBasic program can issue a Find Using statement to identify a
specific table column to search. If the Find statement is not preceded by a Find Using statement,
MapBasic searches whichever table was specified the last time the user chose Maplnfo Professional’s
Query > Find command.

The Find statement can optionally refine a search by specifying a region name in addition to the
address parameter. In other words, you could simply try to find a city name (for example, “Albany”) by
searching a table of cities; or you could refine the search by specifying both a city name and a region
name (for example, “Albany”, “CA”). The Find statement does not automatically add a symbol to the
map to mark where the address was found. To create such a symbol, call the CreatePoint() function
or the Create Point statement; see example below.

Determining Whether the Address Was Found

Following a Find statement, a MapBasic program can issue the function call
Commandinfo(CMD_INFO_FIND_RC) to determine if the search was successful. If the search was
successful, call Commandinfo(CMD_INFO_X) to determine the x-coordinate of the queried location,
and call Commandinfo(CMD_INFO_Y) to determine the y-coordinate. To determine the row number
that corresponds to the “found” address, call Commandinfo(CMD_INFO_FIND_ROWID).

The Find statement may result in an exact match, an approximate match, or a failure to match. If the
Find statement results in an exact match, the function call Commandinfo(CMD_INFO_FIND_RC)
returns a value of one. If the Find statement results in an approximate match, the function call returns
a value greater than one. If the Find statement fails to match the address, the function call returns a
negative value.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 247 MB_Ref.pdf

Reference Guide Chapter 5: Find statement

The table below summarizes the Find-related information represented by the
Commandinfo(CMD_INFO_FIND_RC) return value. The return value has up to three digits, and that
each of the three digits indicates the relative success or failure of a different part of the search.

Digit Values Meaning
xx1 Exact match
Xx2 A substitution from the abbreviations file used
xx3 (-) Exact match not found
xx4 (-) No object name specified; match not found
xx5 (+) The user chose a name from the Interactive dialog
x1x Side of street undetermined
X2x (+/-) Address number was within min/max range
x3x (+/-) Address number was not within min/max range
xX4x (+/-) Address number was not specified
x5x (-) Streets do not intersect
x6x (-) The row matched does not have a map object
X7x (+) The user chose an address number from the Interactive dialog
Ixx (+/-) Name found in only one region other than specified region
2xx (-) Name found in more than one region other than the specified region
3xx (+/-) No refining region was specified, and one match was found
4xx (-) No region was specified, and multiple matches were found
5xx (+) Name found more than once in the specified region
6xx (+) The user chose a region name from the Interactive dialog

The Mod operator is useful when examining individual digits from the Find result. For example, to
determine the last digit of a number, use the expression number Mod 10. To determine the last two
digits of a number, use the expression number Mod 100; etc.

The distinction between exact and approximate matches is best illustrated by example. If a table of
cities contains one entry for “Albany”, and the Find Using statement attempts to locate a city name
without a refining region name, and the Find statement specifies an address parameter value of
“Albany”, the search results in an exact match. Following such a Find statement, the function call
Commandinfo(CMD_INFO_FIND_RC) would return a value of 1 (one), indicating that an exact match
was found.

Now suppose that the Find operation has been set up to refine the search with an optional region
name; in other words, the Find statement expects a city name followed by a state name (for example,
“‘Albany” , “NY?). If a MapBasic program then issues a Find statement with “Albany” as the address and

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 248 MB_Ref.pdf

Reference Guide Chapter 5: Find statement

a null string as the state name, that is technically not an exact match, because MapBasic expects the
city name to be followed by a state name. Nevertheless, if there is only one “Albany” record in the
table, MapBasic will be able to locate that record. Following such a Find operation, the function call
Commandinfo(CMD_INFO_FIND_RC) would return a value of 301. The 1 digit signifies that the city

name matched exactly, while the 3 digit indicates that MapBasic was only partly successful in locating
a correct refining region.

If a table of streets contains “Main St”, and a Find statement attempts to locate “Main Street”, MapBasic
considers the result to be an approximate match (assuming that abbreviation file processing has been
enabled; see the Find Using statement). Strictly speaking, the string “Main Street” does not match the
string “Main St”. However, MapBasic is able to match the two strings after substituting possible
abbreviations from the MaplInfo abbreviations file (MAPINFOW.ABB). Following the Find statement,
the Commandinfo(CMD_INFO_FIND_RC) function call returns a value of 2.

If the Find operation presents the user with a dialog, and the user enters text in the dialog in order to
complete the find, then the return code will have a 1 (one) in the millions place.

Example

Include "mapbasic.def”
Dim x, y As Float, win id As Integer
Open Table ”“states” Interactive
Map From States
win id = FrontWindow()
Find Using states(state)
Find ”NY”
If CommandInfo(CMD_INFO_ FIND RC) >= 1 Then
x = CommandInfo (CMD_ INFO_X)
y = CommandInfo (CMD_INFO_Y)
Set Map
Window win_id
Center (x, V)
' Now create a symbol at the location we found.
' Create the object in the Cosmetic layer.
Insert Into
WindowInfo(win_id, WIN_INFO_ TABLE) (Object)
Values (CreatePoint(x, y))
Else
Note ”Location not found.”
End If

See Also

Find Using statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 249 MB_Ref.pdf

Reference Guide Chapter 5: Find Using statement

Find Using statement

Purpose
Dictates which table(s) and column(s) should be searched in subsequent Find operations.

Syntax

Find Using table (column)
[Refine Using table (column)]
[options [Abbrs { On | Off }]
ClosestAddr { On | Off }]
OtherBdy { On | Off }]
Symbol symbol style]]
Inset inset value { Percent | Distance Units dist unit}]
Offset value] [Distance Units dist unit]]

e e B B W)

table is the name of an open table
column is the name of a column in the table

symbol_style is a Symbol variable or a function call that returns a Symbol value; this controls what type
of symbol is drawn on the map if the user chooses Query > Find.

inset_value is a positive integer value representing how far from the ends of the line to adjust the
placement of an address location. If Percent is specified, it represents the percentage of the length of
the line where the address is to be placed. For Percent, valid values for inset_value are from 0 to 50. If
Distance Units are specified, inset_value represents the distance from the ends of the line where the
address is to be placed. For distance, valid values for inset_value are from 0 to 32,767. The inset takes
the addresses that would normally fall at the end of the street and moves them away from the end
going in the direction towards the center.

value specifies the Offset value (the distance back from the street). The offset value sets the addresses
back from the street instead of right on the street. value is a positive integer value representing how far
to offset the placement of an address location back from the street. Valid values are from 0 to 32,767.

dist_unit is a string that represents the name of a distance unit (for example, "mi” for miles, "m” for
meters.

Description

The Find Using statement specifies which table(s) and column(s) MapBasic will search when
performing a Find statement. Note that the column specified must be indexed.

The optional Refine clause specifies a second table, which will act as an additional search criterion;
the table must contain region objects. The specified column does not need to be indexed. If you omit
the Refine clause, subsequent Find statements expect a simple location name (for example,
“Portland”). If you include a Refine clause, subsequent Find statements expect a location name and a
region name (for example, “Portland” , “OR”).

The optional Abbrs clause dictates whether MapBasic will try substituting abbreviations from the
abbreviations file in order to find a match. By default, this option is enabled (On); to disable the option,
specify the clause Abbrs Off.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 250 MB_Ref.pdf

Reference Guide Chapter 5: Fix() function

The optional ClosestAddr clause dictates whether MapBasic will use the closest available address
number in cases where the address number does not match. By default, this option is disabled (Off); to
enable the option, specify the clause ClosestAddr On.

The optional OtherBdy clause dictates whether MapBasic will match to a record found in a refining
region other than the refining region specified. By default, this option is disabled (Off); to enable the
option, specify the clause OtherBdy On.

Maplnfo Professional saves the Inset and Offset settings specified the last time the user chose Query >
Find Options. Table > Geocode Options or executed a Find Using statement. Thus, the last specified
inset/offset options becomes the default settings for the next time.

Example
Find Using city 1k (city)
Refine Using states(state)
Find ”Albany”, "NY”
See Also
Create Index statement, Find statement

Fix() function
Purpose

Returns an integer value, obtained by removing the fractional part of a decimal value.
Syntax

Fix (num expr)

num_expr is a numeric expression
Return Value

Integer
Description

The Fix() function removes the fractional portion of a number, and returns the resultant integer value.
The Fix() function is similar to, but not identical to, the Int() function. The two functions differ in the
way that they treat negative fractional values. When passed a negative fractional number, Fix()
returns the nearest integer value greater than or equal to the original value; thus, the function call:

Fix(-2.3)

returns a value of -2. But when the Int() function is passed a negative fractional number, it returns the
nearest integer value that is less than or equal to the original value. Thus, the function call:

Int (-2.3)

returns a value of -3.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 251 MB_Ref.pdf

Reference Guide Chapter 5: Font clause

Example

Dim i whole As Integer
i_whole = Fix(5.999)
' i_whole now has the value 5.

i whole = Fix(-7.2)
' 1 whole now has the value -7.

See Also
Int() function, Round() function

Font clause

Purpose
Specifies a text style.
Syntax
Font font expr
font_expr is a Font expression, for example, MakeFont(fontname, style, size, fgcolor, bgcolor)
Description

The Font clause specifies a text style. Font is a clause, not a complete MapBasic statement. Various
object-related statements, such as Create Text, allow you to specify a Font setting; this lets you
choose the typeface and point size of the new text object. If you omit the Font expression from a
Create Text statement, the new object uses Maplnfo Professional’s current Font. The keyword Font
may be followed by an expression that evaluates to a Font value.

This expression can be a Font variable:
Font font var

or a call to a function (for example, CurrentFont() or MakeFont()) which returns a Font value:
Font MakeFont ("Helvetica”, 1, 12, BLACK, WHITE)

With some MapBasic statements (for example, Set Legend), the keyword Font can be followed
immediately by the five parameters that define a Font style (font name, style, point size, foreground
color, and background color) within parentheses:

Font ("Helvetica”, 1, 12, BLACK, WHITE)

The following table summarizes the components that define a font:

Component Description

fontname A string that identifies a font. The set of available fonts depends on the
user’s system and the hardware platform in use.

style Integer value. Controls text attributes such as bold, italic, and underline. See
table below for details.

size Integer value representing a point size. A point size of twelve is one-sixth of
an inch tall.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 252 MB_Ref.pdf

Reference Guide

Chapter 5: Font clause

Component

Description

foreground color

Integer RGB color value, representing the color of the text. See the RGB()
function.

background color

Integer RGB color value. If the halo style is used, this is the halo color; other-
wise, this is the background fill color.

To specify a transparent background style in a Font clause, omit the back-
ground color. For example: Font(“Helvetica”, 1, 12, BLACK). To specify a
transparent fill when calling the MakeFont() function, specify -1 as the back-
ground color.

The following table shows how the style parameter corresponds to font styles.

Style Value Description of text style
0 Plain
1 Bold
2 Italic
4 Underline
8 Strikethrough
32 Shadow
256 Halo
512 All Caps
1024 Expanded

To specify two or more style attributes, add the values from the left column. For example, to specify
both the Bold and All Caps attributes, use a style value of 513.

Example

Include ”"MAPBASIC.DEF”
Dim o_title As Object

Create Text

Into Variable o_title

"Your message could go HERE”

(73.5, 42.6) (73.67, 42.9)

Font MakeFont ("Helvetica”,1l,12,BLACK,WHITE)

See Also

Alter Object statement, Chr$() function, Create Text statement, RGB() function

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 253

MB_Ref.pdf

Reference Guide Chapter 5: For...Next statement

For...Next statement

Purpose
Defines a loop which will execute for a specific number of iterations.

Restrictions
You cannot issue a For...Next statement through the MapBasic window.

Syntax

For var name = start expr To end expr [Step inc expr]
statement list
Next

var_name is the name of a numeric variable

start_expr is a numeric expression

end_expr is a numeric expression

inc_expr is a numeric expression

statement _list is the group of statements to execute with each iteration of the For loop

Description
The For statement provides loop control. This statement requires a numeric variable (identified by the
var_name parameter). A For statement either executes a group of statements (the statement list) a
number of times, or else skips over the statement _list completely. The start_expr, end_expr, and
inc_expr values dictate how many times, if any, the statement_list will be carried out.

Upon encountering a For statement, MapBasic assigns the start_expr value to the var_name variable.
If the variable is less than or equal to the end_expr value, MapBasic executes the group of statements
in the statement _list, and then adds the inc_expr increment value to the variable. If no Step clause was
specified, MapBasic uses a default increment value of one. MapBasic then compares the current value
of the variable to the end_expr expression; if the variable is currently less than or equal to the end_expr
value, MapBasic once again executes the statements in the statement_list. If, however, the var_name
variable is greater than the end_expr, MapBasic stops the For loop, and resumes execution with the
statement which follows the Next statement.

Conversely, the For statement can also count downwards, by using a negative Step value. In this
case, each iteration of the For loop decreases the value of the var_name variable, and MapBasic will
only decide to continue executing the loop as long as var_name remains greater than or equal to the
end_expr.

Each For statement must be terminated by a Next statement. Any statements which appear between
the For and Next statements comprise the statement _list; this is the list of statements which will be
carried out upon each iteration of the loop.

The Exit For statement allows you to exit a For loop regardless of the status of the var_name variable.
The Exit For statement tells MapBasic to jump out of the loop, and resume execution with the first
statement which follows the Next statement.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 254 MB_Ref.pdf

Reference Guide Chapter 5: ForegroundTaskSwitchHandler procedure

MapBasic permits you to modify the value of the var_name variable within the body of the For loop;
this can affect the number of times that the loop is executed. However, as a matter of programming
style, you should try to avoid altering the contents of the var_name variable within the loop.

Example

Dim i As Integer

' the next loop will execute a Note statement 5 times
For i =1 to 5

Note ”"Hello world!”
Next

' the next loop will execute the Note statement 3 times
For i = 1 to 5 Step 2

Note ”"Hello world!”
Next

' the next loop will execute the Note statement 3 times
For i = 5 to 1 Step -2

Note "Hello world!”
Next

' MapBasic will skip the following For statement
' completely, because the initial start value is
' already larger than the initial end wvalue
For i = 100 to 50 Step 5

Note ”This note will never be executed”
Next

See Also
Do...Loop statement, Exit For statement

ForegroundTaskSwitchHandler procedure

Purpose
A reserved procedure name, called automatically when Maplinfo Professional receives the focus
(becoming the active application) or loses the focus (another application becomes active).

Syntax

Declare Sub ForegroundTaskSwitchHandler

Sub ForegroundTaskSwitchHandler
statement_list
End Sub

statement _list is a list of statements

Description
If the user runs an application containing a procedure named ForegroundTaskSwitchHandler, MapInfo
Professional calls the procedure automatically whenever Maplnfo Professional receives or loses the
focus. Within the procedure, call Commandinfo() to determine whether Mapinfo Professional
received or lost the focus.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 255 MB_Ref.pdf

Reference Guide Chapter 5: Format$() function

Example
Sub ForegroundTaskSwitchHandler

If CommandInfo (CMD INFO TASK SWITCH)
= SWITCHING INTO MAPINFO Then

" ... then MapInfo just became active
Else
' ... another app just became active
End If
End Sub
See Also

CommandInfo() function

Format$() function

Purpose

Returns a string representing a custom-formatted number.
Syntax
Format$ (value , pattern)
value is a numeric expression
pattern is a string which specifies how to format the results
Return Value
String

Description

The Format$() function returns a string representing a formatted number. Given a numeric value such
as 12345.67, Format$() can produce formatted results such as “$12,345.67".

The value parameter specifies the numeric value that you want to format.

The pattern parameter is a string of code characters, chosen to produce a particular type of formatting.
The pattern string should include one or more special format characters, such as #, 0, % , the comma
character, the period, or the semi-colon; these characters control how the results will look. The table
below summarizes the format characters.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 256 MB_Ref.pdf

Reference Guide

Chapter 5: Format$() function

pattern character

Role in formatting results:

#

The result will include one or more digits from the value.

If the pattern string contains one or more # characters to the left of the dec-
imal place, and if the value is between zero and one, the formatted result
string will not include a zero before the decimal place.

A digit placeholder similar to the # character. If the pattern string contains
one or more 0 characters to the left of the decimal place, and the value is
between zero and one, the formatted result string will include a zero before
the decimal place. See examples below.

. (period)

The pattern string must include a period if you want the result string to
include a “decimal separator.” The result string will include the decimal
separator currently in use on the user’s computer. To force the decimal
separator to be a period, use the Set Format statement.

, (comma)

The pattern string must include a comma if you want the result string to
include “thousand separators.” The result string will include the thousand
separator currently set up on the user’s computer. To force the thousand
separator to be a comma, use the Set Format statement.

%

The result will represent the value multiplied by one hundred; thus, a value
of 0.75 will produce a result string of “75%”. If you wish to include a percent
sign in your result, but you do not want MapBasic to multiply the value by
one hundred, place a\ (back slash) character before the percent sign (see
below).

E+

The result is formatted with scientific notation. For example, the value 1234
produce the result “1.234e+03”. If the exponent is positive, a plus sign
appears after the “e”. If the exponent is negative (which is the case for frac-
tional numbers), the results include a minus sign after the “e”.

E-

This string of control characters functions just as the “E+” string, except
that the result will never show a plus sign following the “e”.

; (semi-colon)

By including a semicolon in your pattern string, you can specify one format
for positive numbers and another format for negative numbers. Place the
semicolon after the first set of format characters, and before the second set
of format characters. The second set of format characters applies to nega-
tive numbers. If you want negative numbers to appear with a minus sign,
include “-” in the second set of format characters.

If the back slash character appears in a pattern string, MapBasic does not
perform any special processing for the character which follows the back
slash. This lets you include special characters (for example, %) in the
results, without causing the special formatting actions described above.

Error Conditions

ERR_FCN_INVALID_FMT error generated if the pattern string is invalid

MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 257

MB_Ref.pdf

Reference Guide

Chapter 5: FormatDate$ function

Examples

The following examples show the results you can obtain by using various pattern strings. The results

are shown as comments in the code.

Note: You will obtain slightly different results if your computer is set up with non-US number
formatting.
Format$ (12345, ”,#”) ' returns ”12,345”"
Format$ (-12345, ”,#”) ' returns ”-12,345”"
Format$ (12345, "$#”) ' returns ”$12345"
Format$ (-12345, "S$#”) ' returns "-$12345"
Format$ (12345.678, "S$,#.##”) ' returns ”$12,345.68"
Format$ (-12345.678, "S,#.##"”) ' returns ”"-3$12,345.68"
Format$ (12345.678, "$, #.##; ($,#.##)”) ’'returns ”$12,345.68"
Format$ (-12345.678, ", #.##; (S, #.##)"”) 'returns ” ($12,345.68)"
Format$ (12345.6789, ", #.###”) ' returns ”12,345.679"”
Format$ (12345.6789, ”,#.#") ' returns ”12,345.7"
Format$ (-12345.6789, "#.###E+00”) ' returns ”-1.235e+04"
Format$(0.054321, "#.#H#H#E+00”) ' returns ”5.432e-02"
Format$ (-12345.6789, "#.###E-00") ' returns ”-1.235e04”
Format$(0.054321, "#.#H#H#E-00"”) ' returns ”5.432e-02"
Format$ (0.054321, "#.##%"”) ' returns "5.43%"

Format$ (0.054321,
Format$ (0.054321,

THOHENS")
"0.H#\%")

See Also
Str$() function

FormatDate$ function

Purpose

' returns ”.05%"
' returns ”0.05%”

Returns a date formatted in the short date style specified by the Control Panel.

Syntax

FormatDate$ (value)

value is a number or string representing the date in a YYYYMMDD format.

Return Value

String

Description

The FormatDate$() function returns a string representing a date in the local system format as

specified by the Control Panel.

If you specify the year as a two-digit number (for example, 96), MapInfo Professional uses the current
century or the century as determined by the Set Date Window statement.

Year can take two-digit year expressions. Use the Date window to determine which century should be

used. See DateWindow() function

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

258 MB_Ref.pdf

Reference Guide Chapter 5: FormatNumber$() function

Examples

Assuming Control Panel settings are d/m/y for date order,
short date format:

-’ for date separator, and “dd-MMM-yyyy” for

Dim d_Today As Date

d Today = CurDate()

Print d Today ‘returns ”19970910”

Print FormatDate$ (d Today) ‘returns “10-Sep-1997”

Dim s_EnteredDate As String

s_EnteredDate = “03-02-61"

Print FormatDate$ (s_EnteredDate) ‘returns “03-Feb-1961"
s_EnteredDate = “12-31-61"

Print FormatDate$(s _EnteredDate) ' returns ERROR: not d/m/y ordering
s _EnteredDate = "“31-12-61"

Print FormatDate$(s EnteredDate) ' returns 31-Dec-1961"

See Also
DateWindow() function, Set Date Window statement

FormatNumber$() function

Purpose
Returns a string representing a number, including thousands separators and decimal-place separators
that match the user’s system configuration.

Syntax
FormatNumber$ (num)

num is a numeric value or a string that represents a numeric value, such as “1234.56”

Return Value
String

Description

Returns a string that represents a number. If the number is large enough to need a thousands
separators, this function inserts thousands separators. Maplnfo Professional reads the user’s system
configuration to determine which characters to use as the thousands separator and decimal separator.

Examples

The following table demonstrates how the FormatNumber$() function with a comma as the thousands
separator and period as the decimal separator (United States defaults):

Function Call Result returned

FormatNumber$("12345.67") | “12,345.67” (inserted a thousands separator)

FormatNumber$("12,345.67”) | “12,345.67” (no change)

If the user’s computer is set up to use period as the thousands separator and comma as the decimal
separator, the following table demonstrates the results:

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 259 MB_Ref.pdf

Reference Guide Chapter 5: FrontWindow() function

Function Call Result returned

FormatNumber$("12345.67") | “12.345,67” (inserted a thousands separator, and changed the
decimal separator to match user’s setup)

FormatNumber$(’12,345.67”) | “12.345,67” (changed both characters to match the user’s
setup)

See Also
DeformatNumber$() function

FrontWindow() function

Purpose

Returns the Integer identifier of the active window.

Syntax
FrontWindow ()
Return Value

Integer

Description

The FrontWindow() function returns the integer id of the foremost document window (Map, Browse,
Graph, or Layout). Note that immediately following a statement which creates a new window (for
example, Map, Browse, Graph, Layout), the new window is the foremost window.

Example

Dim map win id As Integer
Open Table ”states”

Map From states

map_win_id = FrontWindow()

See Also
NumWindows() function, WindowlID() function, WindowlInfo() function

Function... End Function statement

Purpose

Defines a custom function.

Restrictions

You cannot issue a Function...End Function statement through the MapBasic window.

Syntax

Function name ([[ByVal] parameter As datatype]
[, [ByVal] parameter As datatype...]) As return type
statement_list
End Function

name is the function name

parameter is the name of a parameter to the function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 260 MB_Ref.pdf

Reference Guide Chapter 5: Function... End Function statement

datatype is a variable type, such as Integer; arrays and custom Types are allowed
return_type is a standard scalar variable type; arrays and custom Types are not allowed
statement _list is the list of statements that the function will execute

Description

The Function statement creates a custom, user-defined function. User-defined functions may be
called in the same fashion that standard MapInfo Professional functions are called.

Each Function...End Function definition must be preceded by a Declare Function statement.

A user-defined function is similar to a Sub procedure; but a function returns a value. Functions are
more flexible, in that any number of function calls may appear within one expression. For example, the
following statement performs an assignment incorporating two calls to the Proper$() function:

fullname = Proper$ (firstname) + ” ” + Propers$ (lastname)

Within a Function...End Function definition, the function name parameter acts as a variable. The
value assigned to the name “variable” will be the value that is returned when the function is called. If no
value is assigned to name, the function will always return a value of zero (if the function has a numeric
data type), FALSE (if the function has a Logical data type), or a null string (if the function has a String
data type).

Restrictions on Parameter Passing

A function call can return only one “scalar” value at a time. In other words, a single function call cannot
return an entire array’s worth of values, nor can a single function call return a set of values to fill in a
custom data Type variable. By default, every parameter to a user-defined function is a by-reference
parameter. This means that the function’s caller must specify the name of a variable as the parameter.
If the function modifies the value of a by-reference parameter, the modified value will be reflected in the
caller’s variable.

Any or all of a function’s parameters may be specified as by-value if the optional ByVal keyword
precedes the parameter name in the Function...End Function definition. When a parameter is
declared by-value, the function’s caller can specify an expression for that parameter, rather than
having to specify the name of a single variable. However, if a function modifies the value of a by-value
parameter, there is no way for the function’s caller to access the new value. You cannot pass arrays,
custom Type variables, or Alias variables as ByVal parameters to custom functions. However, you can
pass any of those data types as by-reference parameters. If your custom function takes no parameters,
your Function...End Function statement can either include an empty pair of parentheses, or omit the
parentheses entirely. However, every function call must include a pair of parentheses, regardless of
whether the function takes parameters. For example, if you wish to define a custom function called
Foo, your Function...End Function statement could either look like this:

Function Foo()
' ... statement list goes here ...
End Function

or like this:

Function Foo
' ... statement list goes here ...
End Function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 261 MB_Ref.pdf

Reference Guide Chapter 5: Function... End Function statement

but all calls to the function would need to include the parentheses, in this fashion:

var_name = Foo()

Availability of Custom Functions

The user may not incorporate calls to user-defined functions when filling in standard Maplinfo
Professional dialog boxes. A custom function may only be called from within a compiled MapBasic
application. Thus, a user may not specify a user-defined function within the SQL Select dialog box;
however, a compiled MapBasic program may issue a Select statement which does incorporate calls to
user-defined functions.

A custom function definition is only available from within the application that defines the function. If you
write a custom function which you wish to include in each of several MapBasic applications, you must
copy the Function...End Function definition to each of the program files.

Function Names

The Function statement's name parameter can match the name of a standard MapBasic function,
such as Abs or Chr$. Such a custom function will replace the standard MapBasic function by the
same name (within the confines of that MapBasic application). If a program defines a custom function
named Abs, any subsequent calls to the Abs function will execute the custom function instead of
MapBasic’s standard Abs() function.

When a MapBasic application redefines a standard function in this fashion, other applications are not
affected. Thus, if you are writing several separate applications, and you want each of your applications
to use your own, customized version of the Distance function, each of your applications must include
the appropriate Function statement.

When a MapBasic application redefines a standard function, the re-definition applies throughout the
entire application. In every procedure of that program, all calls to the redefined function will use the
custom function, rather than the original.

Example

The following example defines a custom function, CubeRoot, which returns the cube root of a number
(the number raised to the one-third power). Because the call to CubeRoot appears earlier in the
program than the CubeRoot Function...End Function definition, this example uses the Declare
Function statement to pre-define the CubeRoot function parameter list.

Declare Function CubeRoot (ByVal x As Float) As Float
Declare Sub Main

Sub Main
Dim f result As Float
f result = CubeRoot (23)
Note Strs$(f result)
End Sub

Function CubeRoot (ByVal x As Float) As Float

CubeRoot = x * 0.33333333333
End Function
See Also

Declare Function statement, Declare Sub statement, Sub...End Sub statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 262 MB_Ref.pdf

Reference Guide Chapter 5: Get statement

Get statement

Purpose
Reads from a file opened in Binary or Random access mode.

Syntax

Get [#] filenum , [position] , var name

filenum is the number of a file opened through an Open File statement
position is the file position to read from
var_name is the name of a variable where MapBasic will store results

Description
The Get statement reads from an open file. The behavior of the Get statement and the set of
parameters which it expects are affected by the options specified in the preceding Open File
statement.

If the Open File statement specified Random file access, the Get statement’s Position clause can be
used to indicate which record of data to read. When the file is opened, the file position points to the first
record of the file (record 1). A Get automatically increments the file position, and thus the Position
clause does not need to be used if sequential access is being performed. However, you can use the
Position clause to set the record position before the record is read.

If the Open File statement specified Binary file access, one variable can be read at a time. What data
is read depends on the byte-order format of the file and the var_name variable being used to store the
results. If the variable type is Integer, then 4 bytes of the binary file will be read, and converted to a
MapBasic variable. Variables are stored the following way:

Variable Type Storage In File
Logical One byte, either 0 or non-zero
Smallint Two byte integer
Integer Four byte integer
Float Eight byte IEEE format
String Length of string plus a byte for a 0 string terminator
Date Four bytes: Smallint year, byte month, byte day
Other data types Cannot be read.

With Binary file access, the Position parameter is used to position the file pointer to a specific offset in
the file. When the file is opened, the position is set to one (the beginning of the file). As a Get is
performed, the position is incremented by the same amount read. If the Position clause is not used,
the Get reads from where the file pointer is positioned.

Note: The Get statement requires two commas, even if the optional position parameter is omitted.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 263 MB_Ref.pdf

Reference Guide Chapter 5: GetFolderPath$() function

If a file was opened in Binary mode, the Get statement cannot specify a variable-length String variable;
any String variable used in a Get statement must be fixed-length.

See Also

Open File statement, Put statement

GetFolderPath$() function

Purpose

Return the path of a special MapInfo Professional or Windows folder.

Syntax
GetFolderPath$ (folder id)

folder _id is one of the following values:

FOLDER_MI_APPDATA
FOLDER_MI LOCAL_ APPDATA
FOLDER_MI PREFERENCE
FOLDER_MI COMMON_APPDATA
FOLDER_APPDATA
FOLDER_LOCAL_APPDATA
FOLDER COMMON_APPDATA
FOLDER_COMMON_DOCS
FOLDER_MYDOCS
FOLDER_MYPICS

Return Value

String

Description

Given the id of a special MaplInfo or Windows folder, GetFolderPath$() function returns the path of the
folder. An example of a special Windows folder is the My Documents folder. An example of a special
Maplnfo folder is the preference folder; the default location to which MaplInfo Professional writes out
the preference file.

The location of many of these folders varies between versions of Windows. They can also vary
depending on which user is logged in. Note that FOLDER_MI_APPDATA,
FOLDER_MI_LOCAL_APPDATA and FOLDER_MI_COMMON_APPDATA may not exist. Before
attempting to access those folders, test for their existence by using FileExists().
FOLDER_MI_PREFERENCE always exists

Ids beginning in FOLDER_MI return the path for folders specific to MapInfo Professional. The rest of
the ids return the path for Windows folders and correspond to the ids defined for WIN32 API function
SHGetFolderPath. The most common of these ids have been defined for easy use in MapBasic
applications. Any id valid to SHGetFolderPath will work with GetFolderPath$().

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 264 MB_Ref.pdf

Reference Guide Chapter 5: GetMetadata$() function

Example

include "mapbasic.def™"

declare sub main

sub main

dim sMiPrfFile as string

sMiPrfFile = GetFolderPath$ (FOLDER MI PREFERENCE)
Print sMiPrfFile

end subetl128

See Also
LocateFile$() function

GetMetadata$() function

Purpose
Retrieves metadata from a table.

Syntax
GetMetadata$ (table name , key name)
table_name is the name of an open table, specified either as an explicit table name (for example,
World) or as a string representing a table name (for example, “World”).

key_name is a string representing the name of a metadata key.

Return Value
String, up to 239 bytes long. If the key does not exist, or if there is no value for the key, MaplInfo
Professional returns an empty string.

Description

This function returns a metadata value from a table. For more information about querying a table’s
metadata, see the Metadata statement, or see the MapBasic User Guide.

Example
If the Parcels table has a metadata key called “\Copyright” then the following statement reads the key’s
value:
Print GetMetadatas (Parcels, "\Copyright”)

See Also

Metadata statement

GetSeamlessSheet() function

Purpose
Prompts the user to select one sheet from a seamless table, and then returns the name of the chosen
sheet.

Syntax

GetSeamlessSheet (table name)

table_name is the name of a seamless table that is open.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 265 MB_Ref.pdf

Reference Guide Chapter 5: Global statement

Return Value
String, representing a table name (or an empty string if user cancels).
Description

This function displays a dialog box listing all of the sheets that make up a seamless table. If the user
chooses a sheet and clicks OK, this function returns the table name the user selected. If the user
cancels, this function returns an empty string.

Example

Sub Browse A Table(ByVal s tab name As String)
Dim s_sheet As String

If TableInfo(s_tab_name, TAB_INFO_SEAMLESS) Then
s_sheet = GetSeamlessSheet (s_tab name)
If s_sheet <> ”” Then
Browse * From s_sheet
End If
Else
Browse * from s_tab name
End If

End Sub

See Also

Set Table statement, Tablelnfo() function

Global statement

Purpose

Defines one or more global variables.

Syntax

Global var name [, var name ...] As var_ type
[, var name ...] As var type ...]

var_name is the name of a global variable to define

var_type is Integer, Float, Date, Logical, String, or a custom variable Type
Description

A Global statement defines one or more global variables. Global statements may only appear outside
of a sub procedure.

The syntax of the Global statement is identical to the syntax of the Dim statement; the difference is
that variables defined through a Global statement are global in scope, while variables defined through
a Dim statement are local. A local variable may only be examined or modified by the sub procedure
which defined it, whereas any sub procedure in a program may examine or modify any global variable.
A sub procedure may define local variables with names which coincide with the names of global
variables. In such a case, the sub procedure’s own local variables take precedence (i.e. within the sub
procedure, any references to the variable name will utilize the local variable, not the global variable by
the same name). Global array variables may be re-sized with the ReDim statement. Windows, global
variables are “visible” to other Windows applications through DDE conversations.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 266 MB_Ref.pdf

Reference Guide Chapter 5: Goto statement

Example

Declare Sub testing()
Declare Sub Main()
Global gi_ var As Integer
Sub Main()
Call testing
Note Strs$(gi var) ’ this displays ”23”
End Sub

Sub testing()
gi_var = 23
End Sub

See Also
Dim statement, ReDim statement, Type statement, UBound() function

Goto statement

Purpose

Jumps to a different spot (in the same procedure), identified by a label.

Restrictions

You cannot issue a Goto statement through the MapBasic window.

Syntax
Goto label

label is a label appearing elsewhere in the same procedure

Description

The Goto statement performs an unconditional jump. Program execution continues at the statement
line identified by the label. The label itself should be followed by a colon; however, the label name
should appear in the Goto statement without the colon.

Generally speaking, the Goto statement should not be used to exit a loop prematurely. The Exit Do
and Exit For statements provide the ability to exit a loop. Similarly, you should not use a Goto
statement to jump into the body of a loop.

A Goto statement may only jump to a label within the same procedure.

Example

Goto endproc

endproc: End Program
See Also

Do Case...End Case statement, Do...Loop statement, For...Next statement, OnError statement,
Resume statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 267 MB_Ref.pdf

Reference Guide Chapter 5: Graph statement

Graph statement

Purpose
Opens a new Graph window.

Syntax (5.5 and later)

Graph
label column , expr [, ...]
From table
[Position (x , y) [Units paperunits]]
[width width [Units paperunits]]
[Height height [Units paperunits]]
[Min | Max]
[Using template file [Restore] [Series In Columns]]

label_column is the name of the column to use for labelling the y-axis

expr is an expression providing values to be graphed

table is the name of an open table

paperunits is the name of a paper unit (for example, ”in”)

x , y specifies the position of the upper left corner of the Grapher, in paper units
window_width and window _height specify the size of the Grapher, in paper units
template file is a valid graph template file

Syntax (pre-version 5.5)

Graph
label column , expr [, ...]
From table
[Position (x , y) [Units paperunits]]
[width width [Units paperunits]]
[Height height [Units paperunits]]
[Min | Max]

label_column is the name of the column to use for labelling the y-axis

expr is an expression providing values to be graphed

table is the name of an open table

paperunits is the name of a paper unit (for example, “in”)

X , y specifies the position of the upper left corner of the Grapher, in paper units
window_width and window_height specify the size of the Grapher, in paper units

Description

If the Using clause is present and template_file specifies a valid graph template file, then a graph is
created based on the specified template file. Otherwise a 5.0 graph is created. If the Restore clause is
included, then title text in the template file is used in the graph window. Otherwise default text is used
for each title in the graph. The Restore keyword is included when writing the Graph command to a
workspace, so when the workspace is opened the title text is restored exactly as is was when the
workspace was saved. The Restore keyword is not used in the Graph command constructed by the

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 268

MB_Ref.pdf

Reference Guide Chapter 5: Graph statement

Create Graph wizard, so the default text is used for each title. If the Series In Columns is included,
then the graph series are based on the table columns. Otherwise the series are based on the table
rows.

Graph commands in workspaces or programs that were created prior to version 5.5 will still create a
5.0 graph window. When a 5.0 graph window is active in Maplnfo Professional 5.5 or later, the 5.0
graph menu will be also be active, so the user can modify the graph using the 5.0 editing dialogs. The
Create Graph wizard will always created a 5.5 or later version graph window.

The Graph statement adds a new Grapher window to the screen, displaying the specified table. The
graph will appear as a rotated bar chart; subsequent Set Graph statements can re-configure the
specifics of the graph (for example, the graph rotation, graph type, title, etc.).

MaplInfo Professional ’s Window > Graph dialog is limited in that it only allows the user to choose
column names to graph. MapBasic’s Graph statement, however, is able to graph full expressions
which involve column names. Similarly, although the Graph dialog only allows the user to choose four
columns to graph, the Graph statement can construct a graph with up to 255 columns.

If the Graph statement includes the optional Max keyword, the resultant Grapher window is
maximized, taking up all of the screen space available to Maplnfo Professional. Conversely, if the
Graph statement includes the Min keyword, the window is minimized.

Example (5.5 and later graphs)

Graph State Name, Pop 1980, Pop 1990, Num Hh 80 From States Using “C:\Program
Files\MapInfo\GRAPHSUPPORT\Templates\Column\Percent.3tf”

Graph City, Tot_hu, Tot pop From City 125 Using ”C:\Program
Files\MapInfo\GRAPHSUPPORT\Templates\Bar\Clustered.3tf” Series In Columns

Example (pre-5.5 graphs)
Graph Country, Population From Selection
See Also
Set Graph statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 269 MB_Ref.pdf

Reference Guide

Chapter 6: HomeDirectory$() function

HomeDirectory$() function
Purpose

Returns a string indicating the user’s home directory path.
Syntax

HomeDirectory$ ()

Return Value

String

Description

The HomeDirectory$() function returns a string which indicates the user’s home directory path.

The significance of a home directory path depends on the hardware platform on which the user is
running. The table below summarizes the platform-dependent home directory path definitions.

Environment Definition of “Home Directory”

Windows The directory path to the user’s Windows directory. This is the directory contain-
ing Windows system files, such as SYSTEM.INI and WIN.INI. In a networked
environment, each user has a private Windows directory, to allow each user to
have a unique configuration.

Example

Dim s_home_dir As String
s_home_dir =

See Also

HomeDirectory$ ()

ApplicationDirectory$() function, ProgramDirectory$() function, Systeminfo() function

If...Then statement

Purpose

Decides which block of statements to execute (if any), based on the current value of one or more
expressions.
Syntax

If if condition Then
i1f statement list

[ElselIf elseif condition Then
elseif statement_list]

[ElseIf ...]

[Else

else statement list]
End If

condition is a condition which will evaluate to TRUE or FALSE

statement _list is a list of zero or more statements
Restrictions

You cannot issue an If...Then statement through the MapBasic window.

MapBasic 8.0

270

© 2005 Mapinfo Corporation. All rights reserved.

MB_Ref.pdf

Reference Guide Chapter 6: If...Then statement

Description

The If ... Then statement allows conditional execution of different groups of statements.
In its simplest form, the If statement does not include an Elself clause, nor an Else clause:

If if condition Then
if statement list
End If
With this arrangement, MapBasic evaluates the if _condition at run-time. If the if _condition is TRUE,
MapBasic executes the if statement_list; otherwise, MapBasic skips the statement_list.

An If statement may also include the optional Else clause:

If if condition Then
if statement list
Else
else_statement list
End If
With this arrangement, MapBasic will either execute the if_statement_list (if the condition is TRUE) or

the else_statement_list (if the condition is FALSE).

Additionally, an If statement may include one or more Elself clauses, following the If clause (and
preceding the optional Else clause) :

If if condition Then
if statement list
ElseIf elseif condition Then
elseif statement list
Else
else_statement list
End If
With this arrangement, MapBasic tests a series of two or more conditions, continuing until either one of
the conditions turns out to be TRUE or until the Else clause or the End If is reached. If the if_condition
is TRUE, MapBasic will perform the if_statement_list, and then jump down to the statement which
follows the End If. But if that condition is FALSE, MapBasic then evaluates the else_if condition; if that

condition is TRUE, MapBasic will execute the elseif _statement_list.

An If statement may include two or more Elself clauses, thus allowing you to test any number of
possible conditions. However, if you are testing for one out of a large number of possible conditions,
the Do Case statement is more elegant than an If statement with many Elself clauses.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 271 MB_Ref.pdf

Reference Guide

Chapter 6: If...Then statement

Example

Dim today As Date
Dim today mon, today day, yearcount As Integer

today = CurDate() ’ get current date
today mon = Month(today) ’ get the month value
today day = Day(today) ' get the day value (1-31)

If today mon = 1 And today day = 1 Then
Note "Happy New Year!”
yearcount = yearcount + 1

ElseIf today mon = 2 And today day = 14 Then
Note "Happy Valentine’s Day!”

ElseIf today mon = 12 And today day = 25 Then
Note ”Merry Christmas!”

Else
Note "Good day.”
End If

See Also
Do Case...End Case statement

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0
272

MB_Ref.pdf

Reference Guide Chapter 6: Import statement

Import statement

Purpose
Creates a new Maplnfo Professional table by importing an exported file, such as a GML or DXF file.

Syntax 1 (for MIF/MID files, PICT files, or Maplnfo for DOS files)

Import file name
[Type file type]
[Into table name]
[Overwrite]

Syntax 2 (for DXF files)

Import file name

[Type “DXF”]

[Into table name]
[Overwrite]
[
[

Warnings { On | Off }]
Preserve
[AttributeData] [Preserve] [Blocks As MultiPolygonRgns | |
[CoordSys . . . 1
[Autoflip]
[Transform
(DXF x1 , DXF yl) (DXF x2 , DXF y2)
(MI_x1 , MI_yl) (MI_x2 , MI_y2)]
[Read
[Integer As Decimal] [Read] [Float As Decimal]]
[Store [Handles] [Elevation] [VisibleOnly]]

[Layer DXF layer name
[Into table name]
[Preserve
[AttributeData] [Preserve] [Blocks As MultiPolygonRgns] |
1
[Layer . . .]

Syntax 3 (for GML files)

Import file name

Type "GML"]

Layer layer name]

Into table name]

Style Auto [On | Off]]

Syntax 4(for GML 2.1 files)

Import file name

[Type "GML21"]

[Layer layer namel]
[Into table name]
[
[

[
[
[
[

Overwrite]
Coordsys clause]

file_name is a String that specifies the name of the file to import

file_type is a String that specifies the import file format (MIF, MBI, MMI, IMG, GML GML21, or PICT)
table_name specifies the name of the new table to create

DXF_x1, DXF_y1, etc. are numbers that represent coordinates in the DXF file

MI_x1, MI_y1, etc. are numbers that represent coordinates in the Maplnfo table

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 273 MB_Ref.pdf

Reference Guide Chapter 6: Import statement

DXF _layer_name is a String representing the name of a layer in the DXF file
Layer layer_name is a String representing the name of a layer in the GML file.

Description
The Import statement creates a new Maplnfo table by importing the contents of an existing file.

Note: To create a Maplinfo table based on a spreadsheet or database file, use the Register Table
statement, not the Import statement.

The Into clause lets you override the name and location of the Maplnfo table that is created. If no Into

clause is specified, the new table is created in the same directory location as the original file, with a

corresponding filename. For example, on Windows, if you import the text file “WWORLD.MIF”, the new

table’s default name is “WORLD.TAB”.

The optional Type clause specifies the format of the file you want to import. The Type clause can take
one of the following forms:

Type clause File Format Specified
Type "DXF” DXF file (a format supported by CAD packages, such as AutoCAD).
Type "MIF” MIF / MID file pair, created by exporting a Maplnfo table.
Type "MB/I” Maplnfo Boundary Interchange, created by Maplinfo for DOS.
Type "MMI” MaplInfo Map Interchange, created by Mapinfo for DOS.
Type "IMG” Maplnfo Image file, created by Maplnfo for DOS.
Type “GML” GML files
Type “GML21” GML 2.1 files.

If you omit the Type clause, Maplnfo Professional assumes that the file’s extension indicates the file
format. For example, a file named “PARCELS.DXF” is assumed to be a DXF file.

If you include the optional Overwrite keyword, MapInfo Professional creates a new table, regardless of
whether a table by that name already exists; the new table replaces the existing table. If you omit the
Overwrite keyword, and the table already exists, MapInfo Professional does not overwrite the table.

Import Options for DXF Files

If you import a DXF file, the Import statement can include the following DXF-specific clauses.

Note: The order of the clauses is important; placing the clauses in the wrong order can cause
compilation errors.
Warnings On or Warnings Off

Controls whether warning messages are displayed during the import operation. By default, warnings
are off.

Preserve AttributeData

Include this clause if you want Mapinfo Professional to preserve the attribute data from the DXF file.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 274 MB_Ref.pdf

Reference Guide Chapter 6: Import statement

Preserve Blocks As MultiPolygonRgns

Include this clause if you want MapInfo Professional to store all of the polygons from a DXF block
record into one multiple-polygon region object. If you omit this clause, each DXF polygon becomes a
separate Maplinfo Professional region object.

CoordSys

Controls the projection and coordinate system of the table. For details, see CoordSys clause.

Autoflip

Include this option if you want the map’s x-coordinates to be flipped around the center line of the map.
This option is only allowed if you specify a non-Earth coordinate system.

Transform

Specifies a coordinate transformation. In the Transform clause, you specify the minimum and
maximum x- and y-coordinates of the imported file, and you specify the minimum and maximum
coordinates that you want to have in the Maplnfo table.

Read Integer As Decimal

Include this clause if you want to store whole numbers from the DXF file in a Decimal column in the
new table. This clause is only allowed when you include the Preserve AttributeData clause.

Read Float As Decimal

Include this clause if you want to store floating-point numbers from the DXF file in a Decimal column in
the new table. This clause is only allowed when you include the Preserve AttributeData clause.

Store [Handles] [Elevation] [VisibleOnly]

If you include Handles, the Maplnfo table stores handles (unique ID numbers of objects in the drawing)
in a column called _DXFHandle. If you include Elevation, Mapinfo Professional stores each object’s
center elevation in a column called _DXFElevation. (For lines, MapInfo Professional stores the
elevation at the center of the line; for regions, Maplinfo Professional stores the average of the object’s
elevation values.) If you include VisibleOnly, Mapinfo Professional ignores invisible objects.

Layer...

If you do not include any Layer clauses, all objects from the DXF file are imported into a single MapInfo
table. If you include one or more Layer clauses, each DXF layer that you name becomes a separate
Maplinfo table.

If your DXF file contains multiple layers, and if your Import statement includes one or more Layer
clauses, Maplinfo Professional only imports the layers that you name. For example, suppose your DXF
file contains four layers (layers 0, 1, 2, and 3). The following Import statement imports all four layers
into a single Maplnfo table:

Import “FLOORS.DXF”

Into ”"FLOORS.TAB”
Preserve AttributeData

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 275 MB_Ref.pdf

Reference Guide Chapter 6: Import statement

The following statement imports layers 1 and 3, but does not import layers 0 or 2:

Import ”FLOORS.DXF”
Layer "1”
Into ”"FLOOR_1.TAB”
Preserve AttributeData
Layer "”3”
Into ”"FLOOR_3.TAB”
Preserve AttributeData

Importing GML Files

MaplInfo Professional supports importing OSGB (Ordnance Survey of Great Britain) GML files.
Cartographic Symbol, Topographic Point, Topographic Line, Topographic Area and Boundary Line are
supported; Cartographic Text is not supported. Topographic Area can be distributed in two forms;
MaplInfo Professional supports the non-topological form. If the files contains XLINKS, Mapinfo
Professional only imports attribute data, and does not import spatial objects. These XLINKs are stored
in the GML file as "xlink:href=". If topological objects are included in the file, a warning displays
indicating that spatial objects cannot be imported. Access the Browser view to see the display of
attribute data.

Importing GML Files

file_name is the name of the GML 2.1 file to import.
Type is "eML21" for GML 2.1 files.

layer_name is the name of the GML layer.
table_name is the MaplInfo table name.

overwrite causes the TAB file to be automatically overwritten. If Overwrite is not specified, an error
will result if the TAB file already exists.

The Coordsys clause is optional. If the GML file contains a supported projection and the Coordsys
clause is not specified, the projection from the GML file will be used. If the GML file contains a
supported projection and the Coordsys clause is specified, the projection from the Coordsys clause will
be used. If the GML file does not contain a supported projection, the Coordsys clause must be
specified.

Note: If the Coordsys clause does not match the projection of the GML file, your data may not import

correctly. The coordsys must match the coordsys of the data in the GML file. It will not
transform the data from one projection to another.

Example

Sample importing using GML style:

Import "D:\midata\GML\est.gml" Type "GML" layer "LandformArea" style auto on Into
"D:\midata\GML\est LandformArea.TAB" Overwrite

Sample importing using GML21 style:

Import "D:\midata\GML\GML2.1l\mi usa.xml" Type "GML21" layer "USA" Into
"D:\midata\GML\GML2.1\mi_usa USA.TAB" Overwrite CoordSys Earth Projection 1, 104

Sample importing using current Maplinfo style:

Import "D:\midata\GML\test.gml" Type "GML" layer "TopographicLine" style auto off
Into "D:\midata\GML\test TopographicLine.TAB" Overwrite

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 276 MB_Ref.pdf

Reference Guide Chapter 6: Include statement

The following example imports a MIF (MaplInfo Interchange Format) file:

Import ”WORLD.MIF”
Type “"MIF”
Into “world 2.tab”
Map From world 2

See Also
Export statement

Include statement

Purpose
Incorporates the contents of a separate text file as part of a MapBasic program.

Syntax

Include “filename”

filename is the name of an existing text file

Restrictions
You cannot issue an Include statement through the MapBasic window.

Description
When MapBasic is compiling a program file and encounters an Include statement, the entire contents
of the included file are inserted into the program file. The file specified by an Include statement should
be a text file, containing only legitimate MapBasic statements.

If the filename parameter does not specify a directory path, and if the specified file does not exist in the
current directory, the MapBasic compiler looks for the file in the program directory. This arrangement
allows you to leave standard definitions files, such as MAPBASIC.DEF, in one directory, rather than
copying the definitions files to the directories where you keep your program files.

The most common use of the Include statement is to include the file of standard MapBasic definitions,
MAPBASIC.DEF. This file, which is provided with MapBasic, defines a number of important identifiers,
such as TRUE and FALSE.

Whenever you change the contents of a file that you use through an Include statement, you should
then recompile any MapBasic programs which Include that file.

Example
Include "MAPBASIC.DEF”

Input # statement

Purpose
Reads data from a file, and stores the data in variables.

Syntax

Input # filenum, var _name [, var_name ...]

filenum is the number of a file opened through Open File

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 277 MB_Ref.pdf

Reference Guide Chapter 6: Insert statement

var_name is the name of a variable

Description

The Input # statement reads data from a file which was opened in a sequential mode (for example,
INPUT mode), and stores the data in one or more MapBasic variables.

The Input # statement reads data (up to the next end-of-line) into the variable(s) indicated by the
var_name parameter(s). Maplnfo Professional treats commas and end-of-line characters as field
delimiters. To read an entire line of text into a single String variable, use Line Input #.

MapBasic automatically converts the data to the type of the variable(s). When reading data into a
String variable, the Input # statement treats a blank line as an empty string. When reading data into a
numeric variable, the Input # statement treats a blank line as a zero value.

After issuing an Input # statement, call the EOF() function to determine if Maplnfo Professional was
able to read the data. If the input was successful, EOF() returns FALSE; if the end-of-file was reached
before the input was completed, EOF() returns TRUE.

For an example of the Input # statement, see the sample program NVIEWS (Named Views).

The following data types are not available with the Input # statement: Alias, Pen, Brush, Font, Symbol,
and Object.

See Also
EOF() function, Line Input statement, Open File statement, Write # statement

Insert statement

Purpose

Appends new rows to an open table.

Syntax

Insert Into table [(columnlist)]
{ values (exprlist) | Select columnlist From table }

table is the name of an open table
columnlist is a list of column expressions, comma-separated
exprlist is a list of one or more expressions, comma-separated

Description
The Insert statement inserts new rows into an open table. There are two main forms of this statement,
allowing you to either add one row at a time, or insert groups of rows from another table (via the Select
clause). In either case, the number of column values inserted must match the number of columns in
the column list. If no column list is specified, all fields are assumed. Note that you must use a Commit
statement if you want to permanently save newly-inserted records to disk.

If you know exactly how many columns are in the table you are modifying, and if you have values to
store in each of those columns, then you do not need to specify the optional (columnlist) clause.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 278 MB_Ref.pdf

Reference Guide Chapter 6: InStr() function

In the following example, we know that the table has four columns (Name, Address, City and State),
and we provide MapBasic with a value for each of those columns.
Insert Into customers
Values (”"Mary Ryan”, ”23 Main St”, ”“Dallas”, "TX")
The preceding statement would generate an error at run-time if it turned out that the table had fewer
than (or more than) four columns. In cases where you do not know exactly how many columns are in a
table or the exact order in which the columns appear, you should use the optional (columnlist) clause.

The following example inserts a new row into the customer table, while providing only one column
value for the new row; thus, all other columns in the new row will initially be blank. Here, the one value
specified by the Values clause will be stored in the “Name” column, regardless of how many columns
are in the table, and regardless of the position of the “Name” column in the table structure.

Insert Into customers (Name)
Values (”Steve Harris”)

The following statement creates a point object and inserts the object into a new row of the Sites table.
Note that Obj is a special column name representing the table’s graphical objects.

Insert Into sites (Obj)
Values (CreatePoint(-73.5, 42.8))

The following example illustrates how the Insert statement can append records from one table to
another. In this example, we assume that the table NY_ZIPS contains ZIP code boundaries for New
York state, and NJ_ZIPS contains ZIP code boundaries for New Jersey. We want to put all ZIP code
boundaries into a single table, for convenience’s sake (since operations such as Find can only work
with one table at a time).

Accordingly, the Insert statement below appends all of the records from the New Jersey table into the
New York table.

Insert Into NY ZIPS
Select * From NJ ZIPS

In the following example, we select the graphical objects from the table World, then insert each object
as a new record in the table Outline.

Open Table ”"world”

Open Table ”"outline”

Insert Into outline (Obj)
Select Obj From World

See Also
Commit Table statement, Delete statement, Rollback statement

InStr() function
Purpose
Returns a character position, indicating where a substring first appears within another string.

Syntax

InStr (position, string, substring)

position is a positive integer, indicating the start position of the search

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 279 MB_Ref.pdf

Reference Guide Chapter 6: Int() function

string is a string expression
substring is a string expression which we will try to locate in string

Return Value

Integer

Description

The InStr() function tests whether the string expression string contains the string expression substring.
MapBasic searches the string expression, starting at the position indicated by the position parameter;
thus, if the position parameter has a value of one, MapBasic will search from the very beginning of the
string parameter.

If string does not contain substring, the InStr() function returns a value of zero.

If string does contain substring, the InStr() function returns the character position where the substring
appears. For example, if the substring appears at the very start of the string, InStr() will return a value
of one.

If the substring parameter is a null string, the InStr() function returns zero.

The InStr() function is case-sensitive. In other words, the InStr() function cannot locate the substring
“BC” within the larger string “abcde”, because “BC” is upper-case.
Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Example

Dim fullname As String, pos As Integer
fullname = “New York City”

pos = InStr(l, fullname, ”York”)

'’ pos will now contain a value of 5 (five)

pos = InStr(l, fullname, ”YORK")

' pos will now contain a value of 0;

'’ YORK is uppercase, so InStr will not locate it
" within the string ”“New York City”

See Also
Mid$() function

Int() function
Purpose
Returns an integer value obtained by removing the fractional part of a decimal value.

Syntax
Int (num expr)
num_expr is a numeric expression

Return Value

Integer

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 280 MB_Ref.pdf

Reference Guide Chapter 6: IntersectNodes() function

Description

The Int() function returns the nearest integer value that is less than or equal to the specified num_expr
expression. The Fix() function is similar to, but not identical to, the Int() function. The two functions
differ in the way that they treat negative fractional values. When passed a negative fractional number,
Fix() will return the nearest integer value greater than or equal to the original value; so, the function
call

Fix(-2.3)
will return a value of -2. But when the Int() function is passed a negative fractional number, it returns
the nearest integer value that is less than or equal to the original value. So, the function call

Int (-2.3)
returns a value of -3.

Example

Dim whole As Integer
whole = Int(5.999)
’ whole now has the value 5

whole = Int(-7.2)
'’ whole now has the value -8

See Also
Fix() function, Round() function

IntersectNodes() function

Purpose
Calculates the set of points at which two objects intersect, and returns a polyline object that contains
each of the points of intersection.

Syntax
IntersectNodes (objectl, object2, points to include)

object1 and object2 are object expressions; may not be point or text objects
points_to_include is one of the following Smallint values:

¢ INCL_CROSSINGS returns points where segments cross
¢ INCL_COMMON returns end-points of segments that overlap
¢ INCL_ALL returns points where segments cross and points where segments overlap

Return Value

A polyline object that contains the specified points of intersection.

Description
The IntersectNodes() function returns a polyline object that contains all nodes at which two objects
intersect.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 281 MB_Ref.pdf

Reference Guide Chapter 6: IsPenWidthPixels() function

IsPenWidthPixels() function

Purpose
The IsPenWidthPixels function determines if a pen width is in pixels or in points.

Syntax
IsPenWidthPixels (penwidth)

penwidth is a small integer representing the pen width.

Return Value

True if the width value is in pixels. False if the width value is in points.

Description
The IsPenWidthPixels() function will return true if the given pen width is in pixels. The pen width for a
line may be determined using the StylAttr() function.

Example

Include “MAPBASIC.DEF”

Dim CurPen As Pen

Dim Width As Integer

Dim PointSize As Float

CurPen = CurrentPen()

Width = StyleAttr (CurPen, PEN_WIDTH)

If Not IsPenWidthPixels (Width) Then
PointSize = PenWidthToPoints (Width)

End If

See Also
CurrentPen() function, MakePen() function, Pen clause, PenWidthToPoints() function

Kill statement

Purpose

Deletes a file.
Syntax
Kill filespec

filespec is a String which specifies a filename (and, optionally, the file’s path)

Return Value
String

Description
The Kill statement deletes a file from the disk. There is no “undo” operation for a Kill statement.
Therefore, the Kill statement should be used with caution.
Example
Kill ”C:\TEMP\JUNK.TXT”
See Also
Open File statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 282 MB_Ref.pdf

Reference Guide Chapter 6: LabelFindByID() function

LabelFindByID() function
Purpose
Initializes an internal label pointer, so that you can query the label for a specific row in a map layer.

Syntax
LabelFindByID(map window id , layer number , row id , table , b _mapper)

map_window_id is an Integer window id, identifying a Map window
layer_number is the number of a layer in the current Map window (for example, 1 for the top layer)
row_id is a positive Integer value, indicating the row number of the row whose label you wish to query.

table is a table name or an empty string (“”): when you query a table that belongs to a seamless table,
specify the name of the member table; otherwise, specify an empty string.

b_mapper is a Logical value. Specify TRUE to query the labels that appear when the Map is active;
specify FALSE to query the labels that appear when the map is inside a Layout.
Return Value

Logical value: TRUE means that a label exists for the specified row.

Description

Call LabelFindByID() when you want to query the label for a specific row in a map layer. If the return
value is TRUE, then a label exists for the row, and you can query the label by calling Labelinfo().

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 283 MB_Ref.pdf

Reference Guide Chapter 6: LabelFindFirst() function

Example
The following example maps the World table, displays automatic labels, and then determines whether
a label was drawn for a specific row in the table.

Include "mapbasic.def”

Dim b _morelabels As Logical
Dim i mapid As Integer

Dim obj mytext As Object

Open Table "World” Interactive As World

Map From World

i mapid = FrontWindow()

Set Map Window i mapid Layer 1 Label Auto On

' Make sure all labels draw before we continue...
Update Window i_mapid

'’ Now see if row # 1 was auto-labeled
b morelabels = LabelFindByID(i mapid, 1, 1, ””, TRUE)

If b morelabels Then
' The object was labeled; now query its label.

obj mytext = LabelInfo(i_mapid, 1, LABEL_INFO_ OBJECT)

' At this point, you could save the obj mytext object
’ in a permanent table; or you could query it by
' calling ObjectInfo() or ObjectGeography().
End If
See Also
LabelFindFirst() function, LabelFindNext() function, Labelinfo() function

LabelFindFirst() function
Purpose

Initializes an internal label pointer, so that you can query the first label in a map layer.
Syntax
LabelFindFirst (map window id , layer number , b _mapper)
map_window_id is an Integer window id, identifying a Map window

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer)

b_mapper is a Logical value. Specify TRUE to query the labels that appear when the Map is active;
specify FALSE to query the labels that appear when the map is inside a Layout.

Return Value

Logical value: TRUE means that labels exist for the specified layer (either labels are currently visible,
or the user has edited labels, and those edited labels are not currently visible).

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 284 MB_Ref.pdf

Reference Guide Chapter 6: LabelFindNext() function

Description
Call LabelFindFirst() when you want to loop through a map layer’s labels to query the labels. Querying
labels is a two-step process:

1. Set MapBasic’s internal label pointer by calling one of these functions: LabelFindFirst(),
LabelFindNext(), or LabelFindByID().

2. If the function you called in step 1 did not return FALSE, you can query the current label by
calling Labelinfo().

To continue querying additional labels, return to step 1.
Example

For an example, see Labelinfo().

See Also
LabelFindBylID() function, LabelFindNext() function, Labelinfo() function

LabelFindNext() function

Purpose
Advances the internal label pointer, so that you can query the next label in a map layer.

Syntax
LabelFindNext (map window_id , layer number)
map_window_id is an Integer window id, identifying a Map window
layer_number is the number of a layer in the current Map window (for example, 1 for the top layer)
Return Value

Logical value: TRUE means the label pointer was advanced to the next label; FALSE means there are
no more labels for this layer.

Description
After you call LabelFindFirst() to begin querying labels, you can call LabelFindNext() to advance to
the next label in the same layer.

Example

For an example, see Labelinfo().

See Also
LabelFindByID() function, LabelFindFirst() function, Labelinfo() function

Labelinfo() function
Purpose

Returns information about a label in a map.

Syntax

Labelinfo(map window_id , layer number , attribute)

map_window_id is an Integer window id, identifying a Map window

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 285 MB_Ref.pdf

Reference Guide Chapter 6: Labelinfo() function

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer)
attribute is a code indicating the type of information to return; see table below

Return Value
Return value depends on attribute.

Description

The Labelinfo() function returns information about a label in a Map window.

Note: Labels are different than text objects. To query a text object, call functions such as
Objectinfo() or ObjectGeography().

Before calling Labelinfo(), you must initialize MapBasic’s internal label pointer by calling
LabelFindFirst(), LabelFindNext(), or LabelFindByID(). See example below.

The attribute parameter must be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.

attribute code Labelinfo() Return Value

LABEL_INFO_ANCHORX Float value, indicating the x coordinate of the label’s
anchor location.

LABEL_INFO_ANCHORY Float value, indicating the y coordinate of the label’s
anchor location.

LABEL_INFO_DRAWN Logical value; TRUE if label is currently visible.

LABEL_INFO_EDIT Logical value; TRUE if label has been edited.

LABEL INFO_EDIT_ANCHOR Logical value; TRUE if label has been moved.

LABEL_INFO_EDIT_ANGLE Logical value; TRUE if label’s rotation angle has been
modified.

LABEL INFO_EDIT_FONT Logical value; TRUE if label’s font has been modified.

LABEL_INFO_EDIT_OFFSET Logical value; TRUE if label’s offset has been modified.

LABEL_INFO_EDIT_PEN Logical value; TRUE if callout line’s Pen style has been
modified.

LABEL_INFO_EDIT_POSITION Logical value; TRUE if label’s position (relative to anchor)
has been modified.

LABEL_INFO_EDIT_TEXT Logical value; TRUE if label’s text has been modified.

LABEL_INFO_EDIT_TEXTARROW | Logical value; TRUE if label’s text arrow setting has been
modified.

LABEL_INFO_EDIT_TEXTLINE Logical value; TRUE if callout line has been moved.

LABEL_INFO_EDIT_VISIBILITY Logical value; TRUE if label visibility has been set to OFF.

LABEL_INFO_OBJECT Text object is returned, which is an approximation of the

label. This feature allows you to convert a label into a text
object, which you can save in a permanent table.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 286 MB_Ref.pdf

Reference Guide Chapter 6: Labelinfo() function

attribute code Labelinfo() Return Value

LABEL_INFO_OFFSET Integer value between 0 and 50, indicating the distance
(in points) the label is offset from its anchor location.

LABEL INFO_POSITION Integer value between 0 and 8, indicating the label’s posi-
tion relative to its anchor location. The return value will
match one of these codes:

* LAYER_INFO_LBL_POS_CC (0),

* LAYER_INFO_LBL_POS_TL (1),

* LAYER_INFO_LBL_POS_TC (2),

* LAYER_INFO_LBL_POS_TR (3),

* LAYER_INFO_LBL_POS_CL (4),

* LAYER_INFO_LBL_POS_CR (5),

* LAYER_INFO_LBL_POS_BL (6),

* LAYER_INFO_LBL_POS_BC (7),

* LAYER_INFO_LBL_POS_BR (8).

For example, if the label is Below and to the Right of the
anchor, its position is 8; if the label is Centered horizon-
tally and vertically over its anchor, its position is zero.

LABEL INFO_ROWID Integer value, representing the ID number of the row that
owns this label; returns zero if no label exists.

LABEL_INFO_SELECT Logical value; TRUE if label is selected.

LABEL_INFO_TABLE String value, representing the name of the table that owns

this label. Useful if you are using seamless tables and you
need to know which member table owns the label.

Example

The following example shows how to loop through all of the labels for a row, using the Labelinfo()
function to query each label.

Dim b_morelabels As Logical

Dim i mapid, i layernum As Integer

Dim obj mytext As Object

' Here, you would assign a Map window’s ID to i_mapid,

' and assign a layer number to i_layernum.

b_morelabels = LabelFindFirst (i_mapid, i_layernum, TRUE)

Do While b morelabels
obj mytext = LabelInfo(i mapid, i layernum, LABEL_ INFO OBJECT)
' At this point, you could save the obj mytext object
'’ in a permanent table; or you could query it by
' calling ObjectInfo() or ObjectGeography().
b_morelabels = LabelFindNext (i_mapid, i_layernum)

Loop

See Also
LabelFindByID() function, LabelFindFirst() function, LabelFindNext() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 287 MB_Ref.pdf

Reference Guide

Chapter 6: Layerinfo() function

Layerinfo() function

Purpose

Returns information about a layer in a Map window.

Syntax

LayerInfo(map window id ,

layer number , attribute)

map_window_id is a Map window identifier

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer); to
determine the number of layers in a Map window, call MapperInfo()

attribute is a code indicating the type of information to return; see table below

Return Value

Return value depends on attribute parameter.

Restrictions

Many of the settings that you can query using LayerInfo() only apply to conventional map layers (as
opposed to Cosmetic map layers, thematic map layers, and map layers representing raster image

tables). See example below.

Description

The LayerInfo() function returns information about one layer in an existing Map window. The
layer_number must be a valid layer (0 is the cosmetic layer, 1 is the topmost table layer, and so on).
The attribute parameter must be one of the codes from the following table; codes are defined in
MAPBASIC.DEF. From here you can also query the Hotlink options using the Layer_Hotlink attributes.

attribute code

Layerinfo() Return Value

LAYER_INFO_NAME

String indicating the name of the table associated with
this map layer. If the specified layer is the map’s Cos-
metic layer, the string will be a table name such as
“Cosmetic1”; this table name can be used with other
statements (for example, Select).

LAYER_INFO_EDITABLE

Logical value; TRUE if the layer is editable.

LAYER_INFO_LBL_PARTIALSEGS

Logical value; TRUE if the Label Partial Objects check
box is selected for this layer.

LAYER_INFO_SELECTABLE

Logical value; TRUE if the layer is selectable.

LAYER_INFO_PATH

String value representing the full directory path of the
table associated with the map layer.

LAYER_INFO_ZOOM_LAYERED

Logical; TRUE if zoom-layering is enabled.

LAYER_INFO_ZOOM_MIN

Float value, indicating the minimum zoom value (in
MapBasic’s current distance units) at which the layer dis-
plays. (To set MapBasic’s distance units, use Set Dis-
tance Units.)

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0
288 MB_Ref.pdf

Reference Guide

Chapter 6: Layerinfo() function

attribute code

Layerinfo() Return Value

LAYER_INFO_ZOOM_MAX

Float value, indicating the maximum zoom value at which
the layer displays.

LAYER_INFO_COSMETIC

Logical; TRUE if this is the Cosmetic layer.

LAYER_INFO_DISPLAY

Smallint, indicating how and whether this layer is dis-
played; return value will be one of these values:

* LAYER_INFO_DISPLAY_OFF (the layer is not dis-
played);

* LAYER_INFO_DISPLAY_GRAPHIC (objects in this
layer appear in their “default” style—the style saved in
the table);

* LAYER_INFO_DISPLAY_GLOBAL (objects in this
layer are displayed with a “style override” specified in
Layer Control);

* LAYER_INFO_DISPLAY_VALUE (objects in this layer
appear as thematic shading)

LAYER_INFO_OVR_LINE

Pen style used for displaying linear objects.

LAYER_INFO_OVR_PEN

Pen style used for displaying the borders of filled objects.

LAYER_INFO_OVR_BRUSH

Brush style used for displaying filled objects.

LAYER_INFO_OVR_SYMBOL

Symbol style used for displaying point objects.

LAYER_INFO_OVR_FONT

Font style used for displaying text objects.

LAYER_INFO_LBL_CURFONT

For applications compiled with MapBasic 4.0 or later, this
query always returns false.

For applications compiled with MapBasic 3.x, this query
returns the following values:

Logical value: TRUE if layer is set to use the current font,

or FALSE if layer is set to use the custom font (see
LAYER_INFO_LBL_FONT).

LAYER_INFO_LBL_FONT

Font style used in labels.

LAYER_INFO_LBL_EXPR

String value: the expression used in labels.

LAYER_INFO_LBL_LT

Smallint value indicating what type of line, if any, con-
nects a label to its original location after you move the
label. The return value will match one of these values:

* LAYER_INFO_LBL_LT_NONE (no line)

« LAYER_INFO_LBL_LT_SIMPLE (simple line)

* LAYER_INFO_LBL_LT_ARROW (line with an arrow-
head)

LAYER_INFO_LBL_PARALLEL

Logical value: TRUE if layer is set for parallel labels.

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

289

MB_Ref.pdf

Reference Guide

Chapter 6: Layerinfo() function

attribute code

Layerinfo() Return Value

LAYER_INFO_LBL_POS

Smallint value, indicating label position. Return value will
match one of these values (T=Top, B=Bottom, C=Center,
R=Right, L=Left):

* LAYER_INFO_LBL_POS_TL

* LAYER_INFO_LBL_POS_TC

* LAYER_INFO_LBL_POS_TR

* LAYER_INFO_LBL_POS_CL

* LAYER_INFO_LBL_POS_CC

* LAYER_INFO_LBL_POS_CR

* LAYER_INFO_LBL_POS_BL

* LAYER_INFO_LBL_POS_BC

* LAYER_INFO_LBL_POS_BR

LAYER_INFO_LBL_VISIBILITY

Smallint value, indicating whether labels are visible; see
the Visibility clause of the Set Map statement. Return
value will be one of these values:
* LAYER_INFO_LBL_VIS_ON (labels always visible)
* LAYER_INFO_LBL_VIS_OFF (labels never visible)
* LAYER_INFO_LBL_VIS_ZOOM (labels visible when
in zoom range)

LAYER_INFO_LBL_ZOOM_MIN

Float value, indicating the minimum zoom distance for
this layer’s labels.

LAYER_INFO_LBL_ZOOM_MAX

Float value, indicating the maximum zoom distance for
this layer’s labels.

LAYER_INFO_LBL_AUTODISPLAY

Logical value: TRUE if this layer is set to display labels
automatically. See the Auto clause of the Set Map state-
ment.

LAYER_INFO_LBL_OVERLAP

Logical value; TRUE if overlapping labels are allowed.

LAYER_INFO_LBL_DUPLICATES

Logical value; TRUE if duplicate labels are allowed.

LAYER_INFO_LBL_OFFSET

Smallint value from 0 to 50, indicating how far the labels
are offset from object centroids. The offset value repre-
sents a distance, in points.

LAYER_INFO_LBL_MAX

Integer value, indicating the maximum number of labels
allowed for this layer. If no maximum has been set, return
value is 2,147,483,647.

LAYER_INFO_LBL_PARTIALSEGS

Logical value; TRUE if the Label Partial Segments check
box is checked for this layer.

attribute code

Layerinfo() Return Value

LAYER_INFO_ARROWS

Logical value; TRUE if layer displays direction arrows on
linear objects.

LAYER_INFO_NODES

Logical value; TRUE if layer displays object nodes.

LAYER_INFO_CENTROIDS

Logical value; TRUE if layer displays object centroids.

LAYER_INFO_SELECTABLE

Logical value; TRUE if the layer is selectable.

© 2005 Mapinfo Corporation. All rights reserved.

MapBasic 8.0

290

MB_Ref.pdf

Reference Guide Chapter 6: Layerinfo() function

attribute code Layerinfo() Return Value

LAYER_INFO_PATH String value representing the full directory path of the
table associated with the map layer.

LAYER_INFO_TYPE Smallint value, indicating this layer’s file type:

* LAYER_INFO_TYPE_NORMAL for a normal layer;

* LAYER_INFO_TYPE_COSMETIC for the Cosmetic
layer;

* LAYER_INFO_TYPE_IMAGE for a raster image
layer;

* LAYER_INFO_TYPE_THEMATIC for a thematic
layer.

* LAYER_INFO_TYPE_GRID for a grid image layer.

* LAYER_INFO_TYPE_WMS for a layer from a Web

Service Map.
LAYER_HOTLINK_EXPR Returns the layer’s Hotlink filename expression.
LAYER_HOTLINK_MODE Returns the layer’s Hotlink mode, one of the following

predefined values:

+ HOTLINK_MODE_LABEL
+ HOTLINK_MODE_OBJ
+ HOTLINK_MODE_BOTH

LAYER _HOTLINK_RELATIVE Returns True if the relative path option is on, False other-
wise.

Example

Many of the settings that you can query using Layerinfo() only apply to conventional map layers (as
opposed to cosmetic map layers, thematic map layers, and map layers representing raster image
tables).

To determine whether a map layer is a conventional layer, use the LAYER_INFO_TYPE setting, as
shown below:

i_lay type = LayerInfo(map_id, layer_number, LAYER INFO_TYPE)
If i lay type = LAYER INFO TYPE NORMAL Then

" ... then this is a "normal” layer

’

End If

See Also

Mapperinfo() function

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 291 MB_Ref.pdf

Reference Guide Chapter 6: Layout statement

Layout statement

Purpose
Opens a new layout window.

Syntax

Layout
[Position (x , y) [Units paperunits]]
[width window width [Units paperunits]]
[Height window height [Units paperunits]
[{ Min | Max }]

]

paperunits is a String representing the name of a paper unit (for example, “in” or “mm”)

x , y specifies the position of the upper left corner of the Layout, in paper units, where 0,0 represents
the upper-left corner of the MaplInfo Professional window

window_width and window _height dictate the size of the window, in Paper units

Description

The Layout statement opens a new Layout window. If the statement includes the optional Min keyword,
the window is minimized before it is displayed. If the statement includes the optional Max keyword, the
window appears maximized, filling all of MapInfo Professional ’s screen space.

The Width and Height clauses control the size of the Layout window, not the size of the page layout
itself. The page layout size is controlled by the paper size currently in use and the number of pages
included in the Layout.

See the Set Layout statement for more information on setting the number of pages in a Layout.

Maplnfo Professional assigns a special, hidden table name to each Layout window. The first Layout
window opened has the table name Layout1, the next Layout window that is opened has the table
name Layout2, etc.

A MapBasic program can create, select, or modify objects on a Layout window by issuing statements
which refer to these table names. For example, the following statement selects all objects from a
Layout window:
Select * From Layoutl
Example
The following example creates a Layout window two inches wide by four inches high, located at the
upper-left corner of the Maplnfo workspace.
Layout Position (0, 0) Width 2 Height 4
See Also
Open Window statement

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 292 MB_Ref.pdf

Reference Guide Chapter 6: LCase$() function

LCase$() function

Purpose
Returns a lower-case equivalent of a string.
Syntax
LCase$ (string expr)
string_expr is a string expression
Return Value
String
Description
The LCase$() function returns the string which is the lower-case equivalent of the string expression

string_expr.

Conversion from upper- to lower-case only affects alphabetic characters (A through Z); numeric digits
and punctuation marks are not affected. Thus, the function call:
LCase$ ("A#l12a”)

returns the string value “a#12a”.

Example

Dim regular, lower case As String
regular = ”"Los Angeles”
lower case = LCases$ (regular)

7

' Now, lower_case contains the value "los angeles”

’

See Also

Proper$() function, UCase$() function

Left$() function
Purpose
Returns part or all of a string, beginning at the left end of the string.

Syntax

Left$ (string expr, num expr)

string_expr is a string expression
num_expr is a numeric expression, zero or larger

Return Value

String

Description

The Left$() function returns a string which consists of the leftmost num_expr characters of the string
expression string_expr.

MapBasic 8.0
© 2005 Mapinfo Corporation. All rights reserved. 293 MB_Ref.pdf

Reference Guide Chapter 6: LegendFramelnfo() function

The num_expr parameter should be an integer value, zero or larger. If num_expr has a fractional value,
MapBasic rounds to the nearest integer. If num_expr is zero, Left$() returns a null string. If the
num_expr parameter is larger than the number of characters in the string_expr string, Left$() returns a
copy of the entire string_expr string.
Example
Dim whole, partial As String
whole = "Afghanistan”
partial = Lefts$ (whole, 6)
' at this point, partial contains the string: ”Afghan”
See Also
Mid$() function, Right$() function

LegendFramelnfo() function

Purpose

Returns information about a frame within a legend.

Syntax

LegendFrameInfo(window id, frame id, attribute)

window_id is a number that specifies which legend window you want to query.

frame_id is a number that specifies which frame within the legend window you want to query. Frames
are numbered 1 to n where n is the number of frames in the legend.

attribute is an integer code indicating which type of information to return.

Return Value

Depends on the attribute parameter.

Attribute codes LegendFrameinfo() Return Value

FRAME_INFO_TYPE Returns one of the following predefined constant indicating
frame type:

+ FRAME_TYPE_STYLE

+ FRAME_TYPE_THEME

FRAME_INFO_MAP_LAYER_ID Returns the id of the layer to which the frame corresponds.

FRAME_INFO_REFRESHABLE Returns true if the frame was created without the Norefresh
keyword. Always returns true for theme frames.

FRAME_INFO_POS_X Returns the distance of the frames upper left corner from
the left edge of the legend canvas (in paper units).
FRAME_INFO_POS_ Y Returns the distance of the frame’s upper left corner from
the top edge of the legend canvas (in paper units).
FRAME_INFO_WIDTH Returns the width of the frame (in paper units).
FRAME_INFO_HEIGHT Returns the height of the frame (in paper units).
MapBasic 8.0

© 2005 Mapinfo Corporation. All rights reserved. 294 MB_Ref.pdf

Reference Guide

Chapter 6: Legendinfo() function

Attribute codes

LegendFramelnfo() Return Value

FRAME_INFO_TITLE

Returns the title of a style frame or theme frame.

FRAME_INFO_TITLE_FONT

Returns the font of a style frame title. Returns the default
title font if the frame has no title or if it is a theme frame.

FRAME_INFO_SUBTITLE

Returns the subtitle of a style frame or theme frame.

FRAME_INFO_SUBTITLE_FONT

Same as title font.

FRAME_INFO_BORDER_PEN

Returns the pen used to draw the border.

FRAME_INFO_NUM_STYLES

Returns the number of styles in a frame. Zero if theme
frame.

FRAME_INFO_VISIBLE

Returns true if the frame is visible (theme frames can be
invisible).

FRAME_INFO_COLUMN

Returns the legend attribute column name as a string if
there is one. Returns an empty string for a theme frame.

FRAME_INFO_LABEL

Returns the label expression as a string if there is one.
Returns an empty string for a theme frame.

Legendinfo() function
Purpose
Returns information about a legend.

Syntax

LegendInfo(window id, attribute)

window_id is a number that specifies which legend window you want to query.
attribute is an integer code indicating which type of information to return.

Return Value
Depends on the attribute parameter.

Attribute Code Legendinfo() Return Value

LEGEND_INFO_MAP_ID Returns the ID of the parent map window (can also get this
value by issuing WindowInfo() with the WIN_INFO_TABLE

code).

LEGEND_INFO_ORIENTATION Returns predefined value to indicate the layout of the leg-

end:

* ORIENTATION_PORTRAIT
* ORIENTATION_LANDSCAPE
* ORIENTATION_CUSTOM

LEGEND_INFO_NUM_FRAM