
MapInfo MapBasic
v. 8.0

Reference Guide

Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor or its representatives. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, without the written permission of MapInfo Corporation,
One Global View, Troy, New York 12180-8399.
© 2005 MapInfo Corporation. All rights reserved. MapInfo, MapInfo Professional, MapBasic, StreetPro and the MapInfo logo are trademarks of MapInfo Corporation and/or
its affiliates.
MapInfo Corporate Headquarters:
Voice: (518) 285-6000
Fax: (518) 285-6060
Sales Info Hotline: (800) 327-8627
Government Sales Hotline: (800) 619-2333
Technical Support Hotline: (518) 285-7283
Technical Support Fax: (518) 285-6080
Contact information for North American offices is located at: http://www.mapinfo.com/company/company_profile/index.cfm.
Contact information for worldwide offices is located at: http://www.mapinfo.com/company/company_profile/worldwide_offices.cfm.
Contact information for European and Middle East offices is located at: http://www.mapinfo.co.uk.
Contact information for Asia Pacific offices is located at: http://www.mapinfo.com.au.
Adobe Acrobat® is a registered trademark of Adobe Systems Incorporated in the United States.
Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the benefit of the trademark
owner, with no intent to infringe on the trademark.
libtiff © 1988-1995 Sam Leffler, copyright © Silicon Graphics, Inc.
libgeotiff © 1995 Niles D. Ritter.
Portions © 1999 3D Graphics, Inc. All Rights Reserved.
HIL - Halo Image Library™ © 1993, Media Cybernetics Inc. Halo Imaging Library is a trademark of Media Cybernetics, Inc.
Portions thereof LEAD Technologies, Inc. © 1991-2005. All Rights Reserved.
Portions © 1993-2005 Ken Martin, Will Schroeder, Bill Lorensen. All Rights Reserved.
Blue Marble © 1993-2005
ECW by ER Mapper © 1993-2005
VM Grid by Northwood Technologies, Inc., a Marconi Company © 1995-2004™.
Portions © 2005 Earth Resource Mapping, Ltd. All Rights Reserved.
MrSID, MrSID Decompressor and the MrSID logo are trademarks of LizardTech, Inc. used under license. Portions of this computer program are (c) 1995–1998 LizardTech
and/or the university of California or are protected by US patent nos. 5,710,835; 5,130,701; or 5,467,110 and are used under license. All rights reserved. MrSID is protected
under US and international patent & copyright treaties and foreign patent applications are pending. Unauthorized use or duplication prohibited.
Universal Translator by Safe Software, Inc. © 2004.
Crystal Reports ® is proprietary trademark of Crystal Decisions. All Rights Reserved.
Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the benefit of the trademark
owner, with no intent to infringe on the trademark.

May 2005

http://www.mapinfo.com/company/company_profile/index.cfm
http://www.mapinfo.com/company/company_profile/worldwide_offices.cfm

Table of Contents

Chapter 1: New and Enhanced MapBasic Statements and Functions. 5
Enhanced MapBasic Functions and Statements . 22

Enabling Transparent Patterns on Same Layer. 32
Export Windows to Additional Formats . 32

Chapter 2: Introduction . 33
Language Overview . 34
MapBasic Fundamentals . 34

Variables . 34
Looping and Branching . 35
Output and Printing . 35
Procedures (Main and Subs) . 35
Error Handling . 35

Functions . 35
Custom Functions . 36
Data-Conversion Functions . 36
Date and Time Functions. 36
Math Functions . 37
String Functions . 37

Working With Tables. 38
Creating and Modifying Tables . 38
Querying Tables. 38
Working With Remote Data . 39

Working With Files (Other Than Tables). 40
File Input/Output . 40
File and Directory Names . 40

Working With Maps and Graphical Objects . 41
Creating Map Objects . 41
Modifying Map Objects . 41
Querying Map Objects . 42
Working With Object Styles . 42
Working With Map Windows . 43

Creating the User Interface . 43
ButtonPads (ToolBars). 43
Dialog Boxes . 44
Menus . 44
Windows . 44
System Event Handlers . 45

the guide title Table of Contents
Communicating With Other Applications . 45
DDE (Dynamic Data Exchange; Windows Only) . 45
Integrated Mapping. 45

Special Statements and Functions . 46
A – Z Reference . 46

Appendix A: Character Code Table. 586
Appendix B: Summary of Operators . 588

Numeric Operators . 589
Comparison Operators . 590
Logical Operators . 590
Geographical Operators . 591

Precedence . 592
Automatic Type Conversions. 592

Appendix C: MapBasic Definitions File . 594
Index. 615
Product Name and version number

© 2005 MapInfo Corporation. All rights reserved. 4 filename.pdf

1
New and Enhanced
MapBasic Statements and
Functions
These are the new statements and functions available for the MapInfo
Professional 8.0 product.

Sections in this Appendix:

New MapBasic Functions and Statements. 6
Enhanced MapBasic Functions and Statements 22

Reference Guide Chapter 1: CartesianConnectObjects() function
New MapBasic Functions and Statements

CartesianConnectObjects() function
Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
CartesianConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

CartesianClosestPoints() returns a Polyline object connecting object1 and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a cartesian calculation method. If the calculation
cannot be done using a cartesian distance method (e.g., if the MapBasic Coordinate System is Lat
Long), then this function will produce an error.

CartesianObjectDistance() function
Purpose

Returns the distance between two objects.

Syntax
CartesianObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 6 MB_Ref.pdf

Reference Guide Chapter 1: ConnectObjects() function
Description

CartesianObjectDistance() returns the minimum distance between object1 and object2 using a
cartesian calculation method with the return value in unit_name. If the calculation cannot be done
using a cartesian distance method (e.g., if the MapBasic Coordinate System is Lat Long), then this
function will produce an error.

ConnectObjects() function
Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
ConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

ConnectObjects() returns a Polyline object connecting object1 and object2 in the shortest (min ==
TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation cannot be
done using a spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then a
cartesian method will be used.

Farthest statement
Purpose

Find the object in a table that is farthest from a particular object. The result is a two-point Polyline
object representing the farthest distance.

Syntax
Farthest [N | ALL] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min_value] [Max max_value] Units unitname]
[Data clause]
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 7 MB_Ref.pdf

Reference Guide Chapter 1: Farthest statement
N optional parameter representing the number of "farthest" objects to find. The default is 1. If All is
used, then a distance object is created for every combination.

fromtable represents a table of objects that you want to find farthest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the farthest
distances from.

totable represents a table of objects that you want to find farthest distances to.

intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the intotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the intotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max sunclauses within it (e.g., only a Min or only a Max, or both
may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.

Description

Every object in the fromtable is considered. For each object in the fromtable, the farthest object in the
totable is found. If N is present, then the N farthest objects in totable are found. A two-point Polyline
object representing the farthest points between the fromtable object and the chosen totable object is
placed in the intotable. If All is present, then an object is placed in the intotable representing the
distance between the fromtable object and each totable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second farthest object,
and 3 objects are requested, then the object will become the third farthest object.

The types of the objects in the fromtable and totable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 8 MB_Ref.pdf

Reference Guide Chapter 1: Farthest statement
The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many
<totable> objects are found for each <fromtable> object. One use of the Min distance could be to
eliminate distances of zero. This may be useful in the case of two point tables to eliminate comparisons
of the same point. For example, if there are two point tables representing Cities, and we want to find
the closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the totable. This may be most useful in
conjunction with N or All. For example, we may want to search for the five airports that are closest to a
set of cities (where the fromtable is the set of cities and the totable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the All parameter, where we would
find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Farthest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min_value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Farthest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).

Data Clause
Data IntoColumn1=column1, IntoColumn2=column2

The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both totable and fromtable, then the column in totable will
be used (e.g., totable is searched first for column names on the right hand side of the equals). To avoid
any conflicts such as this, the column names can be qualified using the table alias:

Data name1=states.state_name, name2=county.state_name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN…
functionality from the menu or by using the Update MapBasic statement.

See Also

Nearest statement, ObjectDistance() function, ConnectObjects() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 9 MB_Ref.pdf

Reference Guide Chapter 1: Nearest statement
Nearest statement
Purpose

Find the object in a table that is closest to a particular object. The result is a 2 point Polyline object
representing the closest distance.

Syntax
Nearest [N | ALL] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min_value] [Max max_value] Units unitname]
[Data clause]

N optional parameter representing the number of "nearest" objects to find. The default is 1. If All is
used, then a distance object is created for every combination.

fromtable represents a table of objects that you want to find closest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the closest
distances from.

totable represents a table of objects that you want to find closest distances to.

intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the intotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the intotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max subclauses within it (e.g., only a Min or only a Max, or both
may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 10 MB_Ref.pdf

Reference Guide Chapter 1: Nearest statement
Description

Every object in the fromtable is considered. For each object in the fromtable, the nearest object in the
totable is found. If N is present, then the N nearest objects in totable are found. A two-point Polyline
object representing the closest points between the fromtable object and the chosen totable object is
placed in the intotable. If All is present, then an object is placed in the <intotable> representing the
distance between the fromtable object and each totable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second closest object,
and three objects are requested, then the object will become the third closest object.

The types of the objects in the fromtable and totable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many totable
objects are found for each fromtable object. One use of the Min distance could be to eliminate
distances of zero. This may be useful in the case of two point tables to eliminate comparisons of the
same point. For example, if there are two point tables representing Cities, and we want to find the
closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the <totable>. This may be most useful
in conjunction with N or All. For example, we may want to search for the five airports that are closest
to a set of cities (where the fromtable is the set of cities and the totable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the All parameter, where we
would find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Nearest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min_value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Nearest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 11 MB_Ref.pdf

Reference Guide Chapter 1: Nearest statement
Data Clause
Data IntoColumn1=column1, IntoColumn2=column2

The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both totable and fromtable, then the column in totable will
be used (e.g., totable is searched first for column names on the right hand side of the equals). To avoid
any conflicts such as this, the column names can be qualified using the table alias:

Data name1=states.state_name, name2=county.state_name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN…
functionality from the menu or by using the Update MapBasic statement.

Examples

Assume that we have a point table representing locations of ATM machines and that there are at least
two columns in this table: business which represents the name of the business which contains the ATM
and Address which represents the street address of that business. Assume that the current selection
represents our current location. Then the following will find the closest ATM to where we currently are:

Nearest From selection To atm Into result Data where=buisness,address=address

If we wanted to find the closest five ATM machines to our current location:

Nearest 5 From selection To atm Into result Data where=business,address=address

If we want to find all ATM machines within a 5 mile radius:

Nearest All From selection To atm Into result Ignore Max 5 Units "mi" Data
where=buisness,address=address

Assume we have a table of house locations (the fromtable) and a table representing the coastline (the
totable). To find the distance from a given house to the coastline:

Nearest From customer To coastline Into result Data
who=customer.name,where=customer.address,coast_loc=coastline.county,type=coastli
ne.designation

If we don't care about customer locations which are greater than 30 miles from any coastline:

Nearest From customer To coastline Into result Ignore Max 30 Units "mi" Data
who=customer.name,where=customer.address,coast_loc=coastline.county,type=coastli
ne.designation

Assume we have a table of cities (the fromtable) and another table of state capitals (the totable), and
we want to find the closest state capital to each city, but we want to ignore the case where the city in
the fromtable is also a state capital:

Nearest From uscty_1k To usa_caps Into result Ignore Min 0 Units "mi" Data
city=uscty_1k.name,capital=usa_caps.capital

See Also

Farthest statement, ObjectDistance() function, ConnectObjects() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 12 MB_Ref.pdf

Reference Guide Chapter 1: ObjectDistance() function
ObjectDistance() function
Purpose

Returns the distance between two objects.

Syntax
ObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float

Description

ObjectDistance() returns the minimum distance between object1 and object2 using a spherical
calculation method with the return value in unit_name. If the calculation cannot be done using a
spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then a cartesian
distance method will be used.

ObjectNodeM() function
Purpose

Returns the m-value of a specific node in a region, polyline or multipoint object.

Syntax
ObjectNodeM(object, polygon_num, node_num)

object is an Object expression

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read

Return Value

Float

Description

The ObjectNodeM() function returns the m-value of a specific node from a region, polyline or multipoint
object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeM() function
supports Multipoint objects and returns the m-value of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the object's
nodes should be queried. You can use the ObjectInfo() function to determine the number of nodes in
an object.

If object does not support m values or m-value for this node is not defined, then, error is set.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 13 MB_Ref.pdf

Reference Guide Chapter 1: ObjectNodeZ() function
Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float

Open Table "routes"
Fetch First From routes

' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then

' ... then the object is a polyline...
z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM(routes.obj, 1, 1) ' read m-value

End If

See Also

Querying map objects

ObjectNodeZ() function
Purpose

Returns the z-coordinate of a specific node in a region, polyline, or multipoint object.

Syntax
ObjectNodeZ(object, polygon_num, node_num)

object is an Object expression

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read

Return Value

Float

Description

The ObjectNodeZ() function returns the z-value of a specific node from a region, polyline or multipoint
object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeZ() function
supports Multipoint objects and returns the z-coordinate of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the object's
nodes should be queried. You can use the ObjectInfo() function to determine the number of nodes in
an object.

If object does not support Z values or Z-value for this node is not defined then an error is thrown.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 14 MB_Ref.pdf

Reference Guide Chapter 1: Server Create Workspace statement
Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float

Open Table "routes"
Fetch First From routes

' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then

' ... then the object is a polyline...
z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM(routes.obj, 1, 1) ' read m-value

End If

See Also

Querying map objects

Server Create Workspace statement
Purpose

Creates a new workspace in the database (Oracle 9i or later).

Syntax
Server ConnectionNumber Create

Workspace WorkspaceName
[Description Description]
[Parent ParentWorkspaceName]

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive, and it must be
unique.The length of a workspace name must not exceed 30 characters.

Description is a string to describe the workspace.

ParentWorkspaceName is the name of the workspace which will be the parent of the new workspace
WorkspaceName. By default, when a workspace is created, it is created from the topmost, or LIVE,
database workspace.

Description

This statement only applies to Oracle9i or later. The new workspace WorkspaceName is a child of the
parent workspace ParentWorkspaceName or LIVE if the Parent is not specified.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 15 MB_Ref.pdf

Reference Guide Chapter 1: Server Remove Workspace statement
Examples

The following example creates a workspace named GARYG in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create
Workspace "MIUSER"
Description "MIUser private workspace"

The following example creates a child workspace under MIUSER in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create Workspace "MBPROG" Description "MapBasic project" Parent
"MIUSER"

See also

Server Remove Workspace statement, Server Versioning statement

Server Remove Workspace statement
Purpose

Discards all row versions associated with a workspace and deletes the workspace in the database
(Oracle 9i or later).

Syntax
Server ConnectionNumber Remove

Workspace WorkspaceName

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive.

Description

This statement only applies to Oracle9i or later. This operation can only be performed on leaf
workspaces (the bottom-most workspaces in a branch in the hierarchy). There must be no other users
in the workspace being removed.

Examples

The following example removes the MIUSER workspace in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Remove Workspace "MIUSER"

See also

Server Create Workspace statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 16 MB_Ref.pdf

Reference Guide Chapter 1: Server Versioning statement
Server Versioning statement
Purpose

Version-enable or disable a table on Oracle 9i or later, which creates or deletes all the necessary
structures to support multiple versions of rows to take advantage of Oracle Workspace Manager.

Syntax
Server ConnectionNumber Versioning
{
ON

[History {SRV_WM_HIST_NONE|SRV_WM_HIST_OVERWRITE|SRV_WM_HIST_NO_OVERWRITE}]
| OFF

[Force {OFF | ON }]
}
Table ServerTableName

ON | OFF indicates to enable (when it is ON) a table versioning or disable (when it is OFF) a table
versioning.

ConnectionNumber is an integer value that identifies the specific connection.

ServerTableName is the name of the table on Oracle server to be version-enabled/disabled. The length
of a table name must not exceed 25 characters. The name is not case sensitive.

When version-enabling a table (ON), History is an optional parameter.

History clause specifies how to track modifications to ServerTableName, i.e., lets you timestamp
changes made to all rows in a version-enabled table and to save a copy of either all changes or only
the most recent changes to each row. Must be one of the following constant values:

• SRV_WM_HIST_NONE (0): No modifications to the table are tracked. (This is the default.)
• SRV_WM_HIST_OVERWRITE (1): The with overwrite (W_OVERWRITE) option. A view named

ServerTableName_HIST is created to contain history information, but it will show only the most
recent modifications to the same version of the table. A history of modifications to the version
is not maintained; that is, subsequent changes to a row in the same version overwrite earlier
changes. (The CREATETIME column of the TableName_HIST view contains only the time of
the most recent update.)

• SRV_WM_HIST_NO_OVERWRITE (2): The without overwrite (WO_OVERWRITE) option. A view
named ServerTableName_HIST is created to contain history information, and it will show all
modifications to the same version of the table. A history of modifications to the version is
maintained; that is, subsequent changes to a row in the same version do not overwrite earlier
changes.
However, there are many restrictions on tables to use this option. Please refer the Oracle9i
Application Developer’s Guide - Workspace Manager for more information.

When disabling a version-enabled table (OFF), Force is an optional parameter.

If Force is set ON, all data in workspaces other than LIVE to be discarded before versioning is
disabled. OFF (the default) prevents versioning from being disabled if ServerTableName was modified
in any workspace other than LIVE and if the workspace that modified ServerTableName still exists.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 17 MB_Ref.pdf

Reference Guide Chapter 1: Server Workspace Merge statement
Description

This statement only applies to Oracle9i or later. The table, ServerTableName, that is being version-
enabled must have a primary key defined. Only the owner of a table or a user with the WM_ADMIN role
can enable or disable versioning on the table. Tables that are version-enabled and users that own
version-enabled tables cannot be deleted. You must first disable versioning on the relevant table or
tables. Tables owned by SYS cannot be version-enabled. Refer to the Oracle9i Application
Developer’s Guide - Workspace Manager for more information.

Examples

The following example enables versioning on the MIUUSA3 table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Versioning ON Table "MIUUSA3"

or

Server hdbc Versioning ON History 1 Table "MIUUSA3"

The following example disables versioning on the MIUUSA3 table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Versioning OFF Force ON Table "MIUUSA3"

See also

Server Create Workspace statement

Server Workspace Merge statement
Purpose

Applies changes to a table (all rows or as specified in the Where clause) in a workspace to its parent
workspace in the database (Oracle 9i or later).

Syntax
Server Workspace Merge

Table TableName
[Where WhereClause]
[RemoveData {OFF | ON }]
[{Interactive | Automatic merge_keyword}]

TableName is the name (alias) of an open MapInfo table from an Oracle9i or later server. The table
contains rows to be merged into its parent workspace.

WhereClause identifies the rows to be merged into the parent workspace. The clause itself should omit
the WHERE keyword.

Example:

’MI_PRINX = 20’. Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are merged.

If RemoveData is set ON, the data in the table (as specified by WhereClause) in the child workspace
will be removed. This option is permitted only if workspace has no child workspaces (that is, it is a leaf
workspace). OFF (the default) does not remove the data in the table in the child workspace.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 18 MB_Ref.pdf

Reference Guide Chapter 1: Server Workspace Merge statement
If there are conflicts between the workspace being merged and its parent workspace, the user must
resolve conflicts first in order for merging to succeed. MapInfo Professional allows the user to resolve
the conflicts first and then to perform the merging within the process. The following clauses let you
control what happens when there is a conflict. These clauses have no effect if there is no conflict
between the workspace being merged and its parent workspace.

Interactive
In the event of a conflict, MapInfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one or all together based on user choices. After all the conflicts are resolved, the table
is merged into its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict
In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase
In the event of a conflict, MapInfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged, the base rows are copied to the parent workspace
too.) Note that BASE is ignored for insert-insert conflicts where a base row does not exist; in this case
the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, MapInfo uses the parent workspace values.

Description

This statement only applies to Oracle9i or later. All data that satisfies the WhereClause in TableName
is applied to the parent workspace. Any locks that are held by rows being merged are released. If there
are conflicts between the workspace being merged and its parent workspace, this operation provides
user options on how to solve the conflict. The merge operation was executed only after all the conflicts
were resolved. A table cannot be merged in the LIVE workspace (because that workspace has no
parent workspace). A table cannot be merged or refreshed if there is an open database transaction
affecting the table.

Refer to Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples

The following example merge changes to USA where MI_PRINX=5 in MIUSER to its parent
workspace.

Server Workspace Merge
Table "GWMUSA2"
Where "MI_PRINX = 60"
Automatic UseCurrent

See Also

Server Workspace Refresh statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 19 MB_Ref.pdf

Reference Guide Chapter 1: Server Workspace Refresh statement
Server Workspace Refresh statement
Purpose

Applies all changes made to a table (all rows or as specified in the Where clause) in its parent
workspace to a workspace in the database (Oracle 9i or later).

Syntax
Server Workspace Refresh

Table TableName
[Where WhereClause]
[{Interactive | Automatic merge_keyword}]

TableName is the name (alias) of an open MapInfo table from an Oracle9i or later server. The table
contains rows to be refreshed using values from its parent workspace.

WhereClause identifies the rows to be refreshed from the parent workspace. The clause itself should
omit the WHERE keyword.

Example:

’MI_PRINX = 20’. Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are refreshed. If
there are conflicts between the workspace being refreshed and its parent workspace, the user must
resolve conflicts first in order for refreshing to succeed. MapInfo Professional allows the user to resolve
the conflicts first and then to perform the refreshing within the process. The following clauses let you
control what happens when there is a conflict. These clauses has no effect if there is no conflict
between the workspace being refreshed and its parent workspace.

Interactive
In the event of a conflict, MapInfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one based on user choices. After all the conflicts are resolved, the table is refreshed
from its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict
In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase
In the event of a conflict, MapInfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged to it parent, the base rows will be copied to the
parent workspace.) Note that BASE is ignored for insert-insert conflicts where a base row does not
exist; in this case the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, MapInfo uses the parent workspace values.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 20 MB_Ref.pdf

Reference Guide Chapter 1: SphericalConnectObjects() function
Description

This statement only applies to Oracle9i or later. It applies to workspace all changes in rows that satisfy
the WhereClause in the table in the parent workspace from the time the workspace was created or last
refreshed. If there are conflicts between the workspace being refreshed and its parent workspace, this
operation provides user options on how to solve the conflict. The refresh operation is executed only
after all the conflicts are resolved. A table cannot be refreshed in the LIVE workspace (because that
workspace has no parent workspace). A table cannot be merged or refreshed if there is an open
database transaction affecting the table.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples

The following example refreshes MIUSER by applying changes made to USA where MI_PRINX=5 in
its parent workspace.

Server Workspace Refresh
Table "GWMUSA2"
Where "MI_PRINX = 60"
Automatic UseParent

See also

Server Workspace Merge statement

SphericalConnectObjects() function
Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
SphericalConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

SphericalConnectObjects() returns a Polyline object connecting object1 and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation
cannot be done using a spherical distance method (e.g., if the MapBasic Coordinate System is
NonEarth), then this function will produce an error.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 21 MB_Ref.pdf

Reference Guide Chapter 1: SphericalObjectDistance() function
SphericalObjectDistance() function
Purpose

Returns the distance between two objects.

Syntax
SphericalObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float

Description

SphericalObjectDistance() returns the minimum distance between object1 and object2 using a
spherical calculation method with the return value in unit_name. If the calculation cannot be done using
a spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then this function
will produce an error.

Enhanced MapBasic Functions and Statements

Add Cartographic Frame statement
[Window legend_window_id]
[Custom]
[Default Frame Title { def_frame_title } [Font...]]
[Default Frame Subtitle { def_frame_subtitle } [Font...]]
[Default Frame Style { def_frame_style } [Font...]]
[Default Frame Border Pen... pen_expr]
Frame From Layer { map_layer_id | map_layer_name
[Using

[Column { column | object [FromMapCatalog { On | Off }]}]

…

The syntax indicates that if you specify Using Column object, there is a new FromMapCatalog clause
you can use that is only applicable to live access tables.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table must
be a live access table that supports per record styles for this to occur. If the live table does not support
per record styles than the behavior is to revert to the default behavior for live tables, which is to get the
default styles from the MapCatalog (FromMapCatalog ON).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 22 MB_Ref.pdf

Reference Guide Chapter 1: Add Cartographic Frame statement
Examples

Creating on live access table that supports per record styles with map styles:

Create Cartographic Legend From Window 168811024
Scrollbars On
Portrait Style Size Large
Default Frame
Title "# Legend"
Font ("Arial",0,10,0)
Default Frame Style "%"
Font ("Arial",0,8,0)
Frame From Layer 1
Title "nyalbap Legend"
Using column object FromMapCatalog OFF label default

Creating on live access table with MapCatalog:

Create Cartographic Legend From Window 168811024
Scrollbars On
Portrait Style Size Large
Default Frame
Title "# Legend"
Font ("Arial",0,10,0)
Default Frame Style "%"
Font ("Arial",0,8,0)
Frame From Layer 1
Title "tony_nyalbap Legend"
Using column object FromMapCatalog ON label default

Creating on live access table with MapCatalog:

Create Cartographic Legend From Window 168811024
Scrollbars On
Portrait Style Size Large
Default Frame Title "# Legend"
Font ("Arial",0,10,0)
Default Frame Style "%"
Font ("Arial",0,8,0)
Frame From Layer 1 Title "nyalbap Legend"
Using column class label default

Workspace Behavior
When you save to a workspace, the new FromMapCatalog OFF clause is written to the workspace
when specified. This requires the workspace to bumped up to 800. If the FromMapCatalog ON clause is
specified we do not write it to the workspace since it is default behavior. This lets us avoid bumping up
the workspace version in this case.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 23 MB_Ref.pdf

Reference Guide Chapter 1: Alter Object statement
Alter Object statement
Syntax

Alter Object obj
{ Info object_info_code, new_info_value |

Geography object_geo_code, new_geo_value |
Node { Add [Position polygon_num, node_num] (x, y) |

Set Position polygon_num, node_num (x, y) |
Remove Position polygon_num, node _num

}

polygon_num is an Integer value (one or larger), identifying one polygon from a region object or one
section from a polyline object.

Create Cartographic Legend statement
Syntax

Create Cartographic Legend
[From Window map_window_id]
[Behind]
[Position (x , y) [Units paper_units]]
[Width win_width [Units paper_units]]
[Height win_height [Units paper_units]]
[Window Title { legend_window_title }
[ScrollBars { On | Off }]
[Portrait | Landscape | Custom]
[Style Size {Small | Large}
[Default Frame Title { def_frame_title } [Font...] }]
[Default Frame Subtitle { def_frame_subtitle } [Font...] }]
[Default Frame Style { def_frame_style } [Font...] }]
[Default Frame Border Pen [[pen_expr]
Frame From Layer { map_layer_id | map_layer_name
[Using

[Column { column | object [FromMapCatalog { On | Off }]}]

…

The syntax indicates that if you specify Using Column object, there is a new FromMapCatalog clause
you can use that is only applicable to live access tables.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table must
be a live access table that supports per record styles for this to occur. If the live table does not support
per record styles than the behavior is to revert to the default behavior for live tables, which is to get the
default styles from the MapCatalog (FromMapCatalog ON).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 24 MB_Ref.pdf

Reference Guide Chapter 1: Create Collection statement
Create Collection statement
Syntax

Create Collection [num_parts]
[Into { Window window_id | Variable var_name }]
Multipoint

[num_points]
(x1, y1) (x2, y2) [...]
[Symbol . . .]

Region
num_polygons
[num_points1 (x1, y1) (x2, y2) [...]]
[num_points2 (x1, y1) (x2, y2) [...] ...]
[Pen ...]
[Brush ...]
[Center (center_x, center_y)]

Pline
[Multiple num_sections]
num_points
(x1, y1) (x2, y2) [...]
[Pen ...]
[Smooth ...]

num_polygons is the number of polygons inside the Collection object.

num_sections specifies how many sections the multi-section polyline will contain.

Create Pline statement
Syntax

Create Pline
[Into { Window window_id | Variable var_name }]

[Multiple num_sections]
num_points

(x1, y1) (x2, y2) [...]
[Pen ...]
[Smooth]

num_sections specifies how many sections the multi-section polyline will contain.

Create Region statement
Syntax

Create Region
[Into { Window window_id | Variable var_name }]

num_polygons
[num_points1 (x1, y1) (x2 , y2) [...]]
[num_points2 (x1, y1) (x2 , y2) [...] ...]

[Pen ...]
[Brush ...]
[Center (center_x, center_y)]

num_polygons specifies the number of polygons that will make up the region (zero or more).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 25 MB_Ref.pdf

Reference Guide Chapter 1: Commit Table statement
Commit Table statement
Here is the syntax with the new ConvertObjects keyword in bold:

Commit Table table
[As filespec

 [Type { NATIVE |
DBF [Charset char_set] |
Access Database database_filespec
Version version Table tablename

[Password pwd] [Charset char_set] |
QUERY

ODBC Connection ConnectionNumber Table tablename
}]

 [CoordSys...]
 [Version version]]

[{ Interactive | Automatic commit_keyword }]
[ConvertObjects {ON | OFF | INTERACTIVE }]

ExtractNodes() function
ExtractNodes(object, polygon_index, begin_node, end_node, b_region)

polygon_index is an Integer value, 1 or larger: for region objects. This indicates which polygon (for
regions) or section (for polylines) to query.

Import statement
Syntax

Import file_name
[Type "GML21"]
[Layer layer_name]
[Into table_name]
[Overwrite]
[Coordsys clause]

file_name is the name of the GML 2.1 file to import.

Type is "GML21" for GML 2.1 files.

layer_name is the name of the GML layer.

table_name is the MapInfo table name.

Overwrite causes the TAB file to be automatically overwritten. If Overwrite is not specified, an error
will result if the TAB file already exists.

The Coordsys clause is optional. If the GML file contains a supported projection and the Coordsys
clause is not specified, the projection from the GML file will be used. If the GML file contains a
supported projection and the Coordsys clause is specified, the projection from the Coordsys clause will
be used. If the GML file does not contain a supported projection, the Coordsys clause must be
specified.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 26 MB_Ref.pdf

Reference Guide Chapter 1: ObjectGeography() function
Note: If the Coordsys clause does not match the projection of the GML file, your data may not import
correctly. The coordsys must match the coordsys of the data in the GML file. It will not
transform the data from one projection to another.

Example
Import "D:\midata\GML\GML2.1\mi_usa.xml" Type "GML21" layer "USA" Into
"D:\midata\GML\GML2.1\mi_usa_USA.TAB" Overwrite CoordSys Earth Projection 1, 104

The following functions have been updated for this release.

ObjectGeography() function

If object does not support z/m values or z/m-value for this node is not defined, then an error is thrown.

ObjectInfo() function
Syntax

ObjectInfo(object, attribute)

object is an Object expression

attribute is an integer code specifying which type of information should be returned.

Return value

OBJ_INFO_NPOLYGONS (21) is an Integer that indicates the number of polygons (in the case of a region)
or sections (in the case of a polyline) which make up an object.

OBJ_INFO_NPOLYGONS+N (21) is an Integer that indicates the number of nodes in the Nth polygon of a
region or the Nth section of a polyline.

Note: With region objects, MapInfo Professional counts the starting node twice (once as the start
node and once as the end node). For example, ObjectInfo returns a value of 4 for a triangle-
shaped region.

attribute setting Return value (Float)

OBJ_GEO_POINTZ z-value of a Point object.

OBJ_GEO_POINTM m-value of a Point object.

attribute setting Return value

OBJ_INFO_Z_UNIT_SET(12) Logical, indicating whether Z units are defined.

OBJ_INFO_Z_UNIT(13) String result: indicates distance units used for Z-values. Return
empty string if units are not specified.

OBJ_INFO_HAS_Z(14) Logical, indicating whether object has Z values.

OBJ_INFO_HAS_M(15) Logical, indicating whether object has M values.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 27 MB_Ref.pdf

Reference Guide Chapter 1: ObjectNodeX() function
ObjectNodeX() function
Syntax

ObjectNodeX(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

ObjectNodeY() function
Syntax

ObjectNodeY(object, polygon_num, node_num)

object is an Object expression.

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

Register Table statement
Syntax

Register Table source_file
.
.
.

Type "ODBC" [Cache { On | OFF }]
Connection { Handle ConnectionNumber | ConnectionString }
Toolkit toolkitname
Table SQLQuery
[Versioned {Off | On}]
[Workspace WorkspaceName]
[ParentWorkspace ParentWorkspaceName]
...

Versioned indicates if the table to be opened is an version-enabled (ON) table or not (OFF).

WorkspaceName is the name of the current workspace in which the table will be operated. The name
is case sensitive.

ParentWorkspaceName is the name of parent workspace of the current workspace.

Note: In order to have this statement be effective, the table has to be version-enabled, that is,
Versioned is set ON.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 28 MB_Ref.pdf

Reference Guide Chapter 1: Set Cartographic Legend statement
Examples

The following example create a tab file and then open the tab file.

Register Table "Gwmusa" TYPE ODBC
 TABLE "Select * From ""MIUSER"".""GWMUSA"""
 CONNECTION "SRVR=troyny;UID=miuser;PWD=miuser"
 toolkit "ORAINET"
 Versioned On
 Workspace "MIUSER"
 ParentWorkspace "LIVE"
 Into "C:\projects\data\testscripts\english\remote\Gwmusa.tab"

Open Table "C:\Projects\Data\TestScripts\English\remote\Gwmusa.TAB" Interactive
Map From Gwmusa

Note: INTERACTIVE is not a valid parameter to use when registering SHP files.
See Also

Server Create Workspace statement

Set Cartographic Legend statement
Syntax

Set Cartographic Legend
[Window window_id]
[Refresh]

[Portrait | Landscape]
[Columns number_of_columns | Lines number_of_lines]

…

number_of-columns specifies the width of the legend.

number_of_lines specifies the height of the legend.

Set Legend statement
Purpose

The Set Legend command is used to provide custom ordering of legend categories or items. The new
syntax is in bold.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 29 MB_Ref.pdf

Reference Guide Chapter 1: Set Legend statement
Syntax
Set Legend

[Window window_id]
[Layer { layer_id | layer_name | Prev }

[Display { On | Off }]
[Shades { On | Off }]
[Symbols { On | Off }]
[Lines { On | Off }]
[Count { On | Off }]
[Title { Auto | layer_title [Font . . .] }]
[SubTitle { Auto | layer_subtitle [Font . . .] }]
[Style Size {Large | Small | Fontsize}]
[Columns number_of_columns]
[Ascending { On | Off } | Order { Ascending | Descending | Custom }]
[Ranges { [Font . . .]

[Range { range_identifier | default }]
 range_title [Display { On | Off }] }
[, . . .]

]
]
[, . . .]

There are four new clauses: Order, Range, Style Size, and Columns. When you want custom order,
include Order Custom in the MapBasic statement as well as a range identifier for each category in the
theme. The order of ranges dictates the order of categories in the legend. The range identifier is the
same const string or value used by the Values clause in the Shade statement that creates the
Individual Value theme.

The Order and Range clauses will increase the workspace version to 8.0. Old workspaces will still
parse correctly as there is still support for the original Ascending clause. If the order is not custom,
Mapinfo Professional will write out the original Ascending clause and NOT increase the workspace
version.

The Order clause is a new way to specify legend label order of ascending or descending as well as
new custom order. However, the original Ascending { On | Off } clause is still available for backwards
compatibility. You can use either the new Order clause, or the old Ascending clause, but not both (both
clauses cannot be included in the same MapBasic statement or you will get a syntax error).

The Custom option for the Order clause is allowed only for Individual Value themes. An error will occur
if you try to custom order other theme types. The error is “Custom legend label order is only
allowed for Individual Value themes.”

When the Order is Custom, each range in the Ranges clause must include a range identifier, otherwise
a syntax error will occur. The range identifier must come before the range title and Display clause. The
range identifier is the same const string or value used by the Values clause in the Shade statement that
creates the Individual Value theme. The range identifier for the "all others" category is 'default'.

Every category in the theme must be included, including the default or "all others" category, otherwise
an error will occur. The error is "Incorrect number of ranges specified for custom order."

The default or "all others" category may also be reordered, although the best place to place this
argument is at the end or beginning of the Ranges clause.

If the range identifier does not refer to a valid category an error will occur. The error is "Invalid range
value for custom order."
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 30 MB_Ref.pdf

Reference Guide Chapter 1: Set Legend statement
The Style Size clause facilitates thematic swatches to appear in different sizes.

The Columns clause allows you to specify the width of the legend. number_of-columns indicates the
column width.

Examples

The example workspace below needs the following shade statement:

shade 1 with Province_Name values
"Alberta" Brush (2,16711680,16777215) Pen (1,2,0) ,
"British Columbia" Brush (2,65280,16777215) Pen (1,2,0) ,
"Manitoba" Brush (2,255,16777215) Pen (1,2,0) ,
"New Brunswick" Brush (2,16711935,16777215) Pen (1,2,0) ,
"Newfoundland" Brush (2,16776960,16777215) Pen (1,2,0) ,
"Northwest Territories" Brush (2,65535,16777215) Pen (1,2,0) ,
"Nova Scotia" Brush (2,8388608,16777215) Pen (1,2,0) ,
"Nunavut" Brush (2,32768,16777215) Pen (1,2,0) ,
"Ontario" Brush (2,128,16777215) Pen (1,2,0) ,
"Prince Edward Island" Brush (2,8388736,16777215) Pen (1,2,0) ,
"Quebec" Brush (2,8421376,16777215) Pen (1,2,0) ,
"Saskatchewan" Brush (2,32896,16777215) Pen (1,2,0) ,
"Yukon Territory" Brush (2,16744576,16777215) Pen (1,2,0)
default Brush (1,0,16777215) Pen (1,2,0) # color 1 #

The Set Legend statement includes the Order Custom tokens and a Range identifier for each category.
The Range identifier is the same string found in the shade statement and the order of ranges is what is
displayed in the Legend. (New information is in bold.)

set legend
layer 1

display on
shades on
symbols off
lines off
count on
title auto Font ("Arial",0,9,0)
subtitle auto Font ("Arial",0,8,0)
order custom
ranges Font ("Arial",0,8,0)

range "Prince Edward Island" auto display on ,
range "Northwest Territories" auto display on ,
range "British Columbia" auto display on ,
range "Yukon Territory" auto display on ,
range "New Brunswick" auto display on ,
range "Newfoundland" auto display on ,
range "Saskatchewan" auto display on ,
range "Nova Scotia" auto display on ,
range "Manitoba" auto display on ,
range "Nunavut" auto display on ,
range "Ontario" auto display on ,
range "Quebec" auto display on ,
range "Alberta" auto display on ,
range default auto display off
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 31 MB_Ref.pdf

Reference Guide Chapter 1: TableInfo() function
Enabling Transparent Patterns on Same Layer
In order to facilitate a multi-thetatic analysis on a particular layer, transparent patterns are necessary.
To facilitate this, the Shade statement and the Set Shade statement now have the addition of a Style
Replace clause for use with for Range and Individual Value themes. The syntax for the new clause is
as follows:

{Style Replace { On | Off } }

Style Replace On (default) specifies the layers under the theme are not drawn.

Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

Export Windows to Additional Formats
The Save Window statement now supports three additional formats for image export. The new values
for type include: "TIFFG4", "TIFFLZW", and "GIF".

Examples
save window frontwindow() as "untitled.gif" type "gif"
save window frontwindow() as "untitled.tif" type "tiffg4"
save window frontwindow() as "untitled.tif" type "tifflzw"

TableInfo() function

attribute code TableInfo() returns

TAB_INFO_SUPPORT_MZ Logical result: TRUE if table supports M and Z values.

TAB_INFO_Z_UNIT_SET Logical result: TRUE is unit is set for Z-values.

TAB_INFO_Z_UNIT String result: indicates distance units used for Z-values. Return
empty string if units are not specified.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 32 MB_Ref.pdf

2
Introduction
This manual describes every statement and function in the MapBasic
Development Environment programming language. To learn about the
concepts behind MapBasic programming, or to learn about using the
MapBasic development environment, see the MapBasic User Guide.

In this chapter...

Type Conventions. 34
Language Overview . 34
MapBasic Fundamentals . 34
Functions . 35
Working With Tables . 38
Working With Files (Other Than Tables). 40
Working With Maps and Graphical Objects 41
Creating the User Interface . 43
Communicating With Other Applications. 45
Special Statements and Functions . 46
A – Z Reference . 46

Reference Guide Chapter 2: Introduction
Type Conventions

This manual uses the following conventions to designate specific items in the text:

Language Overview

The following pages provide an overview of the MapBasic language. Task descriptions appear on the
left; corresponding statement names and function names appear on the right, in bold. Function names
are followed by parentheses ().

MapBasic Fundamentals

Variables

Convention Meaning

If, Call, Map, Browse,
Area

Bold words with the first letter capitalized are MapBasic keywords.
Within this manual, the first letter of each keyword is capitalized;
however, when you write MapBasic programs, you may enter key-
words in upper-, lower-, or mixed-case.

Main, Integer, Pen, Object Non-bold words with the first letter capitalized are usually special
procedure names or variable types.

table, handler, window id Italicized words represent parameters to MapBasic statements.
When you construct a MapBasic statement, you must supply an
appropriate
expression for each parameter.

[window id], [Interactive
]

Keywords or parameters which appear inside square brackets are
optional.

{ On | Off } When a syntax expression appears inside braces, the braces con-
tain a list of keywords or parameters, separated by the vertical bar
character (|). You must choose one of the options listed. For
example, in the sample shown on the left ({ On | Off }), you should
choose either On or Off.

Note "Hello,world!" Actual program samples are shown in this font (Courier).

Declare local or global variables: Dim, Global

Resize array variables: ReDim, UBound(), UnDim

Declare custom data structure: Type
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 34 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Looping and Branching

Output and Printing

Procedures (Main and Subs)

Error Handling

Functions

Looping: For...Next, Exit For, Do...Loop, Exit Do, While...Wend

Branching: If...Then, Do Case, GoTo

Other flow control: End Program, Terminate Application, End MapInfo

Print a window’s contents: PrintWin

Print text to message window: Print

Set up a Layout window: Layout, Create Frame, Set Window

Export a window to a file: Save Window

Controlling the Printer: Set Window, Window Info()

Define a procedure: Declare Sub, Sub...End Sub

Call a procedure: Call

Exit a procedure: Exit Sub

Main procedure: Main

Set up an error handler: OnError

Return current error information: Err(), Error$()

Return from error handler: Resume

Simulate an error: Error
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 35 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Custom Functions

Data-Conversion Functions

Date and Time Functions

Define a custom function: Declare Function, Function...End Function

Exit a function: Exit Function

Convert strings to codes: Asc()

Convert codes to strings: Chr$()

Convert strings to numbers: Val()

Convert numbers to strings: Str$(), Format$()

Convert a number or a string to a date: NumberToDate(), StringToDate()

Converting to a 2-Digit Year: Set Date Window, DateWindow()

Convert object types: ConvertToRegion(), ConvertToPline(
)

Convert labels to text: Labelinfo()

Convert a point object to an MGRS
coordinate:

PointToMGRS$()

Convert a MGRS coordinate to a point object: MGRSToPoint()

Obtain the current date: CurDate()

Extract parts of a date: Day(), Month(), Weekday(), Year()

Read system timer: Timer()

Convert a number or a string to a
date:

NumberToDate(), StringToDate()
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 36 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Math Functions

String Functions

Trigonometric functions: Cos(), Sin(), Tan(), Acos(), Asin(), Atn()

Geographic functions: Area(), Perimeter(), Distance(), ObjectLen(), CartesianArea(), CartesianPerime-
ter(), CartesianDistance(), CartesianObjectLen(), SphericalArea(),
SphericalPerimeter(), SphericalDistance(), SphericalObjectLen()

Random numbers: Randomize, Rnd()

Sign-related functions: Abs(), Sgn()

Truncating fractions: Fix(), Int(), Round()

Other math functions: Exp(), Log(), Minimum(), Maximum(), Sqr()

Upper / lower case: UCase$(), LCase$(), Proper$()

Find a sub-string: InStr()

Extract part of a string: Left$(), Right$(), Mid$(), MidByte$()

Trim blanks from a string: LTrim$(), RTrim$()

Format numbers as strings: Format$(), Str$(), Set Format, FormatNum-
ber$(),
DeformatNumber$()

Determine string length: Len()

Convert character codes: Chr$(), Asc()

Compare strings: Like(), StringCompare(), StringCompareIntl()

Repeat a string sequence: Space$(), String$()

Return unit name: UnitAbbr$(), UnitName$()

Convert a point object to an MGRS coordi-
nate:

PointToMGRS$()

Convert a MGRS coordinate to a point
object:

MGRSToPoint()
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 37 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Working With Tables

Creating and Modifying Tables

Querying Tables

Open an existing table: Open Table

Close one or more tables: Close Table, Close All

Create a new, empty table: Create Table

Turn a file into a table: Register Table

Import/export tables/files: Import, Export

Modify a table’s structure: Alter Table, Add Column, Create Index, Drop Index,
Create Map, Drop Map

Create a Crystal Reports file: Create Report From Table

Load a Crystal Report: Open Report

Add, edit, delete rows: Insert, Update, Delete

Pack a table: Pack Table

Control table settings: Set Table

Save recent edits: Commit Table

Discard recent edits: Rollback

Rename a table: Rename Table

Delete a table: Drop Table

Position the row cursor: Fetch, EOT()

Select data, work with Selection: Select, SelectionInfo()

Find map objects by address: Find, Find Using, CommandInfo()

Find map objects at location: SearchPoint(), SearchRect(), SearchInfo()

Obtain table information: NumTables(), TableInfo()

Obtain column information: NumCols(), ColumnInfo()

Query a table’s metadata: GetMetadata$(), Metadata

Query seamless tables: TableInfo(), GetSeamlessSheet()
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 38 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Working With Remote Data

Create a new table Server_Create Table

Communicate with data server: Server_Connect(),Server_ConnectInfo()

Begin work with remote server: Server Begin Transaction

Assign local storage: Server Bind Column

Obtain column information: Server_ColumnInfo(), Server_NumCols()

Send an SQL statement: Server_Execute()

Position the row cursor: Server Fetch, Server_EOT()

Save changes: Server Commit

Discard changes: Server Rollback

Free remote resources: Server Close

Make remote data mappable: Server Create Map

Change object styles: Server Set Map

Synchronize a linked table: Server Refresh

Create a linked table: Server Link Table

Unlink a linked table: Unlink

Disconnect from server: Server Disconnect

Retrieve driver information: Server_DriverInfo(), Server_NumDrivers()

Get ODBC connection handle: Server GetodbcHConn()

Get ODBC statement handle: Server GetodbcHStmt()

Set Object styles Server Create Style
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 39 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Working With Files (Other Than Tables)

File Input/Output

File and Directory Names

Open or create a file: Open File

Close a file: Close File

Delete a file: Kill

Rename a file: Rename File

Copy a file: Save File

Read from a file: Get, Seek, Input #, Line Input #

Write to a file: Put, Print #, Write #

Determine file’s status: EOF(), LOF(), Seek(), FileAttr(), FileExists()

Turn a file into a table: Register Table

Retry on sharing error: Set File Timeout

Return system directories: ProgramDirectory$(), HomeDirectory$(), ApplicationDirec-
tory$()

Extract part of a filename: PathToTableName$(), PathToDirectory$(), PathToFileName$()

Return a full filename: TrueFileName$()

Let user choose a file: FileOpenDlg(), FileSaveAsDlg()

Return temporary filename: TempFileName$()

Locate files: LocateFile$(), GetFolderPath$()
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 40 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Working With Maps and Graphical Objects

Creating Map Objects

Modifying Map Objects

Creation statements: Create Arc, Create Ellipse, Create Frame, Create Line, Create
PLine, Create Point, Create Rect, Create Region, Create Roun-
dRect, Create Text, AutoLabel, Create Multipoint,Create Collection

Creation functions: CreateCircle(), CreateLine(), CreatePoint(), CreateText()

Advanced operations: Create Object, Buffer(), CartesianBuffer(), CartesianOffset(), Carte-
sianOffsetXY(), ConvexHull(), Offset(), OffsetXY(), SphericalOff-
set(), SphericalOffsetXY(),

Store object in table: Insert, Update

Create regions: Objects Enclose

Modify object attribute: Alter Object

Change object type: ConvertToRegion(), ConvertToPLine()

Offset objects: Objects Offset, Objects Move

Set the editing target: Set Target

Erase part of an object: CreateCutter, Objects Erase, Erase()
Objects Intersect, Overlap()

Merge objects: Objects Combine, Combine(), Create Object

Rotate objects: Rotate(), RotateAtPoint()

Split objects: Objects Pline, Objects Split

Add nodes at intersections: Objects Overlay, OverlayNodes()

Control object resolution: Set Resolution

Store an object in a table: Insert, Update

Check Objects for bad
data:

Objects Check

Object processing: ObjectsDisaggregate statement, Objects Snap statement,
Objects Clean statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 41 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Querying Map Objects

Working With Object Styles

Return calculated values: Area(), Perimeter(), Distance(), ObjectLen(), Overlap(),
AreaOverlap(), ProportionOverlap()

Return coordinate values: ObjectGeography(), MBR(), ObjectNodeX(), ObjectNodeY(
),Centroid(), CentroidX(), CentroidY(), ExtractNodes(),
IntersectNodes()

Return settings for coordinates,
distance, area and paper units:

SessionInfo()

Configure units of measure: Set Area Units, Set Distance Units, Set Paper Units, Unit-
Abbr$(), UnitName$()

Configure coordinate system: Set CoordSys

Return style settings: ObjectInfo()

Query a map layer’s labels: LabelFindByID(), LabelFindFirst(), LabelFindNext(),
Labelinfo()

Return current styles: CurrentPen(),CurrentBorderPen(), CurrentBrush(), CurrentFont(),
CurrentLinePen(), CurrentSymbol(), Set StyleTextSize()

Return part of a style: StyleAttr()

Create style values: MakePen(), MakeBrush(), MakeFont(), MakeSymbol(), MakeCus-
tomSymbol(), MakeFontSymbol(), Set Style, RGB()

Query object’s style: ObjectInfo()

Modify object’s style: Alter Object

Reload symbol styles: Reload Symbols

Style clauses: Pen clause, Brush clause, Symbol clause, Font clause
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 42 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Working With Map Windows

Creating the User Interface

ButtonPads (ToolBars)

Open a map window: Map

Create/edit 3DMaps: Create Map3D, Set Map3D,Map3DInfo(), Create PrismMap,
Set PrismMap, PrismMapInfo()

Add a layer to a map: Add Map

Remove a map layer: Remove Map

Label objects in a layer: AutoLabel

Query a map’s settings: MapperInfo(), LayerInfo()

Change a map’s settings: Set Map

Create or modify thematic lay-
ers:

Shade, Set Shade, Create Ranges, Create Styles, Create Grid,
Relief Shade

Query a map layer’s labels: LabelFindByID(), LabelFindFirst(), LabelFindNext(),
Labelinfo()

Create a new ButtonPad: Create ButtonPad

Modify a ButtonPad: Alter ButtonPad

Modify a button: Alter Button

Query the status of a pad: ButtonPadInfo()

Respond to button use: CommandInfo()

Restore standard pads: Create ButtonPads As Default
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 43 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Dialog Boxes

Menus

Windows

Display a standard dialog: Ask(), Note, ProgressBar, FileOpenDlg(), FileSaveAs-
Dlg(), GetSeamlessSheet()

Display a custom dialog: Dialog

Dialog handler operations: Alter Control, TriggerControl(),
ReadControlValue(),Dialog Preserve, Dialog Remove

Determine whether user clicked OK: CommandInfo(CMD_INFO_DLG_OK)

Disable progress bars: Set ProgressBars

Modify a standard MapInfo Profes-
sional dialog:

Alter MapInfoDialog

Define a new menu: Create Menu

Redefine the menu bar: Create Menu Bar

Modify a menu: Alter Menu, Alter Menu Item

Modify the menu bar: Alter Menu Bar, Menu Bar

Invoke a menu command: Run Menu Command

Query a menu item’s status: MenuitemInfoByHandler(), MenuitemInfoByID()

Show or hide a window: Open Window, Close Window, Set Window

Open a new window: Map, Browse, Graph, Layout, Create Redistricter, Create Legend,
Create Cartographic Legend, LegendFrameInfo

Determine a window’s ID: FrontWindow(), WindowID()

Modify an existing window: Set Map, Shade, Add Map, Remove Map, Set Browse, Set Graph,
Set Layout, Create Frame, Set Legend, Set Cartographic Legend,
Set Redistricter, StatusBar, Alter Cartographic Frame, Add Carto-
graphic Frame, Remove Cartographic Frame

Return a window’s set-
tings:

WindowInfo(), MapperInfo(), LayerInfo()

Print a window: PrintWin

Control window redrawing: Set Event Processing, Update Window, Control DocumentWindow

Count number of windows: NumWindows(), NumAllWindows()
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 44 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
System Event Handlers

Communicating With Other Applications

DDE (Dynamic Data Exchange; Windows Only)

Integrated Mapping

React to selection: SelChangedHandler

React to window closing: WinClosedHandler

React to map changes: WinChangedHandler

React to window focus: WinFocusChangedHandler

React to DDE request: RemoteMsgHandler, RemoteQueryHandler()

React to OLE Automation method: RemoteMapGenHandler

Provide custom tool: ToolHandler

React to termination of application: EndHandler

React to MapInfo Professional getting
or losing focus:

ForegroundTaskSwitchHandler

Disable event handlers: Set Handler

Start a DDE conversation: DDEInitiate()

Send a DDE command: DDEExecute

Send a value via DDE: DDEPoke

Retrieve a value via DDE: DDERequest$()

Close a DDE conversa-
tion:

DDETerminate, DDETerminateAll

Respond to a request: RemoteMsgHandler, RemoteQueryHandler(), Command-
Info(CMD_INFO_MSG)

Set MapInfo Professional ’s parent win-
dow:

Set Application Window

Set a Map window’s parent: Set Next Document

Create a Legend window: Create Legend
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 45 MB_Ref.pdf

Reference Guide Chapter 2: Introduction
Special Statements and Functions

A – Z Reference

The next section describes the MapBasic language in detail. You will find both statements and function
descriptions arranged alphabetically. Each is described in the following format:

Purpose

Brief description of the function or statement.

Restrictions

Information about limitations (for example, “The DDEInitiate function is only available under Microsoft
Windows,” “You cannot issue a For...Next statement through the MapBasic window”).

Syntax

The format in which you should use the function or statement and explanation of argument(s).

Return Value

The type of value returned by the function.

Description

Thorough explanation of the function or statement’s role and any other pertinent information.

Example

A brief example.

See Also

Related functions or statements. Most MapBasic statements can be typed directly into MapInfo
Professional, through the MapBasic window. If a statement may not be entered through the MapBasic
window, the Restrictions section identifies the limitation. Generally, flow-control statements (such as
looping and branching statements) cannot be entered through the MapBasic window.

Launch another program: Run Program

Return information about the system: SystemInfo()

Run a string as an interpreted command: Run Command

Save a workspace file: Save Workspace

Load a workspace file or an MBX: Run Application

Configure a digitizing tablet: Set Digitizer

Send a sound to the speaker: Beep

Set data to be read by CommandInfo: Set Command Info

Set duration of the drag-object delay: Set Drag Threshold
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 46 MB_Ref.pdf

Reference Guide Chapter 3: Abs() function
Abs() function
Purpose

Returns the absolute value of a number.

Syntax
Abs (num_expr)

num_expr is a numeric expression

Return Value

Float

Description

The Abs() function returns the absolute value of the expression specified by num_expr.

If num_expr has a value greater than or equal to zero, Abs() returns a value equal to num_expr. If
num_expr has a negative value, Abs() returns a value equal to the value of num_expr multiplied by
negative one.

Example
Dim f_x, f_y As Float
f_x = -2.5
f_y = Abs(f_x)

’ f_y now equals 2.5

See Also

Sgn() function

Acos() function
Purpose

Returns the arc-cosine value of a number.

Syntax
Acos (num_expr)

num_expr is a numeric expression between one and minus one, inclusive

Return Value

Float

Description

The Acos() function returns the arc-cosine of the numeric num_expr value. In other words, Acos()
returns the angle whose cosine is equal to num_expr.

The result returned from Acos() represents an angle, expressed in radians. This angle will be
somewhere between zero and Pi radians (given that Pi is equal to approximately 3.141593, and given
that Pi/2 radians represents 90 degrees).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 47 MB_Ref.pdf

Reference Guide Chapter 3: Add Cartographic Frame statement
To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. Your program must Include “MAPBASIC.DEF” in
order to reference DEG_2_RAD or RAD_2_DEG.

Since cosine values range between one and minus one, the expression num_expr should represent a
value no larger than one and no smaller than minus one.

Example
 Include ”MAPBASIC.DEF”
 Dim x, y As Float
 x = 0.5
 y = Acos(x) * RAD_2_DEG
 ’ y will now be equal to 60,
 ’ since the cosine of 60 degrees is 0.5

See Also

Asin() function, Atn() function, Cos() function, Sin() function, Tan() function

Add Cartographic Frame statement
The Add Cartographic Frame statement allows you to add cartographic frames to an existing
cartographic legend created with the Create Cartographic Legend statement.

Syntax
Add Cartographic Frame

[Window legend_window_id]
[Custom]
[Default Frame Title { def_frame_title } [Font...]]
[Default Frame Subtitle { def_frame_subtitle } [Font...]]
[Default Frame Style { def_frame_style } [Font...]]
[Default Frame Border Pen... pen_expr]
Frame From Layer { map_layer_id | map_layer_name }

[Position (x , y) [Units paper_units]]
[Using

[Column { column | object [FromMapCatalog { On | Off }]}]
[Label { expression | default }]

[Title [frame_title] [Font...]]
[SubTitle [frame_subtitle] [Font...]]
[Border Pen...]
[Style [Font...] [NoRefresh]

[Text { style name } { Line Pen... | Region Pen... Brush...
| Symbol Symbol... }]

[, ...]
]

[, ...]

legend_window_id is an Integer window identifier which you can obtain by calling the FrontWindow()
and WindowId() functions.

def_frame_title is a string which defines a default frame title. It can include the special character “#”
which will be replaced by the current layer name.

def_frame_subtitle is a string which defines a default frame subtitle. It can include the special character
“#” which will be replaced by the current layer name.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 48 MB_Ref.pdf

Reference Guide Chapter 3: Add Cartographic Frame statement
def_frame_style is a string that displays next to each symbol in each frame. The ”#” character will be
replaced with the layer name. The % character will be replaced by the text “Line”, “Point, “Region”, as
appropriate for the symbol. For example, “% of #” will expand to “Region of States” for the states.tab
layer.

pen_expr is a Pen expression, e.g., MakePen(width, pattern, color). If a default border pen is defined,
then it will be become the default for the frame. If a border pen clause exists at the frame level, then it
is used instead of the default.

map_layer_id or map_layer_name identifies a map layer; can be a Smallint (e.g., use 1 to specify the
top map layer other than Cosmetic) or a string representing the name of a table displayed in the map.
For a theme layer you must specify the map_layer_id.

frame_title is a string which defines a frame title. If a title clause is defined here for a frame, then it will
be used instead of the def_frame_title.

frame_subtitle is a string which defines a frame subtitle. If a subtitle clause is defined here for a frame,
then it will be used instead of the def_frame_subtitle.

Column is an attribute column name from the frame layer’s table, or the object column (meaning that
legend styles are based on the unique styles in the mapfile). The default is ’object’.

style_name is a string which displays next to a symbol, line, or region in a custom frame.

Description

If the Custom keyword is included, then each frame section must include a Position clause. If
Custom is omitted and the legend is laid out in portrait or landscape, then the frames will be added to
the end.

The Position clause controls the frame’s position on the legend window. The upper left corner of the
legend window has the position 0, 0. Position values use paper units settings, such as “in” (inches) or
“cm” (centimeters). MapBasic has a current paper units setting, which defaults to inches; a MapBasic
program can change this setting through the Set Paper Units statement.You can override the current
paper units by including the optional Units subclause within the Position clause.

The defaults in this statement apply only to the frames being created in this statement. They have no
affect on existing frames. Frame defaults used in the Create Cartographic Legend or previous have
no affect on frames created in this statement.

When you save to a workspace, the FromMapCatalog OFF clause is written to the workspace when
specified. This requires the workspace to bumped up to 800. If the FromMapCatalog ON clause is
specified we do not write it to the workspace since it is default behavior. This lets us avoid bumping up
the workspace version in this case.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table
must be a live access table that supports per record styles for this to occur. If the live table does not
support per record styles than the behavior is to revert to the default behavior for live tables, which is to
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 49 MB_Ref.pdf

Reference Guide Chapter 3: Add Column statement
get the default styles from the MapCatalog (FromMapCatalog ON).Label is a valid expression or
default (meaning that the default frame style pattern is used when creating each style’s text, unless the
style clause contains text). The default is default.

The Style clause and the NoRefresh keyword allow you to create a custom frame that will not be
overwritten when the legend is refreshed. If the NoRefresh keyword is used in the Style clause, then
the table is not scanned for styles. Instead, the Style clause must contain your custom list of definitions
for the styles displayed in the frame. This is done with the Text and appropriate Line, Region, or
Symbol clause.

See Also

Create Cartographic Legend statement, Set Cartographic Legend statement, Alter Cartographic
Frame statement, Remove Cartographic Frame statement

Add Column statement
Purpose

Adds a new, temporary column to an open table, or updates an existing column with data from another
table.

Syntax
Add Column table (column [datatype])
{ Values const [, const ...] |

From source_table
Set To expression
[Where { dest_column = source_column | Within | Contains | Intersects }]
[Dynamic] }

table is the name of the table to which a column will be added

column is the name of a new column to add to that table

datatype is the data type of the column, defined as Char (width), Float, Integer, SmallInt,
Decimal(width, decimal_places), Date or Logical; if not specified, type defaults to Float

source_table is the name of a second open table

expression is the expression used to calculate values to store in the new column; this expression
usually extracts data from the source_table, and it can include aggregate functions

dest_column is the name of a column from the destination table (table)

source_column is the name of a column from the source_table

Dynamic specifies a dynamic (hot) computed column that can be automatically update: if you include
this keyword, then subsequent changes made to the source table are automatically applied to the
destination table

Description

The Add Column statement creates a temporary new column for an existing MapInfo Professional
table. The new column will not be permanently saved to disk. However, if the temporary column is
based on base tables, and if you save a workspace while the temporary column is in use, the
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 50 MB_Ref.pdf

Reference Guide Chapter 3: Add Column statement
workspace will include information about the temporary column, so that the temporary column will be
rebuilt if the workspace is reloaded. To add a permanent column to a table, use the Alter Table and
Update statements.

Filling The New Column With Explicit Values

Using the Values clause, you can specify a comma-separated list of explicit values to store in the new
column.

The following example adds a temporary column to a table of “ward” regions. The values for the new
column are explicitly specified, through the Value clause.

 Open Table ”wards”
 Add Column wards(percent_dem)
 Values 31,17,22,24,47,41,66,35,32,88

Filling The New Column With Values From Another Table
If you specify a From clause instead of a Values clause, MapBasic derives the values for the new
column from a separate table (source_table). Both tables must already be open.

When you use a From clause, MapInfo Professional joins the two tables. To specify how the two tables
are joined, include the optional Where clause. If you omit the Where clause, MapInfo Professional
automatically tries to join the two tables using the most suitable method.

A Where clause of the form:

 Where column = column

joins the two tables by matching column values from the two tables. This method is appropriate if a
column from one of your tables has values matching a column from the other table (e.g., you are
adding a column to the States table, and your other table also has a column containing state names).

If both tables contain map objects, the Where clause can specify a geographic join. For example, if you
specify the clause Where Contains, MapInfo Professional constructs a join by testing whether objects
from the source_table contain objects from the table that is being modified.

The following example adds a “County” column to a “Stores” table. The new column will contain county
names, which are extracted from a separate table of county regions:

Add Column
stores(county char(20) ’add ”county” column
From counties ’derive data from counties table...
Set to cname ’using the counties table’s ”cname” column
Where Contains ’join: where a county contains a store site

The Where Contains method is appropriate when you add a column to a table of point objects, and the
secondary table represents objects that contain the points.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 51 MB_Ref.pdf

Reference Guide Chapter 3: Add Column statement
The following example adds a temporary column to the States table. The new column values are
derived from a second table (City_1K, the table of major U.S. cities). After the completion of the Add
Column statement, each row in the States table will contain a count of how many major cities are in
that state.

Open Table ”states” Interactive
Open Table ”city_1k” Interactive

Add Column states(num_cities)
From city_1k ’derive values from other table
Set To Count(*) ’count cities in each state
Where Within ’join: where cities fall within states

The Set To clause in this example specifies an aggregate function: Count(*). Aggregate functions are
described below.

Filling An Existing Column With Values From Another Table
To update an existing column instead of adding a new column, omit the datatype parameter and
specify a From clause instead of a Values clause. When updating an existing column, MapBasic
ignores the Dynamic clause.

Filling The New Column With Aggregate Data
If you specify a From clause, you can calculate values for the new column by aggregating data from
the second table. To perform data aggregation, specify a Set To clause that includes an aggregate
function.

The following table lists the available aggregate functions.

Function Value Stored In The New Column

Avg(col) average of values from rows in the source table

Count(*) number of rows in the source table that correspond to the
row in the table being updated

Max(col) largest of the values from rows in the source table

Min(col) smallest of the values from rows in the source table

Sum(col) sum of the values from rows in the source table

WtAvg(col, weight_col) weighted average of the values from the source table; the
averaging is weighted so that rows having a large
weight_col value have more of an impact than rows having a
small weight_col value

Proportion Avg(col) average calculation that makes adjustments based on how
much of an object is within another object

Proportion Sum(col) sum calculation that makes adjustments based on how
much of an object is within another object

Proportion WtAvg(col ,
weight_col)

weighted average calculation that makes adjustments
based on how much of an object is within another object
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 52 MB_Ref.pdf

Reference Guide Chapter 3: Add Column statement
Most of the aggregate functions operate on data values only. The last three functions (Proportion Sum,
Proportion Avg, Proportion WtAvg) perform calculations that take geographic relationships into
account. This is best illustrated by example.

Suppose you have a Towns table, containing town boundary regions and demographic information
(e.g., population) about each town. You also have a Risk table, which contains a region object. The
object in the Risk table represents some sort of area that is at risk; perhaps the region object
represents an area in danger of flooding due to proximity to a river.

Given these two tables, you might want to calculate the population that lives within the risk region. If
half of a town’s area falls within the risk region, you will consider half of that town’s population to be at
risk; if a third of a town’s area falls within the risk region, you will consider a third of that town’s
population to be at risk; etc.

The following example calculates the population at risk by using the Proportion Sum aggregate
function, then stores the calculation in a new column (population_at_risk):

Add Column Risk(population_at_risk Integer)
From towns

Set To Proportion Sum(town_pop)
Where Intersects

For each town that is at least partly within the risk region, MapInfo Professional adds some or all of the
town’s town_pop value to a running total.

The Proportion Sum function produces results based on an assumption - the assumption that the
number being totalled is distributed evenly throughout the region. If you use Proportion Sum to
process population statistics, and half of a region falls within another region, MapInfo Professional
adds half of the region’s population to the total. In reality, however, an area representing half of a region
does not necessarily contain half of the region’s population. For example, the population of New York
State is not evenly distributed, because a very large percentage of the population lives in New York
City.

If you use Proportion Sum in cases where the data values are not evenly distributed, the results may
not be realistic. To ensure accurate results, work with smaller region objects (e.g., operate on county
regions instead of state regions).

The Proportion Avg aggregate function performs an average calculation which takes into account the
percentage of an object that is covered by another object. Continuing the previous example, suppose
the Towns table contains a column, median_age, that indicates the median age in each town.

Town boundary regions

Risk buffer region
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 53 MB_Ref.pdf

Reference Guide Chapter 3: Add Map statement
The following statement calculates the median age within the risk zone:

Add Column Risk(age Float)
From Towns

Set To Proportion Avg(median_age)
Where Intersects

For each row in the Towns table, MapInfo Professional calculates the percentage of the risk region that
is covered by the town; that calculation produces a number between zero and one, inclusive. MapInfo
Professional multiplies that number by the town’s median_age value, and adds the result to a running
total. Thus, if a town has a median_age value of 50, and if the town region covers 10% of the risk
region, MapInfo Professional adds 5 (five) to the running total, because 10% of 50 is 5.

Proportion WtAvg is similar to Proportion Avg, but it also lets you specify a data column for
weighting the average calculation; the weighting is also proportionate.

Using Proportion... Functions With Non-Region Objects
When you use Proportion functions and the source table contains region objects, MapInfo
Professional calculates percentages based on the overlap of regions. However, when the source table
contains non-region objects, MapInfo Professional treats each object as if it were completely inside or
completely outside of the destination region (depending on whether the non-region object’s centroid is
inside or outside of the destination region).

Dynamic Columns
If you include the optional Dynamic keyword, the new column becomes a dynamic computed column,
meaning that subsequent changes made to the source table are automatically applied to the
destination table.

If you create a dynamic column, and then close the source table used to calculate the dynamic column,
the column values are frozen (the column is no longer updated dynamically).

Similarly, if a geographic join is used in the creation of a dynamic column, and you close either of the
maps used for the geographic join, the column values are frozen.

See Also

Alter Table statement, Update statement

Add Map statement
Purpose

Adds another layer to a Map window.

Syntax
Add Map

[Window window_id]
[Auto]
Layer table [, table ...]
[Animate]

window_id is the window identifier of a Map window

table is the name of a mappable, open table to add to a Map window
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 54 MB_Ref.pdf

Reference Guide Chapter 3: Add Map statement
Description

The Add Map statement adds one or more open tables to a Map window. MapInfo Professional then
automatically redraws the Map window, unless you have suppressed redraws through a Set Event
Processing Off statement or Set Map...Redraw Off statement.

The window_id parameter is an Integer window identifier representing an open Map window; you can
obtain a window identifier by calling the FrontWindow() and WindowID() functions. If the Add Map
statement does not specify a window_id value, the statement affects the topmost Map window.

If you include the optional Auto keyword, MapInfo Professional tries to automatically position the map
layer at an appropriate place in the set of layers. A raster table or a map of region objects would be
placed closer to the bottom of the map, while a map of point objects would be placed on top.

If you omit the Auto keyword, the specified table becomes the topmost layer in the window; in other
words, when the map is redrawn, the new table layer will be drawn last. You can then use the Set Map
statement to alter the order of layers in the Map window.

Adding Layers of Different Projections
If the layer added is a raster table, and the map does not already contain any raster map layers, the
map adopts the coordinate system and projection of the raster image. If a Map window contains two or
more raster layers, the window dynamically changes its projection, depending on which image
occupies more of the window at the time.

If the layer added is not a raster table, MapInfo Professional continues to display the Map window
using whatever coordinate system and projection were used before the Add Map statement, even if
the table specified is stored with a different native projection or coordinate system. When a table’s
native projection differs from the projection of the Map window, MapInfo Professional converts the table
coordinates “on the fly” so that the entire Map window appears in the same projection.

Note: When MapInfo Professional converts map layers in this fashion, map redraws take longer,
since MapInfo Professional must perform mathematical transformations while drawing the
map.

Using Animation Layers to Speed Up Map Redraws
If the Add Map statement includes the Animate keyword, the added layer becomes a special layer
known as the animation layer. When an object in the animation layer is moved, the Map window
redraws very quickly, because MapInfo Professional only redraws the one animation layer.

For an example of animation layers, see the sample program ANIMATOR.MB.

The animation layer is useful in real-time applications, where map features are updated frequently. For
example, you can develop a fleet-management application that represents each vehicle as a point
object. You can receive current vehicle coordinates by using GPS (Global Positioning Satellite)
technology, and then update the point objects to show the current vehicle locations on the map. In this
type of application, where map objects are constantly changing, the map redraws much more quickly if
the objects being updated are stored in the animation layer instead of a conventional layer.

The following example opens a table (Vehicles) and makes the table an animation layer:

 Open Table ”vehicles” Interactive
 Add Map Layer vehicles Animate
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 55 MB_Ref.pdf

Reference Guide Chapter 3: Alter Button statement
If the Add Map statement specifies two or more layers and it includes the Animate keyword, the first
layer named becomes the animation layer, and the remaining layers are added to the map as
conventional layers.

To terminate the animation layer processing, issue a Remove Map ... Layer Animate statement.

Animation layers have special restrictions. For example, users cannot use the Info tool to click on
objects in an animation layer. Also, each Map window can have only one animation layer. For more
information about animation layers, see the MapBasic User’s Guide

Example
Open Table ”world”
Map From world
Open Table ”cust1992” As customers
Open Table ”lead1992” As leads
Add Map Auto Layer customers, leads

See Also

Map statement, Remove Map statement, Set Map statement

Alter Button statement
Purpose

Enables, disables, selects, or deselects a button from a ButtonPad (toolbar).

Syntax
Alter Button { handler | ID button_id }

[{ Enable | Disable }]
[{ Check | Uncheck }]

handler is the handler that is already assigned to an existing button. The handler can be the name of a
MapBasic procedure, or a standard command code (e.g., M_TOOLS_RULER or
M_WINDOW_LEGEND) from MENU.DEF.

button_id is a unique Integer button identification number

Description

If the Alter Button statement specifies a handler (e.g., a procedure name), MapInfo Professional
modifies all buttons that call that handler. If the statement specifies a button ID number, MapInfo
Professional modifies only the button that has that ID.

The Disable keyword changes the button to a grayed-out state, so that the user cannot select the
button.

The Enable keyword enables a button that was previously disabled.

The Check and Uncheck keywords select and deselect ToggleButton type buttons, such as the
Show Statistics Window button. The Check keyword has the effect of “pushing in” a ToggleButton
control, and the Uncheck keyword has the effect of releasing the button. For example, the following
statement selects the Show Statistics Window button:

 Alter Button M_WINDOW_STATISTICS Check
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 56 MB_Ref.pdf

Reference Guide Chapter 3: Alter ButtonPad statement
Note: Checking or unchecking a standard MapInfo Professional button does not automatically invoke
that button’s action; thus, checking the Show/Hide Statistics button does not actually show the
Statistics window - it only affects the appearance of the button. To invoke an action as if the
user had checked or unchecked the button, issue the appropriate statement; in this example,
the appropriate statement is Open Window Statistics.

Similarly, you can use the Check keyword to change the appearance of a ToolButton. However,
checking a ToolButton does not actually select that tool, it only changes the appearance of the button.
To make a standard tool the active tool, issue a Run Menu Command statement, such as the
following:

 Run Menu Command M_TOOLS_RULER

To make a custom tool the active tool, use the syntax Run Menu Command ID IDnum.

See Also

Alter ButtonPad statement, Create ButtonPad statement, Run Menu Command statement

Alter ButtonPad statement
Purpose

Displays / hides a ButtonPad (toolbar), or adds / removes buttons.

Syntax
Alter ButtonPad { current_title | ID pad_num }

[Add button_definition [button_definition ...]]
[Remove { handler_num | ID button_id } [, ...]]
[Title new_title]
[Width w]
[Position (x , y) [Units unit_name]]
[ToolbarPosition (row , column)]
[{ Show | Hide }]
[{ Fixed | Float }]
[Destroy]

current_title is the toolbar’s title string (e.g., “Main”)

pad_num is the ID number for a standard toolbar: 1 for Main, 2 for Drawing, 3 for Tools, 4 for Standard,
5 for ODBC

button_id is a custom button’s unique identification number

handler_num is an Integer handler code (e.g., M_TOOLS_RULER) from MENU.DEF

new_title is a string that becomes the toolbar’s new title; visible when toolbar is floating

w is the pad width, in terms of the number of buttons across

x , y specify the toolbar’s position when floating; specified in paper units (e.g., inches)

unit_name is a String paper unit name (e.g., “in” for inches, “cm” for centimeters)

row, column specify the toolbar’s position when docked (e.g., 0, 0 places the pad at the left edge of the
top row of toolbars, and 0, 1 represents the second toolbar on the top row)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 57 MB_Ref.pdf

Reference Guide Chapter 3: Alter ButtonPad statement
Each button_definition clause can consist of the keyword Separator, or it can have the following
syntax:

{ PushButton | ToggleButton | ToolButton }
Calling { procedure | menu_code | OLE methodname | DDE server , topic }
[ID button_id]
[Icon n [File file_spec]]
[Cursor n [File file_spec]]
[DrawMode dm_code]
[HelpMsg msg]
[ModifierKeys { On | Off }]
[{ Enable | Disable }]
[{ Check | Uncheck }]

procedure is the handler procedure to call when a button is used.

menu_code is a standard MapInfo Professional menu code from MENU.DEF (e.g., M_FILE_OPEN);
MapInfo Professional runs the menu command when the user uses the button.

methodname is a string specifying an OLE method name. For details on the Calling OLE syntax, see
Create ButtonPad.

server , topic are strings specifying a DDE server and topic name. For details on the Calling DDE
syntax, see Create ButtonPad.

button_id specifies the unique button number. This number can be used: as a tag in help; as a
parameter to allow the handler to determine which button is in use (in situations where different buttons
call the same handler); or as a parameter to be used with the Alter Button statement.

Icon n specifies the icon to appear on the button; n can be one of the standard MapInfo icon codes
listed in ICONS.DEF (e.g., MI_ICON_RULER). If the File sub-clause specifies the name of a file
containing icon resources, n is an Integer resource ID identifying a resource in the file.

Cursor n specifies the shape the mouse cursor should adopt whenever the user chooses a ToolButton
tool; cursor_code is a code (e.g., MI_CURSOR_ARROW) from ICONS.DEF. This clause applies only
to ToolButtons. If the File sub-clause specifies the name of a file containing icon resources, n is an
Integer resource ID identifying a resource in the file.

dm_code specifies whether the user can click and drag, or only click with the tool; dm_code is a code
(e.g., DM_CUSTOM_LINE) from ICONS.DEF. Applies only to ToolButtons.

msg is a String that specifies the button’s status bar help and, optionally, ToolTip help. The first part of
msg is the status bar help message. If the msg string includes the letters \n then the text following the
\n is used as the button’s ToolTip help.

The ModifierKeys clause applies only to ToolButtons; it controls whether the shift and control keys
affect “rubber-band” drawing if the user drags the mouse while using a ToolButton. Default is Off
(modifier keys have no effect).

Description

Use the Alter ButtonPad statement to show, hide, modify, or destroy an existing ButtonPad. For an
introduction to ButtonPads, see the MapBasic User Guide.

To show or hide a ButtonPad, include the Show or Hide keyword; see example below. The user also
can show or hide ButtonPads by choosing the Options > Toolbars command.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 58 MB_Ref.pdf

Reference Guide Chapter 3: Alter ButtonPad statement
To set whether the pad is fixed to the top of the screen (“docked”) or floating like a window, include the
Fixed or the Float keyword. The user can also control whether the pad is docked or not by dragging the
pad to or from the top of the screen.

When a pad is floating, its position is controlled by the Position clause; when a pad is docked, its
position is controlled by the ToolbarPosition clause.

To destroy a ButtonPad, include the Destroy keyword. Once a ButtonPad is destroyed, it no longer
appears in the Options > Toolbars dialog.

The Alter ButtonPad statement can add buttons to existing ButtonPads, such as Main and Drawing.
There are three types of button controls you can add: PushButton controls (which the user can click
and release -for example, to display a dialog); ToggleButton controls (which the user can select by
clicking, then deselect by clicking again); and ToolButton controls (which the user can select, and then
use for clicking on a Map or Layout window).

If you include the optional Disable keyword when adding a button, the button is disabled (grayed out)
when it appears. Subsequent Alter Button statements can enable the button. However, if the button’s
handler is a standard MapInfo Professional command, MapInfo Professional automatically enables or
disables the button depending on whether the command is currently enabled.

If you include the optional Check keyword when adding a ToggleButton or a ToolButton, the button is
automatically selected (“checked”) when it first appears.

If the user clicks while using a custom ToolButton tool, MapInfo Professional automatically calls the
tool’s handler, unless the user cancels (e.g., by pressing the Esc key while dragging the mouse). A
handler procedure can call CommandInfo() to determine where the user clicked. If two or more tools
call the same handler procedure, the procedure can call CommandInfo() to determine the ID of the
button currently in use.

Custom Icons and Cursors
The Icon clause specifies the icon that appears on the button. If you omit the File clause, the
parameter n must refer to one of the icon codes listed in ICONS.DEF (e.g., MI_ICON_RULER).

Note: MapInfo Professional has many built-in icons that are not part of the normal user interface. To
see a demonstration of these icons, run the sample program ICONDEMO.MBX. This sample
program displays icons, and also lets you copy any icon’s define code to the clipboard (so that
you can then paste the code into your program).

The File file_spec sub-clause refers to a DLL file that contains bitmap resources; the n parameter
refers to the ID of a bitmap resource. For more information on creating Windows icons, see the
MapBasic User Guide.

A ToolButton definition also can include a cursor clause, which controls the appearance of the mouse
cursor while the user is using the custom tool. Available cursor codes are listed in ICONS.DEF (e.g.,
MI_CURSOR_CROSSHAIR or MI_CURSOR_ARROW). The procedure for specifying a custom cursor
is similar to the procedure for specifying a custom icon.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 59 MB_Ref.pdf

Reference Guide Chapter 3: Alter ButtonPad statement
Custom Drawing Modes
A ToolButton definition can include a DrawMode clause, which controls whether the user can drag
with the tool (e.g., to draw a line) or only click (e.g., to draw a point). The following table lists the
available drawing modes. Codes in the left column are defined in ICONS.DEF.

All of the draw modes except for DM_CUSTOM_POINT support the autoscroll feature, which allows
the user to scroll a Map or Layout by clicking and dragging to the edge of the window. To disable
autoscroll, see Set Window.

Note: MapBasic supports an additional draw mode that is not available to MapInfo Professional
users. If a custom ToolButton has the following Calling clause...

Calling M_TOOLS_SEARCH_POLYGON

...then the tool allows the user to draw a polygon. When the user double-clicks to close the polygon,
MapInfo Professional selects all objects (from selectable map layers) within the polygon. The polygon
is not saved.

Examples

The following example shows the Main ButtonPad and hides the Drawing ButtonPad:

Alter ButtonPad ”Main” Show
Alter ButtonPad ”Drawing” Hide

The next example docks the Main ButtonPad and sets its docked position to 0,0 (upper left):

Alter ButtonPad ”Main” Fixed ToolbarPosition(0,0)

The next example moves the Main ButtonPad so that it is floating instead of docked, and sets its
floating position to half an inch inside the upper-left corner of the screen.

Alter ButtonPad ”Main” Float Position(0.5,0.5) Units ”in”

The sample program, ScaleBar, contains the following Alter ButtonPad statement, which adds a
custom ToolButton to the Tools ButtonPad. (Note that “ID 3” identifies the Tools ButtonPad.)

dm_code parameter Description

DM_CUSTOM_POINT The user cannot drag while using the custom tool.

DM_CUSTOM_LINE As the user drags, a line connects the cursor with the location
where the user clicked.

DM_CUSTOM_RECT As the user drags, a rectangular marquee appears.

DM_CUSTOM_CIRCLE As the user drags, a circular marquee appears.

DM_CUSTOM_ELLIPSE As the user drags, an elliptical marquee appears; if you include the
ModifierKeys clause, the user can force the marquee to a circular
shape by holding down the Shift key.

DM_CUSTOM_POLYGON The user may draw a polygon. To retrieve the object drawn by the
user, use the function call: Command-
Info(CMD_INFO_CUSTOM_OBJ)

DM_CUSTOM_POLYLINE The user may draw a polyline. To retrieve the object drawn by the
user, use the function call: Command-
Info(CMD_INFO_CUSTOM_OBJ)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 60 MB_Ref.pdf

Reference Guide Chapter 3: Alter Cartographic Frame statement
Alter ButtonPad ID 3
Add

Separator
ToolButton

Icon MI_ICON_CROSSHAIR
HelpMsg ”Draw a distance scale on a map\nScale Bar”
Cursor MI_CURSOR_CROSSHAIR
DrawMode DM_CUSTOM_POINT
Calling custom_tool_routine

Show

Note: The Separator keyword, which inserts space between the last button on the Tools ButtonPad
and the new “+” button.

See Also

Alter Button statement, ButtonPadInfo() function, Create ButtonPad statement

Alter Cartographic Frame statement
Purpose

The Alter Cartographic Frame statement changes a frame(s) position, title, subtitle, border and style
of an existing cartographic legend created with the Create Cartographic Legend statement. (To
change the size, position or title of the legend window, use the Set Window statement.)

Syntax
Alter Cartographic Frame
[Window legend_window_id]
Id { frame_id }

[Position (x , y) [Units paper_units]]
[Title [frame_title] [Font...]]
[SubTitle [frame_subtitle] [Font...]]
[Border Pen...]
[Style [Font...]

[ID { id } Text { style_name }] [Line Pen... | Region Pen... Brush...
 | Symbol Symbol...]]

[, ...]

legend_window_id is an Integer window identifier which you can obtain by calling the FrontWindow()
and WindowId() functions.

frame_id is the ID of the frame on the legend. You cannot use a layer name. For example, three frames
on a legend would have the successive ID’s 1, 2, and 3.

frame_title is a string which defines a frame title.

frame_subtitle is a string which defines a frame subtitle.

id is the position within the style list for that frame. Currently there is no MapBasic function to get
information about the number of styles in a frame.

style_name is a string that displays next to each symbol for the frame specified in ID. The ”#” character
will be replaced with the layer name. The % character will be replaced by the text “Line”, “Point,
“Region”, as appropriate for the symbol. For example, “% of #” will expand to “Region of States” for the
frame corresponding to the states.tab layer.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 61 MB_Ref.pdf

Reference Guide Chapter 3: Alter Control statement
Description

If a Window clause is not specified MapInfo Professional will use the topmost legend window.

The Position clause controls the frame’s position on the legend window. The upper left corner of the
legend window has the position 0, 0. Position values use paper units settings, such as “in” (inches) or
“cm” (centimeters). MapBasic has a current paper units setting, which defaults to inches; a MapBasic
program can change this setting through the Set Paper Units statement. An Alter Cartographic
Legend statement can override the current paper units by including the optional Units subclause
within the Position clause.

The Title and SubTitle clauses accept new text, new font or both.

The Style clause must contain a list of definitions for the styles displayed in frame. You can only update
the Style type for a custom style. You can update the Text of any style. There is no way to add or
remove styles from any type of frame.

See Also

Create Cartographic Legend statement, Set Cartographic Legend statement, Add Cartographic
Frame statement, Remove Cartographic Frame statement

Alter Control statement
Purpose

Changes the status of a control in the active custom dialog.

Syntax
Alter Control id_num

[Title { title | From Variable array_name }]
[Value value]
[{ Enable | Disable }]
[{ Show | Hide }]
[Active]

id_num is an integer identifying one of the controls in the active dialog

title is a String representing the new title to assign to the control

array_name is the name of an array variable; used to reset the contents of ListBox, MultiListBox, and
PopupMenu controls

value is the new value to associate with the specified control

Restrictions

You cannot issue this statement through the MapBasic window.

Description

The Alter Control statement modifies one or more attributes of a control in the active dialog;
accordingly, the Alter Control statement should only be issued while a dialog is active (i.e. from within
a handler procedure that is called by one of the dialog controls). If there are two or more nested dialogs
on the screen, the Alter Control statement only affects controls within the topmost dialog.

The id_num specifies which dialog control should be modified; this corresponds to the id_num
parameter specified within the ID clause of the Dialog statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 62 MB_Ref.pdf

Reference Guide Chapter 3: Alter Control statement
Each of the optional clauses (Title, Value, Enable/Disable, Hide/Show, Active) modifies a different
attribute of a dialog control. Note that all of these clauses can be included in a single statement; thus, a
single Alter Control statement could change the name, the value, and the enabled/disabled status of a
dialog control.

Some attributes do not apply to all types of controls. For example, a Button control may be enabled or
disabled, but has no value attribute.

The Title clause resets the text that appears on most controls (except for Picker controls and EditText
controls; to reset the contents of an EditText control, set its Value). If the control is a ListBox,
MultiListBox, or PopupMenu control, the Title clause can read the control’s new contents from an array
of String variables, by specifying a From Variable clause.

The Active keyword applies only to EditText controls. An Alter Control ... Active statement puts the
keyboard focus on the specified EditText control.

Use the Hide and Show keywords to make controls disappear or reappear.

To de-select all items in a MultiListBox control, use a value setting of zero. To add a list item to the set
of selected MultiListBox items, issue an Alter Control statement with a positive integer value
corresponding to the number of the list item.

Note: In this case, do not issue the Alter Control statement from within the MultiListBox control’s
handler.

You can use an Alter Control statement to modify the text that appears in a StaticText control. However,
MapInfo Professional cannot increase the size of the StaticText control after it is created. Therefore, if
you plan to alter the length of a StaticText control, you may want to pad it with spaces when you first
define it. For example, your Dialog statement could include the following clause:

Control StaticText ID 1 Title ”Message goes here” + Space$(30)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 63 MB_Ref.pdf

Reference Guide Chapter 3: Alter MapInfoDialog statement
Example

The following example creates a dialog containing two check-boxes, an OK button, and a Cancel
button. Initially, the OK button is disabled (grayed out). The OK button is only enabled if the user
selects one or both of the check boxes.

Include ”mapbasic.def”
Declare Sub Main
Declare Sub checker
Sub Main

Dim browse_it, map_it As Logical
Dialog

Title ”Display a file”
Control CheckBox

Title ”Display in a Browse window”
Value 0
Calling checker
ID 1
Into browse_it

Control CheckBox
Title ”Display in a Map window”
Value 0
Calling checker
ID 2
Into map_it

Control CancelButton
Control OKButton

ID 3
Disable

If CommandInfo(CMD_INFO_DLG_OK) Then
’ ... then the user clicked OK...
End If

End Sub
Sub checker
’ If either check box is checked,
’ enable the OK button; otherwise, Disable it.

If ReadControlValue(1) Or ReadControlValue(2) Then
Alter Control 3 Enable

Else
Alter Control 3 Disable

End If
End Sub

See Also

Dialog statement, Dialog Preserve statement, ReadControlValue() function

Alter MapInfoDialog statement
Purpose

Disables, hides, or assigns new values to controls in MapInfo Professional’s standard dialog boxes.

Restrictions

Caution: The Alter MapInfoDialog statement may not be supported in future versions of MapInfo
Professional. As a result, MapBasic programs that use this statement may not work correctly when run
using future versions of MapInfo Professional. Use this statement with caution.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 64 MB_Ref.pdf

Reference Guide Chapter 3: Alter MapInfoDialog statement
Syntax 1 (assigning non-default settings)
Alter MapInfoDialog dialog_ID

 Control control_ID
{ Disable | Hide | Value new_value } [, { Disable... }]

[Control...]

Syntax 2 (restoring default settings)
Alter MapInfoDialog dialog_ID Default

dialog_ID is an Integer ID number, indicating which MapInfo Professional dialog to alter. control_ID is
an Integer ID number, 1 or larger, indicating which control to modify. new_value is a new value
assigned to the dialog control.

Description

Use this statement if you need to disable, hide, or assign new values to controls—buttons, check
boxes, etc.—in MapInfo Professional’s standard dialog boxes.

Note: Use this statement to modify MapInfo Professional’s standard dialog boxes.

To modify custom dialog boxes that you create using the Dialog statement, use the Alter Control
statement.

Determining ID Numbers

To determine a dialog’s ID number, run MapInfo Professional with this command line:

mapinfow.exe -helpdiag

After you run MapInfo Professional with the -helpdiag argument, display a MapInfo Professional dialog
and click the Help button. Ordinarily, the Help button launches Help, but because you used the -
helpdiag argument, MapInfo Professional displays the ID number of the current dialog box.

Note: There are different “common dialogs” (such as the Open and Save dialogs) for different
versions of Windows. If you want to modify a common dialog, and if your application will be
used under different versions of Windows, you may need to issue two Alter MapInfoDialog
statements - one for each version of the common dialog.

Each individual control has an ID number. For example, most OK buttons have an ID number of 1, and
most Cancel buttons have an ID number of 2. To determine the ID number for a specific control, you
must use a third-party developer’s utility, such as the Spy++ utility that Microsoft provides with its C
compiler. The MapBasic software does not provide a Spy++ utility.

Although the Alter MapInfoDialog statement changes the initial appearance of a dialog box, the
changes do not have any effect unless the user clicks OK. For example, you can use Alter
MapInfoDialog to store an address in the Find dialog box; however, MapInfo Professional will not
perform the Find operation unless you display the dialog box and the user clicks OK.

Types of Changes Allowed
Use the Disable keyword to disable (gray out) the control.

Use the Hide keyword to make the control disappear.

Use the Value clause to change the setting of the control.

When you alter common dialog boxes (e.g., the Open dialog), you may reset the item selected in a
combo box control, or you may assign new text to static text, button, and edit box controls.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 65 MB_Ref.pdf

Reference Guide Chapter 3: Alter MapInfoDialog statement
You can change the orientation control in the Page Setup dialog box. The Portrait and Landscape
buttons are 1056 and 1057, respectively.

When you alter other MapInfo Professional dialog boxes, the following list summarizes the types of
changes you may make.

Button, static text, edit box, editable combo box: You may assign new text by using a text string in
the new_value parameter.

List box, combo box: You may set which item is selected by using a numeric new_value.

Check box: You may set the checkbox (specify a value of 1) or clear it (value of zero).

Radio button: Setting a button’s value to 1 selects that button from the radio group.

Symbol style button: You may assign a new symbol style (e.g., use the return value from the
MakeSymbol() function).

Pen style button: You may assign a new Pen value.

Brush style button: You may assign a new Brush value.

Font style button: You may assign a new Font value.

Combined Pen/Brush style button: Specify a Pen value to reset the Pen style, or specify a Brush
value to reset the Brush style. (For an example of this type of control, see MapInfo Professional’s
Region Style dialog box, which appears when you double-click an editable region.)

Example

The following example alters MapInfo Professional’s Find dialog box by storing a text string (“23 Main
St.”) in the first edit box and hiding the Respecify button.

If SystemInfo(SYS_INFO_MIVERSION) = 400 Then
Alter MapInfoDialog 2202

Control 5 Value ”23 Main St.”
Control 12 Hide

End If
Run Menu Command M_ANALYZE_FIND

The ID number 2202 refers to the Find dialog. Control 5 is the edit box where the user types an
address. Control 12 is the Respecify button, which this example hides. All ID numbers are subject to
change in future versions of MapInfo Professional; therefore, this example calls SystemInfo() to
determine the MapInfo Professional version number.

See Also

Alter Control statement, Dialog statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 66 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu statement
Alter Menu statement
Purpose

Adds or removes items from an existing menu.

Syntax1
Alter Menu { menuname | ID menu_id }

Add menudef [, menudef...]

Where each menudef defines a menu item, according to the syntax:

newmenuitem
[ID menu_item_id]
[HelpMsg help]
[{ Calling handler | As menuname }]

menuname is the name of an existing menu (e.g., “File”).

menu_id is a standard Integer menu ID from 1 to 22; 1 represents the File menu.

newmenuitem is a String: the name of an item to add to the specified menu.

menu_item_id is a custom Integer menu item identifier, which can be used in subsequent Alter Menu
Item statements.

help is a String that will appear on the status bar while the menu item is highlighted.

handler is the name of a procedure, or a code for a standard menu command (e.g., M_FILE_NEW), or
a special syntax for handling the menu event by calling OLE or DDE. If you specify a command code
for a standard MapInfo Professional Show/Hide command (such as M_WINDOW_STATISTICS), the
newmenuitem string must start with an exclamation point and include a caret (^), to preserve the item’s
Show/Hide behavior. For more details on the different types of handler syntax, see the Create Menu
statement.

Syntax2
Alter Menu { menuname | ID menu_id }

Remove { handler | submenuname | ID menu_item_id }
[, { handler | submenuname | ID menu_item_id } ...]

menuname is the name of an existing menu

menu_id is an Integer menu ID from 1 to 22; 1 represents the File menu

handler is either the name of a sub procedure or the code for a standard MapInfo Professional
command

submenuname is the name of a hierarchical submenu to remove from the specified menu

menu_item_id is a custom Integer menu item identifier

Description

The Alter Menu statement adds menu items to an existing menu or removes menu items from an
existing menu.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 67 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu statement
The statement can identify the menu to be modified by specifying the name of the menu (e.g., “File”)
through the menuname parameter. Note that if the application is running on a non-English language
version of MapInfo, and if the menu names have been translated, the Alter Menu statement must
specify the translated version of the menu name.

If the menu to be modified is one of the standard MapInfo Professional menus, the Alter Menu
statement can identify which menu to alter by using the ID clause. The ID clause identifies the menu by
a number from 1 to 22 (one represents the File menu).

The following table lists the names and ID numbers of all standard MapInfo Professional menus.

Note: Menus 16 through 22 are shortcut menus, which appear if the user clicks with the right mouse
button. Shortcut menus are only available on Windows.

Menu Name Description

“File” File menu (can also be referred to as ID 1)

“Edit” Edit menu (ID 2)

“Objects” Objects menu (ID 14)

“Query” Query menu (ID 3)

“Table” Table menu (ID 15)

“Options” Options menu (ID 5)

“Window” Window menu (ID 6)

“Help” Help menu (ID 7)

“Browse” Browse menu (ID 8). Ordinarily, this only appears when a Browser window is the active win-
dow. See WinSpecific, below.

“Map” Map menu (ID 9). Ordinarily, this menu is only available when a Map window is active.

“Graph” Graph menu (ID 11). Available when a Graph window is active.

“Layout” Layout menu (ID 10). Available when a Layout window is active.

“Redistrict” Redistrict menu (ID 13). Available when a Districts Browser is active.

“MapBasic” MapBasic menu (ID 12). Available when the MapBasic window is active.

“Tools” Tools menu (ID 4). A menu used by MapBasic utilities such as ScaleBar.

“WinSpecific” The generic name for the window-specific menu, which changes dynamically depending on
which type of window is the active window.

“Raster” The hierarchical menu located on the Table menu.

“Mainte-
nance”

The hierarchical menu located on the Table menu.

“Default-
Shortcut”

The default shortcut menu. This menu appears if the user right-clicks on a window that does
not have its own shortcut menu defined. (ID16)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 68 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu statement
Examples

The following statement adds an item to the File menu.

Alter Menu ”File” Add
”Special” Calling sub_procedure_name

In the following example, the menu to be modified is identified by its number.

Alter Menu ID 1 Add
”Special” Calling sub_procedure_name

In the following example, the menu item that is added contains an ID clause. The ID number (300) can
be used in subsequent Alter Menu Item statements.

Alter Menu ID 1 Add
”Special” ID 300 Calling sub_procedure_name

The following example removes the custom item from the File menu.

Alter Menu ID 1 Remove sub_procedure_name

The sample program, TextBox, uses a Create Menu statement to create a menu called “TextBox,” and
then issues the following Alter Menu statement to add the TextBox menu as a hierarchical menu
located on the Tools menu:

Alter Menu ”Tools” Add
”(-”,
”TextBox” As ”TextBox”

The following example adds a custom command to the Map window’s shortcut menu (the menu that
appears when an MapInfo Professional user right-clicks on a Map window).

Alter Menu ID 17 Add
”Find Nearest Site” Calling sub_procedure_name

See Also

Alter Menu Bar statement, Alter Menu Item statement, Create Menu statement, Create Menu Bar
statement

“Mapper-
Shortcut”

The Map window shortcut menu. (ID 17)

“Browser-
Shortcut”

The Browse window shortcut menu. (ID 18)

“Layout-
Shortcut”

The Layout window shortcut menu. (ID 19)

“Grapher-
Shortcut”

The Graph window shortcut menu. (ID 20)

“CmdShort-
cut”

The MapBasic window shortcut menu. (ID 21)

“Redistrict-
Shortcut”

The Redistricting shortcut menu; available when the Districts Browser is active. (ID 22)

Menu Name Description
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 69 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu Bar statement
Alter Menu Bar statement
Purpose

Adds or removes menus from the menu bar.

Syntax
Alter Menu Bar { Add | Remove }

{ menuname | ID menu_id }
[, { menuname | ID menu_id } ...]

menuname is the name of an available menu (e.g., “File”)

menu_id is a standard menu ID from one to fifteen; one represents the File menu. winspecific removes
all menu bar items that are window specific such as mappers, browsers, layouts, etc.

Description

The Alter Menu Bar statement adds or removes one or more menus from the current menu bar.

The menuname parameter is a string representing the name of a menu, such as “File” or “Edit”. The
menuname parameter may also refer to the name of a custom menu created by a Create Menu
statement (see example below)

Note: If the application is running on a non-English language version of MapInfo, and if the menu
names have been translated, the Alter Menu Bar statement must specify the translated
version of the menu name. However, each of MapInfo Professional’s standard menus (File,
Edit, etc.) also has a menu ID, which you can use regardless of whether the menu names have
been translated. For example, specifying ID 2 always refers to the Edit menu, regardless of
whether the menu has been translated.

For a list of MapInfo Professional’s standard menu names and their corresponding ID numbers, see
the Alter Menu statement.

Adding Menus to the Menu Bar

An Alter Menu Bar Add statement adds a menu to the right end of the menu bar. If you need to insert
a menu at another position on the menu bar, use the Create Menu Bar statement to redefine the entire
menu bar.

If you add enough menus to the menu bar, the menu bar wraps down onto a second line of menu
names.

Removing Menus from the Menu Bar

An Alter Menu Bar Remove... statement removes a menu from the menu bar. However, the menu
remains part of the “pool” of available menus. Thus, the following pair of statements would first remove
the “Query” menu from the menu bar, and then add the “Query” menu back onto the menu bar (at the
right end of the bar).

Alter Menu Bar Remove ”Query”
Alter Menu Bar Add ”Query”

After an Alter Menu Bar Remove... statement removes a menu, MapInfo Professional ignores any
hotkey sequences corresponding to items that were on the removed menu. For example, a MapInfo
Professional user might ordinarily press Ctrl + O to bring up the File menu’s Open dialog; however, if
an Alter Menu Bar Remove statement removed the File menu, MapInfo Professional would ignore
any Ctrl + O key-presses.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 70 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu Item statement
Example

The following example creates a custom menu, called DataEntry, then uses an Alter Menu Bar Add
statement to add the DataEntry menu to MapInfo Professional’s menu bar.

Declare Sub addsub
Declare Sub editsub
Declare Sub delsub

Create Menu ”DataEntry” As
”Add” Calling addsub,
”Edit” Calling editsub,
”Delete” Calling delsub

’Remove the Window menu and Help menu
Alter Menu Bar Remove ID 6, ID 7

’Add the custom menu, then the Window & Help menus
Alter Menu Bar Add ”DataEntry”, ID 6, ID 7

Before adding the custom menu to the menu bar, this program removes the Help menu (menu ID 7)
and the Window menu (ID 6) from the menu bar. The program then adds the custom menu, the
Window menu, and the Help menu to the menu bar. This technique guarantees that the last two menus
will be Window and Help.

See Also

Alter Menu statement, Alter Menu Item statement, Create Menu statement, Create Menu Bar
statement, Menu Bar statement

Alter Menu Item statement
Purpose

Alters the status of a specific menu item.

Syntax
Alter Menu Item { handler | ID menu_item_id }

{ [Check | Uncheck] |
[Enable | Disable] |
[Text itemname] |
[Calling handler | As menuname] }

handler is either the name of a Sub procedure or the code for a standard MapInfo Professional
command

menu_item_id is an Integer that identifies a menu item; this corresponds to the menu_item_id
parameter specified in the statement that created the menu item (Create Menu or Alter Menu)

itemname is the new text for the menu item (may contain embedded codes)

menuname is the name of an existing menu

Description

The Alter Menu Item statement alters one or more of the items that make up the available menus. For
example, you could use the Alter Menu Item statement to check or disable (gray out) a menu item.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 71 MB_Ref.pdf

Reference Guide Chapter 3: Alter Menu Item statement
The statement must either specify a handler (e.g., the name of a procedure in the same program), or
an ID clause to indicate which menu item(s) to modify. Note that it is possible for multiple, separate
menu items to call the same handler procedure. If the Alter Menu Item statement includes the name of
a handler procedure, MapInfo Professional alters all menu items that call that handler. If the statement
includes an ID clause, MapInfo Professional alters only the menu item that was defined with that ID.

The Alter Menu Item statement can only refer to a menu item ID if the statement which defined the
menu item included an ID clause. A MapBasic application cannot refer to menu item IDs created by
other MapBasic applications.

The Check clause and the Uncheck clause affect whether the item appears with a checkmark on the
menu. Note that a menu item may only be checked if it was defined as “checkable” (i.e. if the Create
Menu statement included a “!” as the first character of the menu item name).

The Disable clause and the Enable clause control whether the item is disabled (grayed out) or
enabled. Note that MapInfo Professional automatically enables and disables various menu items
based on the current circumstances. For example, the File > Close command is disabled whenever
there are no tables open. Therefore, MapBasic applications should not attempt to enable or disable
standard MapInfo Professional menu items. Similarly, although you can treat specific tools as menu
items (by referencing defines from MENU.DEF, such as M_TOOLS_RULER), you should not attempt
to enable or disable tools through the Alter Menu Item statement.

The Text clause allows you to rename a menu item.

The Calling clause specifies a handler for the menu item. If the user chooses the menu item, MapInfo
Professional calls the item’s handler.

Examples

The following example creates a custom “DataEntry” menu.

Declare Sub addsub
Declare Sub editsub
Declare Sub delsub

Create Menu ”DataEntry” As
”Add” Calling addsub,
”Edit” Calling editsub,
”Delete” ID 100 Calling delsub,
”Delete All” ID 101 Calling delsub

’Remove the Help menu
Alter Menu Bar Remove ID 7

’Add both the new menu and the Help menu
Alter Menu Bar Add ”DataEntry” , ID 7

The following Alter Menu Item statement renames the “Edit” item to read “Edit...”

Alter Menu Item editsub Text ”Edit...”

The following statement disables the “Delete All” menu item.

Alter Menu Item ID 101 Disable
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 72 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement
The following statement disables both the “Delete” and the “Delete All” items, because it identifies the
handler procedure delsub, which is the handler for both menu items.

Alter Menu Item delsub Disable

See Also

Alter Menu statement, Alter Menu Bar statement, Create Menu statement

Alter Object statement
Purpose

Modifies the shape, position, or graphical style of an object.

Syntax
Alter Object obj

{ Info object_info_code , new_info_value |
Geography object_geo_code , new_geo_value |
Node { Add [Position polygon_num , node_num] (x, y) |

Set Position polygon_num , node_num (x , y) |
Remove Position polygon_num , node_num

}
}

obj is an object variable

object_info_code is an integer code relating to the ObjectInfo() function (e.g., OBJ_INFO_PEN)

new_info_value specifies the new object_info_code attribute to apply (e.g., a new Pen style)

object_geo_code is an integer code relating to the ObjectGeography() function (e.g.,
OBJ_GEO_POINTX)

new_geo_value specifies the new object_geo_code value to apply (e.g., the new x-coordinate)

polygon_num is a integer value (one or larger), identifying one polygon from a region object or one
section from a polyline object

node_num is a integer value (one or larger), identifying one node from a polyline or polygon

x , y are x- and y-coordinates of a node

Description

The Alter Object statement alters the shape, position, or graphical style of an object.

The effect of an Alter Object statement depends on whether the statement includes an Info clause, a
Node clause, or a Geography clause. If the statement includes an Info clause, MapBasic alters the
object’s graphical style (e.g., the object’s Pen and Brush styles). If the statement includes a Node
clause, MapBasic adds, removes, or repositions a node (this applies only to polyline or region objects).
If the statement includes a Geography clause, MapBasic alters a geographical attribute for objects
other than polylines and regions (e.g., the x- or y-coordinate of a point object).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 73 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement
Info clause
By issuing an Alter Object statement with an Info clause, you can reset an object’s style (e.g., the Pen
or Brush). The Info clause lets you modify the same style attributes that you can query through the
ObjectInfo() function. For example, you can determine an object’s current Brush style by calling the
ObjectInfo() function:

Dim b_fillstyle As Brush
b_fillstyle = ObjectInfo(Selection.obj, OBJ_INFO_BRUSH)

Conversely, the following Alter Object statement allows you to reset the Brush style:

Alter Object obj_variable_name
Info OBJ_INFO_BRUSH, b_fillstyle

Note that you use the same code (e.g., OBJ_INFO_BRUSH) in both the ObjectInfo() function and the
Alter Object statement.

The table below summarizes the values you can specify in the Info clause to perform various types of
style alterations. Note that the obj_info_code values are defined in the standard MapBasic definitions
file, MAPBASIC.DEF. Accordingly, your program should Include “MAPBASIC.DEF” if you intend to
use the Alter Object...Info statement.

obj_info_code value Result of Alter Object

OBJ_INFO_PEN Resets object’s Pen style; new_info_value must be a Pen expres-
sion

OBJ_INFO_BRUSH Resets object’s Brush style; new_info_value must be a Brush
expression

OBJ_INFO_TEXTFONT Resets a Text object’s Font style; new_info_value must be a Font
expression

OBJ_INFO_SYMBOL Resets a Point object’s Symbol style; new_info_value must be a
Symbol expression

OBJ_INFO_SMOOTH Resets a Polyline object’s smoothed/unsmoothed setting;
new_info_value must be a Logical expression

OBJ_INFO_FRAMEWIN Changes which window is displayed in a Layout frame;
new_info_value must be an Integer window ID

OBJ_INFO_FRAMETITLE Changes the title of a Frame object; new_info_value must be a
String

OBJ_INFO_TEXTSTRING Changes the text string that comprises a Text object;
new_info_value must be a String expression

OBJ_INFO_TEXTSPACING Changes a Text object’s line spacing; new_info_value must be a
Float value of 1, 1.5, or 2

OBJ_INFO_TEXTJUSTIFY Changes a Text object’s alignment; new_info_value must be 0 for
left-justified, 1 for center-justified, or 2 for right-justified

OBJ_INFO_TEXTARROW Changes a Text object’s label line setting; new_info_value must be
0 for no line, 1 for simple line, or 2 for a line with an arrow
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 74 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement
Geography clause
By issuing an Alter Object statement with a Geography clause, you can alter an object’s geographical
coordinates. The Geography clause applies to all object types except for polylines and regions. To
alter the coordinates of a polyline or region object, use the Node clause (described below) instead of
the Geography clause.

The Geography clause lets you modify the same attributes that you can query through the
ObjectGeography() function. For example, you can obtain a line object’s end coordinates by calling
the ObjectGeography() function:

Dim o_cable As Object
Dim x, y As Float
x = ObjectGeography(o_cable, OBJ_GEO_LINEENDX)
y = ObjectGeography(o_cable, OBJ_GEO_LINEENDY)

Conversely, the following Alter Object statements let you alter the line object’s end coordinates:

Alter Object o_cable
Geography OBJ_GEO_LINEENDX, x

Alter Object o_cable
Geography OBJ_GEO_LINEENDY, y

Note: You use the same codes (e.g., OBJ_GEO_LINEENDX) in both the ObjectGeography()
function and the Alter Object statement.

The table below summarizes the values you can specify in the Geography clause in order to perform
various types of geographic alterations. Note that the obj_geo_code values are defined in the standard
MapBasic definitions file, MAPBASIC.DEF. Your program should Include “MAPBASIC.DEF” if you
intend to use the Alter Object...Geography statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 75 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement
Node clause
By issuing an Alter Object statement with a Node clause, you can add, remove, or reposition nodes in
a polyline or region object.

If the Node clause includes an Add sub-clause, the Alter Object statement adds a node to the object.
If the Node clause includes a Remove sub-clause, the statement removes a node. If the Node clause
includes a Set Position sub-clause, the statement repositions a node.

The Alter Object statement’s Node clause is often used in conjunction with the Create PLine and
Create Region statements. Create statements allow you to create new polyline and region objects.
However, Create statements are somewhat restrictive, because they force you to state at compile time
the number of nodes that will comprise the object. In some situations, you may not know how many
nodes should go into an object until run-time.

If your program will not know until run-time how many nodes should comprise an object, you can issue
a Create Pline or Create Region statement which creates an “empty” object (an object with zero
nodes). Your program can then issue an appropriate number of Alter Object ... Node Add statements,
to add nodes as needed.

attribute setting Result of Alter Object

OBJ_GEO_MINX alters object’s minimum bounding rectangle

OBJ_GEO_MINY alters object’s MBR

OBJ_GEO_MAXX alters object’s MBR; does not apply to Point objects

OBJ_GEO_MAXY alters object’s MBR; does not apply to Point objects

OBJ_GEO_ARCBEGANGLE alters beginning angle of an Arc object

OBJ_GEO_ARCENDANGLE alters ending angle of an Arc object

OBJ_GEO_LINEBEGX alters a Line object’s starting node

OBJ_GEO_LINEBEGY alters a Line object’s starting node

OBJ_GEO_LINEENDX alters a Line object’s ending node

OBJ_GEO_LINEENDY alters a Line object’s ending node

OBJ_GEO_POINTX alters a Point object’s x coordinate

OBJ_GEO_POINTY alters a Point object’s y coordinate

OBJ_GEO_ROUNDRADIUS alters the diameter of the circle that defines the rounded corner
of a Rounded Rectangle object

OBJ_GEO_TEXTLINEX alters x coordinate of the end of a Text object’s label line

OBJ_GEO_TEXTLINEY alters y coordinate of the end of a Text object’s label line

OBJ_GEO_TEXTANGLE alters rotation angle of a Text object
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 76 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement
Within the Node clause, the Position sub-clause includes two parameters - polygon_num and
node_num - that let you specify exactly which node you want to reposition or remove. The Position
sub-clause is optional when you are adding a node. The polygon_num and node_num parameters
should always be 1 (one) or greater.

The polygon_num parameter specifies which polygon in a multiple-polygon region (or which section in
a multiple-section polyline) should be modified.

Region Centroids
The Centroid of a Region can be set by using the Alter Object command with the syntax noted below:

Alter Object Obj Geography OBJ_GEO_CENTROID, PointObj

Note that PointObj is a point object. This differs from other values input by Alter Object Geography,
which are all scalars. A point is needed in this instance because we need two values which define a
point. The Point that is input is checked to make sure it is a valid Centroid (i.e., it is inside the region). If
the Obj is not a region, or if PointObj is not a point object, or if the point is not a valid centroid, then an
error is returned.

An easy way to center an X and Y value for a centroid is as follows:

Alter Object Obj Geography OBJ_GEO_CENTROID, CreatePoint(X, Y)

The user can also query the centroid by using the ObjectGeography function as follows:

PointObj = ObjectGeography(Obj, OBJ_GEO_CENTROID)

There are other ways to get the Centroid, including the Centroid(), CentroidX(), and CentroidY()
functions.

OBJ_GEO_CENTROID is defined in mapbasic.def.

Multipoint Objects and Collections
The Alter Object statement has been extended to support the following new object types.

Multipoint: sets a Multipoint symbol as shown in the following:

Alter Object obj_variable_mpoint
Info OBJ_INFO_SYMBOL, NewSymbol

Collection: By issuing an Alter Object statement with an Info clause, you can reset collection parts
(Region, Polyline or Multipoint) inside the collection object. The Info clause allows you to modify the
same attributes that you can query through the ObjectInfo() function. For example, you can determine
a collection object's region part by calling the ObjectInfo() function:

Dim ObjRegion As Object
ObjRegion = ObjectInfo(Selection.obj, OBJ_INFO_REGION)

Also, the following Alter Object statement allows you to reset the region part of a collection object:

Alter Object obj_variable_name
Info OBJ_INFO_REGION, ObjRegion

Note: You use the same code (e.g., OBJ_INFO_REGION) in both the ObjectInfo() function and the
Alter Object statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 77 MB_Ref.pdf

Reference Guide Chapter 3: Alter Object statement
Support has also been added to the Alter Object statement that allows you to insert and delete nodes
to/from Multipoint objects.

Alter Object obj Node statement.

To insert nodes within a Multipoint object:

Dim mpoint_obj as object
Create Multipoint Into Variable mpoint_obj 0
Alter Object mpoint_obj Node Add (0,1)
Alter Object mpoint_obj Node Add (2,1)

Note: Nodes for Multipoint are always added at the end.

To delete nodes from a Multipoint object:

Alter Object mpoint_obj Node Remove Position polygon_num, node_num

mpoint_obj - Multipoint object variable

polygon_num - is ignored for Multipoint, it is advisable to set it to 1

node_num - number of a node to be removed

To set nodes inside a Multipoint object:

Alter Object mpoint_obj Node Set Position polygon_num, node_num (x,y)

mpoint_obj - Multipoint object variable

polygon_num - is ignored for Multipoint, it is advisable to set it to 1

node_num - number of a node to be changed

(x,y) - new coordinates of node node_num

Example
Dim myobj As Object, i As Integer
Create Region Into Variable myobj 0
For i = 1 to 10

Alter Object myobj
Node Add (Rnd(1) * 100, Rnd(1) * 100)

Next

Note: After using the Alter Object statement to modify an object, use an Insert statement or an
Update statement to store the object in a table.

See Also

Create Pline statement, Create Region statement, Insert statement, ObjectGeography()
function, ObjectInfo() function, Update statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 78 MB_Ref.pdf

Reference Guide Chapter 3: Alter Table statement
Alter Table statement
Purpose

Alters the structure of a table. Cannot be used on linked tables.

Syntax
Alter Table table (

[Add columnname columntype [, ...]]
[Modify columnname columntype [, ...]]
[Drop columnname [, ...]]
[Rename oldcolumnname newcolumnname [, ...]]
[Order columnname, columnname [,...]]
)
[Interactive]

table is the name of an open table

columnname is the name of a column; column names can be up to 31 characters long, and can contain
letters, numbers, and the underscore character, and column names cannot begin with numbers

columntype indicates the datatype of a table column (including the field width if necessary)

oldcolumnname represents the previous name of a column to be renamed

newcolumnname represents the intended new name of a column to be renamed

Description

The Alter Table statement lets you modify the structure of an open table, allowing you to add columns,
change column widths or datatypes, drop (delete) columns, rename columns, and change column
ordering.

Note: If you have edited a table, you must save or discard your edits before you can use the Alter
Table statement.

Each columntype should be one of the following: Integer, SmallInt, Float, Decimal(size, decplaces),
Char(size), Date, or Logical.

By including an Add clause in an Alter Table statement, you can add new columns to your table. By
including a Modify clause, you can change the datatypes of existing columns. A Drop clause lets you
delete columns, while a Rename clause lets you change the names of existing columns. The Order
clause lets you specify the order of the columns. Altogether, an Alter Table statement can have up to
five clauses. Note that each of these five clauses can operate on a list of columns; thus, with a single
Alter Table statement, you can make all of the structural changes that you need to make (see example
below).

The Order clause affects the order of the columns, not the order of rows in the table. Column order
dictates the relative positions of the columns when you browse the table; the first column appears at
the left edge of a Browser window, and the last column appears at the right edge. Similarly, a table’s
first column appears at the top of an Info tool window.

If a MapBasic application issues an Alter Table statement affecting a table which has memo fields, the
memo fields will be lost. No warning will be displayed.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 79 MB_Ref.pdf

Reference Guide Chapter 3: ApplicationDirectory$() function
An Alter Table statement may cause map layers to be removed from a Map window, possibly causing
the loss of themes or cosmetic objects. If you include the Interactive keyword, MapInfo Professional
prompts the user to save themes and/or cosmetic objects (if themes or cosmetic objects are about to
be lost).

Example

In the following example, we have a hypothetical table, “gcpop.tab” which contains the following
columns: pop_88, metsize, fipscode, and utmcode. The Alter Table statement below makes several
changes to the gcpop table. First, a Rename clause changes the name of the pop_88 column to
population. Then the Drop clause deletes the metsize, fipscode, and utmcode columns. An Add
clause creates two new columns: a small (2-byte) integer column called schoolcode, and a floating
point column called federalaid. Finally, an Order clause specifies the order for the new set of columns:
the schoolcode column comes first, followed by the population column, etc.

Open Table ”gcpop”
Alter Table gcpop

(Rename pop_88 population
Drop metsize, fipscode, utmcode
Add schoolcode Smallint, federalaid Float
Order schoolcode, population, federalaid)

See Also

Add Column statement, Create Index statement, Create Map statement, Create Table statement

ApplicationDirectory$() function
Purpose

Returns a string containing the path from which the current MapBasic application is executing.

Syntax
ApplicationDirectory$()

Return Value

String expression, representing a directory path.

Description

By calling the ApplicationDirectory$() function from within a compiled MapBasic application, you can
determine the directory or folder from which the application is running. If no application is running (e.g.,
if you call the function by typing into the MapBasic window), ApplicationDirectory$() returns a null
string.

To determine the directory or folder where the MapInfo Professional software is installed, call the
ProgramDirectory$() function.

Example
Dim sAppPath As String
sAppPath = ApplicationDirectory$()
’ At this point, sAppPath might look like this:
’
’ ”C:\MAPBASIC\CODE\”

See Also

ProgramDirectory$() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 80 MB_Ref.pdf

Reference Guide Chapter 3: Area() function
Area() function
Purpose

Returns the geographical area of an Object.

Syntax
Area (obj_expr , unit_name)

obj_expr is an object expression

unit_name is a string representing the name of an area unit (e.g., “sq km”)

Return Value

Float

Description

The Area() function returns the area of the geographical object specified by obj_expr.

The function returns the area measurement in the units specified by the unit_name parameter; for
example, to obtain an area in acres, specify “acre” as the unit_name parameter. See the Set Area
Units statement for the list of available unit names.

Only regions, ellipses, rectangles, and rounded rectangles have any area. By definition, the Area() of
a point, arc, text, line, or polyline object is zero. The Area() function returns approximate results when
used on rounded rectangles. MapBasic calculates the area of a rounded rectangle as if the object were
a conventional rectangle.

For the most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a
spherical operation is performed unless the coordinate system is NonEarth, in which case, a Cartesian
operation is performed.

Examples

The following example shows how the Area() function can calculate the area of a single geographic
object. Note that the expression tablename.obj (as in states.obj) represents the geographical object of
the current row in the specified table.

Dim f_sq_miles As Float
Open Table ”states”
Fetch First From states
f_sq_miles = Area(states.obj, ”sq mi”)

You can also use the Area() function within the SQL Select statement, as shown in the following
example.

Select state, Area(obj, ”sq km”)
From states Into results

See Also

ObjectLen() function, Perimeter() function, CartesianArea() function, SphericalArea()
function, Set Area Units statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 81 MB_Ref.pdf

Reference Guide Chapter 3: AreaOverlap() function
AreaOverlap() function
Purpose

Returns the area resulting from the overlap of two closed objects.

Syntax
AreaOverlap (object1, object2)

object1 and object2 are closed objects.

Return Value

A Float value representing the area (in MapBasic’s current area units) of the overlap of the two objects.

See Also

Overlap() function, ProportionOverlap() function, Set Area Units statement

Asc() function
Purpose

Returns the character code for the first character in a string expression.

Syntax
Asc (string_expr)

string_expr is a String expression

Return Value

Integer

Description

The Asc() function returns the character code representing the first character in the string specified by
string_expr.

If string_expr is a null string, the Asc() function returns a value of zero.

Note: All MapInfo Professional environments have common character codes within the range of 32
(space) to 126 (tilde).

On a system that supports double-byte character sets (e.g., Windows Japanese): if the first character
of string_expr is a single-byte character, Asc() returns a number in the range 0 - 255; if the first
character of string_expr is a double-byte character, Asc() returns a value in the range 256 - 65,535.

On systems that do not support double-byte character sets, Asc() returns a number in the range 0 -
255.

Example
Dim code As SmallInt
code = Asc(”Afghanistan”)
’ code will now be equal to 65,
’ since 65 is the code for the letter A

See Also

Chr$() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 82 MB_Ref.pdf

Reference Guide Chapter 3: Asin() function
Asin() function
Purpose

Returns the arc-sine value of a number.

Syntax
Asin (num_expr)

num_expr is a numeric expression from one to minus one, inclusive

Return Value

Float

Description

The Asin() function returns the arc-sine of the numeric num_expr value. In other words, Asin()
returns the angle whose sine is equal to num_expr.

The result returned from Asin() represents an angle, expressed in radians. This angle will be
somewhere between -Pi/2 and Pi/2 radians (given that Pi is approximately equal to 3.141593, and
given that Pi/2 radians represents 90 degrees).

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. (Note that your program will need to Include
“MAPBASIC.DEF” in order to reference DEG_2_RAD or RAD_2_DEG).

Since sine values range between one and minus one, the expression num_expr should represent a
value no larger than one and no smaller than minus one.

Example
Include ”MAPBASIC.DEF”
Dim x, y As Float
x = 0.5
y = Asin(x) * RAD_2_DEG

’ y will now be equal to 30,
’ since the sine of 30 degrees is 0.5

See Also

Acos() function, Atn() function, Cos() function, Sin() function, Tan() function

Ask() function
Purpose

Displays a dialog, asking the user a yes or no (OK or Cancel) question.

Syntax
Ask (prompt , ok_text , cancel_text)

prompt is a String to appear as a prompt in the dialog box

ok_text is a String (e.g., “OK”) that appears on the confirmation button

cancel_text is a String (e.g., “Cancel”) that appears on the cancel button
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 83 MB_Ref.pdf

Reference Guide Chapter 3: Atn() function
Return Value

Logical

Description

The Ask() function displays a dialog box, asking the user a yes-or-no question. The prompt parameter
specifies a message, such as “File already exists; do you want to continue?” The prompt string can be
up to 300 characters long.

The dialog contains two buttons; the user can click one button to give a Yes answer to the prompt, or
click the other button to give a No answer. The ok_text parameter specifies the name of the Yes-
answer button (e.g., “OK” or “Continue”), and the cancel_text parameter specifies the name of the No-
answer button (e.g., “Cancel” or “Stop”).

If the user selects the ok_text button, the Ask() function returns TRUE. If the user clicks the
cancel_text button or otherwise cancels the dialog (e.g., by pressing the Escape key), the Ask()
function returns FALSE. Since the buttons are limited in size, the ok_text and cancel_text strings
should be brief. If you need to display phrases that are too long to fit in small dialog buttons, you can
use the Dialog statement instead of calling the Ask() function. The ok_text button is the default button
(the button which will be selected if the user presses ENTER instead of clicking with the mouse).

Example
Dim more As Logical
more = Ask(”Do you want to continue?”, ”OK”, ”Stop”)

See Also

Dialog statement, Note statement, Print statement

Atn() function
Purpose

Returns the arc-tangent value of a number.

Syntax
Atn(num_expr)

num_expr is a numeric expression

Return Value

Float

Description

The Atn() function returns the arc-tangent of the numeric num_expr value. In other words, Atn()
returns the angle whose tangent is equal to num_expr. The num_expr expression can have any
numeric value.

The result returned from Atn() represents an angle, expressed in radians, in the range -Pi/2 radians to
Pi/2 radians.

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. (Note that your program will need to Include
“MAPBASIC.DEF” in order to reference DEG_2_RAD or RAD_2_DEG).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 84 MB_Ref.pdf

Reference Guide Chapter 3: AutoLabel statement
Example
Include ”MAPBASIC.DEF”
Dim val As Float

val = Atn(1) * RAD_2_DEG
’val is now 45, since the
’Arc tangent of 1 is 45 degrees

See Also

Acos() function, Asin() function, Cos() function, Sin() function, Tan() function

AutoLabel statement
Purpose

Draws labels in a Map window, and stores the labels in the Cosmetic layer.

Syntax
AutoLabel

[Window window id]
[{ Selection | Layer layer_id }]
[Overlap [{ On | Off }]]
[Duplicates [{ On | Off }]]

window_id is an Integer window identifier for a Map window

layer_id is a table name (e.g., World) or a SmallInt layer number (e.g., 1 to draw labels for the top layer)

Description

The AutoLabel statement draws labels (text objects) in a Map window. Only objects that are currently
visible in the Map window are labeled. The Window clause controls which Map window is labeled. If
you omit the Window clause, MapInfo Professional draws labels in the front-most Map window. If you
specify Selection, only selected objects are labeled. If you omit both the Selection clause and the
Layer clause, all layers are labeled.

The Overlap clause controls whether MapInfo Professional draws labels that overlap other labels. This
setting defaults to Off (MapInfo Professional will not draw overlapping labels). To force MapInfo
Professional to draw a label for every map object, regardless of whether the labels overlap, specify
Overlap On. The Duplicates clause controls whether MapInfo Professional draws a new label for an
object that has already been labeled. This setting defaults to Off (duplicates not allowed). The
AutoLabel statement uses whatever font and position settings are in effect. Set label options by
choosing Map > Layer Control. To control font and position settings through MapBasic, issue a Set
Map statement.

Example
Open Table ”world” Interactive
Open Table ”worldcap” Interactive
Map From world, worldcap
AutoLabel

Window FrontWindow()
Layer world

See Also

Set Map statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 85 MB_Ref.pdf

Reference Guide Chapter 3: Beep statement
Beep statement
Purpose

Makes a beeping sound.

Syntax
Beep

Description

The Beep statement sends a sound to the speaker.

Browse statement
Purpose

Opens a new Browser window.

Syntax
Browse expression_list From table

[Position (x , y) [Units paperunits]]
[Width window_width [Units unitname]]
[Height window_height [Units unitname]]
[Row n]
[Column n]
[Min | Max]

expression_list is either an asterisk or a comma-separated list of column expressions

table is the name of an open table

unitname is a String representing the name of a paper unit (e.g., “mm”)

x , y specifies the position of the upper left corner of the Browser, in paper units

window_width and window_height specify the size of the Browser, in paper units

n is a positive integer value

Description

The Browse statement opens a Browse window to display a table.

If the expression_list is simply an asterisk (*), the new Browser includes all fields in the table.
Alternately, the expression_list clause can consist of a comma-separated list of expressions, each of
which defines one column that is to appear in the Browser. Expressions in the list can contain column
names, operators, functions, and variables. Each column’s name is derived from the expression that
defines the column. Thus, if a column is defined by the expression population / area(obj, “acre”) ,
that expression will appear on the top row of the Browser, as the column “name.” To assign an alias to
an expression, follow the expression with a String; see example below.

An optional Position clause lets you specify where on the screen to display the Browser. The x
coordinate specifies the distance (in paper units) from the left edge of the MapInfo Professional
application window to the left edge of the Browser. The y coordinate specifies the distance from the top
of the MapInfo Professional window down to the top of the Browser. The optional Width and Height
clauses specify the size of the Browser window, in paper units. If no Width and Height clauses are
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 86 MB_Ref.pdf

Reference Guide Chapter 3: Brush clause
provided, MapInfo Professional assigns the Browser window a default size which depends on the table
in question: the Browser height will generally be one quarter of the screen height, unless the table does
not have enough rows to fill a Browser window that large; and the Browser width will depend on the
widths of the fields in the table.

If the Browse statement includes the optional Max keyword, the resultant Browser window is
maximized, taking up all of the screen space available to MapInfo. Conversely, if the Browse
statement includes the Min keyword, the Browser window is minimized immediately; note that certain
hardware platforms do not support minimized windows.

The Row clause dictates which row of the table should appear at the top of the Browser. If the Browse
statement does not include a Row clause, the first row of the table will be the top row in the Browser.

Similarly, the Column clause dictates which of the table’s columns should appear at the left edge of the
Browser. If the Browse statement does not include a Column clause, the table’s first column will
appear at the left edge of the Browser window.

Example

The following example opens the World table and displays all columns from the table in a Browser
window.

Open Table ”world”
Browse * From world

The next example specifies exactly which column expressions from the World table should be
displayed in the Browser.

Open Table ”world”
Browse

country,
population,
population/area(obj, ”sq km”) ”Density”
From world

The resultant Browser has three columns. The first two columns represent data as it is stored in the
World table, while the third column is derived. Through the third expression, MapBasic divides the
population of each country record with the geographic area of the region associated with that record.
The derived column expression has an alias (“Density”) which appears on the top row of the Browse
window.

See Also

Set Browse statement, Set Window statement

Brush clause
Purpose

Specifies a fill style for graphic objects.

Syntax
Brush brush_expr

brush_expr is a Brush expression, such as MakeBrush(pattern, fgcolor, bgcolor)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 87 MB_Ref.pdf

Reference Guide Chapter 3: Brush clause
Description

The Brush clause specifies a brush style - in other words, a set of color and pattern settings that
dictate the appearance of a filled object, such as a circle or rectangle. Brush is a clause, not a
complete MapBasic statement. Various object-related statements, such as Create Ellipse, allow you to
specify a brush value. The keyword Brush may be followed by an expression which evaluates to a
Brush value. This expression can be a Brush variable:

Brush br_var

or a call to a function which returns a Brush value:

Brush MakeBrush(64, CYAN, BLUE)

With some MapBasic statements (e.g., Set Map), the keyword Brush can be followed immediately by
the three parameters that define a Brush style (pattern, foreground color, and background color) within
parentheses:

Brush(64, CYAN, BLUE)

Some MapBasic statements take a Brush expression as a parameter (e.g., the name of a Brush
variable), rather than a full Brush clause (the keyword Brush followed by the name of a Brush
variable). The Alter Object statement is one example.

The following table summarizes the three components (pattern, foreground color, background color)
that define a Brush:

To specify a transparent background, use pattern 3 or larger, and omit the background color from the
Brush clause. For example, specify Brush(5, BLUE) to see thin blue stripes with no background fill
color. Omitting the background parameter is like clearing the Background check box in MapInfo
Professional’s Region Style dialog.

To specify a transparent background when calling MakeBrush(), specify -1 as the background color.

The available patterns appear below. Pattern 2 produces a solid fill; pattern 1 produces no fill.

Component Description

pattern Integer value from 1 to 8 or from 12 to 71; see table below.

foreground color Integer RGB color value; see the RGB() function. The definitions file,
MAPBASIC.DEF, includes Define statements for BLACK, WHITE, RED,
GREEN, BLUE, CYAN, MAGENTA, and YELLOW.

background color Integer RGB color value.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 88 MB_Ref.pdf

Reference Guide Chapter 3: Buffer() function
See Also

CurrentBrush() function, MakeBrush() function, Pen clause, Font clause, Symbol clause

Buffer() function
Purpose

Returns a region object that represents a buffer region (the area within a specified buffer distance of an
existing object).

Syntax
Buffer (inputobject, resolution, width, unit_name)

inputobject is an object expression

resolution is a SmallInt value representing the number of nodes per circle at each corner

width is a Float value representing the radius of the buffer; if width is negative, and if inputobject is a
closed object, the object returned represents an object smaller than the original object. If the width is
negative, and the object is a linear object (line, polyline, arc) or a point, then the absolute value of width
is used to produce a positive buffer

unit_name is the name of the distance unit (e.g., “mi” for miles, “km” for kilometers) used by width
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 89 MB_Ref.pdf

Reference Guide Chapter 3: ButtonPadInfo() function
Return Value

Returns a region object

Description

The Buffer() function returns a region representing a buffer.

The Buffer() function operates on one single object at a time. To create a buffer around a set of
objects, use the Create Object As Buffer statement. The object will be created using the current
MapBasic coordinate system. The method used to calculate the buffer depends on the coordinate
system. If it is NonEarth, then a Cartesian method will be used. Otherwise, a spherical method will be
used.

Example

The following program creates a line object, then creates a buffer region surrounding the line. The
buffer region extends ten miles in all directions from the line.

Dim o_line, o_region As Object
o_line = CreateLine(-73.5, 42.5, -73.6, 42.8)
o_region = Buffer(o_line, 20, 10, ”mi”)

See Also

Create Object statement

ButtonPadInfo() function
Purpose

Returns information about a ButtonPad.

Syntax
ButtonPadInfo (pad_name , attribute)

pad_name is a string representing the name of an existing ButtonPad; use “Main”, “Drawing”, “Tools” or
“Standard” to query the standard pads, or specify the name of a custom pad.

attribute is a code indicating which information to return; see table below.

Return Value

Depends on the attribute parameter specified
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 90 MB_Ref.pdf

Reference Guide Chapter 3: Call statement
Description

The attribute parameter specifies what to return. Codes are defined in MAPBASIC.DEF

Example
Include ”mapbasic.def”
If ButtonPadInfo(”Main”, BTNPAD_INFO_FLOATING) Then

’...then the Main pad is floating; now let’s dock it.
Alter ButtonPad ”Main” ToolbarPosition(0,0) Fixed

End If

See Also

Alter ButtonPad statement

Call statement
Purpose

Calls a sub procedure or an external routine (DLL, XCMD).

Restrictions

You cannot issue a Call statement through the MapBasic window.

Syntax
Call subproc [([parameter] [, ...])]

subproc is the name of a sub procedure

parameter is a parameter expression to pass to the sub procedure

Description

The Call statement calls a procedure. The procedure is usually a conventional MapBasic sub
procedure (defined through the Sub statement). Alternately, a program running under MapInfo
Professional for Windows can call a Windows Dynamic Link Library (DLL) routine through the Call
statement.

attribute code ButtonPadInfo() returns:

BTNPAD_INFO_FLOATING Logical: TRUE means the pad is floating, FALSE means the pad
is docked.

BTNPAD_INFO_NBTNS Smallint: The number of buttons on the pad.

BTNPAD_INFO_WIDTH Smallint: The width of the pad, expressed as a number of buttons
(not including separators).

BTNPAD_INFO_WINID Integer: The window ID of the specified pad.

BTNPAD_INFO_X A number indicating the x-position of the upper-left corner of the
pad. If pad is docked, this is an Integer, zero or greater; if pad is
floating, this is a Float value, in paper units such as inches.

BTNPAD_INFO_Y A number indicating the y-position of the upper-left corner of the
pad.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 91 MB_Ref.pdf

Reference Guide Chapter 3: Call statement
When a Call statement calls a conventional MapBasic procedure, MapBasic begins executing the
statements in the specified sub procedure, and continues until encountering an End Sub or an Exit
Sub statement. At that time, MapBasic returns from the sub procedure, then executes the statements
following the Call statement. The Call statement can only access sub procedures which are part of the
same application.

A MapBasic program must issue a Declare statement to define the name and parameter list of any
procedure which is to be called. This requirement is independent of whether the procedure is a
conventional MapBasic Sub procedure, a DLL procedure or an XCMD.

Parameter Passing
Sub procedures may be defined with no parameters. If a particular sub procedure has no parameters,
then calls to that sub procedure may appear in either of the following forms:

Call subroutine

or

Call subroutine()

By default, each sub procedure parameter is defined “by reference.” When a sub procedure has a by-
reference parameter, the caller must specify the name of a variable to pass as the parameter.

If the procedure then alters the contents of the by-reference parameter, the caller’s variable is
automatically updated to reflect the change. This allows the caller to examine the results returned by
the sub procedure.

Alternately, any or all sub procedure parameters may be passed “by value” if the keyword ByVal
appears before the parameter name in the Sub and Declare Sub declarations. When a parameter is
passed by value, the sub procedure receives a copy of the value of the parameter expression; thus, the
caller can pass any expression, rather than having to pass the name of a variable.

A sub procedure can take an entire array as a single parameter. When a sub procedure expects an
array as a parameter, the caller should specify the name of an array variable, without parentheses.

Calling External Routines
When a Call statement calls a DLL routine, MapBasic executes the routine until the routine returns.
The specified DLL routine is actually located in a separate file (e.g., “KERNEL.EXE”). The specified
DLL file must be present at run-time for MapBasic to complete a DLL Call.

Similarly, if a Call statement calls an XCMD, the file containing the XCMD must be present at run-time.
When calling XCMDs, you cannot specify array variables or variables of custom data Types as
parameters.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 92 MB_Ref.pdf

Reference Guide Chapter 3: CartesianArea() function
Example

In the following example, the sub procedure Cube cubes a number (raises the number to the power of
three), and returns the result. The sub procedure takes two parameters; the first parameter contains
the number to be cubed, and the second parameter passes the results back to the caller.

Declare Sub Cube(ByVal original As Float, cubed As Float)
Dim x, result As Float
Call Cube(2, result)
’ result now contains the value: 8 (2 x 2 x 2)
x = 1
Call Cube(x + 2, result)
’ result now contains the value: 27 (3 x 3 x 3)

End Program

Sub Cube (ByVal original As Float, cubed As Float)
’ Cube the ”original” parameter, and store
’ the result in the ”cubed” parameter.
cubed = original ^ 3

End Sub

See Also

Declare Sub statement, Exit Sub statement, Global statement, Sub...End Sub statement

CartesianArea() function
Purpose

Returns the area as calculated in a flat, projected coordinate system using a Cartesian algorithm.

Syntax
CartesianArea(expr, unit_name)

expr is an object expression
unit_name is a string representing the name of an area unit (e.g., ”sq km”)

Return Value

Float

Description

The CartesianArea() function returns the Cartesian area of the geographical object specified by
obj_expr.

The function returns the area measurement in the units specified by the unit_name parameter; for
example, to obtain an area in acres, specify ”acre” as the unit_name parameter. See the Set Area
Units statement for the list of available unit names.

The CartesianArea()function will always return the area using a cartesian algorithm. A value of -1 will
be returned for data that is in a Latitude/Longitude since the data is not projected.

Only regions, ellipses, rectangles, and rounded rectangles have any area. By definition, the
CartesianArea() of a point, arc, text, line, or polyline object is zero. The CartesianArea() function
returns approximate results when used on rounded rectangles. MapBasic calculates the area of a
rounded rectangle as if the object were a conventional rectangle.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 93 MB_Ref.pdf

Reference Guide Chapter 3: CartesianBuffer() function
Examples

The following example shows how the CartesianArea() function can calculate the area of a single
geographic object. Note that the expression tablename.obj (as in states.obj) represents the
geographical object of the current row in the specified table.

Dim f_sq_miles As Float
Open Table ”counties”
Fetch First From counties
f_sq_miles = CartesianArea(counties.obj, ”sq mi”)

You can also use the CartesianArea() function within the SQL Select statement, as shown in the
following example.

Select lakes, CartesianArea(obj, ”sq km”)
From lakes Into results

See Also

Area() function, SphericalArea() function

CartesianBuffer() function
Purpose

Returns a region object that represents a buffer region (the area within a specified buffer distance of an
existing object).

Syntax
CartesianBuffer (inputobject, resolution, width, unit_name)

inputobject is an object expression

resolution is a SmallInt value representing the number of nodes per circle at each corner

width is a Float value representing the radius of the buffer; if width is negative, and if inputobject is a
closed object, the object returned represents an object smaller than the original object

unit_name is the name of the distance unit (e.g., ”mi” for miles, ”km” for kilometers) used by width

Return Value

Region Object

Description

The CartesianBuffer() function returns a region representing a buffer and operates on one single
object at a time.

To create a buffer around a set of objects, use the Create Object As Buffer statement. If the width is
negative, and the object is a linear object (line, polyline, arc) or a point, then the absolute value of width
is used to produce a positive buffer.

The CartesianBuffer() function will calculate the buffer by assuming the object is in a flat projection
and using the width to calculate a cartesian distance calculated buffer around the object.

 If the inputobject is in a Latitude/Longitude Projection, then Spherical calculations will be used
regardless of the Buffer function used.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 94 MB_Ref.pdf

Reference Guide Chapter 3: CartesianConnectObjects() function
Example

The following program creates a line object, then creates a buffer region that extends 10 miles
surrounding the line.

Dim o_line, o_region As Object
o_line = CreateLine(-73.5, 42.5, -73.6, 42.8)
o_region = CartesianBuffer(o_line, 20, 10, ”mi”)

See Also

Buffer() function, Creating Map Objects

CartesianConnectObjects() function
Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
CartesianConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

CartesianClosestPoints() returns a Polyline object connecting object1 and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a cartesian calculation method. If the calculation
cannot be done using a cartesian distance method (e.g., if the MapBasic Coordinate System is Lat
Long), then this function will produce an error.

CartesianDistance() function
Purpose

Returns the distance between two locations.

Syntax
CartesianDistance (x1, y1, x2, y2, unit_name)

x1 and x2 are x-coordinates

y1 and y2 are y-coordinates
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 95 MB_Ref.pdf

Reference Guide Chapter 3: CartesianObjectDistance() function
unit_name is a string representing the name of a distance unit (e.g., ”km”)

Return Value

Float

Description

The CartesianDistance() function calculates the Cartesian distance between two locations. It returns
the distance measurement in the units specified by the unit_name parameter; for example, to obtain a
distance in miles, specify ”mi” as the unit_name parameter. See the Set Distance Units statement for
the list of available unit names.

The CartesianDistance() function will always return a value using a cartesian algorithm. A value of -1
will be returned for data that is in a Latitude/longitude coordinate system, since Latitude/Longitude data
is not projected and not cartesian.

The x- and y-coordinate parameters must use MapBasic’s current coordinate system. By default,
MapInfo Professional expects coordinates to use a longitude, latitude coordinate system. You can
reset MapBasic’s coordinate system through the Set CoordSys statement.

Example
Dim dist, start_x, start_y, end_x, end_y As Float
Open Table ”cities”
Fetch First From cities
start_x = CentroidX(cities.obj)
start_y = CentroidY(cities.obj)
Fetch Next From cities
end_x = CentroidX(cities.obj)
end_y = CentroidY(cities.obj)
dist = CartesianDistance(start_x,start_y,end_x,end_y,”mi”)

See Also

Math Functions, CartesianDistance() function, Distance() function

CartesianObjectDistance() function
Purpose

Returns the distance between two objects.

Syntax
CartesianObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float

Description

CartesianObjectDistance() returns the minimum distance between object1 and object2 using a
cartesian calculation method with the return value in unit_name. If the calculation cannot be done
using a cartesian distance method (e.g., if the MapBasic Coordinate System is Lat Long), then this
function will produce an error.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 96 MB_Ref.pdf

Reference Guide Chapter 3: CartesianObjectLen() function
CartesianObjectLen() function
Purpose

Returns the geographic length of a line or polyline object.

Syntax
CartesianObjectLen(expr , unit_name)

obj_expr is an object expression

unit_name is a string representing the name of a distance unit (e.g., ”km”)

Return Value

Float

Description

The CartesianObjectLen() function returns the length of an object expression. Note that only line and
polyline objects have length values greater than zero; to measure the circumference of a rectangle,
ellipse, or region, use the Perimeter() function.

The CartesianObjectLen() function will always return a value using a cartesian algorithm. A value of -
1 will be returned for data that is in a Latitude/Longitude coordinate system, since Latitude/Longitude
data is not projected and not cartesian.

The CartesianObjectLen() function returns a length measurement in the units specified by the
unit_name parameter; for example, to obtain a length in miles, specify ”mi” as the unit_name
parameter. See the Set Distance Units statement for the list of valid unit names.

Example
Dim geogr_length As Float
Open Table ”streets”
Fetch First From streets
geogr_length = CartesianObjectLen(streets.obj, ”mi”)
’ geogr_length now represents the length of the
’ street segment, in miles

See Also

SphericalObjectLen() function, CartesianObjectLen() function, ObjectLen() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 97 MB_Ref.pdf

Reference Guide Chapter 3: CartesianOffset() Function
CartesianOffset() Function
Purpose

Returns a copy of the input object offset by the specified distance and angle using a Cartesian
DistanceType.

Syntax

CartesianOffset(object, angle, distance, units)

object is the object being offset,

angle is the angle to offset the object,

distance is the distance to offset the object, and

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

This function produces a new object that is a copy of the input object offset by distance along angle (in
degrees with horizontal in the positive X-axis being 0 and positive being counterclockwise). The unit
string, similar to that used for ObjectLen or Perimeter, is the unit for the distance value. The
DistanceType used is Cartesian. If the Coordinate System of the input object is Lat/Long, an error will
occur, since Cartesian DistanceTypes are not valid for Lat/Long. This is signified by returning a NULL
object. The coordinate system used is the coordinate system of the input object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (e.g., the
center of the bounding box), and then that value is converted from the input units into the Coordinate
System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the fixed point.
The actual converted distance measurement could vary at different locations on the object. The
distance from the input object and the new offset object is only guaranteed to be exact at the single
fixed point used.

Example
CartesianOffset(Rect, 45, 100, “mi”)

See Also

CartesianOffsetXY() Function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 98 MB_Ref.pdf

Reference Guide Chapter 3: CartesianOffsetXY() Function
CartesianOffsetXY() Function
Purpose

Returns a copy of the input object offset by the specified X and Y offset values using a cartesian
DistanceType.

Syntax

CartesianOffsetXY(object, xoffset, yoffset, units)

object is the object being offset,

xoffset and yoffset are the distance along the x and y axes to offset the object, and

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

This function produces a new object that is a copy of the input object offset by xoffset along the X-axis
and yoffset along the Y-axis. The unit string, similar to that used for ObjectLen or Perimeter, is the unit
for the distance values. The DistanceType used is Cartesian. If the Coordinate System of the input
object is Lat/Long, an error will occur, since Cartesian DistanceTypes are not valid for Lat/Long. This is
signified by returning a NULL object. The coordinate system used is the coordinate system of the input
object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (e.g., the
center of the bounding box), and then that value is converted from the input units into the Coordinate
System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the fixed point.
The actual converted distance measurement could vary at different locations on the object. The
distance from the input object and the new offset object is only guaranteed to be exact at the single
fixed point used.

Example
CartesianOffset(Rect, 45, 100, “mi”)

See Also

CartesianOffset() Function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 99 MB_Ref.pdf

Reference Guide Chapter 3: CartesianPerimeter() function
CartesianPerimeter() function
Purpose

Returns the perimeter of a graphical object.

Syntax
CartesianPerimeter(obj_expr , unit_name)

obj_expr is an object expression

unit_name is a string representing the name of a distance unit (e.g., ”km”)

Return Value

Float

Description

The CartesianPerimeter() function calculates the perimeter of the obj_expr object. The Perimeter()
function is defined for the following object types: ellipses, rectangles, rounded rectangles, and
polygons. Other types of objects have perimeter measurements of zero.

The CartesianPerimeter() function will always return a value using a cartesian algorithm. A value of -
1 will be returned for data that is in a Latitude/longitude coordinate system, since Latitude/Longitude
data is not projected and not cartesian.

Returns a length measurement in the units specified by the unit_name parameter; for example, to
obtain a length in miles, specify ”mi” as the unit_name parameter. See the Set Distance Units
statement for the list of valid unit names. Returns approximate results when used on rounded
rectangles. MapBasic calculates the perimeter of a rounded rectangle as if the object were a
conventional rectangle.

Example

The following example shows how you can use the CartesianPerimeter() function to determine the
perimeter of a particular geographic object.

Dim perim As Float
Open Table ”world”
Fetch First From world
perim = CartesianPerimeter(world.obj, ”km”)
’ The variable perim now contains
’ the perimeter of the polygon that’s attached to
’ the first record in the World table.

You can also use the CartesianPerimeter() function within the SQL Select statement. The following
Select statement extracts information from the States table, and stores the results in a temporary table
called Results. Because the Select statement includes the CartesianPerimeter() function, the
Results table will include a column showing each state’s perimeter.

Open Table ”states”
Select state, CartesianPerimeter(obj, ”mi”)

From states
Into results

See Also

CartesianPerimeter() function, SphericalPerimeter() function, Perimeter() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 100 MB_Ref.pdf

Reference Guide Chapter 3: Centroid() function
Centroid() function
Purpose

Returns the centroid (center point) of an object.

Syntax
Centroid (obj_expr)

obj_expr is an object expression

 Return Value

Point object

Description

The Centroid() function returns a point object, which is located at the centroid of the specified
obj_expr object. A region’s centroid does not represent its center of mass. Instead, it represents the
location used for automatic labeling, geocoding, and placement of thematic pie and bar charts. If you
edit a map in reshape mode, you can reposition region centroids by dragging them.

If the obj_expr parameter represents a point object, the Centroid() function returns the position of the
point. If the obj_expr parameter represents a line object, the Centroid() function returns the point
midway between the ends of the line.

If the obj_expr parameter represents a polyline object, the Centroid() function returns a point located
at the mid point of the middle segment of the polyline.

If the obj_expr parameter represents any other type of object, the Centroid() function returns a point
located at the true centroid of the original object. For rectangle, arc, text, and ellipse objects, the
centroid position is halfway between the upper and lower extents of the object, and halfway between
the left and right extents. For region objects, however, the centroid position is always “on” the object in
question, and therefore may not be located halfway between the object’s extents.

Example
Dim pos As Object
Open Table ”world”
Fetch First From world
pos = Centroid(world.obj)

See Also

Alter Object statement, CentroidX() function, CentroidY() function

CentroidX() function
Purpose

Returns the x-coordinate of the centroid of an object.

Syntax
CentroidX(obj_expr)

obj_expr is an object expression
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 101 MB_Ref.pdf

Reference Guide Chapter 3: CentroidY() function
Return Value

Float

Description

The CentroidX() function returns the X coordinate (e.g., Longitude) component of the centroid of the
specified object. See the Centroid() function for a discussion of what the concept of a centroid
position means with respect to different types of graphical objects (lines vs. regions, etc.).

The coordinate information is returned in MapBasic’s current coordinate system; by default, MapBasic
uses a longitude, latitude coordinate system. The Set CoordSys statement allows you to change the
coordinate system used.

Examples

The following example shows how the CentroidX() function can calculate the longitude of a single
geographic object.

Dim x As Float
Open Table ”world”
Fetch First From world
x = CentroidX(world.obj)

You can also use the CentroidX() function within the SQL Select statement. The following Select
statement extracts information from the World table, and stores the results in a temporary table called
Results. Because the Select statement includes the CentroidX() and CentroidY() functions, the
Results table will include columns which display the longitude and latitude of the centroid of each
country.

Open Table ”world”
Select country, CentroidX(obj), CentroidY(obj)

From world Into results

See Also

Centroid() function, CentroidY() function, Set CoordSys statement

CentroidY() function
Purpose

Returns the y-coordinate of the centroid of an object.

Syntax
CentroidY(obj _expr)

obj_expr is an object expression

Return Value

Float

Description

The CentroidY() function returns the Y-coordinate (e.g., latitude) component of the centroid of the
specified object. See the Centroid() function for a discussion of what the concept of a centroid
position means, with respect to different types of graphical objects (lines vs. regions, etc.).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 102 MB_Ref.pdf

Reference Guide Chapter 3: CharSet clause
The coordinate information is returned in MapBasic’s current coordinate system; by default, MapBasic
uses a longitude, latitude coordinate system. The Set CoordSys statement allows you to change the
coordinate system used.

Example
Dim y As Float
Open Table ”world”
Fetch First From world
y = CentroidY(world.obj)

See Also

Centroid() function, CentroidX() function, Set CoordSys statement

CharSet clause
Purpose

Specifies which character set MapBasic uses for interpreting character codes.

Syntax
CharSet char_set

char_set is a String that identifies the name of a character set; see table below

Description

The CharSet clause specifies which character set MapBasic should use when reading or writing files
or tables. Note that CharSet is a clause, not a complete statement. Various file-related statements,
such as Open File, can incorporate optional CharSet clauses.

What Is A Character Set?

Every character on a computer keyboard corresponds to a numeric code. For example, the letter “A”
corresponds to the character code 65. A character set is a set of characters that appear on a computer,
and a set of numeric codes that correspond to those characters.

Different character sets are used in different countries. For example, in the version of Windows for
North America and Western Europe, character code 176 corresponds to a degrees symbol; however, if
Windows is configured to use a different character set, character code 176 may represent a different
character.

Call SystemInfo(SYS_INFO_CHARSET) to determine the character set in use at run-time.

How Do Character Sets Affect MapBasic Programs?

If your files use only standard ASCII characters in the range of 32 (space) to 126 (tilde), you do not
need to worry about character set conflicts, and you do not need to use the CharSet clause.

Even if your files include “special” characters (i.e. characters outside the range 32 to 126), if you do all
of your work within one environment (e.g., Windows) using only one character set, you do not need to
use the CharSet clause.

If your program needs to read an existing file that contains “special” characters, and if the file was
created in a character set that does not match the character set in use when you run your program,
your program should use the CharSet clause. The CharSet clause should indicate what character set
was in use when the file was created.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 103 MB_Ref.pdf

Reference Guide Chapter 3: CharSet clause
The CharSet clause takes one parameter: a String expression which identifies the name of the
character set to use. The following table lists all character sets available.

Character Set Comments

“Neutral” no character conversions performed

“ISO8859_1” ISO 8859-1 (UNIX)

“ISO8859_2” ISO 8859-2 (UNIX)

“ISO8859_3” ISO 8859-3 (UNIX)

“ISO8859_4” ISO 8859-4 (UNIX)

“ISO8859_5” ISO 8859-5 (UNIX)

“ISO8859_6” ISO 8859-6 (UNIX)

“ISO8859_7” ISO 8859-7 (UNIX)

“ISO8859_8” ISO 8859-8 (UNIX)

“ISO8859_9” ISO 8859-9 (UNIX)

“PackedEUCJapanese” UNIX, standard Japanese implementation

“WindowsLatin2”
“WindowsArabic”
“WindowsCyrillic”
“WindowsGreek”
“WindowsHebrew”
“WindowsTurkish”

Windows Eastern Europe

“WindowsTradChinese” Windows Traditional Chinese

“WindowsSimpChinese” Windows Simplified Chinese

“WindowsJapanese”

“WindowsKorean”

“CodePage437” DOS Code Page 437 = IBM Extended ASCII

“CodePage850” DOS Code Page 850 = Multilingual

“CodePage852” DOS Code Page 852 = Eastern Europe

“CodePage855” DOS Code Page 855 = Cyrillic

“CodePage857”

“CodePage860” DOS Code Page 860 = Portuguese

“CodePage861” DOS Code Page 861 = Icelandic

“CodePage863” DOS Code Page 863 = French Canadian

“CodePage864” DOS Code Page 864 = Arabic
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 104 MB_Ref.pdf

Reference Guide Chapter 3: ChooseProjection$() function
Note: You never need to specify a CharSet clause in an Open Table statement. Each table’s .TAB file
contains information about the character set used by the table. When opening a table, MapInfo
Professional reads the character set information directly from the .TAB file, then automatically
performs any necessary character translations.

To force MapInfo Professional to save a table in a specific character set, include a CharSet clause in
the Commit Table...As statement.

MapBasic 2.x CharSet Syntax
MapBasic version 2.x supported three character sets: “XASCII”, “ANSI” and “MAC”. Older programs
that refer to those three character-set names will still compile and run in later versions of MapBasic;
however, continued use of the 2.x-era character set names is discouraged.

CharSet “XASCII” specifies the same character set as CharSet “CodePage437”.

CharSet “MAC” specifies the same character set as CharSet “MacRoman”.

When a program runs on Windows, CharSet “ANSI” specifies whatever character set Windows is
currently using. Example: When reading a file created by a DOS application, you should specify the
“CodePage437” character set, as shown in the following example.

Open File ”parcel.txt”
For INPUT As #1
CharSet ”CodePage437”

See Also

Commit Table statement, Create Table statement, Export statement, Open File statement,
Register Table statement

ChooseProjection$() function
Purpose

Displays the Choose Projection dialog and returns the coordinate system selected by the user.

Syntax
ChooseProjection$(initial_coordsys, get_bounds)

initial_coordsys is a string value in the form of a Coordsys clause. It is used to set which coordinate
system is selected when the dialog is first displayed. If initial_coordsys is empty or an invalid coordsys
clause, then the default longitude-latitude coordinate system is used as the initial selection.

get_bounds is a logical value that determines whether the users is prompted for boundary values when
a non-earth projection is selected. If get_bounds is true then the boundary dialog is displayed. If false,
then the dialog is not displayed and the default boundary is used.

“CodePage865” DOS Code Page 865 = Nordic

“CodePage869” DOS Code Page 869 = Modern Greek

“LICS” Lotus worksheet release 1,2 character set

“LMBCS” Lotus worksheet release 3,4 character set

Character Set Comments
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 105 MB_Ref.pdf

Reference Guide Chapter 3: Chr$() function
Description

This function displays the Choose Projection dialog and returns the selected coordinate system as a
string. The returned string is in the same format as the CoordSys clause. Use this function if you wish
to allow the user to set a projection within your application.

Example
Dim strNewCoordSys As String

strNewCoordSys = ChooseProjection$(””, True)
strNewCoordSys = ”Set ” + strNewCoordSys
Run Command strNewCoordSys

See Also

MapperInfo() function

Chr$() function
Purpose

Returns a one-character string corresponding to a specified character code.

Syntax
Chr$(num_expr)

num_expr is an Integer value from 0 to 255 (or, if a double-byte character set is in use, from 0 to
65,535), inclusive

Return Value

String

Description

The Chr$() function returns a string, one character long, based on the character code specified in the
num_expr parameter. On most systems, num_expr should be a positive Integer value between 0 and
255. On systems that support double-byte character sets (e.g., Windows Japanese), num_expr can
have a value from 0 to 65,535.

Note: All MapInfo Professional environments have common character codes within the range of 32
(space) to 126 (tilde).

If the num_expr parameter is fractional, MapBasic rounds to the nearest integer.

Character 12 is the form-feed character. Thus, you can use the statement Print Chr$(12) to clear the
Message window. Character 10 is the line-feed character; see example below.

Character 34 is the double-quotation mark (”). If a string expression includes the function call Chr$(34),
MapBasic embeds a double-quote character in the string.

Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 106 MB_Ref.pdf

Reference Guide Chapter 3: Close All statement
Example
Dim s_letter As String * 1
s_letter = Chr$(65)
Note s_letter ’ This displays the letter ”A”
Note ”This message spans” + Chr$(10) + ”two lines.”

See Also

Asc() function

Close All statement
Purpose

Closes all open tables.

Syntax
Close All [Interactive]

Description

If a MapBasic application issues a Close All statement, and the affected table has edits pending (the
table has been modified but the modifications have not yet been saved to disk), the edits will be
discarded before the table is closed. No warning will be displayed. If you do not want to discard
pending edits, use the optional Interactive clause to prompt the user to save or discard changes.

See Also

Close Table statement

Close File statement
Purpose

Closes an open file.

Syntax
Close File [#] filenum

filenum is an integer number identifying which file to close

Description

The Close File statement closes a file which was opened through the Open File statement.

Note: The Open File and Close File statements operate on files in general, not on MapInfo
Professional tables. MapBasic provides a separate set of statements (e.g., Open Table) for
manipulating MapInfo tables.

Example
Open File ”cxdata.txt” For INPUT As #1
’
’ read from the file... then, when done:
’
Close File #1

See Also

Open File statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 107 MB_Ref.pdf

Reference Guide Chapter 3: Close Table statement
Close Table statement
Purpose

Closes an open table.

Syntax
Close Table table [Interactive]

table is the name of a table that is open

Description

The Close Table statement closes an open table. To close all tables, use Close All.

If a table is displayed in one or more Grapher or Browser windows, those windows disappear
automatically when the table is closed. If the Close Table statement closes the only table in a Map
window, the window closes. If you use the Close Table statement to close a linked table that has edits
pending, MapInfo Professional keeps the edits pending until a later session.

Saving Edits

If you omit the optional Interactive keyword, MapBasic closes the table regardless of whether the table
has unsaved edits; any unsaved edits are discarded. If you include the Interactive keyword, and if the
table has unsaved edits, MapBasic displays a dialog allowing the user to save or discard the edits or
cancel the close operation.

To guarantee that pending edits are discarded, omit the Interactive keyword or issue a RollBack
statement before calling Close Table. To guarantee that pending edits are saved, issue a Commit
statement before the Close Table statement. To determine whether a table has unsaved edits, call the
TableInfo(table, TAB_INFO_EDITED) function.

Saving Themes and Cosmetic Objects

When you close the last table in a Map window, the window closes. However, the user may want to
save thematic layers or cosmetic objects before closing the window. To prompt the user to save
themes or cosmetic objects, include the Interactive keyword.

If you omit the Interactive keyword, the Close Table statement will not prompt the user to save
themes or cosmetic objects. If you include the Interactive keyword, dialog boxes will prompt the user
to save themes and/or cosmetic objects, if such prompts are appropriate. (The user is not prompted if
the window has no themes or cosmetic objects.)

Examples
Open Table ”world”
’ ... when done using the WORLD table,
’ close it by saying:
Close Table world

To deselect the selected rows, close the Selection table.

Close Table Selection

See Also

Close All statement, Commit Table statement, Open Table statement, Rollback statement,
TableInfo() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 108 MB_Ref.pdf

Reference Guide Chapter 3: Close Window statement
Close Window statement
Purpose

Closes or hides a window.

Syntax
Close Window window_spec [Interactive]

window_spec is a window name (e.g., Ruler), a window code (e.g., WIN_RULER), or an Integer
window identifier

Description

The Close Window statement closes or hides a MapInfo Professional window.

To close a document window (Map, Browse, Graph, or Layout), specify an Integer window identifier as
the window_spec parameter. You can obtain Integer window identifiers through the FrontWindow()
and WindowID() functions.

To close a special MapInfo Professional window, specify one of the window names from the table
below as the window_spec parameter. You can identify a special window by name (e.g., Ruler) or by
code (e.g., WIN_RULER).

The following table lists the available window_spec values:

Saving Themes and Cosmetic Objects

The user may want to save thematic layers or cosmetic objects before closing the window. To prompt
the user to save themes or cosmetic objects, include the Interactive keyword.

If you omit the Interactive keyword, the Close Window statement will not prompt the user to save
themes or cosmetic objects. If you include the Interactive keyword, dialog boxes will prompt the user
to save themes and/or cosmetic objects, if such prompts are appropriate. (The user will not be
prompted if the window has no themes or cosmetic objects.)

Window name Window description

MapBasic The MapBasic window. You can also refer to this window by its define code:
WIN_MAPBASIC

Help The Help window. Its define code: WIN_HELP

Statistics The Statistics window. Its define code: WIN_STATISTICS

Legend The Theme Legend window. Its define code: WIN_LEGEND

Info The Info tool window. Its define code: WIN_INFO

Ruler The Ruler tool window. Its define code: WIN_RULER

Message The Message window (which appears when you issue a Print statement). Its
define code: WIN_MESSAGE
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 109 MB_Ref.pdf

Reference Guide Chapter 3: ColumnInfo() function
Example
Close Window Legend

See Also

Open Window statement, Print statement, Set Window statement

ColumnInfo() function
Purpose

Returns information about a column in an open table.

Syntax
ColumnInfo ({ tablename | tablenum } ,

 { columnname | “COLn”} ,
 attribute)

tablename is a string representing the name of an open table

tablenum is an integer representing the number of an open table

columnname is the name of a column in that table

n is the number of a column in the table

attribute is a code indicating which aspect of the column to read

Return Value

Depends on the attribute parameter specified

Description

The ColumnInfo() function returns information about one column in an open table.

The function’s first parameter specifies either the name or the number of an open table. The second
parameter specifies which column to query. The attribute parameter dictates which of the column’s
attributes the function should return. The attribute parameter can be any value from this table.

attribute setting ColumnInfo() returns:

COL_INFO_NAME String identifying the column name

COL_INFO_NUM SmallInt indicating the number of the column

COL_INFO_TYPE SmallInt indicating the column type (see table below)

COL_INFO_WIDTH SmallInt indicating the column width; applies to Character or Deci-
mal columns only

COL_INFO_DECPLACES SmallInt indicating the number of decimal places in a Decimal col-
umn

COL_INFO_INDEXED Logical value indicating if column is indexed

COL_INFO_EDITABLE Logical value indicating if column is editable
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 110 MB_Ref.pdf

Reference Guide Chapter 3: Combine() function
If the ColumnInfo() function call specifies COL_INFO_TYPE as its attribute parameter, MapBasic
returns one of the values from the table below:

The codes listed in both of the above tables are defined in the standard MapBasic definitions file,
MAPBASIC.DEF. Your program must Include “MAPBASIC.DEF” if you intend to reference these
codes.

Error Conditions

ERR_TABLE_NOT_FOUND error generated if the specified table is not available

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Example
Include ”MAPBASIC.DEF”
Dim s_col_name As String, i_col_type As SmallInt
Open Table ”world”
s_col_name = ColumnInfo(”world”,”col1”,COL_INFO_NAME)
i_col_type = ColumnInfo(”world”,”col1”,COL_INFO_TYPE)

See Also

NumCols() function, TableInfo() function

Combine() function
Purpose

Returns a region or polyline representing the union of two objects. The objects cannot be Text objects

Syntax
Combine (object1, object2)

object1, object2 are two object expressions; both objects can be closed (e.g., a region and a circle), or
both objects can be linear (e.g., a line and a polyline)

Return Value

An object that is the union of object1 and object2.

ColumnInfo() returns: Type of column indicated:

COL_TYPE_CHAR Character

COL_TYPE_DECIMAL Fixed-point decimal

COL_TYPE_FLOAT Floating-point decimal

COL_TYPE_INTEGER Integer (4-byte)

COL_TYPE_SMALLINT Small Integer (2-byte)

COL_TYPE_DATE Date

COL_TYPE_LOGICAL Logical (TRUE or FALSE)

COL_TYPE_GRAPHIC special column type Obj; this represents the graphical objects
attached to the table
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 111 MB_Ref.pdf

Reference Guide Chapter 3: CommandInfo() function
Description

The Combine() function returns an object representing the geographical union of two object
expressions. The union of two objects represents the entire area that is covered by either object.

The Combine() MapBasic function has been updated to allow heterogeneous combines, and to allow
Points, MultiPoints, and Collections as input objects. Previously, both objects had to be either linear
objects (Lines, Polylines, or Arcs) and produce Polylines as output; or both input objects had to be
closed (Regions, Rectangles, Rounded Rectangles, or Ellipses) and produce Regions as output.
Heterogeneous combines are not allowed, as are combines containing Point, MultiPoint and Collection
objects. Text objects are still not allowed as input to Combine().

MultiPoint and Collection objects, introduced in MapInfo Professional 6.5, extend the Combine
operation. The following table details the possible combine options available and the output results:

The results returned by Combine() are similar to the results obtained by choosing MapInfo
Professional’s Objects > Combine menu item, except that the Combine menu item modifies the original
objects; the Combine() function does not alter the object1 or object2 expressions. Also, the
Combine() function does not perform data aggregation.

The object returned by the Combine() function retains the styles (e.g., color) of the object1 parameter
when possible. Collection objects produced as output will get those portions of style that are possible
from object1, and the remaining portions of style from objects2. For example, if object1 is a Region and
object2 is a Polyline, then the output collection will use the brush and boarder pen of object1 for the
Region style contained in the collection, and the pen from object2 for the Polyline style in the collection.

See Also

Objects Combine statement

CommandInfo() function
Purpose

Returns information about recent events.

Syntax
CommandInfo(attribute)

attribute is an Integer code indicating what type of information to return

Input Object Type Input Object Type
 OutputObject

Type

Point or MultiPoint Point or MultiPoint MultiPoint

Linear (Line, Polyline, Arc) Linear Polyline

Closed (Region, Rectangle, Rounded Rectan-
gle, Ellipse)

Closed Region

Point, MultiPoint, Linear, Closed, Collection Point, MultiPoint, Linear,
Closed, Collection

Collection
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 112 MB_Ref.pdf

Reference Guide Chapter 3: CommandInfo() function
Return Value

Logical, Float, Integer, or String, depending on circumstances

Description

The CommandInfo() function returns information about recent events that affect MapInfo
Professional—for example, whether the “Selection” table has changed, where the user clicked with the
mouse, or whether it was a simple click or a “shift click.”

After Displaying a Dialog Box
When you call CommandInfo() after displaying a custom dialog box, the attribute parameter can be
one of these codes:

Within a Custom Menu or Dialog Handler
When you call CommandInfo() from within the handler procedure for a custom menu command or a
custom dialog box, the attribute parameter can be one of these codes:

attribute code CommandInfo(attribute) returns:

CMD_INFO_DLG_OK Logical value: TRUE if the user dismissed a custom dialog box by click-
ing OK; FALSE if user canceled by clicking Cancel, pressing Esc, etc.
(This call is only valid following a Dialog statement.)

CMD_INFO_STATUS Logical value: TRUE if the user allowed a progress-bar operation to
complete, or FALSE if the user pressed the Cancel button to halt.

attribute code CommandInfo(attribute) returns:

CMD_INFO_MENUITEM Integer value, representing the ID of the menu item the user chose.
This call is only valid within the handler procedure of a custom menu
item.

CMD_INFO_DLG_DBL Logical value: TRUE if the user double-clicked on a ListBox or
MultiListBox control within a custom dialog. This call is only valid
within the handler procedure of a custom dialog box.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 113 MB_Ref.pdf

Reference Guide Chapter 3: CommandInfo() function
Within a Standard Handler Procedure
When you call CommandInfo() from within a standard system handler procedure (such as
SelChangedHandler), the attribute parameter can be any of the codes from the following table. For
details, see the separate discussions of SelChangedHandler, RemoteMsgHandler,
WinChangedHandler and WinClosedHandler. From within SelChangedHandler:

From within RemoteMsgHandler, RemoteQueryHandler(), or RemoteMapGenHandler:

From within WinChangedHandler or WinClosedHandler:

From within ForegroundTaskSwitchHandler:

attribute code CommandInfo(attribute) returns:

CMD_INFO_SELTYPE 1 if one row was added to the selection;
2 if one row was removed from the selection;
3 if multiple rows were added to the selection;
4 if multiple rows were de-selected.

CMD_INFO_ROWID Integer value: The number of the row that was selected or de-
selected (only applies if a single row was selected or de-selected).

CMD_INFO_INTERRUP
T

Logical value: TRUE if the user interrupted a selection by pressing
Esc, FALSE otherwise.

CMD_INFO_MSG String value, representing the execute string or the item name sent to
MapInfo Professional by a client program. For details, see
RemoteMsgHandler, RemoteQueryHandler(), or RemoteMapGen-
Handler.

CMD_INFO_WIN Integer value, representing the ID of the window that changed or the
window that closed. For details, see WinChangedHandler or Win-
ClosedHandler.

CMD_INFO_TASK_SWITC
H

Integer value, indicating whether MapInfo Professional just
became the active application or just stopped being the active
application. The return value matches one of these codes:
SWITCHING_INTO_MI Pro (If MapInfo Professional received the
focus) SWITCHING_OUT_OF_MapInfo Professional (If MapInfo
Professional lost the focus).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 114 MB_Ref.pdf

Reference Guide Chapter 3: CommandInfo() function
After a Find Operation
Following a Find statement, the attribute parameter can be one of these codes:

Within a Custom ToolButton’s Handler Procedure

Within a custom ToolButton’s handler procedure, you can specify any of these codes:

attribute code CommandInfo(attribute) returns:

CMD_INFO_FIND_RC Integer value, indicating whether the Find statement found a
match.

CMD_INFO_FIND_ROWID Integer value, indicating the Row ID number of the row that
was found.

CMD_INFO_X or
CMD_INFO_Y

Floating-point number, indicating x- or y-coordinates of the
location that was found.

attribute code CommandInfo(attribute) returns:

CMD_INFO_X x coordinate of the spot where the user clicked:

If the user clicked on a Map, the return value represents a map
coordinate (e.g., longitude), in the current coordinate system unit.

If the user clicked on a Browser, the value represents the number
of a column in the Browser (e.g., one for the leftmost column, or
zero for the select-box column).

If the user clicked in a Layout, the value represents the distance
from the left edge of the Layout (e.g., zero represents the left
edge), in MapBasic’s current paper units.

CMD_INFO_Y y-coordinate of the spot where the user clicked:

If the user clicked on a map, the value represents a map coordi-
nate (e.g., Latitude).

If the user clicked on a Browser, the value represents a row num-
ber; a value of one represents the top row, and a value of zero rep-
resents the row of column headers at the top of the window.

If the user clicked on a Layout, the value represents the distance
from the top edge of the Layout.

CMD_INFO_X2 x-coordinate of the spot where the user released the mouse but-
ton. This only applies if the toolbutton was defined with a draw
mode that allows dragging, e.g., DM_CUSTOM_LINE.

CMD_INFO_Y2 y-coordinate of the spot where the user released the mouse but-
ton.

CMD_INFO_SHIFT Logical value: TRUE if the user held down the Shift key while click-
ing.

CMD_INFO_CTRL Logical value: TRUE if the user held down the Ctrl key while click-
ing.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 115 MB_Ref.pdf

Reference Guide Chapter 3: Commit Table statement
Hotlink Support
MapBasic applications launched via the Hotlink Tool can use the CommandInfo function to obtain
information about the object that was activated. The following is a table of the attributes that can be
queried:

See Also

FrontWindow() function, SelectionInfo() function, Set Command Info statement, WindowInfo()
function

Commit Table statement
Purpose

Saves recent edits to disk, or saves a copy of a table.

Syntax
Commit Table table

[As filespec
 [Type { NATIVE |

DBF [Charset char_set] |
Access Database database_filespec [Version version] Table tablename
[Password pwd] [Charset char_set] |

QUERY
}]
ODBC Connection ConnectionNumber Table tablename

 [CoordSys...]
 [Version version]]

[{ Interactive | Automatic commit_keyword }]
[ConvertObjects {ON | OFF | INTERACTIVE }]

table is the name of the table you are saving.

CMD_INFO_TOOLBTN Integer value, representing the ID of the button the user clicked.

CMD_INFO_CUSTOM_O
BJ

Object value: a polyline or polygon drawn by the user. Applies to
drawing modes DM_CUSTOM_POLYLINE or
DM_CUSTOM_POLYGON.

attribute code CommandInfo(attribute) returns:

CMD_INFO_HL_WINDOW_ID Id of map or browser window.

CMD_INFO_HL_TABLE_NAME Name of table associated with the map layer or browser

CMD_INFO_HL_ROWID Id of the table row corresponding to the map object or
browser row.

CMD_INFO_HL_LAYER_ID Layer id, if the program was launched from a map window.

CMD_INFO_HL_FILE_NAME Name of file launched.

attribute code CommandInfo(attribute) returns:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 116 MB_Ref.pdf

Reference Guide Chapter 3: Commit Table statement
filespec is a file specification (optionally including directory path). This is where the MapInfo .TAB file is
saved.

version is an expression that specifies the version of the Microsoft Jet database format to be used by
the new database. Acceptable values are 4.0 (for Access 2000) or 3.0 (for Access ’95/’97). If omitted,
the default version is 4.0. If the database in which the table is being created already exists, the
specified database version is ignored

char_set is the name of a character set; see the separate CharSet discussion.

database_filespec is a string that identifies the name and path of a valid Access database. If the
specified database does not exist, MapInfo Professional creates a new Access .MDB file.

tablename is a String that indicates the name of the table as it will appear in Access.

pwd is the database-level password for the database, to be specified when database security is turned
on.

ODBC indicates a copy of the Table will be saved on the DBMS specified by ConnectionNumber.

ConnectionNumber is an integer value that identifies the specific connection to a database.

tablename is the name of the table as you want it to appear in the database.

CoordSys is a coordinate system clause; see the separate CoordSys discussion.

version is 100 (to create a table that can be read by versions of MapInfo Professional) or 300 (MapInfo
Professional3.0 format) for non-Access tables. For Access tables, version is 410.

commit_keyword is one of the following keywords: NoCollision, ApplyUpdates, DiscardUpdates

Description

If no As clause is specified, the Commit statement saves any pending edits to the table. This is
analogous to the user choosing File > Save.

A Commit statement that includes an As clause has the same effect as a user choosing File > Save
Copy As. The As clause can be used to save the table with a different name, directory, file type, or
projection.

To save the table under a new name, specify the new name in the filespec string. To save the table in a
new directory path, specify the directory path at the start of the filespec string.

To save the table using a new file type, include a Type clause within the As clause. By default, the type
of the new table is NATIVE, but can also be saved as DBF.

The CharSet clause specifies a character set. The char_set parameter should be a string constant,
such as “WindowsLatin1”. If no CharSet clause is specified, MapBasic uses the default character set
for the hardware platform that is in use at runtime. See the discussion of the CharSet clause for more
information.

To save the table using a different coordinate system or projection, include a CoordSys clause within
the As clause. Note that only a mappable table may have a coordinate system or a projection.

To save a Query use the QUERY type for the table. Only queries made from the user interface and
queries created from Run Command statements in MapBasic can be saved. The Commit Table
statement will create a .TAB file and a .QRY file.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 117 MB_Ref.pdf

Reference Guide Chapter 3: Commit Table statement
The Version clause controls the table’s format. If you specify Version 100, MapInfo Professional stores
the table in a format readable by versions of MapInfo Professional. If you specify Version 300, MapInfo
Professional stores the table in MapInfo Professional 3.0 format. Note that region and polyline objects
having more than 8,000 nodes and multiple-segment polyline objects require version 300. If you omit
the Version clause, the table is saved in the version 300 format.

Note: If a MapBasic application issues a Commit Table...As statement affecting a table which has
memo fields, the memo fields will not be retained in the new table. No warning will be
displayed. If the table is saved to a new table through MapInfo Professional’s user interface (by
choosing File > Save Copy As), MapInfo Professional warns the user about the loss of the
memo fields. However, when the table is saved to a new table name through a MapBasic
program, no warning appears.

Saving Linked Tables
Saving a linked table can generate a conflict, when another user may have edits the same data in the
same table MapInfo Professional will detect if there were any conflicts and allows the user to resolve
them. The following clauses let you control what happens when there is a conflict. (These clauses have
no effect on saving a conventional MapInfo table.)

Interactive

In the event of a conflict, MapInfo Professional displays the Conflict Resolution dialog. After a
successful Commit Table Interactive statement, MapInfo Professional displays a dialog allowing the
user to refresh.

Automatic NoCollision

In the event of a conflict, MapInfo Professional does not perform the save. (This is the default behavior
if the statement does not include an Interactive clause or an Automatic clause.)

Automatic ApplyUpdates

In the event of a conflict, MapInfo Professional saves the local updates. (This is analogous to ignoring
conflicts entirely.)

Automatic DiscardUpdates
In the event of a conflict, MapInfo Professional saves the local updates already in the RDBMS
(discards your local updates). You can copy a linked table by using the As clause; however, the new
copy is not a linked table and no changes are updated to the server.

ODBC Connection
The length of tablename varies with databases. We recommend 14 or fewer characters for a table
name in order to work correctly for all databases. The statement limits the length of the tablename to a
maximum of 31 characters.

If the AS clause is used and ODBC is the Type, a copy of the table will be saved on the database
specified by ConnectionNumber and named as tablename. If the source table is mappable, three more
columns, Key column, Object column, and Style column, may be added to the destination database
table, tablename, whether or not the source table has those columns. If the source table is not
mappable, one more column, Key column, may be added to the database table, tablename, even if
the source table does not have a Key column. The Key column will be used to create a unique index.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 118 MB_Ref.pdf

Reference Guide Chapter 3: ConnectObjects() function
A spatial index will be created on the Object column if one is present. Unsupported object types will not
be saved to the destination table, but the rest of the attributes will be saved. The supported databases
include Oracle, SQL Server, IIS (Informix Universal Server), and Microsoft Access. However, to save a
table with a spatial geometry/object, (including saving a point-only table) the SpatialWare/Blade is
required for SQL Server and IUS, in addition to the spatial option for Oracle. The XY schema is not
supported in this statement.

Example

The following example opens the table STATES, then uses the Commit statement to make a copy of
the states table under a new name (ALBERS). The optional CoordSys clause causes the ALBERS
table to be saved using the Albers equal-area projection.

Open Table ”STATES”
Commit Table STATES

As ”ALBERS”
CoordSys Earth
Projection 9,7, ”m”, -96.0, 23.0, 20.0, 60.0, 0.0, 0.0

The following example illustrates an ODBC connection:

dim hodbc as integer
hodbc = server_connect("ODBC", "dlg=1")
Open table "C:\MapInfo\USA"
Commit Table USA
as "c:\temp\as\USA"

Type ODBC Connection hodbc Table "USA"

See Also

Rollback statement

ConnectObjects() function
Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
ConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 119 MB_Ref.pdf

Reference Guide Chapter 3: Continue statement
ConnectObjects() returns a Polyline object connecting object1 and object2 in the shortest (min ==
TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation cannot be
done using a spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then a
cartesian method will be used.

Continue statement
Purpose

Resumes the execution of a MapBasic program (following a Stop statement).

Syntax
Continue

Restrictions

The Continue statement may only be issued from the MapBasic window; it may not be included as
part of a compiled program.

Description

The Continue statement resumes the execution of a MapBasic application which was suspended
because of a Stop statement.

You can include Stop statements in a program for debugging purposes. When a MapBasic program
encounters a Stop statement, the program is suspended, and the File menu automatically changes to
include a Continue Program option instead of a Run option. You can resume the suspended
application by choosing File > Continue Program. Typing the Continue statement into the MapBasic
window has the same effect as choosing Continue Program.

Control Button / OKButton / CancelButton clause
Purpose

Part of a Dialog statement; adds a push-button control to a dialog.

Syntax
Control { Button | OKButton | CancelButton }

[Position x , y] [Width w] [Height h]
[ID control_ID]
[Calling handler]
[Title title_string]
[Disable] [Hide]

x, y specifies the button’s position in dialog units

w specifies the width of the button in dialog units; default width is 40

h specifies the height of the button in dialog units; default height is 18

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a procedure to call if the user clicks on the button

title_string is a text string to appear on the button
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 120 MB_Ref.pdf

Reference Guide Chapter 3: Control CheckBox clause
Description

If a Dialog statement includes a Control Button clause, the dialog includes a push-button control. If
the OKButton keyword appears in place of the Button keyword, the control is a special type of button;
the user chooses an OKButton control to “choose OK” and dismiss the dialog. Similarly, the user
chooses a CancelButton control to “choose Cancel” and dismiss the dialog. Each dialog should have
no more than one OKButton control, and have no more than one CancelButton control. Disable
makes the control disabled (grayed out) initially. Hide makes the control hidden initially.

Use the Alter Control statement to change a control’s status (e.g., whether the control is enabled,
whether the control is hidden).

Example
Control Button

Title ”&Reset”
Calling reset_sub
Position 10, 190

See Also

Alter Control statement, Dialog statement

Control CheckBox clause
Purpose

Part of a Dialog statement; adds a check box control to a dialog.

Syntax
Control CheckBox

[Position x , y] [Width w]
[ID control_ID]
[Calling handler]
[Title title_string]
[Value log_value]
[Into log_variable]
[Disable] [Hide]

x , y specifies the control’s position in dialog units

w specifies the width of the control in dialog units

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a procedure to call if the user clicks on the control

title_string is a text string to appear in the label to the right of the check-box

log_value is a logical value: FALSE sets the control to appear un-checked initially

log_variable is the name of a Logical variable

Description

If a Dialog statement includes a Control CheckBox clause, the dialog includes a check-box control.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 121 MB_Ref.pdf

Reference Guide Chapter 3: Control DocumentWindow clause
The Value clause controls the initial appearance. If the Value clause is omitted, or if it specifies a value
of TRUE, the check-box is checked initially. If Value clause specifies a FALSE value, check-box is
clear initially. Disable makes the control disabled (grayed out) initially. Hide makes the control hidden
initially.

Example
Control CheckBox

Title ”Include &Legend”
Into showlegend
ID 6
Position 115, 155

See Also

Alter Control statement, Dialog statement, ReadControlValue() function

Control DocumentWindow clause
Purpose

Part of a Dialog statement; adds a document window control to a dialog which can be re-parented for
integrated mapping.

Syntax
Control DocumentWindow
[Position x , y]
[Width w] [Height h]
[ID control_ID]
[Disable] [Hide]

x , y specifies the control's position in dialog units

w specifies the width of the control in dialog units; default width is 100

h specifies the height of the control in dialog units; default height is 100

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

Disable grays out the control initially

Hide initially hides the control

Description

If a Dialog statement includes a Control DocumentWindow clause, the dialog includes a document
window control that can be re-parented using Set Next Document.

Example

The following example draws a legend in a dialog:

Control DocumentWindow
ID ID_LEGENDWINDOW

Position 160, 20
Width 120 Height 150
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 122 MB_Ref.pdf

Reference Guide Chapter 3: Control DocumentWindow clause
The dialog handler will need to re-parent the window as in the following example:

Sub DialogHandler
OnError Goto HandleError
Dim iHwnd As Integer
Alter Control ID_LEGENDWINDOW Enable Show
' draw the legend
iHwnd = ReadControlValue(ID_LEGENDWINDOW)
Set Next Document Parent iHwnd Style WIN_STYLE_CHILD
Create Legend

Exit Sub
HandleError:

Note "DialogHandler: " + Error$()
End Sub

See Also

Dialog statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 123 MB_Ref.pdf

Reference Guide Chapter 4: Control EditText clause
Control EditText clause
Purpose

Part of a Dialog statement; adds an EditText control box (input text) to a dialog.

Syntax
Control EditText

[Position x , y] [Width w] [Height h]
[ID control_ID]
[Value initial_value]
[Into variable]
[Disable] [Hide] [Password]

x , y specifies the control’s position in dialog units.

w specifies the width of the control in dialog units.

h specifies the height of the control in dialog units; if the height is greater than 20, the control becomes
a multiple-line control, and text wraps down onto successive lines.

control_ID is an Integer; cannot be the same as the ID of another control in the dialog.

initial_value is a String or a numeric expression that appears in the box initially.

variable is the name of a string variable or a numeric variable; MapInfo Professional stores the final
value of the field in the variable if the user clicks OK.

the Disable keyword makes the control disabled (grayed out) initially.

the Hide keyword makes the control hidden initially.

the Password keyword creates a password field, which displays asterisks as the user types.

Description

If the user types more text than can fit in the box at one time, MapInfo Professional automatically
scrolls the text to make room. An EditText control can hold up to 32,767 characters.

If the height is large enough to fit two or more lines of text (for example, if the height is larger than 20),
MapInfo Professional automatically wraps text down to successive lines as the user types. If the user
enters a line-feed into the EditText box (for example, on Windows, if the user presses Ctrl-Enter while
in the EditText box), the string associated with the EditText control will contain a Chr$(10) value at the
location of each line-feed. If the str_value expression contains embedded Chr$(10) values, the text
appears formatted when the dialog appears.

To make an EditText control the active control, use an Alter Control...Active statement.

Example
Control EditText

Value ”Franchise Locations”
Position 65, 8 Width 90
ID 1
Into s_map_title

See Also

Alter Control statement, Dialog statement, ReadControlValue() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 124 MB_Ref.pdf

Reference Guide Chapter 4: Control GroupBox clause
Control GroupBox clause
Purpose

Part of a Dialog statement; adds a rectangle with a label to a dialog.

Syntax
Control GroupBox

[Position x , y] [Width w] [Height h]
[ID control_ID]
[Title title_string]
[Hide]

x , y specifies the control’s position in dialog units

w specifies the width of the control in dialog units

h specifies the height of the control in dialog units

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

title_string is a text string to appear at the upper-left corner of the box

the Hide keyword makes the control hidden initially

Example
Control GroupBox

Title ”Level of Detail”
Position 5, 30
Height 40 Width 70

See Also

Alter Control statement, Dialog statement

Control ListBox / MultiListBox clause
Purpose

Part of a Dialog statement; adds a list to a dialog.

Syntax
Control { ListBox | MultiListBox }

[Position x , y] [Width w] [Height h]
[ID control_ID]
[Calling handler]
[Title { str_expr | From Variable str_array_var }]
[Value i_selected]
[Into i_variable]
[Disable] [Hide]

x , y specifies the control’s position in dialog units

w specifies the width of the control in dialog units; default width is 80

h specifies the height of the control in dialog units; default height is 70

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a procedure to call if the user clicks or double-clicks on the list
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 125 MB_Ref.pdf

Reference Guide Chapter 4: Control ListBox / MultiListBox clause
str_expr is a String expression, containing a semicolon-delimited list of items to appear in the control

str_array_var is the name of an array of String variables

i_selected is a SmallInt value indicating which list item should appear selected when the dialog first
appears: a value of one selects the first list item; if the clause is omitted, no items are selected initially

i_variable is the name of a SmallInt variable which stores the user’s final selection

the Disable keyword makes the control disabled (grayed out) initially

the Hide keyword makes the control hidden initially

Description

If a Dialog statement includes a Control ListBox clause, the dialog includes a listbox control. If the list
contains more items than can be shown in the control at one time, MapBasic automatically adds a
scroll-bar at the right side of the control.

A MultiListBox control is identical to a ListBox control, except that the user can shift-click to select
multiple items from a MultiListBox control.

The Title clause specifies the contents of the list. If the Title clause specifies a String expression
containing a semicolon-delimited list of items, each item appears as one item in the list. The following
sample Title clause demonstrates this syntax:

Title ”1st Quarter;2nd Quarter;3rd Quarter;4th Quarter”

Alternately, if the Title clause specifies an array of String variables, each entry in the array appears as
one item in the list. The following sample Title clause demonstrates this syntax:

Title From Variable s_optionlist

Processing a MultiListBox control

To read what items the user selected from a MultiListBox control, assign a handler procedure that is
called when the user dismisses the dialog (for example, assign a handler to the OKButton control).
Within the handler procedure, set up a loop to call ReadControlValue() repeatedly.

The first call to ReadControlValue() returns the number of the first selected item; the second call to
ReadControlValue() returns the number of the second selected item; etc. When
ReadControlValue() returns zero, you have exhausted the list of selected items. If the first call to
ReadControlValue() returns zero, there are no list items selected.

Processing Double-click events

If you assign a handler procedure to a list control, MapBasic calls the procedure every time the user
clicks or double-clicks an item in the list. In some cases, you may want to provide special handling for
double-click events. For example, when the user double-clicks a list item, you may want to dismiss the
dialog as if the user had clicked on a list item and then clicked OK.

To see an example, click here: Letting the user double-click

To determine whether the user clicked or double-clicked, call the CommandInfo() function within the
list control’s handler procedure, as shown in the following sample handler procedure:

Sub lb_handler
Dim i As SmallInt
If CommandInfo(CMD_INFO_DLG_DBL) Then
’ ... then the user double-clicked.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 126 MB_Ref.pdf

Reference Guide Chapter 4: Control PenPicker/BrushPicker/SymbolPicker/FontPicker clause
i = ReadControlValue(TriggerControl())
Dialog Remove
’ at this point, the variable i represents
’ the selected list item...

End If
End Sub

Example
Control ListBox

Title ”1st Quarter;2nd Quarter;3rd Quarter;4th Quarter”
ID 3
Value 1
Into i_quarter
Position 10, 92 Height 40

See Also

Alter Control statement, Dialog statement, ReadControlValue() function

Control PenPicker/BrushPicker/SymbolPicker/FontPicker clause
Purpose

Part of a Dialog statement; adds a button showing a pen (line), brush (fill), symbol (point), or font (text)
style.

Syntax
Control { PenPicker | BrushPicker | SymbolPicker | FontPicker }

[Position x , y] [Width w] [Height h]
[ID control_ID]
[Calling handler]
[Value style_expr]
[Into style_var]
[Disable] [Hide]

x , y specifies the control’s position, in dialog units

w specifies the control’s width, in dialog units; default width is 20

h specifies the control’s height, in dialog units; default height is 20

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a handler procedure; if the user clicks on the Picker control, and then clicks OK
on the style dialog which appears, MapBasic calls the handler procedure

style_expr is a Pen, Brush, Symbol, or Font expression, specifying what style will appear initially in the
control; this expression type must match the type of control (for example, must be a Pen expression if
the control is a PenPicker)

style_var is the name of a Pen, Brush, Symbol, or Font variable; this variable type must match the type
of control (for example, must be a Pen variable if the control is a PenPicker control)

the Disable keyword makes the control disabled (grayed out) initially

the Hide keyword makes the control hidden initially
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 127 MB_Ref.pdf

Reference Guide Chapter 4: Control PopupMenu clause
Description

A Picker control (PenPicker, BrushPicker, SymbolPicker, or FontPicker) is a button showing a pen,
brush, symbol, or font style. If the user clicks on the button, a dialog appears to allow the user to
change the style.

Example
Control SymbolPicker

Position 140,42
Into sym_storemarker

See Also

Alter Control statement, Dialog statement, ReadControlValue() function

Control PopupMenu clause
Purpose

Part of a Dialog statement; adds a popup menu control to the dialog.

Syntax
Control PopupMenu

[Position x , y]
[Width w]
[ID control_ID]
[Calling handler]
[Title { str_expr | From Variable str_array_var }]
[Value i_selected]
[Into i_variable]
[Disable]

x , y specifies the control’s position in dialog units

w specifies the control’s width, in dialog units; default width is 80

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a procedure to call when the user chooses an item from the menu

str_expr is a String expression, containing a semicolon-delimited list of items to appear in the control

str_array_var is the name of an array of String variables

i_selected is a SmallInt value indicating which item should appear selected when the dialog first
appears: a value of one selects the first item; if the clause is omitted, the first item appears selected

i_variable is the name of a SmallInt variable which stores the user’s final selection (one if the first item
selected, etc.)

the Disable keyword makes the control disabled (grayed out) initially

Description

If a Dialog statement includes a Control PopupMenu clause, the dialog includes a pop-up menu. A
pop-up menu is a list of items, one of which is selected at one time. Initially, only the selected item
appears on the dialog.

If the user clicks on the control, the entire menu appears, and the user can choose a different item from
the menu.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 128 MB_Ref.pdf

Reference Guide Chapter 4: Control RadioGroup clause
The Title clause specifies the list of items that appear in the menu. If the Title clause specifies a String
expression containing a semicolon-delimited list of items, each item appears as one item in the menu.
The following sample Title clause demonstrates this syntax:

Title ”Town;County;Territory;Region;Entire state”

Alternately, the Title clause can specify an array of String variables, in which case each entry in the
array appears as one item in the popup menu. The following sample Title clause demonstrates this
syntax:

Title From Variable s_optionlist

Example
Control PopupMenu

Title ”Town;County;Territory;Region;Entire state”
Value 2
ID 5
Into i_map_scope
Position 10, 150

See Also

Alter Control statement, Dialog statement, ReadControlValue() function

Control RadioGroup clause
Purpose

Part of a Dialog statement; adds a list of radio buttons to the dialog.

Syntax
Control RadioGroup

[Position x , y]
[ID control_ID]
[Calling handler]
[Title { str_expr | From Variable str_array_var }]
[Value i_selected]
[Into i_variable]
[Disable] [Hide]

x , y specifies the control’s position in dialog units

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

handler is the name of a procedure to call if the user clicks or double-clicks on any of the radio buttons

str_expr is a String expression, containing a semicolon-delimited list of items to appear in the control

str_array_var is the name of an array of String variables

i_selected is a SmallInt value indicating which item should appear selected when the dialog first
appears: a value of one selects the first item; if the clause is omitted, the first item appears selected

i_variable is the name of a SmallInt variable which stores the user’s final selection (one if the first item
selected, etc.)

the Disable keyword makes the control disabled (grayed out) initially

the Hide keyword makes the control hidden initially
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 129 MB_Ref.pdf

Reference Guide Chapter 4: Control StaticText clause
Description

If a Dialog statement includes a Control RadioGroup clause, the dialog includes a group of radio
buttons. Each radio button is a label to the right of a hollow or filled circle. The currently-selected item
is indicated by a filled circle. Only one of the radio buttons may be selected at one time.

The Title clause specifies the list of labels that appear in the dialog. If the Title clause specifies a String
expression containing a semicolon-delimited list of items, each item appears as one item in the list.

The following sample Title clause demonstrates this syntax:

Title ”&Full Details;&Partial Details”

Alternately, the Title clause can specify an array of String variables, in which case each entry in the
array appears as one item in the list. The following sample Title clause demonstrates this syntax:

Title From Variable s_optionlist

Example
Control RadioGroup

Title ”&Full Details;&Partial Details”
Value 2
ID 2
Into i_details
Calling rg_handler
Position 15, 42

See Also

Alter Control statement, Dialog statement, ReadControlValue() function

Control StaticText clause
Purpose

Part of a Dialog statement; adds a label to a dialog.

Syntax
Control StaticText

[Position x , y]
[Width w] [Height h]
[ID control_ID]
[Title title_string]
[Hide]

x , y specifies the control’s position, in dialog units

w specifies the control’s width, in dialog units

h specifies the control’s height, in dialog units

control_ID is an Integer; cannot be the same as the ID of another control in the dialog

title_string is a text string to appear in the dialog as a label

the Hide keyword makes the control hidden initially

Description

If you want the text string to wrap down onto multiple lines, include the optional Width and Height
clauses. If you omit the Width and Height clauses, the static text control shows only one line of text.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 130 MB_Ref.pdf

Reference Guide Chapter 4: ConvertToPline() function
Example
Control StaticText

Title ”Enter map title:”
Position 5, 10

See Also

Alter Control statement, Dialog statement

ConvertToPline() function
Purpose

Returns a polyline object that approximates the shape of another object.

Syntax
ConvertToPline(object)

object is the object to convert; may not be a point object or a text object

Return Value

A polyline object

Description

The ConvertToPline() function returns a polyline object which approximates the object parameter.
Thus, if the object parameter represents a region object, ConvertToPline() returns a polyline that has
the same shape and same number of nodes as the region.

The results obtained by calling ConvertToPline() are similar to the results obtained by choosing
MapInfo Professional’s Objects > Convert To Polyline command. However, the function
ConvertToPline() does not alter the original object.

See Also

Objects Enclose statement

ConvertToRegion() function
Purpose

Returns a region object that approximates the shape of another object.

Syntax
ConvertToRegion (object)

object is the object to convert; may not be a point, line, or text object

Return Value

A region object

Description

Retains most style attributes. Other attributes are determined by the current pens or brushes. A
polyline whose first and last nodes are identical will not have the last node duplicated. Otherwise,
MapInfo Professional adds a last node whose vertices are the same as the first node.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 131 MB_Ref.pdf

Reference Guide Chapter 4: ConvexHull() function
The ConvertToRegion() function returns a region object which approximates the object parameter.
Thus, if the object parameter represents a rectangle, ConvertToRegion() returns a region that looks
like a rectangle.

The results obtained by calling ConvertToRegion() are similar to the results obtained by choosing
MapInfo Professional’s Objects > Convert To Region command. However, the ConvertToRegion()
function does not alter the original object.

See Also

Objects Enclose statement

ConvexHull() function
Purpose

Returns a region object that represents the convex hull polygon based on the nodes from the input
object. The convex hull polygon can be thought of as an operator that places a rubber band around all
of the points. It will consist of the minimal set of points such that all other points lie on or inside the
polygon. The polygon will be convex - no interior angle can be greater than 180 degrees.

Syntax
ConvexHull (inputobject)

inputobject is an object expression.

Return Value

Returns a region object.

Description

The ConvexHull() function returns a region representing the convex hull of the set of points
comprising the input object. The ConvexHull() function operates on one single object at a time. To
create a convex hull around a set of objects, use the Create Object As ConvexHull statement.

Example

The following program selects New York from the States file, then creates a ConvexHull surrounding
the selection.

Dim Resulting_object as object
select * from States
where State_Name = ”New York”
Resulting_object = ConvexHull(selection.obj)
Insert Into States(obj) Values (Resulting_object)

See Also:

Create Object statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 132 MB_Ref.pdf

Reference Guide Chapter 4: CoordSys clause
CoordSys clause
Purpose

Specifies a coordinate system.

Syntax 1
CoordSys Earth

[Projection type,
 datum,
 unitname
[, origin_longitude]
[, origin_latitude]
[, standard_parallel_1 [, standard_parallel_2]]
[, azimuth]
[, scale_factor]
[, false_easting]
[, false_northing]
[, range]]

[Affine Units unitname, A, B C, D, E, F]
[Bounds (minx, miny) (maxx, maxy)]

Syntax 2
CoordSys Nonearth

[Affine Units unitname, A, B C, D, E, F]
Units unitname
Bounds (minx, miny) (maxx, maxy)

Syntax 3
CoordSys Layout Units paperunitname

Syntax 4
CoordSys Table tablename

Syntax 5
CoordSys Window window_id

type is a positive integer value representing which coordinate system to use

datum is a positive integer value identifying which datum to reference

unitname is a string representing a distance unit of measure (for example, “m” for meters); for a list of
unit names, see Set Distance Units

origin_longitude is a float longitude value, in degrees

origin_latitude is a float latitude value, in degrees

standard_parallel_1 and standard_parallel_2 are float latitude values, in degrees

azimuth is a float angle measurement, in degrees

scale_factor is a float scale factor

range is a float value from 1 to 180, dictating how much of the Earth will be seen

minx is a float specifying the minimum x value

miny is a float specifying the minimum y value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 133 MB_Ref.pdf

Reference Guide Chapter 4: CoordSys clause
maxx is a float specifying the maximum x value

maxy is a float specifying the maximum y value

paperunitname is a string representing a paper unit of measure (for example, “in” for inches); for a list
of unit names, see Set Paper Units

tablename is the name of an open table

window_id is an Integer window identifier corresponding to a Map or Layout window

A performs scaling or stretching along the X axis.

B performs rotation or skewing along the X axis.

C performs shifting along the X axis.

D performs scaling or stretching along the Y axis.

E performs rotation or skewing along the Y axis.

F performs shifting along the Y axis.

Description

The CoordSys clause specifies a coordinate system, and, optionally, specifies a map projection to use
in conjunction with the coordinate system. Note that CoordSys is a clause, not a complete MapBasic
statement. Various statements may include the CoordSys clause; for example, a Set Map statement
can include a CoordSys clause, in which case the Set Map statement will reset the map projection
used by the corresponding Map window.

Use syntax 1 (above) to explicitly define a coordinate system for an Earth map (a map having
coordinates which are specified with respect to a location on the surface of the Earth). The optional
Projection parameters dictate what map projection, if any, should be used in conjunction with the
coordinate system. If the Projection clause is omitted, MapBasic uses datum 0. The Affine clause
describes the affine transformation for producing the derived coordinate system. If the Projection
clause is omitted, the base coordinate system is Longitude/Latitude. Since the derived coordinates
may be in different units than the base coordinates, the Affine clause requires you to specify the
derived coordinate units.

Use syntax 2 to explicitly define a non-Earth coordinate system, such as the coordinate system used in
a floor plan or other CAD drawing. In the CoordSys Non-Earth case, the base coordinate system is an
arbitrary Cartesian grid. The Units clause specifies the base coordinate units, and the Affine clause
specifies the derived coordinate units.

Use syntax 3 (CoordSys Layout) to define a coordinate system which represents a MapInfo
Professional Layout window. A MapBasic program must issue a Set CoordSys Layout statement
before querying, creating or otherwise manipulating Layout objects. The unitname parameter is the
name of a paper unit, such as “in” for inches or “cm” for centimeters. The following Set CoordSys
statement assigns a Layout window’s coordinate system, using inches as the unit of measure:

Set CoordSys Layout Units ”in”

Use syntax 4 (CoordSys Table) to refer to the coordinate system in which a table has been saved.

Use syntax 5 (CoordSys Window) to refer to the coordinate system already in use in a window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 134 MB_Ref.pdf

Reference Guide Chapter 4: CoordSys clause
When a CoordSys clause appears as part of a Set Map statement or Set Digitizer statement, the
Bounds subclause is ignored. The Bounds subclause is required for non-Earth maps when the
CoordSys clause appears in any other statement, but only for non-Earth maps.

Versions of MapInfo Professional prior to MapInfo Professional 4.1.2 do not recognize the affine
transformation constants in the CoordSys clause, Mapinfow.prj, or any MAP file. If a MAP file is created
using an affine transformation, older versions of MapInfo Professional will use the base coordinate
system instead of the derived coordinate system.

The Bounds clause defines the map’s limits; objects may not be created outside of those limits. When
specifying an Earth coordinate system, you may omit the Bounds clause, in which case MapInfo
Professional uses default bounds that encompass the entire Earth.

Note: In a Create Map statement, you can increase the precision of the coordinates in the map by
specifying narrower Bounds.

Every map projection is defined as an equation; and since the different projection equations have
different sets of parameters, different CoordSys clauses may have varying numbers of parameters in
the optional Projection clause. For example, the formula for a Robinson projection uses the Datum,
Units, and Origin Latitude parameters, while the formula for a Transverse Mercator projection uses the
Datum, Units, Origin Longitude, Origin Latitude, Scale Factor, False Easting, and False Northing
parameters.

For more information on projections and coordinate systems, see the MapInfo Professional
documentation.

Each MapBasic application has its own CoordSys setting that specifies the coordinate system used by
the application. If a MapBasic application issues a Set CoordSys statement, other MapBasic
applications which are also in use will not be affected.

Examples

The Set Map statement controls the settings of an existing Map window. The Set Map statement below
tells MapInfo Professional to display the Map window using the Robinson projection:

Set Map CoordSys Earth Projection 12, 12, ”m”, 0.

The first 12 specifies the Robinson projection; the second 12 specifies the Sphere datum; the “m”
specifies that the coordinate system should use meters; and the final zero specifies that the origin of
the map should be at zero degrees longitude.

The following statement tells MapInfo Professional to display the Map window without any projection.

Set Map CoordSys Earth

The following example opens the table World, then uses a Commit statement to save a copy of World
under the name RWorld. The new RWorld table will be saved with the Robinson projection.

Open Table ”world” As World
Commit Table world As ”RWORLD.TAB”

CoordSys Earth Projection 12, 12, ”m”, 0.

The following example sets one Map window’s projection to match the projection of another Map
window. This example assumes that two Integer variables (first_map_id and second_map_id) already
contain the window IDs of the two Map windows.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 135 MB_Ref.pdf

Reference Guide Chapter 4: Cos() function
Set Map
Window second_map_winid
CoordSys Window first_map_winid

The following example defines a coordinate system called DCS that is derived from UTM Zone 10
coordinate system using the affine transformation

x1 = 1.57x - 0.21y + 84120.5
y1 = 0.19x + 2.81y - 20318.0

In this transformation, (x1 , y1) represents the DCS derived coordinates, and (x, y) represents the
UTM Zone 10 base coordinates. If the DCS coordinates are measured in feet, the CoordSys clause for
DCS would be as follows:

CoordSys Earth
Projection 8, 74, ”m”, -123, 0, 0.9996, 500000, 0
Affine Units ”ft”, 1.57, -0.21, 84120.5, 0.19, 2.81, -20318.0

See Also

Commit Table statement, Set CoordSys statement, Set Map statement

Cos() function
Purpose

Returns the cosine of a number.

Syntax
Cos (num_expr)

num_expr is a numeric expression representing an angle in radians

Return Value

Float

Description

The Cos() function returns the cosine of the numeric num_expr value, which represents an angle in
radians. The result returned from Cos() will be between one and minus one.

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. (Note that your program will need to Include
“MAPBASIC.DEF” in order to reference DEG_2_RAD or RAD_2_DEG).

Example
Include ”MAPBASIC.DEF”
Dim x, y As Float
x = 60 * DEG_2_RAD
y = Cos(x)

’ y will now be equal to 0.5
’ since the cosine of 60 degrees is 0.5

See Also

Acos() function, Asin() function, Atn() function, Sin() function, Tan() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 136 MB_Ref.pdf

Reference Guide Chapter 4: Create Arc statement
Create Arc statement
Purpose

Creates an arc object.

Syntax
Create Arc

[Into { Window window_id | Variable var_name }]
(x1 , y1) (x2 , y2)
 start_angle end_angle
[Pen . . .]

window_id is a window identifier

var_name is the name of an existing object variable

x1 , y1 specifies one corner of the minimum bounding rectangle (MBR) of an ellipse; the arc produced
will be a section of this ellipse

x2 , y2 specifies the opposite corner of the ellipse’s MBR

start_angle specifies the arc’s starting angle, in degrees

end_angle specifies the arc’s ending angle, in degrees

The Pen clause specifies a line style

Description

The Create Arc statement creates an arc object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement. Before creating objects on a Layout window, you must issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Arc statement uses the current MapInfo Professional line style (the
style which appears in the Options > Line Style dialog).

See Also

Insert statement, Pen clause, Update statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 137 MB_Ref.pdf

Reference Guide Chapter 4: Create ButtonPad statement
Create ButtonPad statement
Purpose

Creates a ButtonPad (toolbar).

Syntax
Create ButtonPad { title_string | ID pad_num } As

button_definition [button_definition ...]
[Title title_string]
[Width w]
[Position (x, y) [Units unit_name]]
[ToolbarPosition (row , column)]
[{ Show | Hide }]
[{ Fixed | Float }]

title_string is the ButtonPad title (for example, “Drawing”)

pad_num is the ID number for the standard toolbar you want to re-define: 1 for Main, 2 for Drawing, 3
for Tools, 4 for Standard, 5 for ODBC

w is the pad width, in terms of the number of buttons across

x, y specify the pad’s position when it is floating; specified in paper units (for example, inches)

unit_name is a String paper units name (for example, “in” for inches, “cm” for centimeters)

row, column specify the pad’s position when it is docked as a toolbar (for example, 0, 0 places the pad
at the left edge of the top row of toolbars, and 0, 1 represents the second pad on the top row)

Each button_definition clause can consist of the keyword Separator, or it can have the following
syntax:

{ PushButton | ToggleButton | ToolButton }
Calling { procedure | menu_code | OLE methodname | DDE server , topic }
[ID button_id]
[Icon n [File file_spec]]
[Cursor n [File file_spec]]
[DrawMode dm_code]
[HelpMsg msg]
[ModifierKeys { On | Off }]
[Enable] [Disable]
[Check] [Uncheck]

procedure is the handler procedure to call when a button is used

menu_code is a standard MapInfo Professional menu code from MENU.DEF (for example,
M_FILE_OPEN); MapInfo Professional runs the menu command when the user uses the button

methodname is a string specifying an OLE method name

server , topic are strings specifying a DDE server and topic name

ID button_id specifies a unique button number. This number can be used as a parameter to allow a
handler to determine which button is in use (in situations where different buttons call the same handler)
or as a parameter to be used with the Alter Button statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 138 MB_Ref.pdf

Reference Guide Chapter 4: Create ButtonPad statement
Icon n specifies the icon to appear on the button; n can be one of the standard MapInfo icon codes
listed in ICONS.DEF (for example, MI_ICON_RULER). If the File sub-clause specifies the name of a
file containing icon resources, n is an Integer resource ID identifying a resource in the file.

Cursor n specifies the shape the mouse cursor should adopt whenever the user chooses a ToolButton
tool; n is a cursor code (for example, MI_CURSOR_ARROW) from ICONS.DEF. This clause applies
only to ToolButtons. If the File sub-clause specifies the name of a file containing icon resources, n is an
Integer resource ID identifying a resource in the file.

DrawMode dm_code specifies whether the user can click and drag, or only click with the tool;
dm_code is a code (for example, DM_CUSTOM_LINE) from ICONS.DEF. DrawMode clause applies
only to ToolButtons.

HelpMsg msg specifies the button’s status bar help and, optionally, ToolTip help. The first part of the
msg string is the status bar help message. If the msg string includes the letters \n then the text
following the \n is used as the button’s ToolTip help.

ModifierKeys clause controls whether the shift and control keys affect “rubber-band” drawing if the
user drags the mouse while using a ToolButton. Default is Off, meaning that the shift and control keys
have no effect.

Description

Use the Create ButtonPad statement to create a custom ButtonPad. Once you have created a custom
ButtonPad, you can modify it using Alter Button and Alter ButtonPad statements.

Each toolbar can be hidden. To create a toolbar in the hidden state, include the Hide keyword.Each
toolbar can be floating or fixed to the top of the screen (“docked”). A floating toolbar resembles a
window, such as the Info tool window. To create a fixed toolbar, include the keyword Fixed. To create a
floating toolbar, include the keyword Float. When a toolbar is floating, its position is controlled by the
Position clause; when it is docked, its position is controlled by the ToolbarPosition clause.

For more information on ButtonPads, see the MapBasic User Guide. For additional information about
the capabilities of ToolButtons, see Alter ButtonPad.

Calling Clause Options
The Calling clause specifies what should happen when the user acts on the custom button. The
following table describes the available syntax.

Calling clause example Description

Calling M_FILE_NEW If Calling is followed by a numeric code from MENU.DEF, the event
runs a standard MapInfo Professional menu command (the File >
New command, in this example).

Calling my_procedure If you specify a procedure name, the event calls the procedure. The
procedure must be part of the same MapBasic program.

Calling OLE “methodname” Makes a method call to the OLE Automation object set by MapInfo
Professional’s SetCallback method.See the MapBasic User Guide.

Calling DDE ”server”,“topic” Connects through DDE to “server|topic” and sending an Execute
message to the DDE server.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 139 MB_Ref.pdf

Reference Guide Chapter 4: Create ButtonPads As Default statement
In the last two cases, the string sent to OLE or DDE starts with the three letters “MI:” so that the server
can detect that the message came from MapInfo. The remainder of the string contains a comma-
separated list of the values returned from the function calls CommandInfo(1) through
CommandInfo(8). For complete details on the string syntax, see the MapBasic User Guide.

Example
Create ButtonPad ”Utils” As

PushButton
HelpMsg ”Choose this button to display query dialog”
Calling button_sub_proc
Icon MI_ICON_ZOOM_QUESTION

ToolButton
HelpMsg ”Use this tool to draw a new route”
Calling tool_sub_proc
Icon MI_ICON_CROSSHAIR
DrawMode DM_CUSTOM_LINE

ToggleButton
HelpMsg ”Turn proximity checking on/off”
Calling toggle_prox_check
Icon MI_ICON_RULER
Check

Title ”Utilities”
Width 3
Show

See Also

Alter Button statement, Alter ButtonPad statement

Create ButtonPads As Default statement
Purpose

Restore standard ButtonPads (for example, the Main ButtonPad) to their default state.

Syntax
Create ButtonPads As Default

Description

This statement destroys any custom ButtonPads and returns MapInfo Professional’s standard
ButtonPads (Main, Drawing, and Tools) to their default states.

Use this statement with caution. The Create ButtonPads As Default statement destroys all custom
buttons, even buttons defined by other MapBasic applications.

See Also

Alter Button statement, Alter ButtonPad statement, Create ButtonPad statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 140 MB_Ref.pdf

Reference Guide Chapter 4: Create Cartographic Legend statement
Create Cartographic Legend statement
Purpose

The Create Cartographic Legend statement allows you to create and display cartographic style
legends as well as theme legends for an active map window. Each cartographic and thematic styles
legend will be connected to one, and only one, map window so that there can be more than one legend
window open at a time.

You can create a frame for each cartographic or thematic map layer you want to include on the
legend.The cartographic and thematic frames will include a legend title and subtitle. Cartographic
frames display a map layer’s styles; legend frames display the colors, symbols and sizes represented
by the theme. You can create frames that have styles based on the map window’s style or you can
create your own custom frames.

The previous MapInfo Professional map legend was a single floating window that only displayed
thematic legends for the active map window and was shared by all map windows. The new legend
window will replace the current legend window; however, the current legend window and its
functionality will still be available programmatically through existing MapBasic statements (i.e., Create
Legend, Set Legend, etc....)

Syntax
Create Cartographic Legend

[From Window map_window_id]
[Behind]
[Position (x , y) [Units paper_units]]
[Width win_width [Units paper_units]]
[Height win_height [Units paper_units]]
[Window Title { legend_window_title }
[ScrollBars { On | Off }]
[Portrait | Landscape | Custom]
[Style Size {Small | Large}
[Default Frame Title { def_frame_title } [Font...] }]
[Default Frame Subtitle { def_frame_subtitle } [Font...] }]
[Default Frame Style { def_frame_style } [Font...] }]
[Default Frame Border Pen [[pen_expr]
Frame From Layer { map_layer_id | map_layer_name

[Using
[Column { column | object } [FromMapCatalog { On | Off }]]
[Label { expression | default }]

[Position (x , y) [Units paper_units]]
[Title { frame_title [Font...] }
[SubTitle { frame_subtitle [Font...] }]
[Border Pen pen_expr]
[Style [Font...] [Norefresh]

[Text { style_name } { Line Pen... | Region Pen... Brush...|
Symbol Symbol... } | Collection [Symbol ...]

[Line Pen ...] [Region Pen... Brush ...] }]
[, ...]

map_window_id is an Integer window identifier which you can obtain by calling the FrontWindow()
and WindowId() functions.

x states the desired distance from the top of the workspace to the top edge of the window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 141 MB_Ref.pdf

Reference Guide Chapter 4: Create Cartographic Legend statement
y states the desired distance from the left of the workspace to the left edge of the window.

paper_units is a string representing a paper unit name (for example, “cm” for centimeters).

win_width is the desired width of the window.

win_height is the desired height of the window.

legend_window_title is a string expression representing a title for the window, defaults to “Legend of
xxx” where xxx is the map window title.

def_frame_title is a string which defines a default frame title. It can include the special character “#”
which will be replaced by the current layer name.

def_frame_subtitle is a string which defines a default frame subtitle. It can include the special character
“#” which will be replaced by the current layer name.

def_frame_style is a string that displays next to each symbol in each frame. The ”#” character will be
replaced with the layer name. The % character will be replaced by the text “Line”, “Point, “Region”, as
appropriate for the symbol. For example, “% of #” will expand to “Region of States” for the states.tab
layer.

pen_expr is a Pen expression, for example, MakePen(width, pattern, color). If a default border pen is
defined, then it will be become the default for the frame. If a border pen clause exists at the frame level,
then it is used instead of the default.

map_layer_id or map_layer_name identifies a map layer; can be a Smallint (for example, use 1 to
specify the top map layer other than Cosmetic) or a String representing the name of a table displayed
in the map. For a theme layer you must specify the map_layer_id.

frame_title is a string which defines a frame title. If a title clause is defined here for a frame, then it will
be used instead of the def_frame_title.

frame_subtitle is a string which defines a frame subtitle. If a subtitle clause is defined here for a frame,
then it will be used instead of the def_frame_subtitle.

column is an attribute column name from the frame layer’s table, or the object column (meaning that
legend styles are based on the unique styles in the mapfile). The default is ’object’.

label is either a valid expression or default (meaning that the default frame style pattern is used when
creating each style’s text, unless the style clause contains text). The default is default.

style_name is a string which displays next to a symbol, line, or region in a custom frame.

Description

At least one Frame clause is required.

All clauses pertaining to the entire legend (scrollbars, width, etc.) must proceed the first Frame clause.

The From Layer clause must be the first clause after Frame.

Behind places the legend behind the thematic map window.

The optional Position clause controls the window’s position on MapInfo Professional’s workspace. The
upper left corner of MapInfo Professional’s work space has the position 0, 0. The optional Width and
Height clauses control the window’s size. Window position and size values use paper units settings,
such as “in” (inches) or “cm” (centimeters). MapBasic has a current paper units setting, which defaults
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 142 MB_Ref.pdf

Reference Guide Chapter 4: Create Cartographic Legend statement
to inches; a MapBasic program can change this setting through the Set Paper Units statement. A
Create Cartographic Legend statement can override the current paper units by including the optional
Units subclause within the Position, Width, and/or Height clauses.

Use the ScrollBars clause to show or hide scroll-bars on a Map window.

Portrait or Landscape describes the orientation of the legend frames in the window. Portrait results in
an orientation that is down and across. Landscape results in an orientation that is across and down.

If Custom is specified, you can specify a custom Position clause for a frame.

The Position clause at the frame level specifies the position of a frame if Custom is specified.

The optional Style Size clause controls the size of the samples that appear in legend windows. If you
specify Style Size Small, small-sized legend samples are used in legend windows. If you specify Style
Size Large, larger-sized legend samples are used.

The Position, Title, SubTitle, Border Pen, and Style clauses at the frame level are used only for map
layers. They are not used for thematic layers. For a thematic layer, this information is gotten
automatically from the theme.

The Font clause specifies a text style. If a default frame title, subtitle or style name font is defined, then
it will become the default for the frame. If a frame level title, subtitle or style clause exists and includes
a font clause, then the frame level font is used. If no font is specified at any level, then the current text
style is used and the point sizes are 10, 9 and 8 for title, subtitle and style name.

The Style clause and the NoRefresh keyword allow you to create custom frames that will not be
overwritten when the legend is refreshed. If the NoRefresh keyword is used in the Style clause, then
the table is not scanned for styles. Instead, the Style clause must contain your custom list of definitions
for the styles displayed in the frame. This is done with the Text clause and appropriate Line, Region,
or Symbol clause. Multipoint objects are treated as Point objects.

Collection objects are treated separately. When we create Legend based on object types, we draw
Point symbols first, then Lines, then Regions. Collection objects are drawn last. Inside collection
objects we draw point, then line and then region samples.

If a Column is defined, it must be an attribute column name from the frame layer’s table, or the ’object’
column (meaning that legend styles are based on the unique styles in the mapfile). The default is
’object’.

FromMapCatalog ON retrieves styles from the MapCatalog for a live access table. If the table is not a
live access table, MapBasic reverts to the default behavior for a non-live access table instead of
throwing an error. The default behavior for a non-access table is FromMapCatalog Off (i.e., map
styles).

FromMapCatalog OFF retrieves the unique map styles for the live table from the server. This table
must be a live access table that supports per record styles for this to occur. If the live table does not
support per record styles than the behavior is to revert to the default behavior for live tables, which is to
get the default styles from the MapCatalog (FromMapCatalog ON).

If a Label is defined, it is either a valid expression or ’default’ (meaning that the default frame style
pattern is used when creating each style’s text, unless the style clause contains text). The default is
default.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 143 MB_Ref.pdf

Reference Guide Chapter 4: CreateCircle() function
Initially, each frame layer’s TAB file will be searched for metadata values for Title, Subtitle, Column and
Label. If no metadata value exists for Column, the default is object. If no metadata value exists for
Label, the default is the default frame style pattern. If legend metadata keys exist and you want to
override them, you must use the corresponding MapBasic syntax.

Example

The following example shows how to create a frame for a Map window's Cartographic legend. Legend
windows are a special case: To create a frame for a Legend window, you must use the Title clause
instead of the From Window clause.

Dim i_layout_id, i_map_id As Integer
Dim s_title As String

' here, you would store the Map window's ID in i_map_id,
' and store the Layout window's ID in i_layout_id.
' To obtain an ID, call FrontWindow() or WindowID().

s_title = "Legend of " + WindowInfo(i_map_id, WIN_INFO_NAME)
Set CoordSys Layout Units "in"
Create Frame

Into Window i_layout_id
(1,2) (4, 5)
Title s_title

This will create a frame for a Cartographic legend window. To create a frame for a thematic legend
window, change the title to the following.

S_title="Theme Legend of " + WindowInfo (I_map_id, WW_INFO_NAME)

See Also

Set Cartographic Legend statement, Alter Cartographic Frame statement, Add Cartographic
Frame statement, Remove Cartographic Frame statement, Create Legend statement, Set
Window statement, WindowInfo() function

CreateCircle() function
Purpose

Returns an Object value representing a circle.

Syntax
CreateCircle(x , y , radius)

x is a Float value, indicating the x-position (for example, Longitude) of the circle’s center

y is a Float value, indicating the y-position (for example, Latitude) of the circle’s center

radius is a Float value, indicating the circle radius

Return Value

Object

Description

The CreateCircle() function returns an Object value representing a circle.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 144 MB_Ref.pdf

Reference Guide Chapter 4: CreateCircle() function
The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system.

Note: MapBasic’s coordinate system is independent of the coordinate system of any Map window.

The radius parameter specifies the circle radius, in whatever distance unit MapBasic is currently using.
By default, MapBasic uses miles as the distance unit, although the Set Distance Units statement can
re-configure MapBasic to use a different distance unit.

The circle will use whatever Brush style is currently selected. To create a circle object with a specific
Brush, you could issue the Set Style statement before calling CreateCircle(). Alternately, instead of
calling CreateCircle(), you could issue a Create Ellipse statement, which has optional Pen and Brush
clauses.

The circle object created through the CreateCircle() function could be assigned to an Object variable,
stored in an existing row of a table (through the Update statement), or inserted into a new row of a
table (through an Insert statement).

Note: Before creating objects on a Layout window, you must issue a Set CoordSys Layout
statement.

Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Examples

The following example uses the Insert statement to insert a new row into the table Sites. The
CreateCircle() function is used within the body of the Insert statement to specify the graphic object
that will be attached to the new row.

Open Table ”sites”
Insert Into sites (obj)

Values (CreateCircle(-72.5, 42.4, 20))

The following example assumes that the table Towers has three columns: Xcoord, Ycoord, and Radius.
The Xcoord column contains longitude values, the Ycoord column contains latitude values, and the
Radius column contains radius values. Each row in the table describes a radio broadcast tower, and
the Radius column indicates each tower’s broadcast area.

The Update statement uses the CreateCircle() function to build a circle object for each row in the
table. Following this Update statement, each row in the Towers table will have a circle object attached.
Each circle object will have a radius derived from the Radius column, and each circle will be centered
at the position indicated by the Xcoord, Ycoord columns.

Open Table ”towers”
Update towers

Set obj = CreateCircle(xcoord, ycoord, radius)

See Also

Create Ellipse statement, Insert statement, Update statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 145 MB_Ref.pdf

Reference Guide Chapter 4: Create Collection statement
Create Collection statement
Purpose

Combine points, linear objects and closed objects into a single object. The collection object displays in
the Browser as a single record.

Syntax
Create Collection [num_parts]

[Into { Window window_id | Variable var_name }]
Multipoint

[num_points]
(x1, y1) (x2, y2) [...]
[Symbol . . .]

Region
num_polygons
[num_points1 (x1, y1) (x2, y2) [...]]
[num_points2 (x1, y1) (x2, y2) [...] ...]
[Pen ...]
[Brush ...]
[Center (center_x, center_y)]

Pline
[Multiple num_sections]
num_points
(x1, y1) (x2, y2) [...]
[Pen ...]
[Smooth ...]

num_parts - number of non-empty parts inside a collection. This number is from 0 to 3 and is optional
for MapBasic code (it is mandatory for MIF files).

num_polygons is the number of polygons inside the Collection object.

num_sections specifies how many sections the multi-section polyline will contain.

Example
create collection multipoint 2 (0,0) (1,1) region 3 3 (1,1) (2,2) (3,4) 4 (11,11)
(12,12) (13,14) (19,20) 3 (21,21) (22,22) (23,24) pline 3 (-1,1) (3,-2) (4,3)

dim a as object
create collection into variable a multipoint 2 (0,0) (1,1) region 1 3 (1,1) (2,2)
(3,4) pline 3 (-1,1) (3,-2) (4,3)
insert into test (obj) values (a)

create collection region 2 4 (-5,-5) (5,-5) (5,5) (-5,5) 4 (-3,-3) (3,-3) (3,3)
(-3,3) pline multiple 2 2 (-6,-6) (6,6) 2 (-6,6) (6,-6) multipoint 6 (2,2) (-2,-
2) (2,-2) (-2,2) (4,1) (-1,-4)

See Also

Create MultiPoint statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 146 MB_Ref.pdf

Reference Guide Chapter 4: Create Cutter statement
Create Cutter statement
Purpose

Given a set of Target objects, and a set of polylines as a selection object, this statement will produce a
Region object that can be used as a cutter for an Object Split operation, as well as a new set of Target
objects which may be a subset of the original set of Target objects.

Syntax
Create Cutter Into Target

Description

Before using Create Cutter, one or more Polyline objects must be selected, and an editable target
must exist. This is set by choosing Objects > Set Target, or using the Set Target statement. The
Polyline objects contained in the selection must represent a single, contiguous section. The Polyline
selection must contain no breaks or self intersections.

The Polyline must intersect the MBR of the Target in order for the Target to be a valid object to split.
The Polyline, however, does not have to intersect the Target object itself. For example, the Target
object could be a series of islands (for example, Hawaii), and the Polyline could be used to divide the
islands into two sets without actually intersecting any of the islands. If the MBR of a Target does not
intersect the Polyline, then that Target will be removed from the Target list.

Given this revised set of Target objects, a cumulative MBR of all of these objects is calculated and
represents the overall space to be split. The polyline is then extended, if necessary, so that it covers
the MBR. This is done by taking the direction of the last two points on each end of the polyline and
extending the polyline in that cartesian direction until it intersects with the MBR. The extended Polyline
should divide the Target space into two portions. One Region object will be created and returned which
represents one of these two portions.

This statement will return the revised set of Target objects (still set as the Target), as well as this new
Region cutter object. This Region object will be inserted into the Target table (which must be an
editable table). The original Polyline object(s) will remain, but will no longer be selected. The new
Region object will now be the selected object. If the resulting Region object is suitable, then this
operation can be immediately followed by an Object Split operation, as appropriate Target objects are
set, and a suitable Region cutter object is selected.

Note: The cutter object still remains in the target layer. You will have to delete the cutter object
manually from your editable layer.

Example
Open Table "C:\MapInfo_data\TUT_USA\USA\STATES.TAB"
Open Table "C:\MapInfo_data\TUT_USA\USA\US_HIWAY.TAB"
Map from States, Us_hiway
select * from States where state = "NY"
Set target On
select * from Us_hiway where highway = "I 90"
Create Cutter Into Target
Objects Split Into Target

See Also

Set Target statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 147 MB_Ref.pdf

Reference Guide Chapter 4: Create Ellipse statement
Create Ellipse statement
Purpose

Creates an ellipse or circle object.

Syntax
Create Ellipse

[Into { Window window_id | Variable var_name }]
(x1, y1) (x2, y2)
[Pen . . .]
[Brush . . .]

window_id is a window identifier

var_name is the name of an existing object variable

x1 y1 specifies one corner of the rectangle which the ellipse will fill

x2 y2 specifies the opposite corner of the rectangle

The Pen clause specifies a line style

The Brush clause specifies a fill style

Description

The Create Ellipse statement creates an ellipse or circle object. If the object’s Minimum Bounding
Rectangle (MBR) is defined in such a way that the x-radius equals the y-radius, the object will be a
circle; otherwise, the object will be an ellipse.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a lat/long coordinate system, although the Set CoordSys statement can re-configure
MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement. Before creating objects on a Layout window, you must issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Ellipse statement uses the current MapInfo Professional line style (the
style which appears in the Options > Line Style dialog). Similarly, the optional Brush clause specifies a
fill style; see the Brush discussion for more details.

See Also

Brush clause, CreateCircle() function, Insert statement, Pen clause, Update statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 148 MB_Ref.pdf

Reference Guide Chapter 4: Create Frame statement
Create Frame statement
Purpose

Creates a new frame in a Layout window.

Syntax
Create Frame

[Into { Window layout_win_id | Variable var_name }]
(x1, y1) (x2 , y2)
[Pen . . .]
[Brush . . .]
[Title title]
[From Window contents_win_id]
[FillFrame { On | Off }]

x1 , y1 specifies one corner of the new frame to create

x2 , y2 specifies the other corner

layout_win_id is a Layout window’s Integer window identifier

var_name is the name of an Object variable

The Pen clause specifies a line style

The Brush clause specifies a fill style

title is a string identifying the frame contents (for example, “WORLD Map”); not needed if the From
Window clause is used

contents_win_id is an Integer window ID indicating which window will appear in the frame

Description

The Create Frame statement creates a new frame within an existing Layout window. If no
layout_win_id is specified, the new frame is added to the topmost Layout window. Before creating
objects on a Layout window, you must issue a Set CoordSys Layout statement.

Between sessions, MapInfo Professional preserves Layout window settings by storing Create Frame
statements in the workspace file. To see an example of the Create Frame statement, create a Layout,
save the workspace, and examine the workspace file in a text editor.

The Pen clause dictates what line style will be used to display the frame, and the Brush clause
dictates the fill style used to fill the frame window.

Use the From Window clause to specify which window should appear inside the frame. For example,
to make a Map window appear inside the frame, specify From Window i_map (where i_map is an
Integer variable containing the Map’s window identifier). A window must already be open before you
can create a frame containing the window.

The Title clause provides an alternate syntax for specifying which window appears in the frame. For
example, to identify a Map window which displays the table WORLD, the Title clause should read Title
“WORLD Map”. If the title string does not refer to an existing window, or if title is an empty string (“”),
the frame will be empty. If you specify both the Title clause and the From Window clause, the latter
clause takes effect.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 149 MB_Ref.pdf

Reference Guide Chapter 4: Create Grid statement
The FillFrame clause controls how the window fills the frame. If you specify FillFrame On, the entire
frame is filled with an image of the window. (This is analogous to checking the Fill Frame With Contents
check box in MapInfo Professional’s Frame Object dialog box, which appears if you double-click a
frame.) If you specify FillFrame Off (or if you omit the FillFrame clause entirely), the aspect ratio of the
window affects the appearance of the frame; in other words, re-sizing a Map window to be tall and thin
causes the frame to appear tall and thin.

Example

The following examples show how to create a frame for a Map window’s thematic legend, or
cartographic legend window.

Theme Legend windows are a special case. To create a frame for a Theme Legend window, you must
use the Title clause instead of the From Window clause.:

Dim i_layout_id, i_map_id As Integer
Dim s_title As String

’ here, you would store the Map window’s ID in i_map_id,
’ and store the Layout window’s ID in i_layout_id.
’ To obtain an ID, call FrontWindow() or WindowID().

s_title = ”Theme Legend of ” + WindowInfo(i_map_id, WIN_INFO_NAME)
Set CoordSys Layout Units ”in”
Create Frame

Into Window i_layout_id
(1,2) (4, 5)
Title s_title

To create a frame for a Map window’s cartographic legend, you should use the From Window clause
since there may be more than one cartographic legend window per map.

Dim i_cartlgnd_id As Integer

’ here, you would store the Cartographic Legend window’s ID
’ in i_cartlgnd _id,
’ To obtain an ID, call FrontWindow() or WindowID().

Create Frame
Into Window i_layout_id
(1,2) (4, 5)
From Window i_cartlgnd_id

See Also

Brush clause, Insert statement, Layout statement, Pen clause, Set CoordSys statement, Set
Layout statement, Update statement

Create Grid statement
A grid surface theme is a continuous raster grid produced by an interpolation of point data. The Create
Grid statement takes a data column from a table of points, and passes those points and their data
values to an interpolator. The interpolator produces a raster grid file, which MapBasic displays as a
raster table in a map window.

The Create Grid statement reads (x, y, z) values from the table specified in the From clause. It gets
the z or zed values by evaluating the expression specified in the With clause with respect to the table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 150 MB_Ref.pdf

Reference Guide Chapter 4: Create Grid statement
The dimensions of the grid can be specified in two ways. One is by specifying the size of a grid cell in
distance units, such as miles. The other is by specifying a minimum height or width of the grid in terms
of grid cells. For example, if you wanted the grid to be at least 200 cells wide by 200 cells high, you
would specify “cell min 200”. Depending on the aspect ratio of the area covered by the grid, the actual
grid dimensions won’t be 200 by 200, but it will be at least that wide and high.

Syntax
Create Grid

From tablename
With expression [Ignore value_to_ignore]
Into filespec [Type grid_type]

[Coordsys ...]
[Clipping { Object obj } | { Table tablename }]
Inflect num_inflections at By Percent]

color : inflection_value
[color : inflection_value ...]

[Round rounding_factor]
{ [Cell Size cell_size [Units distance_unit]] | [Cell Min n_cells] }

 [Border numcells]
Interpolate With interpolator_name Version version_string Using

num_parameters parameter_name : parameter_value
[parameter_name : parameter_value ...]

tablename is the ”alias” name of an open table from which to get data points.

expression is the expression by which the table will be shaded, such as a column name.

value_to_ignore is a value to be ignored; this is usually zero. No grid theme will be created for a row if
the row’s value matches the value to be ignored.

filespec specifies the fully qualified path and name of the new grid file. It will have a .MIG extension.

grid_type is a string expression that specifies the type of grid file to create. By default, .MIG files are
created.

Coordsys is an optional coordsys clause which is the coordinate system that the grid will be created
in. If not provided, the grid will be created in the same coordsys as the source table. Refer to the
Coordsys clause for more information.

obj is an object to clip grid cells to. Only the portion of the grid theme within the object will display. If a
grid cell is not within the object, that cell value will not be written out and a null cell is written in its place.

tablename is the name of a table of region objects which will be combined into a single region object
and then used for clipping grid cells.

num_inflections is a numeric expression, specifying the number of color:value inflection pairs.

color is a color expression of, part of a color:value inflection pair.

inflection_value is a numeric expression, specifying the value of a color:value inflection pair.

cell_size is a numeric expression, specifying the size of a grid cell in distance units.

n_cells is a numeric expression that specifies the height or width of the grid in cells.

numcells defines the number of cells to be added around the edge of the original grid bounds. numcells
will be added to the left, right, top and bottom of the original grid dimensions.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 151 MB_Ref.pdf

Reference Guide Chapter 4: Create Grid statement
distance_unit is a string expression, specifying the units for the preceding cell size. This is an optional
parameter. If not present, the distance units from the table’s coordinate system are used.

interpolator_name is a string expression, specifying the name of the interpolator to use to create the
grid.

version_string is a string expression, specifying the version of the interpolator that the parameters are
meant for.

num_parameters is a numeric expression, specifying the number of interpolator parameter name:value
pairs.

parameter_name is a string expression, specifying the name part of a name:value pair.

parameter_value is a numeric expression, specifying the value part of a name:value pair.

By Percent is a string expression, specifying the name part of a name:value pair.

Round is a numeric expression, specifying the value part of a name:value pair.

Example
Open Table ”C:\States.tab” Interactive
Map From States
Open Table ”C:\Us_elev.tab” Interactive
Add Map Auto Layer Us_elev
set map redraw off
Set Map Layer 1 Display Off
set map redraw on

create grid
from Us_elev
with Elevation_FT
into ”C:\Us_elev_grid”
clipping table States
inflect 5 at

RGB(0, 0, 255) : 13
RGB(0, 255, 255) : 3632.5
RGB(0, 255, 0) : 7252
RGB(255, 255, 0) : 10871.5
RGB(255, 0, 0) : 14491

cell min 200
interpolate

with ”IDW” version ”100”
using 4

”EXPONENT”: ”2”
”MAX POINTS”: ”25”
”MIN POINTS”: ”1”
”SEARCH RADIUS”: ”100”

See Also

Set Map statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 152 MB_Ref.pdf

Reference Guide Chapter 4: Create Index statement
Create Index statement
Purpose

Creates an index for a column in an open table.

Syntax
Create Index On table (column)

table is the name of an open table
column is the name of a column in the open table

Description

The Create Index statement creates an index on the specified column. MapInfo Professional uses
Indexes in operations such as Query > Find. Indexes also improve the performance of queries in
general.

Note: MapInfo Professional cannot create an index if the table has unsaved edits. Use the Commit
statement to save edits.

Example

The following example creates an index for the “Capital” field of the World table.

Open Table ”world” Interactive
Create Index on World(Capital)

See Also

Alter Table statement, Create Table statement, Drop Index statement

Create Legend statement
Purpose

Creates a new theme legend window tied to the specified Map window.

For versions 5.0 and later, , the Create Cartographic Legend statement allows you to create and
display cartographic style legends. Refer to the Create Cartographic Legend statement for more
information.

Syntax
Create Legend
 [From Window window_ID]
 [{ Show | Hide }]

window_ID is an Integer, representing a MapInfo Professional window ID for a Map window

Description

This statement creates a special floating, thematic legend window, in addition to the standard MapInfo
Professional legend window. (To open MapInfo Professional’s standard legend window, use the Open
Window Legend statement.)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 153 MB_Ref.pdf

Reference Guide Chapter 4: CreateLine() function
The Create Legend statement is useful if you want the legend of a Map window to always be visible,
even when the Map window is not active. Also, this statement is useful in “Integrated Mapping”
applications, where MapInfo Professional windows are integrated into another application, such as a
Visual Basic application. For information about Integrated Mapping, see the MapBasic User Guide,
Chapter 11.

If you include the From Window clause, the new theme legend window is tied to the window that you
specify; otherwise, the new window is tied to the most recently used Map.

If you include the optional Hide keyword, the window is created in a hidden state. You can then show
the hidden window by using the Set Window ... Show statement.

After you issue the Create Legend statement, determine the new window’s Integer ID by calling
WindowID(0). Use that window ID in subsequent statements (such as Set Window).

The new theme legend window is created according to the parent and style settings that you specify
through the Set Next Document statement.

See Also

Create Cartographic Legend statement, Open Window statement, Set Next Document statement

CreateLine() function
Purpose

Returns an Object value representing a line.

Syntax
CreateLine(x1 , y1, x2 , y2)

x1 is a Float value, indicating the x-position (for example, Longitude) of the line’s starting point

y1 is a Float value, indicating the y-position (for example, Latitude) of the line’s starting point

x2 is a Float value, indicating the x-position of the line’s ending point

y2 is a Float value, indicating the y-position of the line’s ending point

Return Value

Object

Description

The CreateLine() function returns an Object value representing a line. The x and y parameters use
the current coordinate system. By default, MapBasic uses a longitude, latitude coordinate system. Use
the Set CoordSys statement to choose a new system.

The line object will use whatever Pen style is currently selected. To create a line object with a specific
Pen style, you could issue the Set Style statement before calling CreateLine() or you could issue a
Create Line statement, with an optional Pen clause.

The line object created through the CreateLine() function could be assigned to an Object variable,
stored in an existing row of a table (through the Update statement), or inserted into a new row of a
table (through an Insert statement). If you need to create objects on a Layout window, you must first
issue a Set CoordSys Layout statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 154 MB_Ref.pdf

Reference Guide Chapter 4: Create Line statement
Example

The following example uses the Insert statement to insert a new row into the table Routes. The
CreateLine() function is used within the body of the Insert statement.

Open Table ”Routes”
Insert Into routes (obj)

Values (CreateLine(-72.55, 42.431, -72.568, 42.435))

See Also

Create Line statement, Insert statement, Update statement

Create Line statement
Purpose

Creates a line object.

Syntax
Create Line

[Into { Window window_id | Variable var_name }]
(x1, y1) (x2, y2)
[Pen . . .]

window_id is a window identifier

var_name is the name of an existing object variable

x1, y1 specifies the starting point of a line

x2, y2 specifies the ending point of the line

The Pen clause specifies a line style

Description

The Create Line statement creates a line object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window ,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 155 MB_Ref.pdf

Reference Guide Chapter 4: Create Map statement
The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Line statement will use the current MapInfo Professional line style.

See Also

CreateLine() function, Insert statement, Pen clause, Update statement

Create Map statement
Purpose

Modifies the structure of a table, making the table mappable.

Syntax
Create Map

For table
[CoordSys...] Using from_table]

 table is the name of an open table

CoordSys... is a CoordSys clause

Description

The Create Map statement makes an open table mappable, so that it can be displayed in a Map
window.

This statement does not open a new Map window. To open a new Map window, use the Map
statement.

You should not perform a Create Map statement on a table that is already mappable; doing so will
delete all map objects from the table. If a table already has a map attached, and you wish to
permanently change the projection of the map, use a Commit Table As statement. Alternately, if you
wish to temporarily change the projection in which a map is displayed, issue a Set Map statement with
a CoordSys clause. The Create Map statement does not work on linked tables. To make a linked table
mappable, use the Server Create Map statement.

Specifying the Coordinate System

Use one of the following two methods to specify the coordinate system:

Provide the name of an already open mappable table as the from_table portion of the Using clause. In
this case, the coordinate system used will be identical to that used in the from_table. The from_table
must be a currently open table, and must be mappable or an error will occur.

Explicitly supply the coordinate system information through a CoordSys clause (set in preferences).If
you omit both the CoordSys clause and the Using clause, the table will use the current MapBasic
coordinate system.

Note that the CoordSys clause affects the precision of the map. The CoordSys clause includes a
Bounds clause, which sets limits on the minimum and maximum coordinates that can be stored in the
map. If you omit the Bounds clause, MapInfo Professional uses default bounds that encompass the
entire Earth (in which case, coordinates are precise to one millionth of a degree, or approximately 4
inches). If you know in advance that the map you are creating will be limited to a finite area (for
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 156 MB_Ref.pdf

Reference Guide Chapter 4: Create Map3D statement
example, a specific metropolitan area), you can increase the precision of the map's coordinates by
specifying bounds that confine the map to that area. For a complete listing of the CoordSys syntax,
see the separate discussion of the CoordSys clause.

See Also

Commit Table statement, CoordSys clause, Create Table statement, Drop Map statement, Map
statement, Server Create Map statement, Set Map statement

Create Map3D statement
Purpose

Creates a 3DMap with the desired parameters.

Syntax
Create Map3D

[From Window window_id | MapString mapper_creation_string]
[Camera [Pitch angle | Roll angle | Yaw angle | Elevation angle] |
[Position (x,y,z) | FocalPoint (x,y,z)] |
[Orientation (vu_1, vu_2, vu_3, vpn_1, vpn_2, vpn_3, clip_near,

clip_far)]]
[Light [Position (x,y,z) | Color lightcolor]]
[Resolution (res_x, res_y)]
[Scale grid_scale]
[Background backgroundcolor]
[Units unit_name]

window_id is a window identifier a for a mapper window which contains a Grid layer. An error message
is displayed if a Grid layer is not found.

mapper_creation_string specifies a command string that creates the mapper textured on the grid.

Camera specifies the camera position and orientation.

angle is an angle measurement in degrees. The horizontal angle in the dialog ranges from 0-360
degrees and rotates the maps around the center point of the grid. The vertical angle in the dialog
ranges from 0-90 and measures the rotation in elevation from the start point directly over the map.

Pitch adjusts the camera’s current rotation about the X Axis centered at the camera’s origin.

Roll adjusts the camera’s current rotation about the Z Axis centered at the camera’s origin.

Yaw adjusts the camera’s current rotation about the Y Axis centered at the camera’s origin.

Elevation adjusts the current camera’s rotation about the X Axis centered at the camera’s focal point.

Position indicates the camera/light position.

FocalPoint indicates the camera/light focal point

Orientation specifies the cameras ViewUp, ViewPlane Normal and Clipping Range (used specifically
for persistence of view).

Resolution is the number of samples to take in the X and Y directions. These values can increase to a
maximum of the grid resolution. The resolution values can increase to a maximum of the grid x,y
dimension. If the grid is 200x200 then the resolution values will be clamped to a maximum of 200x200.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 157 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu statement
You can’t increase the grid resolution, only specify a subsample value.
grid_scale is the amount to scale the grid in the Z direction. A value >1 will exaggerate the topology in
the Z direction, a value <1 will scale down the topological features in the Z direction.

backgroundcolor is a color to be used to set the background and is specified using the RGB function.

Units specifies the units the grid values are in. Do not specify this for unitless grids (i.e., grids
generated using temperature or density). This option needs to be specified at creation time. You
cannot change them later with Set Map3D or the Properties dialog.

Description

Once it is created, the 3DMap window is a standalone window. Since it is based on the same tables as
the original Map window, if these tables are changed and the 3DMap window is manually “refreshed” or
re-created from a workspace, these changes will be displayed on the grid.
The creation will fail if the window_id is not a Map window or if the Map window does not contain a Grid
layer. If there are multiple grids in the Map window, each will be represented in the 3DMap window.

A 3DMap keeps a Mapper creation string as its texture generator. This string will also be prevalent in
the workspace when the 3DMap window is persisted. The initialization will read in the grid layer to
create 3D geometry and topology objects.

Example
Create Map3D Resolution(75,75)

Creates a 3DMap window of the most recent Map window. It will fail if the window does not contain any
Continuous Grid layers. Another example is:

Create Map3D From Window FrontWindow() Resolution(100,100) Scale 2 Background
RGB(255,0,0) Units “ft”.

Creates a 3DMap window with a Red background, the z units set to feet, a Z scale factor of 2, and the
grid resolution set to 100x100.

See Also

Set Map3D statement

Create Menu statement
Purpose

Creates a new menu, or redefines an existing menu.

Syntax 1
Create Menu newmenuname [ID menu_id] As

menuitem [ID menu_item_id] [HelpMsg help]
{ Calling handler | As menuname }
[, menuitem . . .]

Syntax 2
Create Menu newmenuname As Default

newmenuname is a String representing the name of the menu to define or redefine

menuitem is a String representing the name of an item to include on the new menu

menu_id is a SmallInt ID number from one to fifteen, identifying a standard menu
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 158 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu statement
menu_item_id is an Integer ID number that identifies a custom menu item

help is a String that appears on the status bar whenever the menu item is highlighted

handler is the name of a procedure, or a code for a standard menu command, or a special syntax for
handling the menu event by calling OLE or DDE; see Calling Clause Options, below. If you specify a
command code for a standard MapInfo Professional Show/Hide command (such as
M_WINDOW_STATISTICS), the menuitem string must start with an exclamation point and include a
caret (^), to preserve the item’s Show/Hide behavior.

menuname is the name of an existing menu to include as a hierarchical submenu

Description

If the newmenuname parameter matches the name of an existing MapInfo Professional menu (such as
“File”), the statement re-defines that menu. If the newmenuname parameter does not match the name
of an existing menu, the Create Menu statement defines an entirely new menu. For a list of the
standard MapInfo Professional menu names, see the discussion of the Alter Menu statement.

The Create Menu statement does not automatically display a newly-created menu; a new menu will
only display as a result of a subsequent Alter Menu Bar statement or Create Menu Bar statement.
However, if a Create Menu statement modifies an existing menu, and if that existing menu is already
part of the menu bar, the change will be visible immediately.

Note: MapInfo Professional can maintain no more than 96 menu definitions at one time, including the
menus defined automatically by MapInfo Professional (“File”, etc.). This limit is independent of
the number of menus displayed on the menu bar at one time.

The menuitem parameter identifies the name of the menu item. The item’s name can contain special
control characters to define menu item attributes (for example, whether a menu item is checkable).
See tables below for details.

The following characters require special handling: slash (/), back slash(\), and less than (<). If you want
to display any of these special characters in the menu or the status bar help, you must include an extra
back slash in the menuitem string or the help string. For example, the following statement creates a
menu item that reads, “Client/Server.”

Create Menu ”Data” As
”Client\/Server” Calling cs_proc

If a menuitem parameter begins with the character @, the custom menu breaks into two columns. The
item whose name starts with @ is the first item in the second column.

Assigning Handlers to Custom Menu Items
Most menu items include the Calling handler clause; a handler is either the name of a MapBasic
procedure or a numeric code identifying an MapInfo Professional operation (such as M_FILE_SAVE to
specify the File > Save command). If the user chooses a menu item which has a handler, MapBasic
automatically calls the handler (whether the handler is a sub procedure or a command code). Your
program must Include the file MENU.DEF if you plan to refer to menu codes such as M_FILE_SAVE.

The optional ID clause lets you assign a unique Integer ID to each custom menu item. Menu item IDs
are useful if you want to allow multiple menu items to call the same handler procedure. Within the
handler procedure, you can determine which menu item the user chose by calling
CommandInfo(CMD_INFO_MENUITEM). Menu item IDs can also be used by other statements, such
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 159 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu statement
as Alter Menu Item. If a menu item has neither a handler nor a menuname associated with it, that
menu item is inert. Inert menu items are used for cosmetic purposes, such as displaying horizontal
lines which break up a menu.

Creating Hierarchical Menus
To include a hierarchical menu on the new menu, use the As sub-clause instead of the Calling sub-
clause. The As sub-clause must specify the name of the existing menu which should be attached to
the new menu. The following example creates a custom menu containing one conventional menu item
and one hierarchical menu.

Create Menu ”Special” As
”Configure” Calling config_sub_proc,
”Objects” As ”Objects”

When you add a hierarchical menu to the menu, the name of the hierarchical menu appears on the
parent menu instead of the menuitem string.

Properties of a Menu Item
Menu items can be enabled or disabled; disabled items appear grayed out. Some menu items are
checkable, meaning that the menu can display a check mark next to the item. At any given time, a
checkable menu item is either checked or unchecked.

To set the properties of a menu item, include control codes (from the table below) at the start of the
menuitem parameter.

Control
code Effect

(The menu item is initially disabled. Example: ”(Close”

(- The menu item is a horizontal separator line; such a menu item cannot have a han-
dler. Example: ”(-”

($ This special code represents the File menu’s most-recently-used (MRU) list. It may
only appear once in the menu system, and it may not be used on a shortcut menu.
To eliminate the MRU list from the File menu, either delete this code from MAPIN-
FOW.MNU or re-create the File menu by issuing a Create Menu statement.

(> This special code represents the Window menu’s list of open windows. It may only
appear once in the menu system.

! Menu item is checkable, but it is initially unchecked.
Example: ”!Confirm Deletions”

! ... ^ ... If a caret (^) appears within the text string of a checkable menu item, the item tog-
gles between alternate text (for example, Show... vs. Hide...) instead of toggling
between checked and unchecked. The text before the caret appears when the item
is “checked.” Example: ”!Hide Status Bar^Show Status Bar”

!+ Menu item is checkable, and it is initially checked.
Example: ”!+Confirm Deletions”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 160 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu statement
Defining Keyboard Shortcuts
Menu items can have two different types of keyboard shortcuts, which let the user choose menu items
through the keyboard rather than by clicking with the mouse.

One type of keyboard shortcut lets the user drop down a menu or choose a menu item by pressing
keys. For example, on MapInfo Professional, the user can press Alt-W to show the Window menu, then
press M (or Alt-M) to choose New Map Window. To create this type of keyboard shortcut, include the
ampersand character (&) in the newmenuname or menuitem string (for example, specify “&Map” as the
menuitem parameter in the Create Menu statement). Place the ampersand immediately before the
character to be used as the shortcut.

The other type of keyboard shortcut allows the user to activate an option without going through the
menu at all. If a menu item has a shortcut key sequence of Alt-F5, the user can activate the menu item
by pressing Alt-F5. To create this type of shortcut, use the following key sequences.

Note: The codes in the following tables must appear at the end of a menu item name.

To specify a function key as a Windows accelerator, the accelerator code must include a percent sign
(%) followed by a number. The number 112 corresponds to F1; 113 corresponds to F2; etc.

Note: The Create Menu Bar As Default statement removes and un-defines all custom menus created
through the Create Menu statement. Alternately, if you need to un-define one, but not all, of the
custom menus that your application has added, you can issue a statement of the form Create
Menu menuname As Default.

After altering a standard MapInfo Professional menu (for example, “File”), you can restore the menu to
its original state by issuing a Create Menu menuname As Default statement.

Calling Clause Options

The Calling clause specifies what should happen when the user chooses the custom menu command.
The following table describes the available syntax.

Windows Accelerator
Code Effect

 /W {letter | %number} Defines a Windows shortcut key which can be activated by pressing
the appropriate key.
Examples: ”Zap /WZ” or ”Zap /W%120”

/W# {letter | %number} Defines a Windows shortcut key which also requires the shift key.
Examples: ”Zap /W#Z” or ”Zap /W#%120”

/W@ {letter | %num-
ber}

Defines a Windows shortcut key which also requires the Alt key.
Examples: ”Zap /W@Z” or ”Zap /W@%120”

/W^ {letter | %number} Defines a Windows shortcut key which also requires the Ctrl key.
Examples: ”Zap /W^Z” or ”Zap /W^%120”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 161 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu statement
In the last two cases, the string sent to OLE or DDE starts with the three letters “MI:” (so that the server
can detect that the message came from MapInfo). The remainder of the string contains a comma-
separated list of the values returned from relevant CommandInfo() calls. For complete details on the
string syntax, see the MapBasic User Guide.

Examples

The following example uses the Create Menu statement to create a custom menu, then adds the
custom menu to MapInfo Professional’s menu bar. This example removes the Window menu (ID 6) and
the Help menu (ID 7), and then adds the custom menu, the Window menu, and the Help menu back to
the menu bar. This technique guarantees that the last two menus will always be Window, Help.

Declare Sub Main
Declare Sub addsub
Declare Sub editsub
Declare Sub delsub

Sub Main
Create Menu ”DataEntry” As

”Add” Calling addsub,
”Edit” Calling editsub,
”Delete” Calling delsub

Alter Menu Bar Remove ID 6, ID 7
Alter Menu Bar Add ”DataEntry”, ID 6, ID 7

End Sub

Calling clause example Description

Calling M_FILE_NEW If Calling is followed by a numeric code from
MENU.DEF, MapInfo Professional handles the event by
running a
standard MapInfo Professional menu command (the
File > New command, in this example).

Calling my_procedure If you specify a procedure name, MapInfo Professional
handles the event by calling the procedure.

Calling OLE “methodname” Windows only. MapInfo Professional handles the event
by making a method call to the OLE Automation object
set by the SetCallback method.

Calling DDE ”server”,“topic” Windows only. MapInfo Professional handles the event
by connecting through DDE to “server|topic” and send-
ing an Execute message to the DDE server.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 162 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu Bar statement
The following example creates an abbreviated version of the File menu. The “(” control character
specifies that the Close, Save, and Print options will be disabled initially. The Open and Save options
have Windows accelerator key sequences (Ctrl+O and Ctrl+S, respectively). Note that both the Open
and Save options use the function Chr$(9) to insert a Tab character into the menu item name, so that
the remaining text is shifted to the right.

Include ”MENU.DEF”

Create Menu ”File” As
”New” Calling M_FILE_NEW,
”Open” +Chr$(9)+”Ctrl+O/W^O” Calling M_FILE_OPEN,
”(-”,
”(Close” Calling M_FILE_CLOSE,
”(Save” +Chr$(9)+”Ctrl+S /W^S” Calling M_FILE_SAVE,
”(-”,
”(Print” Calling M_FILE_PRINT,
”(-”,
”Exit” Calling M_FILE_EXIT

If you want to prevent the user from having access to MapInfo Professional’s shortcut menus, use a
Create Menu statement to re-create the appropriate menu, and define the menu as just a separator
control code: “(-”. The following example uses this technique to disable the Map window’s shortcut
menu.

Create Menu ”MapperShortcut” As ”(-”

See Also

Alter Menu Item statement, Create Menu Bar statement

Create Menu Bar statement
Purpose

Rebuilds the entire menu bar, using the available menus.

Syntax 1
Create Menu Bar As

{ menu_name | ID menu_number }
[, { menu_name | ID menu_number } . . .]

Syntax 2
Create Menu Bar As Default

menu_name is the name of a standard MapInfo Professional menu, or the name of a custom menu
created through a Create Menu statement

menu_number is the number associated with a standard MapInfo Professional menu (for example, 1
for the File menu)

Description

A Create Menu Bar statement tells MapInfo Professional which menus should appear on the menu
bar, and in what order. If the statement omits one or more of the standard menu names, the resultant
menu may be shorter than the standard MapInfo Professional menu. Conversely, if the statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 163 MB_Ref.pdf

Reference Guide Chapter 4: Create Menu Bar statement
includes the names of one or more custom menus (which were created through the Create Menu
statement), the Create Menu Bar statement can create a menu bar that is longer than the standard
MapInfo Professional menu.

Any menu can be identified by its name (for example, “File”), regardless of whether it is a standard
menu or a custom menu. Each of MapInfo Professional’s standard menus can also be referred to by its
menu ID; for example, the File menu has an ID of 1.

See the Alter Menu statement for a listing of the names and ID numbers of MapInfo Professional’s
menus.

After the menu bar has been customized, the following statement:

Create Menu Bar As Default

restores the standard MapInfo Professional menu bar. Note that the Create Menu Bar As Default
statement removes any custom menu items that may have been added by other MapBasic
applications that may be running at the same time. For the sake of not accidentally disabling other
MapBasic applications, you should exercise caution when using the Create Menu Bar As Default
statement.

Examples

The following example shortens the menu bar so that it includes only the File, Edit, Query, and window-
specific (for example, Map, Browse, etc.) menus.

Create Menu Bar As
”File”, ”Edit”, ”Query”, ”WinSpecific”

Ordinarily, the MapInfo Professional menu bar only displays a Map menu when a Map window is the
active window. Similarly, MapInfo Professional only displays a Browse menu when a Browse window is
the active window. The following example redefines the menu bar so that it always includes both the
Map and Browse menus, even when no windows are on the screen. However, all items on the Map
menu will be disabled (grayed out) whenever the current window is not a Map window, and all items on
the Browse menu will be disabled whenever the current window is not a Browse window.

Create Menu Bar As
”File”, ”Edit”, ”Query”, ”Map”, ”Browse”

The following example creates a custom menu, called DataEntry, and then redefines the menu bar so
that it includes only the File, Edit, and DataEntry menus.

Declare Sub AddSub
Declare Sub EditSub
Declare Sub DelSub

Create Menu ”DataEntry” As
”Add” calling AddSub,
”Edit” calling EditSub,
”Delete” calling DelSub

Create Menu Bar As
”File”, ”Edit”, ”DataEntry”

See Also

Alter Menu Bar statement, Create Menu statement, Menu Bar statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 164 MB_Ref.pdf

Reference Guide Chapter 4: Create MultiPoint statement
Create MultiPoint statement
Purpose

Combines a number of points into a single object. All points have the same symbol. The Multipoint
object displays in the Browser as a single record

Syntax:
Create Multipoint

[Into { Window window_id | Variable var_name }]
[num_points]
(x1, y1) (x2, y2) [...]
[Symbol . . .]

window_id is a window identifier

var_name is the name of an existing object variable

num_points - number of points inside Multipoint object.

x y specifies the location of the point

The Symbol clause specifies a symbol style.

Note: One symbol is used for all points contained in a Multipoint object.

Currently MapInfo Professional uses the following four different syntaxes to define a symbol used for
points:

Syntax 1 (MapInfo 3.0 Symbol Syntax)
Symbol (shape, color, size)

shape is an Integer, 31 or larger, specifying which character to use from MapInfo Professional’s
standard symbol set. MapInfo 3.0 symbols refers to the symbol set that was originally published with
MapInfo for Windows 3.0 and has been maintained in subsequent versions of MapInfo Professional. To
create an invisible symbol, use 31. The standard set of symbols includes symbols 31 through 67, but
the user can customize the symbol set by using the Symbol application.

color is an Integer RGB color value; see the RGB() function.

size is an Integer point size, from 1 to 48.

Syntax 2 (TrueType Font Syntax)
Symbol (shape, color, size, fontname, fontstyle, rotation)

shape is an Integer, 31 or larger, specifying which character to use from a TrueType font. To create an
invisible symbol, use 31.

color is an Integer RGB color value; see the RGB() function.

size is an Integer point size, from 1 to 48.

fontname is a string representing a TrueType font name (for example, "Wingdings").

fontstyle is an Integer code controlling attributes such as bold.

rotation is a floating-point number representing a rotation angle, in degrees.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 165 MB_Ref.pdf

Reference Guide Chapter 4: Create Object statement
Syntax 3 (Custom Bitmap File Syntax)
Symbol (filename, color, size, customstyle)

filename is a string up to 31 characters long, representing the name of a bitmap file. The file must be in
the CUSTSYMB directory (unless a Reload Symbols statement has been used to specify a different
directory).

color is an Integer RGB color value; see the RGB() function.

size is an Integer point size, from 1 to 48.

customstyle is an Integer code controlling color and background attributes. See table below.

Syntax 4
Symbol symbol_expr

symbol_expr is a Symbol expression, which can either be the name of a Symbol variable, or a function
call that returns a Symbol value, for example, MakeSymbol

Example:
Create Multipoint 7 (0,0) (1,1) (2,2) (3,4) (-1,1) (3,-2) (4,3)

Create Object statement
Purpose

Creates one or more regions by performing a Buffer, Merge, Intersect, Union or Voronoi operation.

Syntax
Create Object As { Buffer | Union | Intersect | Merge | ConvexHull | Voronoi }

From fromtable
[Into { Table intotable | Variable varname }]
[Width bufferwidth [Units unitname]]][Type {Spherical | Cartesian}]]
[Resolution smoothness]
[Data column = expression [, column = expression . . .]]
[Group By { column | RowID }]

fromtable is the name of an open table, containing one or more graphic objects

intotable is the name of an open table where the new object(s) will be stored

varname is the name of an Object variable where a new object will be stored

bufferwidth is a number indicating the displacement used in a Buffer operation; if this number is
negative, and if the source object is a closed object, the resulting buffer is smaller than the source
object. If the width is negative, and the object is a linear object (line, polyline, arc) or a point, then the
absolute value of width is used to produce a positive buffer.

unitname is the name of a distance unit (for example, “km” for kilometers)

smoothness is an Integer from 2 to 100, indicating the number of segments per circle in a Buffer
operation

column is the name of a column in the table
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 166 MB_Ref.pdf

Reference Guide Chapter 4: Create Object statement
Description

The Create Object statement creates one or more new region objects, by performing a geographic
operation (Buffer, Merge, Intersect, Union , ConvexHull or Voronoi) on one or more existing
objects.

The Into clause specifies where results are stored. To store the results in a table, specify Into Table.
To store the results in an Object variable, specify Into Variable. If you omit the Into clause, results are
stored in the source table.

Note: If you specify a Group By clause to perform data aggregation, you must store the results to a
table rather than a variable.

The keyword which follows the As keyword dictates what type of objects will be created. Specify
Buffer to generate buffer regions; see below for details. Specify Intersect to create an object
representing the intersection of other objects (for example, if two regions overlap, the intersection is the
area covered by both objects).

Specify Merge to create an object representing the combined area of the source objects. The Merge
operation produces a results object that contains all of the polygons that belonged to the original
objects. If the original objects overlap, the merge operation does not eliminate the overlap. Thus, if you
merge two overlapping regions (each of which contains one polygon), the end result may be a region
object that contains two overlapping polygons. In general, Union should be used instead.

Specify Union to perform a combine operation, which eliminates any areas of overlap. If you perform
the union operation on two overlapping regions (each of which contains one polygon), the end result
may be a region object that contains one polygon.

The union and merge operations are similar, but they behave very differently in cases where objects
are completely contained within other objects. In this case, the merge operation removes the area of
the smaller object from the larger object, leaving a hole where the smaller object was. The union
operation does not remove the area of the smaller object.

Create Objects As Union is similar to the Objects Combine statement. Objects Combine will delete
the input and insert a new combined object. Create Objects As Union will only insert the new combined
object, it will not delete the input objects. Combining using a Target and potentially different tables is
only available with Objects Combine. The Combine Objects using Column functionality is only
available using Create Objects As Union using the Group By clause.

If a Create Object As Union statement does not include a Group By clause, MapInfo Professional
creates one combined object for all objects in the table. If the statement includes a Group By clause, it
must name a column in the table to allow MapInfo Professional to group the source objects according
to the contents of the column and produce a combined object for each group of objects.

If you specify a Group By clause, MapInfo Professional groups all records sharing the same value,
and performs an operation (for example, merge) on the group.

If you specify a Data clause, MapInfo Professional performs data aggregation. For example, if you
perform merge or union operations, you may want to use the Data clause to assign data values based
on the Sum() or Avg() aggregate functions.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 167 MB_Ref.pdf

Reference Guide Chapter 4: Create Object statement
Use Type is the method used to calculate the buffer width around the object. It can either be Spherical
or Cartesian. Note that if the Coordsys of the intotable is NonEarth, then the calculations will be
performed using Cartesian methods regardless of the option chosen, and if the Coordsys of the
intotable is Latitude/Longitude, then calculations will be performed using Spherical methods
regardless of the option chosen.

Convex Hull Geographic Operation for the Create Object statement
Create Object As { Buffer | Union | Intersect | Merge | ConvexHull }

The Create Object statement creates one or more new region objects, by performing a geographic
operation (Buffer, Merge, Intersect, Union, or ConvexHull) on one or more existing objects.

The ConvexHull operator will create a polygon representing a convex hull around a set of points. The
convex hull polygon can be thought of as an operator that places a rubber band around all of the
points. It will consist of the minimal set of points such that all other points lie on or inside the polygon.
The polygon will be convex—no interior angle can be greater than 180 degrees.

The points used to construct the convex hull will be any nodes from Regions, Polylines, or Points in the
From table. If a Create Object As ConvexHull statement does not include a Group By clause,
MapInfo Professional creates one convex hull polygon. If the statement includes a Group By clause
that names a column in the table, MapInfo Professional groups the source objects according to the
contents of the column, then creates one convex hull polygon for each group of objects. If the
statement includes a Group By RowID clause, MapInfo Professional creates one convex hull polygon
for each object in the source table.

Buffering
If the Create Object statement performs a Buffer operation, the statement can include Width and
Resolution clauses. The Width clause specifies the width of the buffer. The optional Units sub-clause
lets you specify a distance unit name (such as “km” for kilometers) to apply to the Width clause. If the
Width clause does not include the Units sub-clause, the buffer width will be interpreted in MapBasic’s
current distance unit. By default, MapBasic uses miles as the distance unit; to change this unit, see the
Set Distance Units statement.

The optional Type sub-clause lets you specify the type of distance calculation used to create the buffer.
If the Spherical type is used, then the calculation will be done by mapping the data into a Latitude/
Longitude On Earth projection and using widths measured using Spherical distance calculations. If the
Cartesian type is used, then the calculation is done by considering the data to be projected to a flat
surface and widths are measured using cartesian distance calculations. If the Width clause does not
include the Type sub-clause, then the default distance calculation type Spherical is used. If the data is
in a Latitude/Longitude Projection, then Spherical calculations will be used regardless of the Type
setting. If the data is in a NonEarth Projection, the Cartesian calculations will be used regardless of the
Type setting.

The smoothness parameter lets you specify the number of segments comprising each circle of the
buffer region. By default, a buffer object has a smoothness value of twelve, meaning that there will be
twelve segments in a simple ring-shaped buffer region. By specifying a larger smoothness value, you
can produce smoother buffer regions. Note, however, that the larger the smoothness value, the longer
the Create Object statement takes, and the more disk space the resultant object occupies.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 168 MB_Ref.pdf

Reference Guide Chapter 4: Create Object statement
If a Create Object As Buffer statement does not include a Group By clause, MapInfo Professional
creates one buffer region. If the statement includes a Group By clause which names a column in the
table, MapInfo Professional groups the source objects according to the contents of the column, then
creates one buffer region for each group of objects. If the statement includes a Group By RowID
clause, MapInfo Professional creates one buffer region for each object in the source table.

Voronoi
Specify Voronoi to create regions that represent the Voronoi solutions of the input points. The data
values from the original input points can be assigned to the resultant polygon for that point by
specifying data clauses.

Example
The following example merges region objects from the Parcels table, and stores the resultant regions
in the table Zones. Since the Create Object statement includes a Group By clause, MapBasic will
group the Parcel regions, then perform one merge operation for each group. Thus, the Zones table will
end up with one region object for each group of objects in the Parcels table. Each group will consist of
all parcels having the same value in the zone_id column.

Following the Create Object statement, the parcelcount column in the Zones table will indicate how
many parcels were merged to produce that zone. The zonevalue column in the Zones table will
indicate the sum of the values from the parcels that comprised that zone.

Open Table ”PARCELS”
Open Table ”ZONES”
Create Object As Merge

From PARCELS Into Table ZONES Data
parcelcount=Count(*),zonevalue=Sum(parcelvalue)
Group By zone_id

The next example creates a region object, representing a quarter-mile buffer around whatever objects
are currently selected. The buffer object will be stored in the Object variable, corridor. A subsequent
Update or Insert statement could then copy the object to a table.

Dim corridor As Object
Create Object As Buffer

From Selection
Into Variable corridor
Width 0.25 Units ”mi”

Resolution 60

The next example shows a multi-object convex hull using the Create Object As statement.

create object as convex hull from state_caps into table dump_table

See Also

Buffer() function, ConvexHull() function, Objects Combine statement, Objects Erase
statement, Objects Intersect statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 169 MB_Ref.pdf

Reference Guide Chapter 4: Create Pline statement
Create Pline statement
Purpose

Creates a polyline object.

Syntax
Create Pline

[Into { Window window_id | Variable var_name }]
[Multiple num_sections]
 num_points
 (x1, y1) (x2, y2) [...]
[Pen . . .]
[Smooth]

window_id is a window identifier

var_name is the name of an existing object variable

num_points specifies how many nodes the polyline will contain

num_sections specifies how many sections the multi-section polyline will contain

each x y pair defines a node of the polyline

The Pen clause specifies a line style

Description

The Create Pline statement creates a polyline object. If you need to create a polyline object, but it will
not be known until run-time how many nodes the object should contain, create the object in two steps:
First, use Create Pline to create an object with no nodes, and then use Alter Object to add detail to
the polyline object. See the discussion of the Alter Object statement for more information.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If you omit the
Into clause, MapInfo Professional attempts to store the object in the topmost window; if objects cannot
be stored in the topmost window; no object is created.

The x and y parameters use whatever coordinate system MapBasic is currently using (longitude,
latitude by default; see Set CoordSys for more information). Objects created on a Layout window,
however, are specified in paper units. By default, MapBasic uses inches as the paper unit. To use a
different paper unit, see the Set Paper Units statement. If you need to create objects on a Layout
window, you must first issue a Set CoordSys Layout statement.

The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Pline statement will use the current line style (the style which appears
in the MapInfo Professional Options > Line Style dialog). Smooth will smooth the line so that it appears
to be one continuous line with curves instead of angles.

A single-section polyline can contain up to 32,763 nodes. For a multiple-section polyline, the limit is
smaller: for each additional section, reduce the number of nodes by three.

See Also

Alter Object statement, Insert statement, Pen clause, Update statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 170 MB_Ref.pdf

Reference Guide Chapter 4: CreatePoint() function
CreatePoint() function
Purpose

Returns an Object value representing a point.

Syntax
CreatePoint(x , y)

x is a Float value, representing an x-position (for example, Longitude)
y is a Float value, representing a y-position (for example, Latitude)

Return Value

Object

Description

The CreatePoint() function returns an Object value representing a point.

The x and y parameters should use whatever coordinate system MapBasic is currently using. By
default, MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement
can re-configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate
system is independent of the coordinate system of any Map window.

The point object will use whatever Symbol style is currently selected. To create a point object with a
specific Symbol style, you could issue the Set Style statement before calling CreatePoint().
Alternately, instead of calling CreatePoint(), you could issue a Create Point statement, which has an
optional Symbol clause.

The point object created through the CreatePoint() function could be assigned to an Object variable,
stored in an existing row of a table (through the Update statement), or inserted into a new row of a
table (through an Insert statement).

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

Examples

The following example uses the Insert statement to insert a new row into the table Sites. The
CreatePoint() function is used within the body of the Insert statement to specify the graphic object
that will be attached to the new row.

Open Table ”sites”
Insert Into sites (obj)

Values (CreatePoint(-72.5, 42.4))

The following example assumes that the table Sites has Xcoord and Ycoord columns, which indicate
the longitude and latitude positions of the data. The Update statement uses the CreatePoint()
function to build a point object for each row in the table. Following the Update operation, each row in
the Sites table will have a point object attached. Each point object will be located at the position
indicated by the Xcoord, Ycoord columns.

Open Table ”sites”
Update sites

Set obj = CreatePoint(xcoord, ycoord)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 171 MB_Ref.pdf

Reference Guide Chapter 4: Create Point statement
The above example assumes that the Xcoord, Ycoord columns contain actual longitude and latitude
degree values. Note that MapInfo for DOS pointfiles store coordinates in millionths of degrees, not
whole degrees. Also, most MapInfo for DOS pointfiles store longitude coordinates in the “NorthWest
quadrant,” meaning that longitudes increase as you move westward. Thus, to perform the Update
operation on a MapInfo for DOS pointfile, you would need to divide the Xcoord and Ycoord fields by
one million, and multiply the Xcoord field by negative one:

Update sites
Set obj = CreatePoint(-xcoord/1000000,ycoord/1000000)

See Also

Create Point statement, Insert statement, Update statement

Create Point statement
Purpose

Creates a point object.

Syntax
Create Point

[Into { Window window_id | Variable var_name }]
(x , y)
[Symbol . . .]

window_id is a window identifier

var_name is the name of an existing object variable

x y specifies the location of the point

The Symbol clause specifies a symbol style

Description

The Create Point statement creates a point object.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 172 MB_Ref.pdf

Reference Guide Chapter 4: Create PrismMap statement
The optional Symbol clause specifies a symbol style; see the Symbol discussion for more details. If
no Symbol clause is specified, the Create Point statement uses the current symbol style (the style
which appears in the Options > Symbol Style dialog).

See Also

CreatePoint() function, Insert statement, Symbol clause, Update statement

Create PrismMap statement
Purpose

Creates a Prism map.

Syntax
Create PrismMap

[From Window window_ID |
MapString mapper_creation_string]
{ layer_id | layer_name }
With expr

[Camera [Pitch angle | Roll angle | Yaw angle | Elevation angle] |
[Position (x,y,z) | FocalPoint (x,y,z)] |
[Orientation

(vu_1, vu_2, vu_3, vpn_1, vpn_2, vpn_3, clip_near, clip_far)]]
[Light Color lightcolor]]
[Scale grid_scale]
[Background backgroundcolor]

window_id is a window identifier a for a Map window which contains a region layer. An error message
is displayed if a layer with regions is not found.

mapper_creation_string specifies a command string that creates the mapper textured on the Prism
map.

layer_id is the layer identifier of a layer in the map (one or larger)

layer_name is the name of a layer in the map.

Camera specifies the camera position and orientation.

angle is an angle measurement in degrees. The horizontal angle in the dialog ranges from 0-360
degrees and rotates the maps around the center point of the grid. The vertical angle in the dialog
ranges from 0-90 and measures the rotation in elevation from the start point directly over the map.

Pitch adjusts the camera's current rotation about the X-Axis centered at the camera's origin.

Roll adjusts the camera's current rotation about the Z-Axis centered at the camera's origin.

Yaw adjusts the camera's current rotation about the Y-Axis centered at the camera's origin.

Elevation adjusts the current camera's rotation about the X-Axis centered at the camera's focal point.

Position indicates the camera and/or light position.

FocalPoint indicates the camera and/or light focal point.

Orientation specifies the cameras ViewUp, ViewPlane Normal and Clipping Range (used specifically
for persistence of view).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 173 MB_Ref.pdf

Reference Guide Chapter 4: Create PrismMap statement
grid_scale is the amount to scale the grid in the Z direction. A value >1 will exaggerate the topology in
the Z direction, a value <1 will scale down the topological features in the Z direction.

backgroundcolor is a color to be used to set the background and is specified using the RGB function.

Description

The Create PrismMap statement creates a Prism Map window. The Prism Map is a way to associate
multiple variables for a single object in one visual. For example, the color associated with a region may
be the result of thematic shading while the height the object is extruded through may represent a
different value. The Create PrismMap statement corresponds to MapInfo Professional’s Map > Create
Prism Map menu item.

Between sessions, MapInfo Professional preserves Prism Maps settings by storing a Create
PrismMap statement in the workspace file. Thus, to see an example of the Create PrismMap
statement, you could create a map, choose the Map > Create Thematic Map command, save the
workspace (for example, PRISM.WOR), and examine the workspace in a MapBasic text edit window.
You could then copy the Create PrismMap statement in your MapBasic program. Similarly, you can
see examples of the Create PrismMap statement by opening the MapBasic Window before you
choose Map > Create Thematic Map.

The optional window_id clause identifies which map layer to use in the prism map; if no window_id is
provided, MapBasic uses the topmost Map window. The Create PrismMap statement must specify
which layer to use, even if the Map window has only one layer. The layer may be identified by number
(layer_id), where the topmost map layer has a layer_id value of one, the next layer has a layer_id value
of two, etc. Alternately, the Create PrismMap statement can identify the map layer by name (for
example, “world”).

Each Create PrismMap statement must specify an expr expression clause. MapInfo Professional
evaluates this expression for each object in the layer; following the Create PrismMap statement,
MapInfo Professional chooses each object’s display style based on that record’s expr value. The
expression typically includes the names of one or more columns from the table being shaded.

Example
Open Table "STATES.TAB" Interactive
Map From STATES
Create PrismMap From Window FrontWindow() STATES With Pop_1980 Background
RGB(192,192,192)

See Also

Set PrismMap statement, PrismMapInfo() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 174 MB_Ref.pdf

Reference Guide Chapter 4: Create Ranges statement
Create Ranges statement
Purpose

Calculates thematic ranges and stores the ranges in an array, which can then be used in a Shade
statement.

Syntax
Create Ranges

From table
With expr
[Use {“Equal Ranges” | “Equal Count” | “Natural Break” | “StdDev” }]
[Quantile Using q_expr]
[Number num_ranges]
[Round rounding_factor]
Into Variable array_variable

table is the name of the table to be shaded thematically

expr is an expression that is evaluated for each row in the table

q_expr is the expression used to perform quantiling

num_ranges specifies the number of ranges (default is 4)

rounding_factor is factor by which the range break numbers should be rounded (for example, 10 to
round off values to the nearest ten)

array_variable is the Float array variable in which the range information will be stored

Description

The Create Ranges statement calculates a set of range values which can then be used in a Shade
statement (which creates a thematic map layer). For an introduction to thematic maps, see the MapInfo
Professional documentation.

The optional Use clause specifies how to break the data into ranges. If you specify “Equal Ranges”
each range covers an equal portion of the spectrum of values (for example, 0-25, 25-50, 50-75, 75-
100). If you specify “Equal Count” the ranges are constructed so that there are approximately the
same number of rows in each range. If you specify “Natural Break” the ranges are dictated by natural
breaks in the set of data values. If you specify “StdDev” the middle range breaks at the mean of your
data values, and the ranges above and below the middle range are one standard deviation above or
below the mean. MapInfo Professional uses the population standard deviation (N - 1).

The Into Variable clause specifies the name of the Float array variable that will hold the range
information. You do not need to pre-size the array; MapInfo Professional automatically enlarges the
array, if necessary, to make room for the range information. The final size of the array is twice the
number of ranges, because MapInfo Professional calculates a high value and a low value for each
range.

After calling Create Ranges, call the Shade statement to create the thematic map, and use the Shade
statement’s optional From Variable clause to read the array of ranges. The Shade statement usually
specifies the same table name and column expression as the Create Ranges statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 175 MB_Ref.pdf

Reference Guide Chapter 4: Create Ranges statement
Quantiled Ranges
If the optional Quantile Using clause is present, the Use clause is ignored and range limits are defined
according to the Quantile Using expression.

Quantiled ranges are best illustrated by example. The following statement creates ranges of buying
power index (BPI) values, and uses state population statistics to perform quantiling to set the range
limits.

Create Ranges From states
With BPI_1990 Quantile Using Pop_1990
Number 5
Into Variable f_ranges

Because of the Number 5 clause, this example creates a set of five ranges.

Because of the With BPI_1990 clause, states with the highest BPI values will be placed in the highest
range (the deepest color), and states with the lowest BPI values will be placed in the lowest range (the
palest color).

Because of the Quantile Using clause, the range limits for the intermediate ranges are calculated by
quantiling, using a method that takes state population (Pop_1990) into account. Since the Quantile
Using clause specifies the Pop_1990 column, MapInfo Professional calculates the total 1990
population for the table (which, for the United States, is roughly 250 million). MapInfo Professional
divides that total by the number of ranges (in this case, five ranges), producing a result of fifty million.
MapInfo Professional then tries to define the ranges in such a way that the total population for each
range approximates, but does not exceed, fifty million.

MapInfo Professional retrieves rows from the States table in order of BPI values, starting with the
states having low BPI values. MapInfo Professional assigns rows to the first range until adding another
row would cause the cumulative population to match or exceed fifty million. At that time, MapInfo
Professional considers the first range “full” and then assigns rows to the second range. MapInfo
Professional places rows in the second range until adding another row would cause the cumulative
total to match or exceed 100 million; at that point, the second range is full, etc.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 176 MB_Ref.pdf

Reference Guide Chapter 4: Create Rect statement
Example
Include ”mapbasic.def”

Dim range_limits() As Float, brush_styles() As Brush
Dim col_name As Alias

Open Table ”states” Interactive

Create Styles
From Brush(2, CYAN, 0) ’style for LOW range
To Brush (2, BLUE, 0) ’style for HIGH range
Vary Color By ”RGB”
Number 5
Into Variable brush_styles

’ Store a column name in the Alias variable:
col_name = ”Pop_1990”

Create Ranges From states
With col_name
Use ”Natural Break”
Number 5
Into Variable range_limits

Map From states

Shade states
With col_name
Ranges

From Variable range_limits
Style Variable brush_styles

’ Show the theme legend window:
Open Window Legend

See Also

Create Styles statement, Set Shade statement, Shade statement

Create Rect statement
Purpose

Creates a rectangle or square object.

Syntax
Create Rect

[Into { Window window_id | Variable var_name }]
(x1, y1) (x2, y2)
[Pen...]
[Brush...]

window_id is a window identifier

var_name is the name of an existing object variable

x1 y1 specifies the starting corner of the rectangle

x2 y2 specifies the opposite corner of the rectangle
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 177 MB_Ref.pdf

Reference Guide Chapter 4: Create Redistricter statement
The Pen clause specifies a line style

The Brush clause specifies a fill style

Description

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style; see the Pen discussion for more details. If no Pen
clause is specified, the Create Rect statement uses the current line style (the style which appears in
the Options > Line Style dialog). Similarly, the optional Brush clause specifies a fill style; see the
Brush discussion for more details.

See Also

Brush clause, Create RoundRect statement, Insert statement, Pen clause, Update statement

Create Redistricter statement
Purpose

Begins a redistricting session.

Syntax
Create Redistricter source_table By district_column

With
[Count]
[, Brush] [, Symbol] [, Pen]
[, { Sum | Percent } (expr)]
[, { Sum | Percent } (expr) . . .]
[Order { “MRU” | “Alpha” | “Unordered” }]

source_table is the name of the table containing objects to be grouped into districts

district_column is the name of a column; the initial set of districts is built from the original contents of
this column, and as objects are assigned to different districts, MapInfo Professional stores the object’s
new district name in this column
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 178 MB_Ref.pdf

Reference Guide Chapter 4: Create Region statement
the Count keyword specifies that the Districts Browser will show a count of the objects belonging to
each district

the Brush keyword specifies that the Districts Browser will show each district’s fill style

the Symbol keyword specifies that the Districts Browser will show each district’s symbol style

the Pen keyword specifies that the Districts Browser will show each district’s line style

expr is a numeric column expression

the Order clause specifies the order of rows in the Districts Browser (alphabetical, unsorted, or based
on most-recently-used); default is MRU

Description

The Create Redistricter statement begins a redistricting session. This statement corresponds to
choosing MapInfo Professional’s Window > New Redistrict Window command. For an introduction to
redistricting, see the MapInfo Professional documentation.

To control the set of districts, use the Set Redistricter statement. To end the redistricting session, use
the Close Window statement to close the Districts Browser window.

If you include the Brush keyword, the Districts Browser includes a sample of each district’s fill style.
Note that this is not a complete Brush clause; the keyword Brush appears by itself. Similarly, the
Symbol and Pen keywords are individual keywords, not complete Symbol or Pen clauses. If the
Districts Browser includes brush, symbol, and/or pen styles, the user can change a district’s style by
clicking on the style sample that appears in the Districts Browser.

See Also

Set Redistricter statement

Create Region statement
Purpose

Creates a region object.

Syntax
Create Region

[Into { Window window_id | Variable var_name }]
num_polygons
[num_points1 (x1, y1) (x2 , y2) [...]]
[num_points2 (x1, y1) (x2 , y2) [...] ...]
[Pen . . .]
[Brush . . .]
[Center (center_x, center_y)]

window_id is a window identifier

var_name is the name of an existing object variable

num_polygons specifies the number of polygons that will make up the region (zero or more)

num_points1 specifies the number of nodes in the region’s first polygon,

num_points2 specifies the number of nodes in the region’s second polygon, etc.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 179 MB_Ref.pdf

Reference Guide Chapter 4: Create Region statement
Each x , y pair specifies one node of a polygon

The Pen clause specifies a line style

The Brush clause specifies a fill style

center_x is the x-coordinate of the object centroid

center_y is the y-coordinate of the object centroid

Description

The Create Region statement creates a region object.

The num_polygons parameter specifies the number of polygons which comprise the region object. If
you specify a num_polygons parameter with a value of zero, the object will be created as an empty
region (a region with no polygons). You can then use the Alter Object statement to add details to the
region.

Depending on your application, you may need to create a region object in two steps, first using Create
Region to create an object with no polygons, and then using Alter Object to add details to the region
object. If your application needs to create region objects, but it will not be known until run-time how
many nodes or how many polygons the regions will contain, you must use Alter Object to add the
variable numbers of nodes. See Alter Object for more information.

If the statement includes the optional Into Variable clause, the object will be stored in the specified
object variable. If the Into clause specifies a window identifier, the object will be stored in the
appropriate place in the window (for example, in the editable layer of a Map window). If the Into clause
is not provided, MapBasic will attempt to store the object in the topmost window; if objects may not be
stored in the topmost window (for example, if the topmost window is a grapher) no object will be
created.

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style used to draw the outline of the object; see the Pen
discussion for more details. If no Pen clause is specified, the Create Region statement uses the
current line style (the style which appears in the Options > Line Style dialog). Similarly, the optional
Brush clause specifies a fill style; see the Brush discussion for more details.

A single-polygon region can contain up to 1,048,572 nodes. For a multiple-polygon region, the limit is
smaller: for each additional polygon, reduce the number of nodes by three. There can be a maximum
of 32,000 polygons per region (multipolygon region).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 180 MB_Ref.pdf

Reference Guide Chapter 4: Create Report From Table statement
Example
Dim obj_region As Object
Dim x(100), y(100) As Float
Dim i, node_count As Integer

’ If you store a set of coordinates in the
’ x() and y() arrays, the following statements
’ will create a region object that has a node
’ at each x,y location:

’ First, create an empty region object
Create Region Into Variable obj_region 0

’ Now add nodes to populate the object:
For i = 1 to node_count

Alter Object obj_region Node Add (x(i), y(i))

Next

’ Now store the object in the Sites table:
Insert Into Sites (Object) Values (obj_region)

See Also

Alter Object statement, Brush clause, Insert statement, Pen clause, Update statement

Create Report From Table statement
Purpose

Creates a report file for Crystal Reports from an open MapInfo Professional table:

Syntax
Create Report From Table tablename [Into reportfilespec][Interactive]

tablename is an open table in MapInfo

reportfilespec is a full path and filename for the new report file.

The Interactive keyword signifies that the new report should immediately be loaded into the Crystal
Report Designer module. Interactive mode is implied if the Into clause is missing. You cannot create a
report from a grid or raster table; you will get an error.

See Also

Open Report statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 181 MB_Ref.pdf

Reference Guide Chapter 4: Create RoundRect statement
Create RoundRect statement
Purpose

Creates a rounded rectangle object.

Syntax
Create RoundRect

[Into { Window window_id | Variable var_name }]
(x1, y1) (x2, y2)
rounding
[Pen . . .]
[Brush . . .]

window_id is a window identifier

var_name is the name of an existing object variable

x1 y1 specifies one corner of the rounded rectangle

x2 y2 specifies the opposite corner of the rectangle

rounding is a Float value, in coordinate units (for example, inches on a Layout or degrees on a Map),
specifying the diameter of the circle which fills the rounded rectangle’s corner

The Pen clause specifies a line style

The Brush clause specifies a fill style

Description

The Create RoundRect statement creates a rounded rectangle object (a rectangle with rounded
corners).

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. Note that MapBasic’s coordinate system is
independent of the coordinate system of any Map window. Objects created on a Layout window,
however, are specified in paper units: each x-coordinate represents a distance from the left edge of the
page, while each y-coordinate represents the distance from the top edge of the page. By default,
MapBasic uses inches as the default paper unit. To use a different paper unit, see the Set Paper Units
statement.

Note: If you need to create objects on a Layout window, you must first issue a Set CoordSys Layout
statement.

The optional Pen clause specifies a line style used to draw the object’s outline; see the Pen discussion
for more details. If no Pen clause is specified, the Create RoundRect statement uses the current line
style (the style which appears in the Options > Line Style dialog). Similarly, the optional Brush clause
specifies a fill style; see the Brush discussion for more details.

See Also

Brush clause, Create Rect statement, Insert statement, Pen clause, Update statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 182 MB_Ref.pdf

Reference Guide Chapter 4: Create Styles statement
Create Styles statement
Purpose

Builds a set of Pen, Brush or Symbol styles, and stores the styles in an array.

Syntax
Create Styles

From { Pen ... | Brush ... | Symbol ... }
To { Pen ... | Brush ... | Symbol ... }
Vary { Color By { “RGB” | “HSV” } |

Background By { “RGB” | “HSV” } |
Size By { “Log” | “Sqrt” | “Constant” }

}
[Number num_styles]
[Inflect At range_number With { Pen... | Brush... | Symbol...}]

Into Variable array_variable

num_styles is the number of drawing styles (for example, the number of fill styles) to create. The
default number is four.

range_number is a SmallInt range number; the inflection attribute is placed after this range

array_variable is an array variable that will store the range of pens, brushes, or symbols

Description

The Create Styles statement defines a set of Pen, Brush, or Symbol styles, and stores the styles in an
array variable. The array can then be used in a Shade statement (which creates a thematic map layer).
For an introduction to thematic mapping, see the MapInfo Professional documentation.

The From clause specifies a Pen, Brush, or Symbol style. If the array of styles is later used in a
thematic map, the From style is the style assigned to the “low” range. The To clause specifies a style
that corresponds to the “high” range of a thematic map.

The Create Styles statement builds a set of styles which are interpolated between the From style and
the To style. For example, the From style could be a Brush clause representing a deep, saturated
shade of blue, and the To style could be a Brush clause representing a pale, faint shade of blue. In this
case, MapInfo Professional builds a set of Brush styles that vary from pale blue to saturated blue.

The optional Number clause specifies the total number of drawing styles needed; this number includes
the two styles specified in the To and From clauses. Usually, this corresponds to the number of ranges
specified in a subsequent Shade statement.

The Vary clause specifies how to spread an attribute among the styles. To spread the foreground color,
use the Color sub-clause. To spread the background color, use the Background sub-clause. In either
case, color can be spread by interpolating the RGB or HSV components of the from and to colors. If
you are creating an array of Symbol styles, you can use the Size sub-clause to vary the symbols’ point
sizes. Similarly, if you are creating an array of Pen styles, you can use the Size sub-clause to vary line
width.

The optional Inflect At clause specifies an inflection attribute that goes between the From and To
styles. If you specify an Inflect At clause, MapInfo Professional creates two sets of styles: one set of
styles interpolated between the From style and the Inflect style, and another set of styles interpolated
between the Inflect style and the To style. For example, using an inflection style, you could create a
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 183 MB_Ref.pdf

Reference Guide Chapter 4: Create Table statement
thematic map of profits and losses, where map regions that have shown a profit appear in various
shades of green, while regions that have shown a loss appear in various shades of red. Inflection only
works when varying the color attribute.

The Into Variable clause specifies the name of the array variable that will hold the styles. You do not
need to pre-size the array; MapInfo Professional automatically enlarges the array, if necessary, to
make room for the set of styles. The array variable (Pen, Brush, or Symbol) must match the style type
specified in the From and To clauses.

Example

The following example demonstrates the syntax of the Create Styles statement.

Dim brush_styles() As Brush

Create Styles
From Brush(2, CYAN, 0) ’style for LOW range
To Brush (2, BLUE, 0) ’style for HIGH range
Vary Color By ”RGB”
Number 5
Into Variable brush_styles

This Create Styles statement defines a set of five Brush styles, and stores the styles in the b_ranges
array. A subsequent Shade statement could create a thematic map which reads the Brush styles from
the b_ranges array. For an example, see the discussion of the Create Ranges statement.

See Also

Create Ranges statement, Set Shade statement, Shade statement

Create Table statement
Purpose

Creates a new table.

Syntax
Create Table table
(column columntype [, . . .]) | Using from_table }

[File filespec]
[{ Type NATIVE |

Type DBF [CharSet char_set] |
Type {Access | ODBC} database_filespec [Version version]
Table tablename
[Password pwd] [CharSet char_set]

}]
[Version version]

table is the name of the table as you want it to appear in MapInfo Professional.

column is the name of a column to create. Column names can be up to 31 characters long, and can
contain letters, numbers, and the underscore (_) character. Column names cannot begin with numbers.

from_table is the name of a currently open table in which the column you want to place in a new table
is stored. The from_table must be a base table, and must contain column data. Query tables and raster
tables cannot be used and will produce an error. The column structure of the new table will be identical
to this table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 184 MB_Ref.pdf

Reference Guide Chapter 4: Create Table statement
filespec specifies where to create the .TAB, .MAP, and .ID files (and in the case of Access, .AID files). If
you omit the File clause, files are created in the current directory.

char_set is the name of a character set; see the separate CharSet discussion.

database_filespec is a string that identifies a valid Access database. If the specified database does not
exist, MapInfo Professional creates a new Access .MDB file.

version is an expression that specifies the version of the Microsoft Jet database format to be used by
the new database. Acceptable values are 4.0 (for Access 2000) or 3.0 (for Access ’95/’97). If omitted,
the default version is 4.0. If the database in which the table is being created already exists, the
specified database version is ignored.

tablename is a String that indicates the name of the table as it will appear in Access.

pwd is the database-level password for the database, to be specified when database security is turned
on.

version is 100 (to create a table that can be read by versions of MapInfo Professional) or 300 (MapInfo
Professional 3.0 format). Does not apply when creating an Access table; the version of the Access
table is handled by DAO.

columntype is the data type associated with the column. Each columntype is defined as follows:

Char(width) |
Float |
Integer |
SmallInt |
Decimal(width , decplaces) |
Date |
Logical

width indicates how large each field should be (does not apply to all field types). Char fields can have a
width of up to 254 characters.

decplaces indicates the number of decimal places to use in a Decimal field.

Description

The Create Table statement creates a new empty table with up to 250 columns. Specify ODBC to
create new tables on a DBMS server.

The Using clause allows you to create a new table as part of the "Combine Objects Using Column"
functionality. The from_table must be a base table, and must contain column data. Query tables and
raster tables can't be used and will produce an error. The column structure of the new table being
created will be identical to this table.

The optional filespec clause specifies where to create the new table. If no filespec clause is used, the
table is created in the current directory or folder.

The optional Type clause specifies the table’s data format. The default type is NATIVE, but can
alternately be DBF. The NATIVE format takes up less disk space than the DBF format, but the DBF
format produces base files that can be read in any dBASE-compatible database manager. Also, create
new tables on DBMS Servers from the ODBC Type clause in the Create Table statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 185 MB_Ref.pdf

Reference Guide Chapter 4: CreateText() function
The CharSet clause specifies a character set. The char_set parameter should be a string constant,
such as “WindowsLatin1”. If no CharSet clause is specified, MapBasic uses the default character set
for the hardware platform that is in use at runtime. See the CharSet clause discussion for more
information.

The SmallInt column type reserves two bytes for each value; thus, the column can contain values from
-32,767 to +32,767. The Integer column type reserves four bytes for each value; thus, the column can
contain values from -2,147,483,647 to +2,147,483,647.

The Version clause controls the table’s format. If you specify Version 100, MapInfo Professional
creates a table in a format that can be read by versions of MapInfo Professional. If you specify Version
300, MapInfo Professional creates a table in the format used by MapInfo Professional 3.0. Note that
region and polyline objects having more than 8,000 nodes and multiple-segment polyline objects
require version 300. If you omit the Version clause, the table is created in the version 300 format.

Example

The following example shows how to create a table called Towns, containing 3 fields: a character field
called townname, an integer field called population, and a decimal field called median_income. The file
will be created in the subdirectory C:\MAPINFO\DATA. Since an optional Type clause is used, the table
will be built around a dBASE file.

Create Table Towns
(townname Char(30),

population SmallInt,
median_income Decimal(9,2))
File ”C:\MAPINFO\TEMP\TOWNS”
Type DBF

See Also

Alter Table statement, Create Index statement, Create Map statement, Drop Table statement,
Export statement, Import statement, Open Table statement

CreateText() function
Purpose

Returns a text object created for a specific map window.

Syntax
CreateText(window_id , x , y , text , angle , anchor , offset)

window_id is an Integer window identifier that represents a Map window

x , y are Float values, representing the x/y location where the text is anchored

text is a String value, representing the text that will comprise the text object

angle is a Float value, representing the angle of rotation; for horizontal text, specify zero
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 186 MB_Ref.pdf

Reference Guide Chapter 4: CreateText() function
anchor is an Integer value from 0 to 8, controlling how the text is placed relative to the anchor location.
Specify one of the following codes; codes are defined in MAPBASIC.DEF.

LAYER_INFO_LBL_POS_CC (0)
LAYER_INFO_LBL_POS_TL (1)
LAYER_INFO_LBL_POS_TC (2)
LAYER_INFO_LBL_POS_TR (3)
LAYER_INFO_LBL_POS_CL (4)
LAYER_INFO_LBL_POS_CR (5)
LAYER_INFO_LBL_POS_BL (6)
LAYER_INFO_LBL_POS_BC (7)
LAYER_INFO_LBL_POS_BR (8)

The two-letter suffix indicates the label orientation: T=Top, B=Bottom, C=Center, R=Right, L=Left. For
example, to place the text below and to the right of the anchor location, specify the define code
LAYER_INFO_LBL_POS_BR, or specify the value 8.

offset is an Integer from zero to 50, representing the distance (in points) the text is offset from the
anchor location; offset is ignored if anchor is zero (centered).

Return Value

Object

Description

The CreateText() function returns an Object value representing a text object.

The text object uses the current Font style. To create a text object with a specific Font style, issue the
Set Style statement before calling CreateText().

At the moment the text is created, the text height is controlled by the current Font. However, after the
text object is created, its height depends on the Map window’s zoom; zooming in will make the text
appear larger.

The object returned could be assigned to an Object variable, stored in an existing row of a table
(through the Update statement), or inserted into a new row of a table (through an Insert statement).

Example

The following example creates a text object and inserts it into the map’s Cosmetic layer (given that the
variable i_map_id is an integer containing a Map window’s ID).

Insert Into Cosmetic1 (Obj)
Values (CreateText(i_map_id, -80, 42.4, ”Sales Map”, 0,0,0))

See Also

AutoLabel statement, Create Text statement, Font clause, Insert statement, Update statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 187 MB_Ref.pdf

Reference Guide Chapter 4: Create Text statement
Create Text statement
Purpose

Creates a text object, such as a title, for a Map or Layout window.

Syntax
Create Text

[Into { Window window_id | Variable var_name }]
 text_string
(x1, y1) (x2, y2)
[Font . . .]
[Label Line { Simple | Arrow } (label_x , label_y)]
[Spacing { 1.0 | 1.5 | 2.0 }]
[Justify { Left | Center | Right }]
[Angle text_angle]

window_id is an Integer window ID number, identifying a Map or Layout window

var_name is the name of an existing object variable

text_string specifies the string, up to 255 characters long, that will constitute the text object; to create a
multiple-line text object, embed the function call Chr$(10) in the string

x1 , y1 are floating-point coordinates, specifying one corner of the rectangular area which the text will
fill

x2 , y2 specify the opposite corner of the rectangular area which the text will fill

The Font clause specifies a text style. The point-size element of the Font is ignored if the text object is
created in a Map window; see below.

label_x , label_y specifies the position where the text object’s label line is anchored

text_angle is a Float value indicating the angle of rotation for the text object (in degrees)

Description

The x and y parameters use whatever coordinate system MapBasic is currently using. By default,
MapBasic uses a longitude, latitude coordinate system, although the Set CoordSys statement can re-
configure MapBasic to use a different coordinate system. If you need to create objects on a Layout
window, you must first issue a Set CoordSys Layout statement.

The x1, y1, x2, and y2 arguments define a rectangular area. When you create text in a Map window,
the text fills the rectangular area, which controls the text height; the point size specified in the Font
clause is ignored. In a Layout window, text is drawn at the point size specified in the Font clause, with
the upper-left corner of the text placed at the (x1, y1) location; the (x2, y2) arguments are ignored.

See Also

AutoLabel statement, CreateText() function, Font clause, Insert statement, Update statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 188 MB_Ref.pdf

Reference Guide Chapter 4: CurDate() function
CurDate() function
Purpose

Returns the current date in YYYYMMDD format.

Syntax
CurDate()

Return Value

Date

Description

The Curdate() function returns a Date value representing the current date. The format will always be
YYYYMMDD. To change the value to a string in the local system format use the FormatDate$() or
Srt$() functions.

Example
Dim d_today As Date
d_today = CurDate()

See Also

Day() function, Format$() function, Month() function, StringToDate() function, Timer()
function, Weekday() function, Year() function

CurrentBorderPen() function
Purpose

Returns the current border pen style currently in use.

Syntax
CurrentBorderPen()

Return Value

Pen

Description

The CurrentBorderPen() function returns the current border pen style. MapInfo Professional assigns
the current style to the border of any region objects drawn by the user. If a MapBasic program creates
an object through a statement such as Create Region, but the statement does not include a Pen
clause, the object uses the current BorderPen style.

The return value can be assigned to a Pen variable, or may be used as a parameter within a statement
that takes a Pen setting as a parameter (such as Set Map).

To extract specific attributes of the Pen style (such as the color), call the StyleAttr() function. For more
information about Pen settings, see the Pen clause.

Example
Dim p_user_pen As Pen p_user_pen = CurrentBorderPen()

See Also

CurrentPen() function, Pen clause, Set Style statement, StyleAttr() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 189 MB_Ref.pdf

Reference Guide Chapter 4: CurrentBrush() function
CurrentBrush() function
Purpose

Returns the Brush (fill) style currently in use.

Syntax
CurrentBrush()

Return Value

Brush

Description

The CurrentBrush() function returns the current Brush style. This corresponds to the fill style
displayed in the Options > Region Style dialog. MapInfo Professional assigns the current Brush value
to any filled objects (ellipses, rectangles, rounded rectangles, or regions) drawn by the user. If a
MapBasic program creates a filled object through a statement such as Create Region, but the
statement does not include a Brush clause, the object will be assigned the current Brush value.

The return value of the CurrentBrush() function can be assigned to a Brush variable, or may be used
as a parameter within a statement that takes a Brush setting as a parameter (such as Set Map or
Shade).

To extract specific Brush attributes (such as the color), call StyleAttr().

For more information about Brush settings, see the Brush clause.

Example
Dim b_current_fill As Brush
b_current_fill = CurrentBrush()

See Also

Brush clause, MakeBrush() function, Set Style statement, StyleAttr() function

CurrentFont() function
Purpose

Returns the Font style currently in use for Map and Layout windows.

Syntax
CurrentFont()

Return Value

Font

Description

The CurrentFont() function returns the current Font style. This corresponds to the text style displayed
in the Options > Text Style dialog when a Map or Layout window is the active window. MapInfo
Professional will assign the current Font value to any text object drawn by the user. If a MapBasic
program creates a text object through the Create Text statement, but the statement does not include a
Font clause, the text object will be assigned the current Font value.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 190 MB_Ref.pdf

Reference Guide Chapter 4: CurrentLinePen() function
The return value of the CurrentFont() function can be assigned to a Font variable, or may be used as
a parameter within a statement that takes a Font setting as a parameter (such as Set Legend).

To extract specific attributes of the Font style (such as the color), call the StyleAttr() function.

For more information about Font settings, see the Font clause.

Example
Dim f_user_text As Font
f_user_text = CurrentFont()

See Also

Font clause, MakeFont() function, Set Style statement, StyleAttr() function

CurrentLinePen() function
Purpose

Returns the Pen (line) style currently in use.

Syntax
CurrentLinePen()

Return Value

Pen

Description

The CurrentLinePen() function returns the current Pen style. MapInfo Professional assigns the
current style to any line or polyline objects drawn by the user. If a MapBasic program creates an object
through a statement such as Create Line, but the statement does not include a Pen clause, the object
uses the current Pen style. The return value can be assigned to a Pen variable, or may be used as a
parameter within a statement that takes a Pen setting as a parameter (such as Set Map).

To extract specific attributes of the Pen style (such as the color), call the StyleAttr() function. For more
information about Pen settings, see the Pen clause.

Example
Dim p_user_pen As Pen p_user_pen = CurrentPen()

See Also

CurrentBorderPen() function, Pen clause, Set Style statement, StyleAttr() function

CurrentPen() function
Purpose

Returns the Pen (line) style currently in use and sets the border pen to the same style as the line pen.

Syntax
CurrentPen()

Return Value

Pen
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 191 MB_Ref.pdf

Reference Guide Chapter 4: CurrentSymbol() function
Description

The CurrentPen() function returns the current Pen style. MapInfo Professional assigns the current
style to any line or polyline objects drawn by the user. If a MapBasic program creates an object through
a statement such as Create Line, but the statement does not include a Pen clause, the object uses the
current Pen style. If you want to use the current line pen without re-setting the border pen, use the
CurrentLinePen() function.

The return value can be assigned to a Pen variable, or may be used as a parameter within a statement
that takes a Pen setting as a parameter (such as Set Map).

To extract specific attributes of the Pen style (such as the color), call the StyleAttr() function.

For more information about Pen settings, see the Pen clause.

Example
Dim p_user_pen As Pen
p_user_pen = CurrentPen()

See Also

MakePen() function, Pen clause, Set Style statement, StyleAttr() function

CurrentSymbol() function
Purpose

Returns the Symbol style currently in use.

Syntax
CurrentSymbol()

Return Value

Symbol

Description

The CurrentSymbol() function returns the current symbol style. This is the style displayed in the
Options > Symbol Style dialog. MapInfo Professional assigns the current Symbol style to any point
objects drawn by the user. If a MapBasic program creates a point object through a Create Point
statement, but the statement does not include a Symbol clause, the object will be assigned the current
Symbol value.

The return value of the CurrentSymbol() function can be assigned to a Symbol variable, or may be
used as a parameter within a statement that takes a Symbol setting as a parameter (such as Set Map
or Shade).

To extract specific attributes of the Symbol style (such as the color), call the StyleAttr() function.

For more information about Symbol settings, see the Symbol clause.

Example
 Dim sym_user_symbol As Symbol
 sym_user_symbol = CurrentSymbol()

See Also

MakeSymbol() function, Set Style statement, StyleAttr() function, Symbol clause
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 192 MB_Ref.pdf

Reference Guide Chapter 5: DateWindow() function
DateWindow() function
Purpose

Returns the current date window setting as an integer in the range 0 to 99, or (-1) if date windowing is
off.

Syntax
DateWindow(context)

context is a SmallInt that can either be DATE_WIN_CURPROG or DATE_WIN_SESSION.

Description

This depends on which context is passed. If context is DATE_WIN_SESSION, then the current session
setting in effect is returned. If context is DATE_WIN_CURPROG, then the current MapBasic program’s
local setting is returned, if a program is not running the session setting is returned.

MBX’s compiled before v5.5 will still convert 2-digit years to the current century (5.0 and earlier
behavior). To get the new behavior, they must be recompiled with MapBasic v5.5 or later.

Example

In the following example the variable Date1 = 19890120, Date2 = 20101203 and MyYear = 1990.

DIM Date1, Date2 as Date
DIM MyYear As Integer
Set Format Date ”US”
Set Date Window 75

Date1 = StringToDate(”1/20/89”)
Date2 = StringToDate(”12/3/10”)

MyYear = Year(”12/30/90”)

See Also

Set Date Window statement

Day() function
Purpose

Returns the day component from a Date expression.

Syntax
Day(date_expr)

date_expr is a Date expression

Return Value

SmallInt from 1 to 31

Description

The Day() function returns an integer value from one to thirty-one, representing the day-of-the-month
component of the specified date. For example, if the specified date is 12/17/93, the Day() function
returns a value of 17.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 193 MB_Ref.pdf

Reference Guide Chapter 5: DDEExecute statement
Example
Dim day_var As SmallInt, date_var As Date
date_var = StringToDate(”05/23/1985”)
day_var = Day(date_var)

See Also

CurDate() function, Month() function, Timer() function, Year() function

DDEExecute statement
Purpose

Issues a command across an open DDE channel.

Syntax
DDEExecute channel , command

channel is an Integer channel number returned by DDEInitiate()

command is a String representing a command for the DDE server to execute

Description

The DDEExecute statement sends a command string to the server application in a DDE conversation.

The channel parameter must correspond to the number of a channel opened through a DDEInitiate()
function call.

The command parameter string must represent a command which the DDE server (the passive
application) is able to carry out. Different applications have different requirements regarding what
constitutes a valid command; to learn about the command format for a particular application, see the
documentation for that application.

Error Conditions

ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

ERR_NO_RESPONSE_FROM_APP error if server application does not respond

Example

Through MapBasic, you can open a DDE channel with Microsoft Excel as the server application. If the
conversation specifies the “System” topic, you can use the DDEExecute statement to send Excel a
command string. Provided that the command string is equivalent to an Excel macro function, and
provided that the command string is enclosed in square brackets, Excel can execute the command.
The example below instructs Excel to open the worksheet “TRIAL.XLS”.

Dim i_chan As Integer
i_chan = DDEInitiate(”Excel”, ”System”)
DDEExecute i_chan, ”[OPEN(””C:\DATA\TRIAL.XLS””)]”

See Also

DDEInitiate() function, DDEPoke statement, DDERequest$() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 194 MB_Ref.pdf

Reference Guide Chapter 5: DDEInitiate() function
DDEInitiate() function
Purpose

Initiates a new DDE conversation, and returns the associated channel number.

Syntax
DDEInitiate(appl_name , topic_name)

appl_name is a String representing an application name (for example, “MapInfo”)

topic_name is a string representing a topic name (for example, “System”)

Return Value

Integer

Description

The DDEInitiate() function initiates a DDE (Dynamic Data Exchange) conversation, and returns the
number that identifies that conversation’s channel.

A DDE conversation allows two Microsoft Windows applications to exchange information. Once a DDE
conversation has been initiated, a MapBasic program can issue DDERequest$() function calls (to
read information from the other application) and DDEPoke statements (to write information to the other
application). Once a DDE conversation has served its purpose and is no longer needed, the MapBasic
program should terminate the conversation through the DDETerminate or DDETerminateAll
statements.

Note: DDE conversations are a feature specific to Microsoft Windows; therefore, MapBasic
generates an error if a program issues DDE-related function calls when running on a non-
Windows platform. To determine the current hardware platform at run-time, call the
SystemInfo() function.

The appl_name parameter identifies a Windows application. For example, to initiate a conversation
with Microsoft Excel, you should specify the appl_name parameter “Excel.” The application named by
the appl_name parameter must already be running before you can initiate a DDE conversation; note
that the MapBasic Run Program statement allows you to run another Windows application. Not all
Windows applications support DDE conversations. To determine if an application supports DDE
conversations, see the documentation for that application.

The topic_name parameter is a string that identifies the topic for the conversation. Each application
has its own set of valid topic names; for a list of topics supported by a particular application, refer to the
documentation for that application. With many applications, the name of a file that is in use is a valid
topic name. Thus, if Excel is currently using the worksheet file “ORDERS.XLS”, you could issue the
following MapBasic statements:

Dim i_chan As Integer
i_chan = DDEInitiate(”Excel”, ”C:\ORDERS.XLS”)

to initiate a DDE conversation with that Excel worksheet.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 195 MB_Ref.pdf

Reference Guide Chapter 5: DDEInitiate() function
Many applications support a special topic called “System”. If you initiate a conversation using the
“System” topic, you can then use the DDERequest$() function to obtain a list of the strings which the
application accepts as valid topic names (i.e. a list of the files that are currently in use). Knowing what
topics are available, you can then initiate another DDE conversation with a specific document. See the
example below.

The following table lists some sample application and topic names which you could use with the
DDEInitiate() function.

When a MapBasic program issues a DDEInitiate() function call, the MapBasic program is known as
the “client” in the DDE conversation. The other Windows application is known as the “server.” Within
one particular conversation, the client is always the active party; the server merely responds to actions
taken by the client. A MapBasic program can carry on multiple conversations at the same time, limited
only by memory and system resources. A MapBasic application could act as the client in one
conversation (by issuing statements such as DDEInitiate(), etc.) while acting as the server in another
conversation (by defining a sub procedure named RemoteMsgHandler).

Error Conditions

ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

ERR_INVALID_CHANNEL error generated if the specified channel number is invalid

Example

The following example attempts to initiate a DDE conversation with Microsoft Excel, version 4 or later.
The goal is to store a simple text message (“Hello from MapInfo!”) in the first cell of a worksheet that
Excel is currently using, but only if that cell is currently empty. If the first cell is not empty, we will not
overwrite its current contents.

Dim chan_num, tab_marker As Integer
Dim topiclist, topicname, cell As String

chan_num = DDEInitiate(”EXCEL”, ”System”)
If chan_num = 0 Then

DDEInitiate() call Nature of conversation

DDEInitiate(“Excel” , “System”) DDERequest$() calls can return Excel system information,
such as a list of the names of the worksheets in use; DDE-
Execute statements can send commands for Excel to exe-
cute

DDEInitiate(“Excel” , wks) If wks is the name of an Excel document in use, subsequent
DDEPoke statements can store values in the worksheet,
and DDERequest$() calls can read information from the
worksheet

DDEInitiate(“MapInfo” , “System”
)

DDERequest$() calls can provide system information, such
as a list of the MapBasic applications currently in use by
MapInfo Professional.

DDEInitiate(“MapInfo” , mbx) If mbx is the name of a MapBasic application in use, DDE-
Poke statements can assign values to global variables in
the specified application, and DDERequest$() calls can
read the current values of global variables
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 196 MB_Ref.pdf

Reference Guide Chapter 5: DDEInitiate() function
Note ”Excel is not responding to DDE conversation.”
End Program

End If

’ Get a list of Excel’s valid topics
topiclist = DDERequest$(chan_num, ”topics”)

’ If Excel 4 is running, topiclist might look like:
’ ”: Sheet1 System”
’ (if spreadsheet is still ”unnamed”),or like:
’ ”: C:Orders.XLS Sheet1 System”
’
’ If Excel 5 is running, topiclist might look like:
’ ”[Book1]Sheet1 [Book2]Sheet2 ...”
’
’ Next, extract just the first topic (for example,”Sheet1”)
’ by extracting the text between the 1st & 2nd tabs;
’ or, in the case of Excel 5, by extracting the text
’ that appears before the first tab.

If Left$(topiclist, 1) = ”:” Then
’ ...then it’s Excel 4.
tab_marker = InStr(3, topiclist, Chr$(9))
If tab_marker = 0 Then

Note ”No Excel documents in use! Stopping.”
End Program

End If
topicname = Mid$(topiclist, 3, tab_marker - 3)
Else

’ ... assume it’s Excel 5.
tab_marker = Instr(1, topiclist, Chr$(9))
topicname = Left$(topiclist, tab_marker - 1)

End If

’ open a channel to the specific document
’ (e.g., ”Sheet1”)
DDETerminate chan_num
chan_num = DDEInitiate(”Excel”, topicname)
If chan_num = 0 Then

Note ”Problem communicating with ” + topicname End Program
End If

’ Let’s examine the 1st cell in Excel.
’ If cell is blank, put a message in the cell.
’ If cell isn’t blank, don’t alter it -
’ just display cell contents in a MapBasic NOTE.
’ Note that a ”Blank cell” gets returned as a
’ carriage-return line-feed sequence:
’ Chr$(13) + Chr$(10).
cell = DDERequest$(chan_num, ”R1C1”)
If cell <> Chr$(13) + Chr$(10) Then

Note
”Message not sent; cell already contains:” + cell

Else
DDEPoke chan_num, ”R1C1”, ”Hello from MapInfo!”
Note ”Message sent to Excel,”+topicname+ ”,R1C1.”

End If
DDETerminateAll
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 197 MB_Ref.pdf

Reference Guide Chapter 5: DDEPoke statement
Note: This example does not anticipate every possible obstacle. For example, Excel might currently
be editing a chart (for example, “Chart1”) instead of a worksheet, in which case we will not be
able to reference cell “R1C1”.

See Also

DDEExecute statement, DDEPoke statement, DDERequest$() function, DDETerminate
statement, DDETerminateAll statement

DDEPoke statement
Purpose

Sends a data value to an item in a DDE server application.

Syntax
DDEPoke channel, itemname, data

channel is an Integer channel number returned by DDEInitiate()

itemname is a String value representing the name of an item

data is a character string to be sent to the item named in the itemname parameter

Description

The DDEPoke statement stores the data text string in the specified DDE item.

The channel parameter must correspond to the number of a channel which was opened through the
DDEInitiate() function.

The itemname parameter should identify an item which is appropriate for the specified channel.
Different DDE applications support different item names; to learn what item names are supported by a
particular Windows application, refer to the documentation for that application.

In a DDE conversation with Excel, a string of the form R1C1 (for Row 1, Column 1) is a valid item
name. In a DDE conversation with another MapBasic application, the name of a global variable in the
application is a valid item name.

Error Conditions

ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

ERR_INVALID_CHANNEL error generated if the specified channel number is invalid

Example

If Excel is already running, the following example stores a simple message (”Hello from MapInfo!”) in
the first cell of an Excel worksheet.

Dim i_chan_num As Integer
i_chan_num = DDEInitiate(”EXCEL”, ”Sheet1”)
DDEPoke i_chan_num, ”R1C1”, ”Hello from MapInfo!”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 198 MB_Ref.pdf

Reference Guide Chapter 5: DDERequest$() function
The following example assumes that there is another MapBasic application currently in use -
“Dispatch.mbx” - and assumes that the Dispatch application has a global variable called Address. The
example below uses DDEPoke to modify the Address global variable.

i_chan_num = DDEInitiate(”MapInfo”,”C:\DISPATCH.MBX”)
DDEPoke i_chan_num, ”Address”, ”23 Main St.”

See Also

DDEExecute statement, DDEInitiate() function, DDERequest$() function

DDERequest$() function
Purpose

Returns a data value obtained from a DDE conversation.

Syntax
DDERequest$(channel , itemname)

channel is an Integer channel number returned by DDEInitiate()

itemname is a String representing the name of an item in the server application

Return Value

String

Description

The DDERequest$() function returns a string of information obtained through a DDE conversation. If
the request is unsuccessful, the DDERequest$() function returns a null string.

The channel parameter must correspond to the number of a channel which was opened through the
DDEInitiate() function.

The itemname parameter should identify an item which is appropriate for the specified channel.
Different DDE applications support different item names; to learn what item names are supported by a
particular Windows application, refer to the documentation for that application.

The following table lists some topic and item combinations that can be used when conducting a DDE
conversation with Microsoft Excel as the server:

Topic name item names to use with DDERequest

“System” “Systems” returns a list of item names accepted under the “Sys-
tem” topic;

“Topics” returns a list of DDE topic names accepted by Excel,
including the names of all open worksheets;

“Formats” returns a list of clipboard formats accepted by Excel
(for example, “TEXT BITMAP ...”)

wks (name of a worksheet in
use)

A string of the form R1C1 (for Row 1, Column 1) returns the
contents of that cell
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 199 MB_Ref.pdf

Reference Guide Chapter 5: DDERequest$() function
Note: Through the DDERequest$() function, one MapBasic application can observe the current
values of global variables in another MapBasic application. The following table lists the topic
and item combinations that can be used when conducting a DDE conversation with MapInfo
Professional as the server.

Error Conditions

ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

ERR_INVALID_CHANNEL error if the specified channel number is invalid

ERR_CANT_INITIATE_LINK error generated if MapBasic cannot link to the topic

Example

The following example uses the DDERequest$() function to obtain the current contents of the first cell
in an Excel worksheet. Note that this example will only work if Excel is already running.

Dim i_chan_num As Integer
Dim s_cell As String
i_chan_num = DDEInitiate(”EXCEL”, ”Sheet1”)
s_cell = DDERequest$(i_chan_num, ”R1C1”)

The following example assumes that there is another MapBasic application currently in use -
“Dispatch” - and assumes that the Dispatch application has a global variable called Address. The
example below uses DDERequest$() to obtain the current value of the Address global variable.

Dim i_chan_num As Integer, s_addr_copy As String
i_chan_num = DDEInitiate(”MapInfo”,”C:\DISPATCH.MBX”)
s_addr_copy = DDERequest$(i_chan_num, ”Address”)

See Also

DDEInitiate() function

Topic name item names to use with DDERequest

“System” “Systems” returns a list of item names accepted under the “System”
topic;

“Topics” returns a list of DDE topic names accepted by MapInfo
Professional, which includes the names of all MapBasic applications
currently in use;

“Formats” returns a list of clipboard formats accepted by MapInfo
Professional (“TEXT”)

“Version” returns the MapInfo version number, multiplied by 100

mbx (name of .MBX in
use)

“{items}” returns a list of the names of global variables in use by the
specified MapBasic application; specifying the name of a global
variable lets DDERequest$() return the value of the variable
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 200 MB_Ref.pdf

Reference Guide Chapter 5: DDETerminate statement
DDETerminate statement
Purpose

Closes a DDE conversation.

Syntax
DDETerminate channel

channel is an Integer channel number returned by DDEInitiate()

Description

The DDETerminate statement closes the DDE channel specified by the channel parameter.

The channel parameter must correspond to the channel number returned by the DDEInitiate()
function call (which initiated the conversation). Once a DDE conversation has served its purpose and is
no longer needed, the MapBasic program should terminate the conversation through the
DDETerminate or DDETerminateAll statements.

Note: Multiple MapBasic applications can be in use simultaneously, and each application can open
its own DDE channels. However, a given MapBasic application may only close the DDE
channels which it opened. A MapBasic application may not close DDE channels which were
opened by another MapBasic application.

Error Conditions

ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

ERR_INVALID_CHANNEL error generated if the specified channel number is invalid

Example
DDETerminate i_chan_num

See Also

DDEInitiate() function, DDETerminateAll statement

DDETerminateAll statement
Purpose

Closes all DDE conversations which were opened by the same MapBasic program.

Syntax
DDETerminateAll

Description

The DDETerminateAll statement closes all open DDE channels which were opened by the same
MapBasic application. Note that multiple MapBasic applications can be in use simultaneously, and
each application can open its own DDE channels. However, a given MapBasic application may only
close the DDE channels which it opened. A MapBasic application may not close DDE channels which
were opened by another MapBasic application

Once a DDE conversation has served its purpose and is no longer needed, the MapBasic program
should terminate the conversation through the DDETerminate or DDETerminateAll statements.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 201 MB_Ref.pdf

Reference Guide Chapter 5: Declare Function statement
Error Conditions

ERR_CMD_NOT_SUPPORTED error generated if not running on Windows

See Also

DDEInitiate() function, DDETerminate statement

Declare Function statement
Purpose

Defines the name and parameter list of a function.

Restrictions

This statement may not be issued from the MapBasic window.

Accessing external functions (using syntax 2) is platform-dependent. DLL files may only be accessed
by applications running on Windows.

Syntax 1
Declare Function fname

([[ByVal] parameter As var_type]
 [, [ByVal] parameter As var_type...]) As return_type

fname is the name of the function

parameter is the name of a parameter to the function

var_type is a variable type, such as Integer; arrays and custom Types are allowed

return_type is a standard scalar variable type; arrays and custom Types are not allowed

Syntax 2 (external routines in Windows DLLs
Declare Function fname Lib “file_name” [Alias “function_alias”]

([[ByVal] parameter As var_type]
 [, [ByVal] parameter As var_type...]) As return_type

fname is the name by which a function will be called

file_name is the name of a Windows DLL file

function_alias is the original name of the external function

parameter is the name of a parameter to the function

var_type is a data type: with Windows DLLs, this can be a standard variable type or a custom Type

return_type is a standard scalar variable type

Description

The Declare Function statement pre-declares a user-defined MapBasic function or an external
function.

A MapBasic program can use a Function...End Function statement to create a custom function.
Every function defined in this fashion must be preceded by a Declare Function statement. For more
information on creating custom functions, see Function...End Function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 202 MB_Ref.pdf

Reference Guide Chapter 5: Declare Function statement
Parameters passed to a function are passed by reference unless you include the optional ByVal
keyword. For information on the differences between by-reference and by-value parameters, see the
MapBasic User Guide.

Calling External Functions
Using Syntax 2 (above), you can use a Declare Function statement to define an external function. An
external function is a function that was written in another language (for example, C or Pascal), and is
stored in a separate file. Once you have declared an external function, your program can call the
external function as if it were a conventional MapBasic function.

If the Declare Function statement declares an external function, the file_name parameter must
specify the name of the file containing the external function. The external file must be present at run-
time.

Every external function has an explicitly assigned name. Ordinarily, the Declare Function statement’s
fname parameter matches the explicit routine name from the external file. Alternately, the Declare
Function statement can include an Alias clause, which lets you call the external function by whatever
name you choose. The Alias clause lets you override an external function’s explicit name, in situations
where the explicit name conflicts with the name of a standard MapBasic function.

If the Declare Function statement includes an Alias clause, the function_alias parameter must match
the external function’s original name, and the fname parameter indicates the name by which MapBasic
will call the routine.

Restrictions on Windows DLL parameters
You can pass a custom variable type as a parameter to a DLL. However, the DLL must be compiled
with “structure packing” set to the tightest packing. See the MapBasic User Guide for more information.

Example

The following example defines a custom function, CubeRoot, which returns the cube root of a number
(the number raised to the one-third power).

Declare Sub Main
Declare Function CubeRoot(ByVal x As Float) As Float
Sub Main

Note Str$(CubeRoot(23))
End Sub

Function CubeRoot(ByVal x As Float) As Float
CubeRoot = x ^ (1 / 3)

End Function

See Also

Declare Sub statement, Function... End Function statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 203 MB_Ref.pdf

Reference Guide Chapter 5: Declare Sub statement
Declare Sub statement
Purpose

Identifies the name and parameter list of a sub procedure.

Restrictions

This statement may not be issued from the MapBasic window.

Accessing external functions (using syntax 2) is platform-dependent. DLL files may only be accessed
by applications running on Windows.

Syntax 1
Declare Sub sub_proc

[([ByVal] parameter As var_type [, ...])]

sub_proc is the name of a sub procedure

parameter is the name of a sub procedure parameter

var_type is a standard data type or a custom Type

Syntax 2 (external routines in Windows DLLs)
Declare Sub sub_proc Lib “file_name” [Alias “sub_alias”]

[([ByVal] parameter As var_type [, ...])]

sub_proc is the name by which an external routine will be called

file_name is a String; the DLL name;

sub_alias is an external routine’s original name

parameter is the name of a sub procedure parameter

var_type is a data type: with Windows DLLs, this can be a standard variable type or a custom Type

Description

The Declare Sub statement establishes a sub procedure’s name and parameter list. Typically, each
Declare Sub statement corresponds to an actual sub procedure which appears later in the same
program.

A MapBasic program can use a Sub...End Sub statement to create a procedure. Every procedure
defined in this manner must be preceded by a Declare Sub statement. For more information on
creating procedures, see Sub...End Sub.

Parameters passed to a procedure are passed by reference unless you include the optional ByVal
keyword.

Calling External Routines
Using Syntax 2 (above), you can use a Declare Sub statement to define an external routine. An
external routine is a routine that was written in another language (for example, C or Pascal), and is
stored in a separate file. Once you have declared an external routine, your program can call the
external routine as if it were a conventional MapBasic procedure.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 204 MB_Ref.pdf

Reference Guide Chapter 5: Define statement
If the Declare Sub statement declares an external routine, the file_name parameter must specify the
name of the file containing the routine. The file must be present at run-time.

Every external routine has an explicitly assigned name. Ordinarily, the Declare Sub statement’s
sub_proc parameter matches the explicit routine name from the external file. The Declare Sub
statement can include an Alias clause, which lets you call the external routine by whatever name you
choose. The Alias clause lets you override an external routine’s explicit name, in situations where the
explicit name conflicts with the name of a standard MapBasic function.

If the Declare Sub statement includes an Alias clause, the sub_alias parameter must match the
external routine’s original name, and the sub_proc parameter indicates the name by which MapBasic
will call the routine. You can pass a custom variable type as a parameter to a DLL. However, the DLL
must be compiled with “structure packing” set to the tightest packing. For information on custom
variable types, see Type.

Example
Declare Sub Main
Declare Sub Cube(ByVal original As Float, cubed As Float)

Sub Main
Dim x, result As Float
Call Cube(2, result)
’ result now contains the value: 8 (2 x 2 x 2)
x = 1
Call Cube(x + 2, result)
’ result now contains the value: 27 (3 x 3 x 3)

End Sub

Sub Cube (ByVal original As Float, cubed As Float)
’
’ Cube the ”original” parameter value, and store
’ the result in the ”cubed” parameter.
’
cubed = original ^ 3

End Sub

See Also

Call statement, Sub...End Sub statement

Define statement
Purpose

Defines a custom keyword with a constant value.

Restrictions

You cannot issue a Define statement through the MapBasic window.

Syntax
Define identifier definition

identifier is an identifier up to 31 characters long, beginning with a letter or underscore (_)

definition is the text MapBasic should substitute for each occurrence of identifier
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 205 MB_Ref.pdf

Reference Guide Chapter 5: DeformatNumber$() function
Description

The Define statement defines a new identifier. For the remainder of the program, whenever MapBasic
encounters the same identifier the original definition will be substituted for the identifier. For examples
of Define statements, see the standard MapBasic definitions file, MAPBASIC.DEF.

An identifier defined through a Define statement is not case-sensitive. If you use a Define statement to
define the token FOO, your program can refer to the identifier as Foo or foo. You cannot use the
Define statement to re-define a MapBasic keyword, such as Set or Create. For a list of reserved
keywords, see the discussion of the Dim statement.

Examples

Your application may need to reference the mathematical value known as Pi, which has a value of
approximately 3.141593. Accordingly, you might want to use the following definition:

Define PI 3.141593

Following such a definition, you could simply type PI wherever you needed to reference the value
3.141593.

The definition portion of a Define statement can include quotes. For example, the following statement
creates a keyword with a definition including quotes:

Define FILE_NAME ”World.tab”

The following define is part of the standard definitions file, mapbasic.def. This define provides an easy
way of clearing the Message window:

Define CLS Print Chr$(12)

DeformatNumber$() function
Purpose

Removes formatting from a string that represents a number.

Syntax
DeformatNumber$ (numeric_string)

numeric_string is a string that represents a numeric value, such as “12,345,678”

Return Value

String

Description

Returns a string that represents a number. The return value does not include thousands separators,
regardless of whether the numeric_string argument included thousands separators. The return value
uses a period as the decimal separator, regardless of whether the user’s computer is set up to use
another character as the decimal separator.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 206 MB_Ref.pdf

Reference Guide Chapter 5: Delete statement
Examples

The following example calls Val() to determine the numeric value of a string. Before calling Val(), this
example calls DeformatNumber$() to remove thousands separators from the string. (The string that
you pass to Val() cannot contain thousands separators.)

Dim s_number As String
Dim f_value As Float

s_number = ”1,222,333.4”
s_number = DeformatNumber$(s_number)

’ the variable s_number now contains the
’ string: ”1222333.4”

f_value = Val(s_number)

Print f_value

See Also

FormatNumber$() function, Val() function

Delete statement
Purpose

Deletes one or more graphic objects, or one or more entire rows, from a table.

Syntax
Delete [Object] From table [Where Rowid = id_number]

table is the name of an open table

id_number is the number of a single row (an integer value of one or more)

Description

The Delete statement deletes graphical objects or entire records from an open table.

By default, the Delete statement deletes all records from a table. However, if the statement includes
the optional Object keyword, MapBasic only deletes the graphical objects that are attached to the
table, rather than deleting the records themselves.

By default, the Delete statement affects all records in the table. However, if the statement includes the
optional Where Rowid = ... clause, then only the specified row is affected by the Delete statement.

There is an important difference between a Delete Object From statement and a Drop Map
statement. A Delete Object From statement only affects objects or records in a table, it does not affect
the table structure itself. A Drop Map statement actually modifies the table structure, so that graphical
objects may not be attached to the table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 207 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement
Examples

The following Delete statement deletes all of the records from a table. At the conclusion of this
operation, the table still exists, but it is completely empty - as if the user had just created it by choosing
File > New.

Open Table ”clients”
Delete From clients
Commit Table clients

The following Delete statement deletes only the object from the tenth row of the table:

Open Table ”clients”
Delete Object From clients Where Rowid = 10
Commit Table clients

See Also

Drop Map statement, Insert statement

Dialog statement
Purpose

Displays a custom dialog box.

Restrictions

You cannot issue a Dialog statement through the MapBasic window.

Syntax
Dialog

[Title title]
[Width w] [Height h] [Position x , y]
[Calling handler]

Control control_clause
[Control control_clause . . .]

title is a String expression that appears in the title bar of the dialog

h specifies the height of the dialog, in dialog units (8 dialog height units represent the height of one
character)

w specifies the width of the dialog, in dialog units (4 dialog height units represent the width of one
character)

x, y specifies the dialog’s initial position, in pixels, representing distance from the upper-left corner of
MapInfo Professional’s work area; if the Position clause is omitted, the dialog appears centered

handler is the name of a procedure to call before the user is allowed to use the dialog; this procedure is
typically used to issue Alter Control statements

Each control_clause can specify one of the following types of controls:

• Button
• OKButton
• CancelButton
• EditText
• StaticText
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 208 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement
• PopupMenu
• CheckBox
• MultiListBox
• GroupBox
• RadioGroup
• PenPickerm
• BrushPicker
• FontPicker
• SymbolPicker
• ListBox

See the separate discussions of those control types for more details (for example, for details on
CheckBox controls, see Control CheckBox clause; for details on Picker controls, see Control
PenPicker/BrushPicker/SymbolPicker/FontPicker clause; etc.).

Each control_clause can specify one of the following control types:

• Button / OKButton / CancelButton
• CheckBox
• GroupBox
• RadioGroup
• EditText
• StaticText
• PenPicker / BrushPicker / SymbolPicker / FontPicker
• ListBox / MultiListBox
• PopupMenu

Description

The Dialog statement creates a dialog box, displays it on the screen, and lets the user interact with the
dialog. The dialog box is modal; in other words, the user must dismiss the dialog box (for example, by
clicking OK or Cancel) before doing anything else in MapInfo Professional. For an introduction to
custom dialogs, see the MapBasic User Guide.

Anything that can appear on a dialog is known as a control. Each dialog must contain at least one
control (for example, an OKButton control). Individual control clauses are discussed in separate entries
(for example, see Control CheckBox for a discussion of check-box controls). As a general rule, every
dialog should include an OKButton control and/or a CancelButton control, so that the user has a way of
dismissing the dialog.

The Dialog statement lets you create a custom dialog box. If you want to display a standard dialog box
(for example, a File > Open dialog), use one of the following statements or functions: Ask(), Note,
ProgressBar, FileOpenDlg(), FileSaveAsDlg(), or GetSeamlessSheet().

For an introduction to the concepts behind MapBasic dialog boxes, see the MapBasic User Guide.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 209 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement
Sizes and Positions of Dialogs and Dialog Controls
Within the Dialog statement, sizes and positions are stated in terms of dialog units. A width of four
dialog units equals the width of one character, and a height of eight dialog units equals the height of
one character. Thus, if a dialog control has a height of 40 and a width of 40, that control is roughly ten
characters wide and 5 characters tall. Control positions are relative to the upper left corner of the
dialog. To place a control at the upper-left corner of a dialog, use x- and y-coordinates of zero and zero.

The Position, Height and Width clauses are all optional. If you omit these clauses, MapBasic places
the controls at default positions in the dialog, with subsequent control clauses appearing further down
in the dialog.

Terminating a Dialog
After a MapBasic program issues a Dialog statement, the user will continue interacting with the dialog
until one of four things happens:

• The user clicks the OKButton control (if the dialog has one);
• The user clicks the CancelButton control (if the dialog has one);
• The user clicks a control with a handler that issues a Dialog Remove statement; or
• The user otherwise dismisses the dialog (for example, by pressing Esc on a dialog that has a

CancelButton).

To force a dialog to remain on the screen after the user has clicked OK or Cancel, assign a handler
procedure to the OKButton or CancelButton control and have that handler issue a Dialog Preserve
statement.

Reading the User’s Input
After a Dialog statement, call CommandInfo() to determine whether the user clicked OK or Cancel to
dismiss the dialog. If the user clicked OK, the following function call returns TRUE:

CommandInfo(CMD_INFO_DLG_OK)

There are two ways to read values entered by the user: Include Into clauses in the Dialog statement,
or call the ReadControlValue() function from a handler procedure.

If a control specifies the Into clause, and if the user clicks the OKButton, MapInfo Professional stores
the control’s final value in a program variable.

Note: MapInfo Professional only updates the variable if the user clicks OK. Also, MapInfo
Professional only updates the variable after the dialog terminates.

To read a control’s value from within a handler procedure, call ReadControlValue().

Specifying Hotkeys for Controls
When a MapBasic application runs on MapInfo, dialogs can assign hotkeys to the various controls. A
hotkey is a convenience allowing the user to choose a dialog control by pressing key sequences rather
than clicking with the mouse.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 210 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement
To specify a hotkey for a control, include the ampersand character (&) in the title for that control. Within
the Title clause, the ampersand should appear immediately before the character which is to be used as
a hotkey character. Thus, the following Button clause defines a button which the user can choose by
pressing Alt-R:

Control Button
Title ”&Reset”

Although an ampersand appears within the Title clause, the final dialog does not show the ampersand.
If you need to display an ampersand character in a control (for example, if you want a button to read
“Find & Replace”), include two successive ampersand characters in the Title clause:

Title ”Find && Replace”

If you position a StaticText control just before or above an EditText control, and you define the
StaticText control with a hotkey designation, the user is able to jump to the EditText control by pressing
the hotkey sequence.

Specifying the Tab Order
The user can press the Tab key to move the keyboard focus through the dialog. The focus moves from
control to control according to the dialog’s tab order.

Tab order is defined by the order of the Control clauses in the Dialog statement. When the focus is on
the third control, pressing Tab moves the focus to the fourth control, etc. If you want to change the tab
order, change the order of the Control clauses.

Examples

The following example creates a simple dialog with an EditText control. In this example, none of the
Control clauses use the optional Position clause; therefore, MapBasic places each control in a default
position.

Dialog
Title ”Search”
Control StaticText

Title ”Enter string to find:”
Control EditText

Value gs_searchfor ’this is a Global String variable
Into gs_searchfor

Control OKButton
Control CancelButton

If CommandInfo(CMD_INFO_DLG_OK) Then
’ ...then the user clicked OK, and the variable
’ gs_searchfor contains the text the user entered.

End If
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 211 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement
The following program demonstrates the syntax of all of MapBasic’s control types.

Include ”mapbasic.def”
Declare Sub reset_sub ’ resets dialog to default settings
Declare Sub ok_sub ’ notes values when user clicks OK.
Declare Sub Main
Sub Main

Dim s_title As String ’the title of the map
Dim l_showlegend As Logical ’TRUE means include legend
Dim i_details As SmallInt ’1 = full details; 2 = partial
Dim i_quarter As SmallInt ’1=1st qrtr, etc.
Dim i_scope As SmallInt ’1=Town;2=County; etc.
Dim sym_variable As Symbol

Dialog
Title ”Map Franchise Locations”

Control StaticText
Title ”Enter Map Title:”
Position 5, 10

Control EditText
Value ”New Franchises, FY 95”
Into s_title
ID 1
Position 65, 8 Width 90

Control GroupBox
Title ”Level of Detail”
Position 5, 30 Width 70 Height 40

Control RadioGroup
Title ”&Full Details;&Partial Details”
Value 2
Into i_details
ID 2
Position 12, 42 Width 60

Control StaticText
Title ”Show Franchises As:” Position 95, 30

Control SymbolPicker
Position 95, 45
Into sym_variable
ID 3

Control StaticText
Title ”Show Results For:”
Position 5, 80

Control ListBox
Title ”First Qrtr;2nd Qrtr;3rd Qrtr;4th Qrtr”
Value 4
Into i_quarter
ID 4
Position 5, 90 Width 65 Height 35
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 212 MB_Ref.pdf

Reference Guide Chapter 5: Dialog statement
Control StaticText
Title ”Include Map Layers:”
Position 95, 80

Control MultiListBox
Title ”Streets;Highways;Towns;Counties;States”
Value 3
ID 5
Position 95, 90 Width 65 Height 35

Control StaticText
Title ”Scope of Map:”
Position 5, 130

Control PopupMenu
Title ”Town;County;Territory;Entire State”
Value 2
Into i_scope
ID 6
Position 5, 140

Control CheckBox
Title ”Include &Legend”
Into l_showlegend
ID 7
Position 95, 140

Control Button
Title ”&Reset”
Calling reset_sub
Position 10, 165

Control OKButton
Position 65, 165
Calling ok_sub

Control CancelButton
Position 120, 165

If CommandInfo(CMD_INFO_DLG_OK) Then
’ ... then the user clicked OK.

Else
’ ... then the user clicked Cancel.

End If
End Sub

Sub reset_sub
’ here, you could use Alter Control statements
’ to reset the controls to their original state.

End Sub

Sub ok_sub
’ Here, place code to handle user clicking OK

End Sub

The preceding program produces the following dialog box.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 213 MB_Ref.pdf

Reference Guide Chapter 5: Dialog Preserve statement
See Also

Alter Control statement, Ask() function, Dialog Preserve statement, Dialog Remove statement,
FileOpenDlg() function, FileSaveAsDlg() function, Note statement, ReadControlValue()
function

Dialog Preserve statement
Purpose

Reactivates a custom dialog after the user clicked OK or Cancel.

Syntax
Dialog Preserve

Restrictions

This statement may only be issued from within a sub procedure that acts as a handler for an OKButton
or CancelButton dialog control.

You cannot issue this statement from the MapBasic window.

Description

The Dialog Preserve statement allows the user to resume using a custom dialog (which was created
through a Dialog statement) even after the user clicked the OKButton or CancelButton control.

The Dialog Preserve statement lets you “confirm” the user’s OK or Cancel action. For example, if the
user clicks Cancel, you may wish to display a dialog asking a question such as “Do you want to lose
your changes?” If the user chooses “No” on the confirmation dialog, the application should reactivate
the original dialog. You can provide this functionality by issuing a Dialog Preserve statement from
within the CancelButton control’s handler procedure.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 214 MB_Ref.pdf

Reference Guide Chapter 5: Dialog Remove statement
Example

The following procedure could be used as a handler for a CancelButton control.

Sub confirm_cancel

If Ask(”Do you really want to lose your changes?”,
”Yes”, ”No”) = FALSE Then
Dialog Preserve

End If

End Sub

See Also

Alter Control statement, Dialog statement, Dialog Remove statement, ReadControlValue()
function

Dialog Remove statement
Purpose

Removes a custom dialog from the screen.

Syntax
Dialog Remove

Restrictions

This statement may only be issued from within a sub procedure that acts as a handler for a dialog
control. You cannot issue this statement from the MapBasic window.

Description

The Dialog Remove statement removes the dialog created by the most recent Dialog statement. A
dialog disappears automatically after the user clicks on an OKButton control or a CancelButton control.
Use the Dialog Remove statement (within a dialog control’s handler routine) to remove the dialog
before the user clicks OK or Cancel. This is useful, for example, if you have a dialog with a ListBox
control, and you want the dialog to come down if the user double-clicks an item in the list.

Note: Dialog Remove signals to remove the dialog after the handler sub procedure returns. It does
not remove the dialog instantaneously.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 215 MB_Ref.pdf

Reference Guide Chapter 5: Dim statement
Example

The following procedure is part of the sample program NVIEWS.MB. It handles the ListBox control in
the Named Views dialog. When the user single-clicks a list item, this handler procedure enables
various buttons on the dialog. When the user double-clicks a list item, this handler uses a Dialog
Remove statement to dismiss the dialog.

Note: MapInfo Professional calls this handler procedure for click events and for double-click events.
Sub listbox_handler

Dim i As SmallInt
Alter Control 2 Enable
Alter Control 3 Enable
If CommandInfo(CMD_INFO_DLG_DBL) = TRUE Then

’
’ ... then the user double-clicked.
’
i = ReadControlValue(1)
Dialog Remove
Call go_to_view(i)

End If
End Sub

See Also

Alter Control statement, Dialog statement, Dialog Preserve statement, ReadControlValue()
function

Dim statement
Purpose

Defines one or more variables.

Restrictions

When you issue Dim statements through the MapBasic window, you can only define one variable per
Dim statement, although a Dim statement within a compiled program may define multiple variables.
You cannot define array variables using the MapBasic window.

Syntax
Dim var_name [, var_name ...] As var_type

[, var_name [, var_name ...] As var_type ...]

var_name is the name of a variable to define

var_type is a standard or custom variable Type

Description

A Dim statement declares one or more variables. The following table summarizes the types of
variables which you can declare through a Dim statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 216 MB_Ref.pdf

Reference Guide Chapter 5: Dim statement
Location of Dim Statements and Scope of Variables

The Dim statement which defines a variable must precede any other statements which use that
variable. Dim statements usually appear at the top of a procedure or function.

If a Dim statement appears within a Sub...End Sub construct or within a Function...End Function
construct, the statement defines variables that are local in scope. Local variables may only be
accessed from within the procedure or function that contained the Dim statement.

If a Dim statement appears outside of any procedure or function definition, the statement defines
variables that are module-level in scope. Module-level variables can be accessed by any procedure or
function within a program module (i.e. within the .MB program file).

To declare global variables (variables that can be accessed by any procedure or function in any of the
modules that make up a project), use the Global statement.

Declaring Multiple Variables and Variable Types

A single Dim statement can declare two or more variables that are separated by commas. You also
can define variables of different types within one Dim statement by grouping like variables together,
and separating the different groups with a comma after the variable type:

Dim jointer, i_min, i_max As Integer, s_name As String

Variable Type Description

SmallInt Whole numbers from -32768 to 32767 (inclusive); stored in 2 bytes

Integer Whole numbers from -2,147,483,647 to +2,147,483,647 (inclusive); stored in 4
bytes

Float Floating point value; stored in eight-byte IEEE format

String Variable-length character string, up to 32768 bytes long

String * length Fixed-length character string (where length dictates the length of the string, in
bytes, up to 32768 bytes); fixed-length strings are padded with trailing blanks

Logical TRUE or FALSE, stored in 1 byte: zero=FALSE, non-zero=TRUE

Date Date, stored in four bytes: two bytes for the year, one byte for the month, one
byte for the day

Object Graphical object (Point, Region, Line, Polyline, Arc, Rectangle, Rounded Rect-
angle, Ellipse, Text, or Frame)

Alias Column name

Pen Pen (line) style setting

Brush Brush (fill) style setting

Font Font (text) style setting

Symbol Symbol (point-marker) style setting
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 217 MB_Ref.pdf

Reference Guide Chapter 5: Dim statement
Array Variables

MapBasic supports one-dimensional array variables. To define an array variable, add a pair of
parentheses immediately after the variable name. To specify an initial array size, include a constant
integer expression between the parentheses.

The following example declares an array of ten Float variables, then assigns a value to the first
element in the array:

Dim f_stats(10) As Float
f_stats(1) = 17.23

The number that appears between the parentheses is known as the subscript. The first element of the
array is the element with a subscript of one (as shown in the example above).

To re-size an array, use the ReDim statement. To determine the current size of an array, use the
UBound() function. If the Dim statement does not specify an initial array size, the array will initially
contain no members; in such a case, you will not be able to store any data in the array until re-sizing
the array with a ReDim statement.A MapBasic array can have up to 32,767 items.

String Variables

A String variable can contain a text string up to 32 kilobytes in length. However, there is a limit to how
long a string constant you can specify in a simple assignment statement. The following example
performs a simple String variable assignment, where a constant string expression is assigned to a
String variable:

Dim status As String
status = ”This is a string constant ... ”

In this type of assignment, the constant string expression to the right of the equal sign has a maximum
length of 256 characters.

MapBasic, like other BASIC languages, pads fixed-length String variables with blanks. In other words,
if you define a 10-byte String variable, then assign a five-character string to that variable, the variable
will actually be padded with five spaces so that it fills the space allotted. (This feature makes it easier to
format text output in such a way that columns line up).

Variable-length String variables, however, are not padded in this fashion. This difference can affect
comparisons of strings; you must exercise caution when comparing fixed-length and variable-length
String variables. In the following program, the If...Then statement would determine that the two strings
are not equal:

Dim s_var_len As String
Dim s_fixed_len As String * 10
s_var_len = ”testing”
s_fixed_len = ”testing”
If s_var_len = s_fixed_len Then

Note ”strings are equal” ’ this won’t happen
Else

Note ”strings are NOT equal” ’ this WILL happen
End If
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 218 MB_Ref.pdf

Reference Guide Chapter 5: Dim statement
Restrictions on Variable Names

Variable names are case-insensitive. Thus, if a Dim statement defines a variable called abc, the
program may refer to that variable as abc, ABC, or Abc.

Each variable name can be up to 31 characters long, and can include letters, numbers, and the
underscore character (_). Variable names can also include the punctuation marks $, % , & , ! , # , and
@ , but only as the final character in the name. A variable name may not begin with a number.

Many MapBasic language keywords, such as Open, Close, Set, and Do, are reserved words which
may not be used as variable names. If you attempt to define a variable called Set, MapBasic will
generate an error when you compile the program. The table below summarizes the MapBasic
keywords which may not be used as variable names.

In some BASIC languages, you can dictate a variable’s type by ending the variable with one of the
punctuation marks listed above. For example, some BASIC languages assume that any variable
named with a dollar sign (for example, LastName$) is a String variable. In MapBasic, however, you
must declare every variable’s type explicitly, through the Dim statement.

Add Alter Browse Call

Close Commit Create DDE

DDEExecute DDEPoke DDETerminate DDETerminateAll

Declare Delete Dialog Dim

Do Drop Else ElseIf

End Error Event Exit

Export Fetch Find For

Function Get Global Goto

Graph If Import Insert

Layout Map Menu Note

Objects OnError Open Pack

Print PrintWin ProgressBar Put

ReDim Register Reload Remove

Rename Resume Rollback Run

Save Seek Select Set

Shade StatusBar Stop Sub

Type Update While
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 219 MB_Ref.pdf

Reference Guide Chapter 5: Distance() function
Initial Values of Variables

MapBasic initializes numeric variables to a value of zero when they are defined. Variable-length string
variables are initialized to an empty string, and fixed-length string variables are initialized to all spaces.

Object and style variables are not automatically initialized. You must initialize Object and style
variables before making references to those variables.

Example
’ Below is a custom Type definition, which creates
’ a new data type known as Person
Type Person

Name As String
Age As Integer
Phone As String

End Type

’ The next Dim statement creates a Person variable
Dim customer As Person

’ This Dim creates an array of Person variables:
Dim users(10) As Person

’ this Dim statement defines an integer variable
’ ”counter”, and an integer array ”counters” :
Dim counter, counters(10) As Integer

’ the next statement assigns the ”Name” element
’ of the first member of the ”users” array
users(1).Name = ”Chris”

See Also

Global statement, ReDim statement, Type statement, UBound() function

Distance() function
Purpose

Returns the distance between two locations.

Syntax
Distance (x1 , y1 , x2 , y2 , unit_name)

x1 and x2 are x-coordinates (for example, longitude)

y1 and y2 are y-coordinates (for example, latitude)

unit_name is a string representing the name of a distance unit (for example, “km”)

Return Value

Float
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 220 MB_Ref.pdf

Reference Guide Chapter 5: Do Case...End Case statement
Description

The Distance() function calculates the distance between two locations.

The function returns the distance measurement in the units specified by the unit_name parameter; for
example, to obtain a distance in miles, specify “mi” as the unit_name parameter. See the Set Distance
Units statement for the list of available unit names.

The x- and y-coordinate parameters must use MapBasic’s current coordinate system. By default,
MapInfo Professional expects coordinates to use a longitude, latitude coordinate system. You can
reset MapBasic’s coordinate system through the Set CoordSys statement.

If the current coordinate system is an earth coordinate system, Distance() returns the great-circle
distance between the two points. A great-circle distance is the shortest distance between two points on
a sphere. (A great circle is a circle that goes around the earth, with the circle’s center at the center of
the earth; a great-circle distance between two points is the distance along the great circle which
connects the two points.)

For the most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a
spherical operation is performed unless the coordinate system is NonEarth, in which case, a Cartesian
operation is performed.

Example
Dim dist, start_x, start_y, end_x, end_y As Float
Open Table ”cities”
Fetch First From cities
start_x = CentroidX(cities.obj)
start_y = CentroidY(cities.obj)
Fetch Next From cities
end_x = CentroidX(cities.obj)
end_y = CentroidY(cities.obj)
dist = Distance(start_x,start_y,end_x,end_y,”mi”)

See Also

Area() function, ObjectLen() function, Set CoordSys statement, Set Distance Units statement

Do Case...End Case statement
Purpose

Decides which group of statements to execute, based on the current value of an expression.

Restrictions

You cannot issue a Do Case statement through the MapBasic window.

Syntax
Do Case do_expr

 Case case_expr [, case_expr]
 statement_list

[Case ...]
[Case Else

 statement_list]
End Case

do_expr is an expression
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 221 MB_Ref.pdf

Reference Guide Chapter 5: Do Case...End Case statement
case_expr is an expression representing a possible value for do_expr

statement_list is a group of statements to carry out under the appropriate circumstances

Description

The Do Case statement is similar to the If ... Then ... Else statement, in that Do Case tests for the
existence of certain conditions, and decides which statements to execute (if any) based on the results
of the test. MapBasic’s Do Case statement is analogous to the BASIC language’s Select Case
statement. (In MapBasic, the name of the statement was changed to avoid conflicting with the Select
statement).

In executing a Do Case statement, MapBasic examines the first Case case_expr clause. If one of the
expressions in the Case case_expr clause is equal to the value of the do_expr expression, that case is
considered a match. Accordingly, MapBasic executes the statements in that Case’s statement_list, and
then jumps down to the first statement following the End Case statement.

If none of the expressions in the first Case case_expr clause equal the do_expr expression, MapBasic
tries to find a match in the following Case case_expr clause. MapBasic will test each Case case_expr
clauses in succession, until one of the cases is a match or until all of the cases are exhausted.

MapBasic will execute at most one statement_list from a Do Case statement. Upon finding a matching
Case, MapBasic will execute that Case’s statement_list, and then jump immediately down to the first
statement following End Case.

If none of the case_expr expressions are equal to the do_expr expression, none of the cases will
match, and thus no statement_list will be executed. However, if a Do Case statement includes a Case
Else clause, and if none of the Case case_expr clauses match, then MapBasic will carry out the
statement list from the Case Else clause.

Note that a Do Case statement of this form:

Do Case expr1
Case expr2

 statement_list1
Case expr3, expr4

 statement_list2
Case Else

 statement_list3
End Case

would have the same effect as an If ... Then ... Else statement of this form:

If expr1 = expr2 Then
 statement_list1

ElseIf expr1 = expr3 Or expr1 = expr4 Then
 statement_list2

Else
 statement_list3

End If
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 222 MB_Ref.pdf

Reference Guide Chapter 5: Do...Loop statement
Example

The following example builds a text string such as “First Quarter”, “Second Quarter”, etc., depending
on the current date.

Dim cur_month As Integer, msg As String
cur_month = Month(CurDate())
Do Case cur_month

Case 1, 2, 3
msg = ”First Quarter”

Case 4, 5, 6
msg = ”Second Quarter”

Case 7, 8, 9
msg = ”Third Quarter”

Case Else
msg = ”Fourth Quarter”

End Case

See Also

If...Then statement

Do...Loop statement
Purpose

Defines a loop which will execute until a specified condition becomes TRUE (or FALSE).

Restrictions

You cannot issue a Do Loop statement through the MapBasic window.

Syntax 1
Do

 statement_list
Loop [{ Until | While } condition]

Syntax 2
Do [{ Until | While } condition]

 statement_list
Loop

statement_list is a group of statements to be executed zero or more times

condition is a conditional expression which controls when the loop terminates

Description

The Do ... Loop statement provides loop control. Generally speaking, the Do ... Loop repeatedly
executes the statements in a statement_list as long as a While condition remains TRUE (or,
conversely, the loop repeatedly executes the statement_list until the Until condition becomes TRUE).

If the Do ... Loop does not contain the optional Until / While clause, the loop will repeat indefinitely. In
such a case, a flow control statement, such as Goto or Exit Do, will be needed to halt or exit the loop.
The Exit Do statement halts any Do ... Loop immediately (regardless of whether the loop has an Until
/ While clause), and resumes program execution with the first statement following the Loop clause.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 223 MB_Ref.pdf

Reference Guide Chapter 5: Drop Index statement
As indicated above, the optional Until / While clause may either follow the Do keyword or the Loop
keyword. The position of the Until / While clause dictates whether MapBasic tests the condition before
or after executing the statement_list. This is of particular importance during the first iteration of the
loop. A loop using the following syntax :

Do
 statement_list

Loop While condition

will execute the statement_list and then test the condition. If the condition is TRUE, MapBasic will
continue to execute the statement_list until the condition becomes FALSE. Thus, a Do ... Loop using
the above syntax will execute the statement_list at least once.

By contrast, a Do ... Loop of the following form will only execute the statement_list if the condition is
TRUE.

Do While condition
 statement_list

Loop

Example

The following example uses a Do..Loop statement to read the first ten records of a table.

Dim sum As Float, counter As Integer
Open Table ”world”
Fetch First From world
counter = 1
Do

sum = sum + world.population
Fetch Next From world
counter = counter + 1

Loop While counter <= 10

See Also

Exit Do statement, For...Next statement

Drop Index statement
Purpose

Deletes an index from a table.

Syntax
Drop Index table(column)

table is the name of an open table

column is the name of a column in that table

Description

The Drop Index statement deletes an existing index from an open table. Dropping an index reduces
the amount of disk space occupied by a table. (To re-create that index at a later time, issue a Create
Index statement.)

Note: MapInfo Professional cannot drop an index if the table has unsaved edits. Use the Commit
statement to save edits.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 224 MB_Ref.pdf

Reference Guide Chapter 5: Drop Map statement
The Drop Index statement takes effect immediately; no Save operation is required. You cannot undo
the effect of a Drop Index statement by selecting File > Revert or Edit > Undo. Similarly, the MapBasic
Rollback statement will not undo the effect of a Drop Index.

Example

The following example deletes the index from the Name field of the World table.

Open Table ”world”
Drop Index world(name)

See Also

Create Index statement

Drop Map statement
Purpose

Deletes all graphical objects from a table. Cannot be used on linked tables.

Syntax
Drop Map table

table is the name of an open table

Description

A Drop Map statement deletes all graphical objects (points, lines, regions, circles, etc.) from an open
table, and modifies the table structure so that graphical objects may not be attached to the table.

Note: The Drop Map statement takes effect immediately; no Save operation is required. You cannot
undo the effect of a Drop Map statement by selecting File > Revert or Edit > Undo. Similarly,
the MapBasic Rollback statement will not undo the effect of a Drop Map statement.
Accordingly, you should be extremely cautious when using the Drop Map statement.

After performing a Drop Map operation, you will no longer be able to display the corresponding table in
a Map window; the Drop Map statement modifies the table’s structure so that objects may no longer be
associated with the table. (A subsequent Create Map statement will restore the table’s ability to contain
graphical objects; however, a Create Map statement will not restore the graphical objects which were
discarded during a Drop Map operation.) The Drop Map statement does not affect the number of
records in a table. You still can browse a table after performing Drop Map.

If you wish to delete all of the graphical objects from a table, but you intend to attach new graphical
objects to the same table, use Delete Object instead of Drop Map.

The Drop Map statement does not work on linked tables.

Example
Open Table ”clients”
Drop Map clients

See Also

Create Map statement, Create Table statement, Delete statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 225 MB_Ref.pdf

Reference Guide Chapter 5: Drop Table statement
Drop Table statement
Purpose

Deletes a table in its entirety.

Syntax
Drop Table table

table is the name of an open table

Description

The Drop Table statement completely erases the specified table from the computer’s disk. The table
must already be open.

Note that if a table is based on a pre-existing database or spreadsheet file, the Drop Table statement
will delete the original file as well as the component files which make it a table. In other words, a Drop
Table operation may have the effect of deleting a file which is used outside of MapInfo Professional.

The Drop Table statement takes effect immediately; no Save operation is required. You cannot undo
the effect of a Drop Table statement by selecting File > Revert or Edit > Undo. Similarly, the MapBasic
Rollback statement will not undo the effect of a Drop Table statement. You should be extremely
cautious when using the Drop Table statement.

Note: Many MapInfo table operations (for example, Select) store results in temporary tables (for
example, Query1). Temporary tables are deleted automatically when you exit MapInfo
Professional ; you do not need to use the Drop Table statement to delete temporary tables.

The Drop Table statement cannot be used to delete a table that is actually a “view.” For example, a
StreetInfo table (such as SF_STRTS) is actually a view, combining two other tables (SF_STRT1 and
SF_STRT2). So, you could not delete the SF_STRTS table by using the Drop Table statement.

Example
Open Table ”clients”
Drop Table clients

See Also

Create Table statement, Delete statement, Kill statement

End MapInfo statement
Purpose

This statement halts MapInfo Professional.

Syntax
End MapInfo [Interactive]

Description

The End MapInfo statement halts MapInfo Professional.

An application can define a special procedure called EndHandler, which is executed automatically
when MapInfo Professional terminates. Accordingly, when an application issues an End MapInfo
statement, MapInfo Professional automatically executes any sleeping EndHandler procedures before
shutting down. See the discussion of the EndHandler procedure for more information.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 226 MB_Ref.pdf

Reference Guide Chapter 5: End Program statement
If an application issues an End MapInfo statement, and one or more tables have unsaved edits,
MapInfo Professional prompts the user to save or discard the table edits.

If you include the Interactive keyword, and if there are unsaved themes or labels, MapInfo
Professional prompts the user to save or discard the unsaved work. However, if the user’s system is
set up so that it automatically saves MAPINFOW.WOR on exit, this prompt does not appear. If you omit
the Interactive keyword, this prompt does not appear.

To halt a MapBasic application without exiting MapInfo Professional, use the End Program statement.

See Also

End Program statement, EndHandler procedure

End Program statement
Purpose

Halts a MapBasic application.

Restrictions

The End Program statement may not be issued from the MapBasic window.

Syntax
End Program

Description

The End Program statement halts execution of a MapBasic program. A MapBasic application can add
items to MapInfo Professional menus, and even add entirely new menus to the menu bar. Typically, a
menu item added in this fashion calls a sub procedure from a MapBasic program. Once a MapBasic
application has connected a procedure to the menu in this fashion, the application is said to be
“sleeping.”

If any procedure in a MapBasic application issues an End Program statement, that entire application
is halted - even if “sleeping” procedures have been attached to custom menu items. When an
application halts, MapInfo Professional automatically removes any menu items created by that
application.

If an application defines a procedure named EndHandler, MapBasic automatically calls that procedure
when the application halts, for whatever reason the application halts.

See Also

End MapInfo statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 227 MB_Ref.pdf

Reference Guide Chapter 5: EndHandler procedure
EndHandler procedure
Purpose

A reserved procedure name, called automatically when an application terminates.

Syntax
Declare Sub EndHandler

Sub EndHandler
 statement_list

End Sub

statement_list is a list of statements to execute when the application terminates

Description

EndHandler is a special-purpose MapBasic procedure name.

If the user runs an application containing a sub procedure named EndHandler, the EndHandler
procedure is called automatically when the application ends. This happens whether the user exited
MapInfo Professional or another procedure in the application issued an End Program statement.

Note: Multiple MapBasic applications can be “sleeping” at the same time. When MapInfo
Professional terminates, MapBasic automatically calls all sleeping EndHandler procedures,
one after another.

See Also

RemoteMsgHandler procedure, SelChangedHandler procedure, ToolHandler procedure,
WinChangedHandler procedure, WinClosedHandler procedure

EOF() function
Purpose

Returns TRUE if MapBasic tried to read past the end of a file, FALSE otherwise.

Syntax
EOF(filenum)

filenum is the number of a file opened through the Open File statement

Return Value

Logical

Description

The EOF() function returns a logical value indicating whether the End-Of-File condition exists for the
specified file. The integer filenum parameter represents the number of an open file.

If a Get statement tries to read past the end of the specified file, the EOF() function returns a value of
TRUE; otherwise, EOF() returns a value of FALSE.

The EOF() function works with open files; when you wish to check the current position of an open
table, use the EOT() function.

For an example of calling EOF(), see the sample program NVIEWS.MB (Named Views).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 228 MB_Ref.pdf

Reference Guide Chapter 5: EOT() function
Error Conditions

ERR_FILEMGR_NOTOPEN error generated if the specified file is not open

See Also

EOT() function, Open File statement

EOT() function
Purpose

Returns TRUE if MapBasic has reached the end of the specified table, FALSE otherwise.

Syntax
EOT (table)

table is the name of an open table

Return Value

Logical

Description

The EOT() function returns TRUE or FALSE to indicate whether MapInfo Professional has tried to
read past the end of the specified table. The table parameter represents the name of an open table.

Error Conditions

ERR_TABLE_NOT_FOUND error generated if the specified table is not available

Example

The following example uses the logical result of the EOT() function to decide when to terminate a loop.
The loop repeatedly fetches the next record in a table, until the point when the EOT() function
indicates that the program has reached the end of the table.

Dim f_total As Float
Open Table ”customer”
Fetch First From customer
Do While Not EOT(customer)

f_total = f_total + customer.order
Fetch Next From customer

Loop

See Also

EOF() function, Fetch statement, Open File statement, Open Table statement

Erase() function
Purpose

Returns an object created by erasing part of another object.

Syntax
Erase (source_object , eraser_object)

source_object is an object, part of which is to be erased; cannot be a point or text object

eraser_object is a closed object, representing the area that will be erased
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 229 MB_Ref.pdf

Reference Guide Chapter 5: Err() function
Return Value

Returns an object representing what remains of source_object after erasing eraser_object.

Description

The Erase() function erases part of an object, and returns an object expression representing what
remains of the object.

The source_object parameter can be a linear object (line, polyline, or arc) or a closed object (region,
rectangle, rounded rectangle, or ellipse), but cannot be a point object or text object. The eraser_object
must be a closed object. The object returned retains the color and pattern styles of the source_object.

Example
’ In this example, o1 and o2 are Object variables
’ that already contain Object expressions.
If o1 Intersects o2 Then

If o1 Entirely Within o2 Then
Note ”Cannot Erase; nothing would remain.”

Else
o3 = Erase(o1, o2)

End If
Else

Note ”Cannot Erase; objects do not intersect.”
End If

See Also

Objects Erase statement, Objects Intersect statement

Err() function
Purpose

Returns a numeric code, representing the current error.

Syntax
Err()

Return Value

Integer

Description

The Err() function returns the numeric code indicating which error occurred most recently.

By default, a MapBasic program which generates an error will display an error message and then halt.
However, by issuing an OnError statement, a program can set up an error handling routine to respond
to error conditions. Once an error handling routine is specified, MapBasic jumps to that routine
automatically in the event of an error. The error handling routine can then call the Err() function to
determine which error occurred.

The Err() function can only return error codes while within the error handler. Once the program issues
a Resume statement to return from the error handling routine, the error condition is reset. This means
that if you call the Err() function outside of the error handling routine, it returns zero.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 230 MB_Ref.pdf

Reference Guide Chapter 5: Error statement
Some statement and function descriptions within this document contain an Error Conditions heading
(just before the Example heading), listing error codes related to that statement or function. However,
not all error codes are identified in the Error Conditions heading.

Some MapBasic error codes are only generated under narrowly-defined, specific circumstances; for
example, the ERR_INVALID_CHANNEL error is only generated by DDE-related functions or
statements. If a statement might generate such an “unusual” error, the discussion for that statement
will identify the error under the Error Conditions heading.

However, other MapBasic errors are “generic”, and might be generated under a variety of broadly-
defined circumstances. For example, many functions, such as Area() and ObjectInfo(), take an
Object expression as a parameter. Any such function will generate the
ERR_FCN_OBJ_FETCH_FAILED error if you pass an expression of the form tablename.obj as a
parameter, when the current row from that table has no associated object. In other words, any function
which takes an Object parameter might generate the ERR_FCN_OBJ_FETCH_FAILED error. Since
the ERR_FCN_OBJ_FETCH_FAILED error can occur in so many different places, individual functions
do not explicitly identify the error.

Similarly, there are two math errors - ERR_FP_MATH_LIB_DOMAIN and
ERR_FP_MATH_LIB_RANGE - which can occur as a result of an invalid numeric parameter. These
errors might be generated by calls to any of the following functions: Asin(), Acos(), Atn(), Cos(),
Exp(), Log(), Sin(), Sqr(), or Tan().

The complete list of potential MapBasic error codes is included in the file ERRORS.DOC.

See Also

Error statement, Error$() function, OnError statement

Error statement
Purpose

Simulates the occurrence of an error condition.

Syntax
Error error_num

error_num is an Integer error number

Description

The Error statement simulates the occurrence of an error.

If an error-handling routine has been enabled through an OnError statement, the simulated error will
cause MapBasic to perform the appropriate error-handling routine. If no error handling routine has
been enabled, the error simulated by the Error statement will cause the MapBasic application to halt
after displaying an appropriate error message.

See Also

Err() function, Error$() function, OnError statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 231 MB_Ref.pdf

Reference Guide Chapter 5: Error$() function
Error$() function
Purpose

Returns a message describing the current error.

Syntax
Error$()

Return Value

String

Description

The Error$() function returns a character string describing the current run-time error, if an error has
occurred. If no error has occurred, the Error$() function returns a null string.

The Error$() function should only be called from within an error handling routine. See the discussion
of the Err() function for more information.

See Also

Err() function, Error statement, OnError statement

Exit Do statement
Purpose

Exits a Do loop prematurely.

Restrictions

You cannot issue an Exit Do statement through the MapBasic window.

Syntax
Exit Do

Description

An Exit Do statement terminates a Do...Loop statement. Upon encountering an Exit Do statement,
MapBasic will jump to the first statement following the Do...Loop statement. Note that the Exit Do
statement is only valid within a Do...Loop statement.

Do...Loop statements can be nested; that is, a Do...Loop statement can appear within the body of
another, “outer” Do...Loop statement. An Exit Do statement only halts the iteration of the nearest
Do...Loop statement. Thus, in an arrangement of this sort:

Do While condition1
:

Do While condition2
:
If error_condition

Exit Do
End If
:

Loop
:

Loop
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 232 MB_Ref.pdf

Reference Guide Chapter 5: Exit For statement
the Exit Do statement will halt the inner loop (Do While condition2) without necessarily affecting the
outer loop (Do While condition1).

See Also

Do...Loop statement, Exit For statement, Exit Sub statement

Exit For statement
Purpose

Exits a For loop prematurely.

Restrictions

You cannot issue an Exit For statement through the MapBasic window.

Syntax
Exit For

Description

An Exit For statement terminates a For...Next loop. Upon encountering an Exit For statement,
MapBasic will jump to the first statement following the For...Next statement. Note that the Exit For
statement is only valid within a For...Next statement.

For...Next statements can be nested; that is, a For...Next statement can appear within the body of
another, “outer” For...Next statement. Note that an Exit For statement only halts the iteration of the
nearest For...Next statement. Thus, in an arrangement of this sort:

For x = 1 to 5
:
For y = 2 to 10 step 2

:
If error_condition

Exit For
End If
:

Next
:

Next

the Exit For statement will halt the inner loop (For y = 2 to 10 step 2) without necessarily affecting the
outer loop (For x = 1 to 5).

See Also

Exit Do statement, For...Next statement

Exit Function statement
Purpose

Exits a Function...End Function construct.

Restrictions

You cannot issue an Exit Function statement through the MapBasic window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 233 MB_Ref.pdf

Reference Guide Chapter 5: Exit Sub statement
Syntax
Exit Function

Description

An Exit Function statement causes MapBasic to exit the current function. Accordingly, an Exit
Function statement may only be issued from within a Function...End Function definition.

Function calls may be nested; in other words, one function can call another function, which, in turn, can
call yet another function. Note that a single Exit Function statement exits only the current function.

See Also

Function... End Function statement

Exit Sub statement
Purpose

Exits a Sub procedure.

Restrictions

You cannot issue an Exit Sub statement through the MapBasic window.

Syntax
Exit Sub

Description

An Exit Sub statement causes MapBasic to exit the current sub procedure. Accordingly, an Exit Sub
statement may only be issued from within a sub procedure.

Sub procedure calls may be nested; in other words, one sub procedure can call another sub
procedure, which, in turn, can call yet another sub procedure, etc. Note that a single Exit Sub
statement exits only the current sub procedure.

See Also

Call statement, Sub...End Sub statement

Exp() function
Purpose

Returns the number e raised to a specified exponent.

Syntax
Exp(num_expr)

num_expr is a numeric expression

Return Value

Float

Description

The Exp() function raises the mathematical value e to the power represented by num_expr. e has a
value of approximately 2.7182818.

Note: MapBasic supports general exponentiation through the caret operator (^).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 234 MB_Ref.pdf

Reference Guide Chapter 5: Export statement
Example
Dim e As Float
e = Exp(1)
’ the local variable e now contains
’ approximately 2.7182818

See Also

Cos() function, Sin() function, Log() function

Export statement
Purpose

Exports a table to another file format.

Syntax 1 (for exporting MIF/MID files, DBF files, or ASCII text files)
Export table

Into file_name
[Type

{ "MIF" |
"DBF" Charset char_set] |
"ASCII" Charset char_set] [Delimiter “d ”] [Titles] }]
"CSV" [Charset char_set] [Titles] }]

[Overwrite]

Syntax 2 (for exporting DXF files)
Export table

Into file_name
[Type “DXF”]
[Overwrite]
[Preserve

[AttributeData] [Preserve] [MultiPolygonRgns [As Blocks]]]
[{ Binary | ASCII [DecimalPlaces decimal_places] }]
[Version { 12 | 13 }]
[Transform

(MI_x1 , MI_y1) (MI_x2 , MI_y2)
(DXF_x1 , DXF_y1) (DXF_x2 , DXF_y2)]

table is the name of an open table; do not use quotation marks around this name

file_name is a String specifying the filename to contain the exported data; if the file name does not
include a path, the export file is created in the current working directory

char_set is a String that identifies a character set, “WindowsLatin1”; see the separate CharSet
discussion for details

d is a character used as a delimiter when exporting an ASCII file

decimal_places is a small integer (from 0 to 16, default value is 6), which controls the number of
decimal places used when exporting floating-point numbers in ASCII

MI_x1, MI_y1, etc. are numbers that represent bounds coordinates in the MapInfo Professional table

DXF_x1, DXF_y1, etc. are numbers that represent bounds coordinates in the DXF file
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 235 MB_Ref.pdf

Reference Guide Chapter 5: Export statement
Description

The Export statement copies the contents of a MapInfo table to a separate file, using a file format
which other packages could then edit or import. For example, you could export the contents of a table
to a DXF file, then use a CAD software package to import the DXF file. The Export statement does not
alter the original table.

Specifying the File Format
The optional Type clause specifies the format of the file you want to create.

I

If you omit the Type clause, MapInfo Professional assumes that the file extension indicates the desired
file format. For example, if you specify the file name “PARCELS.DXF” MapInfo Professional creates a
DXF file.

If you include the optional Overwrite keyword, MapInfo Professional creates the export file, regardless
of whether a file by that name already exists. If you omit the Overwrite keyword, and the file already
exists, MapInfo Professional does not overwrite the file.

Exporting ASCII Text Files
When you export a table to an ASCII or CSV text file, the text file will contain delimiters. A delimiter is a
special character that separates the fields within each row of data. CSV text files automatically use a
comma (“,”) as the delimiter. No other delimiter can be specified for CSV export.

The default delimiter for an ASCII text file is the TAB character (Chr$(9)). To specify a different
delimiter, include the optional Delimiter clause. The following example uses a colon (:) as the
delimiter:

Export sites Into ”sitedata.txt” Type ”ASCII”
Delimiter ”:” Titles

When you export to an ASCII or CSV text file, you may want to include the optional Titles keyword. If
you include Titles, the first row of the text file will contain the table’s column names. If you omit Titles,
the column names will not be stored in the text file (which could be a problem if you intend to re-import
the file later).

Type clause File Format Specified

Type ”MIF” MapInfo Interchange File format. For information on the MIF file format, see the
MapInfo Professional documentation.

Type ”DXF” DXF file (a format supported by CAD packages, such as AutoCAD).

Type ”DBF” dBASE file format.
 Note: Map objects are not exported when you specify DBF format.

Type ”ASCII” Text file format.
 Note: Map objects are not exported when you specify ASCII format.

Type "CSV" Comma-delimited text file format.
 Note: Map objects are not exported when you specify CSV format.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 236 MB_Ref.pdf

Reference Guide Chapter 5: Export statement
Exporting DXF Files
If you export a table into DXF file, using Syntax 2 as shown above, the Export statement can include
the following DXF-specific clauses:

Preserve AttributeData
Include this clause if you want to export the table’s tabular data as attribute data in the DXF file.

Preserve MultiPolygonRgns As Blocks
Include this clause if you want MapInfo Professional to export each multiple-polygon region as a DXF
block entity. If you omit this clause, each polygon from a multiple-polygon region is stored separately.

Binary or ASCII [DecimalPlaces decimal_places]
Include the Binary keyword to export into a binary DXF file; or, include the ASCII clause to export into
an ASCII text DXF file. If you do not include either keyword, MapInfo Professional creates an ASCII
DXF file. Binary DXF files are generally smaller, and can be processed much faster than ASCII. When
you export as ASCII, you can specify the number of decimal places used to store floating-point
numbers (0 to 16 decimal places; 6 is the default).

Version 12 or Version 13
This clause controls whether MapInfo Professional creates a DXF file compliant with AutoCAD 12 or
13. If you omit the clause, MapInfo Professional creates a version 12 DXF file.

Transform
Specifies a coordinate transformation. In the Transform clause, you specify the minimum and
maximum x- and y- bounds coordinates of the MapInfo table, and then specify the minimum and
maximum coordinates that you want to have in the DXF file.

Example

The following example takes an existing MapInfo table, Facility, and exports the table to a DXF file
called “FACIL.DXF”.

Open Table ”facility”

Export facility
Into ”FACIL.DXF”
Type ”DXF”
Overwrite
Preserve AttributeData
Preserve MultiPolygonRgns As Blocks
ASCII DecimalPlaces 3
Transform (0, 0) (1, 1) (0, 0) (1, 1)

See Also

Import statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 237 MB_Ref.pdf

Reference Guide Chapter 5: ExtractNodes() function
ExtractNodes() function
Purpose

Returns a polyline or region created from a subset of the nodes in an existing object.

Syntax
ExtractNodes(object, polygon_index, begin_node, end_node, b_region)

object is a polyline or region object

polygon_index is an Integer value, 1 or larger: for region objects. This indicates which polygon (for
regions) or section (for polylines) to query.

begin_node is a SmallInt node number, 1 or larger; indicates the beginning of the range of nodes to
return

end_node is a SmallInt node number, 1 or larger; indicates the end of the range of nodes to return

b_region is a Logical value that controls whether a region or polyline object is returned; use TRUE for a
region object or FALSE for a polyline object

Return Value

Returns an object with the specified nodes. MapBasic applies all styles (color, etc.) of the original
object; then, if necessary, MapBasic applies the current drawing styles.

Description

If the begin_node is equal to or greater than end_node, the nodes are returned in the following order:

• begin_node through the next-to-last node in the polygon;
• First node in polygon through end_node.

If object is a region object, and if begin_node and end_node are both equal to 1, MapBasic returns the
entire set of nodes for that polygon. This provides a simple mechanism for extracting a single polygon
from a multiple-polygon region. To determine the number of polygons in a region, call ObjectInfo().

Error Conditions

ERR_FCN_ARG_RANGE error generated if b_region is FALSE and the range of nodes contains fewer
than two nodes, or if b_region is TRUE and the range of nodes contains fewer than three nodes.

See Also

ObjectNodeX() function, ObjectNodeY() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 238 MB_Ref.pdf

Reference Guide Chapter 5: Farthest statement
Farthest statement
Purpose

Find the object in a table that is farthest from a particular object. The result is a two-point Polyline
object representing the farthest distance.

Syntax
Farthest [N | ALL] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min_value] [Max max_value] Units unitname]
[Data clause]

N optional parameter representing the number of "farthest" objects to find. The default is 1. If All is
used, then a distance object is created for every combination.

fromtable represents a table of objects that you want to find farthest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the farthest
distances from.

totable represents a table of objects that you want to find farthest distances to.

intotable represents a table to place the results into.

Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the intotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the intotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max sunclauses within it (e.g., only a Min or only a Max, or both
may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 239 MB_Ref.pdf

Reference Guide Chapter 5: Farthest statement
Description

Every object in the fromtable is considered. For each object in the fromtable, the farthest object in the
totable is found. If N is present, then the N farthest objects in totable are found. A two-point Polyline
object representing the farthest points between the fromtable object and the chosen totable object is
placed in the intotable. If All is present, then an object is placed in the intotable representing the
distance between the fromtable object and each totable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second farthest object,
and 3 objects are requested, then the object will become the third farthest object.

The types of the objects in the fromtable and totable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many
<totable> objects are found for each <fromtable> object. One use of the Min distance could be to
eliminate distances of zero. This may be useful in the case of two point tables to eliminate comparisons
of the same point. For example, if there are two point tables representing Cities, and we want to find
the closest cities, we may want to exclude cases of the same city.

The Max distance can be used to limit the objects to consider in the totable. This may be most useful in
conjunction with N or All. For example, we may want to search for the five airports that are closest to a
set of cities (where the fromtable is the set of cities and the totable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the All parameter, where we would
find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Farthest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min_value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Farthest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 240 MB_Ref.pdf

Reference Guide Chapter 5: Fetch statement
Data Clause
Data IntoColumn1=column1, IntoColumn2=column2

The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both totable and fromtable, then the column in totable will
be used (e.g., totable is searched first for column names on the right hand side of the equals).

To avoid any conflicts such as this, the column names can be qualified using the table alias:

Data name1=states.state_name, name2=county.state_name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN…
functionality from the menu or by using the Update MapBasic statement.

See Also

Nearest statement, CartesianObjectDistance() function, ObjectDistance() function,
SphericalObjectDistance() function, CartesianConnectObjects() function, ConnectObjects()
function, SphericalConnectObjects() function

Fetch statement
Purpose

Sets a table’s cursor position (i.e., which row is the current row).

Syntax
Fetch { First | Last | Next | Prev | Rec n } From table

n is the number of the record to read

table is the name of an open table

Description

Use the Fetch statement to retrieve records from an open table. By issuing a Fetch statement, your
program places the table cursor at a certain row position in the table; this dictates which of the records
in the table is the “current” record.

Note: The term “cursor” is used here to signify a row’s position in a table. This has nothing to do with
the on-screen mouse cursor.

After you issue a Fetch statement, you can retrieve data from the current row by using one of the
following expression types:

A Fetch First statement positions the cursor at the first un-deleted row in the table.

A Fetch Last statement positions the cursor at the last un-deleted row in the table.

Syntax Example

table.column World.Country

table.col# World.col1

table.col(number) World.col(variable_name)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 241 MB_Ref.pdf

Reference Guide Chapter 5: Fetch statement
A Fetch Next statement moves the cursor forward to the next un-deleted row.

A Fetch Prev statement moves the cursor backward to the previous un-deleted row.

A Fetch Rec n statement positions the cursor on a specific row, even if that row is deleted.

Note: If the specified record is deleted, the statement generates run-time error 404.

Various MapInfo Professional and MapBasic operations (for example, Select, Update, and screen
redraws) automatically reset the current row. Accordingly, Fetch statements should be issued just
before any statements that make assumptions about which row is current.

Reading Past the End of the Table
After you issue a Fetch statement, you may need to call the EOT() function to determine whether you
fetched an actual row.

If the Fetch statement placed the cursor on an actual row, the EOT() function returns FALSE
(meaning, there is not an end-of-table condition).

If the Fetch statement attempted to place the cursor past the last row, the EOT() function returns
TRUE (meaning, there is an end-of-table condition; therefore there is no “current row”).

The following example shows how to use a Fetch Next statement to loop through all rows in a table.
As soon as a Fetch Next statement attempts to read past the final row, EOT() returns TRUE, causing
the loop to halt.

Dim i As Integer

i = 0
Fetch First From world
Do While Not EOT(world)

i = i + 1
Fetch Next From world

Loop

Print ”Number of undeleted records: ” + i

Examples

The following example shows how to fetch the 3rd record from the table States:

Open Table ”states”
Fetch Rec 3 From states ’position at 3rd record
Note states.state_name ’display name of state

As illustrated in the example below, the Fetch statement can operate on a temporary table (for
example, Selection).

Select * From states Where pop_1990 < pop_1980
Fetch First From Selection
Note Selection.col1 + ” has negative net migration”

See Also

EOT() function, Open Table statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 242 MB_Ref.pdf

Reference Guide Chapter 5: FileAttr() function
FileAttr() function
Purpose

Returns information about an open file.

Syntax
FileAttr(filenum , attribute)

filenum is the number of a file opened through an Open File statement

attribute is a code indicating which file attribute to return; see table below

Return Value

Integer

Description

The FileAttr() function returns information about an open file.

The attribute parameter must be one of the codes in this table:

Error Conditions

ERR_FILEMGR_NOTOPEN error generated if the specified file is not open

See Also

EOF() function, Get statement, Open File statement, Put statement

FileExists() function
Purpose

Returns a logical value indicating whether or not a file exists.

Syntax
FileExists(filespec)

filespec is a string that specifies the file path and name.

Return Value

Logical: TRUE if the file already exists

attribute parameter Return Value

FILE_ATTR_MODE Small Integer, indicating the mode in which the file was opened.
Return value will be one of these:
• MODE_INPUT
• MODE_OUTPUT
• MODE_APPEND
• MODE_RANDOM
• MODE_BINARY

FILE_ATTR_FILESIZE Integer, indicating the file size in bytes.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 243 MB_Ref.pdf

Reference Guide Chapter 5: FileOpenDlg() function
Example
If FileExists(”C:\MapInfo\TODO.TXT”) Then

Open File ”C:\MapInfo\TODO.TXT” For INPUT As #1

End If

See Also

TempFileName$() function

FileOpenDlg() function
Purpose

Displays a File Open dialog, and returns the name of the file the user selected.

Syntax
FileOpenDlg(path , filename , filetype , prompt)

path is a String value, indicating the directory or folder to choose files from

filename is a String value, indicating the default file name for the user to choose

filetype is a String value, three or four characters, indicating a file type (for example, “TAB” to specify
tables)

prompt is a String title that appears on the bar at the top of the dialog

Return Value

String value, representing the name of the file the user chose (or an empty string if the user cancelled).

Description

The FileOpenDlg() function displays a dialog similar to the one that displays when the user chooses
File > Open.

To choose a file from the list that appears in the dialog, the user can either click a file in the list and click
the OK button, or simply double-click a file in the list. In either case, the FileOpenDlg() function
returns a character string representing the full path and name of the file the user chose. Alternately, if
the user clicks the Cancel button instead of picking a file, the dialog returns a null string (“”).

The FileOpenDlg() function does not actually open any files; it merely presents the user with a dialog,
and lets the user choose a filename. If your application then needs to actually open the file chosen by
the user, the application must issue a statement such as Open Table. If you want your application to
display an Open dialog, and then you want MapInfo Professional to automatically open the selected
file, you can issue a statement such as Run Menu Command M_FILE_OPEN or Run Menu
Command M_FILE_ADD_WORKSPACE.

The path parameter specifies the directory or folder from which the user will choose an existing file.
Note that the path parameter only dictates the initial directory, it does not prevent the user from
changing directories once the dialog appears. If the path parameter is blank (a null string), the dialog
will present a list of files in the current working directory.

The filename parameter specifies the default filename for the user to choose.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 244 MB_Ref.pdf

Reference Guide Chapter 5: FileOpenDlg() function
The filetype parameter is a string, usually three or four characters long, which indicates the type of files
that should appear in the dialog. Some filetype settings have special meaning; for example, if the
filetype parameter is “TAB”, the dialog will present a list of MapInfo tables, and if the filetype parameter
is “WOR”, the dialog will present a list of MapInfo workspace files.

There are also a variety of other three-character filetype values, summarized in the table below. If you
specify one of the special type values from the table below, the dialog will include a control that lets the
user choose between seeing a list of table files or a list of all files (“*.*”).

Each of the three-character file types listed above corresponds to an actual DOS file extension; in
other words, specifying a filetype parameter of “WOR” tells MapBasic to display a list of files having the
DOS “.WOR” file extension, because that is the extension used by MapInfo Professional workspaces.

To help you write portable applications, MapBasic lets you use the same three-character filetype
settings on all platforms. On Windows, a control in the lower left corner of the dialog lets the user
choose whether to see a list of files with the .TAB extension, or a list of all files in the current directory.
If the FileOpenDlg() call specifies a filetype parameter which is not listed in the table of file extensions
above, the dialog would appear without that control.

Example
Dim s_filename As String
s_filename = FileOpenDlg(””,””,”TAB”,”Open Table”)

See Also

FileSaveAsDlg() function, Open File statement, Open Table statement

type parameter Type of files that appear

“TAB” MapInfo tables

“WOR” MapInfo workspaces

“MIF” MapInfo Interchange Format files, used for importing / exporting maps from /
to ASCII text files.

“DBF” dBASE or compatible data files

“WKS”, “WK1” Lotus spreadsheet files

“XLS” Excel spreadsheet files

“DXF” AutoCAD data interchange format files

“MMI”, “MBI” MapInfo for DOS interchange files

“MB” MapBasic source program files

“MBX” Compiled MapBasic applications

“TXT” Text files

“BMP” Windows bitmap files

“WMF” Windows metafiles
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 245 MB_Ref.pdf

Reference Guide Chapter 5: FileSaveAsDlg() function
FileSaveAsDlg() function
Purpose

Displays a Save As dialog, and returns the name of the file the user entered.

Syntax
FileSaveAsDlg (path , filename, filetype, prompt)

path is a String value, indicating the default destination directory

filename is a String value, indicating the default file name

filetype is a String value, indicating the type of file that the dialog should let the user choose

prompt is a String title that appears at the top of the dialog

Return Value

String value, representing the name of the file the user entered (or an empty string if the user
cancelled).

Description

The FileSaveAsDlg() function displays a Save As dialog, similar to the dialog that displays when the
user chooses File > Save Copy As.

The user can type in the name of the file they want to save. Alternately, the user can double-click from
the list of grayed-out filenames that appears in the dialog. Since each filename in the list represents an
existing file, MapBasic asks the user to verify that they want to overwrite the existing file.

If the user specifies a filename and clicks OK, the FileSaveAsDlg() function returns a character string
representing the full path and name of the file the user chose. If the user clicks the Cancel button
instead of picking a file, the function returns a null string (“”).

The path parameter specifies the initial directory path. The user can change directories once the dialog
appears. If the path parameter is blank (a null string), the dialog presents a list of files in the current
directory.

The filename parameter specifies the default filename for the user to choose.

The filetype parameter is a three-character (or shorter) string which identifies the type of files that
should appear in the dialog. To display a dialog that lists workspaces, specify the string “WOR” as the
filetype parameter; to display a dialog that lists table names, specify the string “TAB.” See the
discussion of the FileOpenDlg() function for more information about three-character filetype codes.

The FileSaveAsDlg() function does not actually save any files; it merely presents the user with a
dialog, and lets the user choose a filename to save. To save data under the filename chosen by the
user, issue a statement such as Commit Table As.

See Also

Commit Table statement, FileOpenDlg() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 246 MB_Ref.pdf

Reference Guide Chapter 5: Find statement
Find statement
Purpose

Finds a location in a mappable table.

Syntax
Find address [, region] [Interactive]

address is a String expression representing the name of a map object to find; to find the intersection of
two streets, use the syntax: streetname && streetname

region is the name of a region object which refines the search

Description

The Find statement searches a mappable table for a named location (represented by the address
parameter). MapBasic stores the search results in system variables, which a program can then access
through the CommandInfo() function. If the Find statement includes the optional Interactive
keyword, and if MapBasic is unable to locate the specified address, a dialog displays a list of “near
matches.”

The Find statement can only search a mappable table (for example, a table which has graphic objects
attached). The table must already be open. The Find statement operates on whichever column is
currently chosen for searching. A MapBasic program can issue a Find Using statement to identify a
specific table column to search. If the Find statement is not preceded by a Find Using statement,
MapBasic searches whichever table was specified the last time the user chose MapInfo Professional’s
Query > Find command.

The Find statement can optionally refine a search by specifying a region name in addition to the
address parameter. In other words, you could simply try to find a city name (for example, “Albany”) by
searching a table of cities; or you could refine the search by specifying both a city name and a region
name (for example, “Albany”, “CA”). The Find statement does not automatically add a symbol to the
map to mark where the address was found. To create such a symbol, call the CreatePoint() function
or the Create Point statement; see example below.

Determining Whether the Address Was Found
Following a Find statement, a MapBasic program can issue the function call
CommandInfo(CMD_INFO_FIND_RC) to determine if the search was successful. If the search was
successful, call CommandInfo(CMD_INFO_X) to determine the x-coordinate of the queried location,
and call CommandInfo(CMD_INFO_Y) to determine the y-coordinate. To determine the row number
that corresponds to the “found” address, call CommandInfo(CMD_INFO_FIND_ROWID).

The Find statement may result in an exact match, an approximate match, or a failure to match. If the
Find statement results in an exact match, the function call CommandInfo(CMD_INFO_FIND_RC)
returns a value of one. If the Find statement results in an approximate match, the function call returns
a value greater than one. If the Find statement fails to match the address, the function call returns a
negative value.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 247 MB_Ref.pdf

Reference Guide Chapter 5: Find statement
The table below summarizes the Find-related information represented by the
CommandInfo(CMD_INFO_FIND_RC) return value. The return value has up to three digits, and that
each of the three digits indicates the relative success or failure of a different part of the search.

The Mod operator is useful when examining individual digits from the Find result. For example, to
determine the last digit of a number, use the expression number Mod 10. To determine the last two
digits of a number, use the expression number Mod 100; etc.

The distinction between exact and approximate matches is best illustrated by example. If a table of
cities contains one entry for “Albany”, and the Find Using statement attempts to locate a city name
without a refining region name, and the Find statement specifies an address parameter value of
“Albany”, the search results in an exact match. Following such a Find statement, the function call
CommandInfo(CMD_INFO_FIND_RC) would return a value of 1 (one), indicating that an exact match
was found.

Now suppose that the Find operation has been set up to refine the search with an optional region
name; in other words, the Find statement expects a city name followed by a state name (for example,
“Albany” , “NY”). If a MapBasic program then issues a Find statement with “Albany” as the address and

Digit Values Meaning

xx1 Exact match

xx2 A substitution from the abbreviations file used

xx3 (-) Exact match not found

xx4 (-) No object name specified; match not found

xx5 (+) The user chose a name from the Interactive dialog

x1x Side of street undetermined

x2x (+ / -) Address number was within min/max range

x3x (+ / -) Address number was not within min/max range

x4x (+ / -) Address number was not specified

x5x (-) Streets do not intersect

x6x (-) The row matched does not have a map object

x7x (+) The user chose an address number from the Interactive dialog

1xx (+ / -) Name found in only one region other than specified region

2xx (-) Name found in more than one region other than the specified region

3xx (+ / -) No refining region was specified, and one match was found

4xx (-) No region was specified, and multiple matches were found

5xx (+) Name found more than once in the specified region

6xx (+) The user chose a region name from the Interactive dialog
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 248 MB_Ref.pdf

Reference Guide Chapter 5: Find statement
a null string as the state name, that is technically not an exact match, because MapBasic expects the
city name to be followed by a state name. Nevertheless, if there is only one “Albany” record in the
table, MapBasic will be able to locate that record. Following such a Find operation, the function call
CommandInfo(CMD_INFO_FIND_RC) would return a value of 301. The 1 digit signifies that the city
name matched exactly, while the 3 digit indicates that MapBasic was only partly successful in locating
a correct refining region.

If a table of streets contains “Main St”, and a Find statement attempts to locate “Main Street”, MapBasic
considers the result to be an approximate match (assuming that abbreviation file processing has been
enabled; see the Find Using statement). Strictly speaking, the string “Main Street” does not match the
string “Main St”. However, MapBasic is able to match the two strings after substituting possible
abbreviations from the MapInfo abbreviations file (MAPINFOW.ABB). Following the Find statement,
the CommandInfo(CMD_INFO_FIND_RC) function call returns a value of 2.

If the Find operation presents the user with a dialog, and the user enters text in the dialog in order to
complete the find, then the return code will have a 1 (one) in the millions place.

Example
Include ”mapbasic.def”
Dim x, y As Float, win_id As Integer
Open Table ”states” Interactive
Map From States
win_id = FrontWindow()
Find Using states(state)
Find ”NY”
If CommandInfo(CMD_INFO_FIND_RC) >= 1 Then

x = CommandInfo(CMD_INFO_X)
y = CommandInfo(CMD_INFO_Y)
Set Map

Window win_id
Center (x, y)

’ Now create a symbol at the location we found.
’ Create the object in the Cosmetic layer.
Insert Into

WindowInfo(win_id, WIN_INFO_TABLE) (Object)
Values (CreatePoint(x, y))

Else
Note ”Location not found.”

End If

See Also

Find Using statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 249 MB_Ref.pdf

Reference Guide Chapter 5: Find Using statement
Find Using statement
Purpose

Dictates which table(s) and column(s) should be searched in subsequent Find operations.

Syntax
Find Using table (column)

[Refine Using table (column)]
[Options [Abbrs { On | Off }]

[ClosestAddr { On | Off }]
[OtherBdy { On | Off }]
[Symbol symbol_style]]
[Inset inset_value { Percent | Distance Units dist_unit}]
[Offset value] [Distance Units dist_unit]]

table is the name of an open table

column is the name of a column in the table

symbol_style is a Symbol variable or a function call that returns a Symbol value; this controls what type
of symbol is drawn on the map if the user chooses Query > Find.

inset_value is a positive integer value representing how far from the ends of the line to adjust the
placement of an address location. If Percent is specified, it represents the percentage of the length of
the line where the address is to be placed. For Percent, valid values for inset_value are from 0 to 50. If
Distance Units are specified, inset_value represents the distance from the ends of the line where the
address is to be placed. For distance, valid values for inset_value are from 0 to 32,767. The inset takes
the addresses that would normally fall at the end of the street and moves them away from the end
going in the direction towards the center.

value specifies the Offset value (the distance back from the street). The offset value sets the addresses
back from the street instead of right on the street. value is a positive integer value representing how far
to offset the placement of an address location back from the street. Valid values are from 0 to 32,767.

dist_unit is a string that represents the name of a distance unit (for example, ”mi” for miles, ”m” for
meters.

Description

The Find Using statement specifies which table(s) and column(s) MapBasic will search when
performing a Find statement. Note that the column specified must be indexed.

The optional Refine clause specifies a second table, which will act as an additional search criterion;
the table must contain region objects. The specified column does not need to be indexed. If you omit
the Refine clause, subsequent Find statements expect a simple location name (for example,
“Portland”). If you include a Refine clause, subsequent Find statements expect a location name and a
region name (for example, “Portland” , “OR”).

The optional Abbrs clause dictates whether MapBasic will try substituting abbreviations from the
abbreviations file in order to find a match. By default, this option is enabled (On); to disable the option,
specify the clause Abbrs Off.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 250 MB_Ref.pdf

Reference Guide Chapter 5: Fix() function
The optional ClosestAddr clause dictates whether MapBasic will use the closest available address
number in cases where the address number does not match. By default, this option is disabled (Off); to
enable the option, specify the clause ClosestAddr On.

The optional OtherBdy clause dictates whether MapBasic will match to a record found in a refining
region other than the refining region specified. By default, this option is disabled (Off); to enable the
option, specify the clause OtherBdy On.

MapInfo Professional saves the Inset and Offset settings specified the last time the user chose Query >
Find Options. Table > Geocode Options or executed a Find Using statement. Thus, the last specified
inset/offset options becomes the default settings for the next time.

Example
Find Using city_1k(city)

Refine Using states(state)

Find ”Albany”, ”NY”

See Also

Create Index statement, Find statement

Fix() function
Purpose

Returns an integer value, obtained by removing the fractional part of a decimal value.

Syntax
Fix (num_expr)

num_expr is a numeric expression

Return Value

Integer

Description

The Fix() function removes the fractional portion of a number, and returns the resultant integer value.
The Fix() function is similar to, but not identical to, the Int() function. The two functions differ in the
way that they treat negative fractional values. When passed a negative fractional number, Fix()
returns the nearest integer value greater than or equal to the original value; thus, the function call:

Fix(-2.3)

returns a value of -2. But when the Int() function is passed a negative fractional number, it returns the
nearest integer value that is less than or equal to the original value. Thus, the function call:

Int(-2.3)

returns a value of -3.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 251 MB_Ref.pdf

Reference Guide Chapter 5: Font clause
Example
Dim i_whole As Integer
i_whole = Fix(5.999)
’ i_whole now has the value 5.

i_whole = Fix(-7.2)
’ i_whole now has the value -7.

See Also

Int() function, Round() function

Font clause
Purpose

Specifies a text style.

Syntax
Font font_expr

font_expr is a Font expression, for example, MakeFont(fontname, style, size, fgcolor, bgcolor)

Description

The Font clause specifies a text style. Font is a clause, not a complete MapBasic statement. Various
object-related statements, such as Create Text, allow you to specify a Font setting; this lets you
choose the typeface and point size of the new text object. If you omit the Font expression from a
Create Text statement, the new object uses MapInfo Professional’s current Font. The keyword Font
may be followed by an expression that evaluates to a Font value.

This expression can be a Font variable:

 Font font_var

or a call to a function (for example, CurrentFont() or MakeFont()) which returns a Font value:

 Font MakeFont(”Helvetica”, 1, 12, BLACK, WHITE)

With some MapBasic statements (for example, Set Legend), the keyword Font can be followed
immediately by the five parameters that define a Font style (font name, style, point size, foreground
color, and background color) within parentheses:

 Font(”Helvetica”, 1, 12, BLACK, WHITE)

The following table summarizes the components that define a font:

Component Description

fontname A string that identifies a font. The set of available fonts depends on the
user’s system and the hardware platform in use.

style Integer value. Controls text attributes such as bold, italic, and underline. See
table below for details.

size Integer value representing a point size. A point size of twelve is one-sixth of
an inch tall.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 252 MB_Ref.pdf

Reference Guide Chapter 5: Font clause
The following table shows how the style parameter corresponds to font styles.

To specify two or more style attributes, add the values from the left column. For example, to specify
both the Bold and All Caps attributes, use a style value of 513.

Example
Include ”MAPBASIC.DEF”
Dim o_title As Object
Create Text

Into Variable o_title
”Your message could go HERE”
(73.5, 42.6) (73.67, 42.9)
Font MakeFont(”Helvetica”,1,12,BLACK,WHITE)

See Also

Alter Object statement, Chr$() function, Create Text statement, RGB() function

foreground color Integer RGB color value, representing the color of the text. See the RGB()
function.

background color Integer RGB color value. If the halo style is used, this is the halo color; other-
wise, this is the background fill color.
To specify a transparent background style in a Font clause, omit the back-
ground color. For example: Font(“Helvetica”, 1, 12, BLACK). To specify a
transparent fill when calling the MakeFont() function, specify -1 as the back-
ground color.

Style Value Description of text style

0 Plain

1 Bold

2 Italic

4 Underline

8 Strikethrough

32 Shadow

256 Halo

512 All Caps

1024 Expanded

Component Description
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 253 MB_Ref.pdf

Reference Guide Chapter 5: For...Next statement
For...Next statement
Purpose

Defines a loop which will execute for a specific number of iterations.

Restrictions

You cannot issue a For...Next statement through the MapBasic window.

Syntax
For var_name = start_expr To end_expr [Step inc_expr]

 statement_list
Next

var_name is the name of a numeric variable

start_expr is a numeric expression

end_expr is a numeric expression

inc_expr is a numeric expression

statement_list is the group of statements to execute with each iteration of the For loop

Description

The For statement provides loop control. This statement requires a numeric variable (identified by the
var_name parameter). A For statement either executes a group of statements (the statement_list) a
number of times, or else skips over the statement_list completely. The start_expr, end_expr, and
inc_expr values dictate how many times, if any, the statement_list will be carried out.

Upon encountering a For statement, MapBasic assigns the start_expr value to the var_name variable.
If the variable is less than or equal to the end_expr value, MapBasic executes the group of statements
in the statement_list, and then adds the inc_expr increment value to the variable. If no Step clause was
specified, MapBasic uses a default increment value of one. MapBasic then compares the current value
of the variable to the end_expr expression; if the variable is currently less than or equal to the end_expr
value, MapBasic once again executes the statements in the statement_list. If, however, the var_name
variable is greater than the end_expr, MapBasic stops the For loop, and resumes execution with the
statement which follows the Next statement.

Conversely, the For statement can also count downwards, by using a negative Step value. In this
case, each iteration of the For loop decreases the value of the var_name variable, and MapBasic will
only decide to continue executing the loop as long as var_name remains greater than or equal to the
end_expr.

Each For statement must be terminated by a Next statement. Any statements which appear between
the For and Next statements comprise the statement_list; this is the list of statements which will be
carried out upon each iteration of the loop.

The Exit For statement allows you to exit a For loop regardless of the status of the var_name variable.
The Exit For statement tells MapBasic to jump out of the loop, and resume execution with the first
statement which follows the Next statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 254 MB_Ref.pdf

Reference Guide Chapter 5: ForegroundTaskSwitchHandler procedure
MapBasic permits you to modify the value of the var_name variable within the body of the For loop;
this can affect the number of times that the loop is executed. However, as a matter of programming
style, you should try to avoid altering the contents of the var_name variable within the loop.

Example
Dim i As Integer

’ the next loop will execute a Note statement 5 times
For i = 1 to 5

Note ”Hello world!”
Next

’ the next loop will execute the Note statement 3 times
For i = 1 to 5 Step 2

Note ”Hello world!”
Next

’ the next loop will execute the Note statement 3 times
For i = 5 to 1 Step -2

Note ”Hello world!”
Next

’ MapBasic will skip the following For statement
’ completely, because the initial start value is
’ already larger than the initial end value
For i = 100 to 50 Step 5

Note ”This note will never be executed”
Next

See Also

Do...Loop statement, Exit For statement

ForegroundTaskSwitchHandler procedure
Purpose

A reserved procedure name, called automatically when MapInfo Professional receives the focus
(becoming the active application) or loses the focus (another application becomes active).

Syntax
Declare Sub ForegroundTaskSwitchHandler

Sub ForegroundTaskSwitchHandler
 statement_list

End Sub

statement_list is a list of statements

Description

If the user runs an application containing a procedure named ForegroundTaskSwitchHandler, MapInfo
Professional calls the procedure automatically whenever MapInfo Professional receives or loses the
focus. Within the procedure, call CommandInfo() to determine whether MapInfo Professional
received or lost the focus.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 255 MB_Ref.pdf

Reference Guide Chapter 5: Format$() function
Example
Sub ForegroundTaskSwitchHandler

If CommandInfo(CMD_INFO_TASK_SWITCH)
= SWITCHING_INTO_MAPINFO Then

’ ... then MapInfo just became active
Else
’ ... another app just became active
End If

End Sub

See Also

CommandInfo() function

Format$() function
Purpose

Returns a string representing a custom-formatted number.

Syntax
Format$ (value , pattern)

value is a numeric expression

pattern is a string which specifies how to format the results

Return Value

String

Description

The Format$() function returns a string representing a formatted number. Given a numeric value such
as 12345.67, Format$() can produce formatted results such as “$12,345.67”.

The value parameter specifies the numeric value that you want to format.

The pattern parameter is a string of code characters, chosen to produce a particular type of formatting.
The pattern string should include one or more special format characters, such as #, 0, % , the comma
character, the period, or the semi-colon; these characters control how the results will look. The table
below summarizes the format characters.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 256 MB_Ref.pdf

Reference Guide Chapter 5: Format$() function
Error Conditions

ERR_FCN_INVALID_FMT error generated if the pattern string is invalid

pattern character Role in formatting results:

The result will include one or more digits from the value.

If the pattern string contains one or more # characters to the left of the dec-
imal place, and if the value is between zero and one, the formatted result
string will not include a zero before the decimal place.

0 A digit placeholder similar to the # character. If the pattern string contains
one or more 0 characters to the left of the decimal place, and the value is
between zero and one, the formatted result string will include a zero before
the decimal place. See examples below.

. (period) The pattern string must include a period if you want the result string to
include a “decimal separator.” The result string will include the decimal
separator currently in use on the user’s computer. To force the decimal
separator to be a period, use the Set Format statement.

, (comma) The pattern string must include a comma if you want the result string to
include “thousand separators.” The result string will include the thousand
separator currently set up on the user’s computer. To force the thousand
separator to be a comma, use the Set Format statement.

% The result will represent the value multiplied by one hundred; thus, a value
of 0.75 will produce a result string of “75%”. If you wish to include a percent
sign in your result, but you do not want MapBasic to multiply the value by
one hundred, place a \ (back slash) character before the percent sign (see
below).

E+ The result is formatted with scientific notation. For example, the value 1234
produce the result “1.234e+03”. If the exponent is positive, a plus sign
appears after the “e”. If the exponent is negative (which is the case for frac-
tional numbers), the results include a minus sign after the “e”.

E- This string of control characters functions just as the “E+” string, except
that the result will never show a plus sign following the “e”.

; (semi-colon) By including a semicolon in your pattern string, you can specify one format
for positive numbers and another format for negative numbers. Place the
semicolon after the first set of format characters, and before the second set
of format characters. The second set of format characters applies to nega-
tive numbers. If you want negative numbers to appear with a minus sign,
include “-” in the second set of format characters.

\ If the back slash character appears in a pattern string, MapBasic does not
perform any special processing for the character which follows the back
slash. This lets you include special characters (for example, %) in the
results, without causing the special formatting actions described above.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 257 MB_Ref.pdf

Reference Guide Chapter 5: FormatDate$ function
Examples

The following examples show the results you can obtain by using various pattern strings. The results
are shown as comments in the code.

Note: You will obtain slightly different results if your computer is set up with non-US number
formatting.

Format$(12345, ”,#”) ’ returns ”12,345”
Format$(-12345, ”,#”) ’ returns ”-12,345”
Format$(12345, ”$#”) ’ returns ”$12345”
Format$(-12345, ”$#”) ’ returns ”-$12345”

Format$(12345.678, ”$,#.##”) ’ returns ”$12,345.68”
Format$(-12345.678, ”$,#.##”) ’ returns ”-$12,345.68”

Format$(12345.678, ”$,#.##;($,#.##)”) ’returns ”$12,345.68”
Format$(-12345.678, ”$,#.##;($,#.##)”) ’returns ”($12,345.68)”
Format$(12345.6789, ”,#.###”) ’ returns ”12,345.679”
Format$(12345.6789, ”,#.#”) ’ returns ”12,345.7”

Format$(-12345.6789, ”#.###E+00”) ’ returns ”-1.235e+04”
Format$(0.054321, ”#.###E+00”) ’ returns ”5.432e-02”

Format$(-12345.6789, ”#.###E-00”) ’ returns ”-1.235e04”
Format$(0.054321, ”#.###E-00”) ’ returns ”5.432e-02”

Format$(0.054321, ”#.##%”) ’ returns ”5.43%”
Format$(0.054321, ”#.##\%”) ’ returns ”.05%”
Format$(0.054321, ”0.##\%”) ’ returns ”0.05%”

See Also

Str$() function

FormatDate$ function
Purpose

Returns a date formatted in the short date style specified by the Control Panel.

Syntax
FormatDate$(value)

value is a number or string representing the date in a YYYYMMDD format.

Return Value

String

Description

The FormatDate$() function returns a string representing a date in the local system format as
specified by the Control Panel.

If you specify the year as a two-digit number (for example, 96), MapInfo Professional uses the current
century or the century as determined by the Set Date Window statement.

Year can take two-digit year expressions. Use the Date window to determine which century should be
used. See DateWindow() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 258 MB_Ref.pdf

Reference Guide Chapter 5: FormatNumber$() function
Examples

Assuming Control Panel settings are d/m/y for date order, ’-’ for date separator, and “dd-MMM-yyyy” for
short date format:

Dim d_Today As Date
d_Today = CurDate()
Print d_Today ‘returns ”19970910”
Print FormatDate$(d_Today) ‘returns ”10-Sep-1997”
Dim s_EnteredDate As String
s_EnteredDate = “03-02-61”
Print FormatDate$(s_EnteredDate) ‘returns “03-Feb-1961”
s_EnteredDate = “12-31-61”
Print FormatDate$(s_EnteredDate) ‘ returns ERROR: not d/m/y ordering
s_EnteredDate = “31-12-61”
Print FormatDate$(s_EnteredDate) ‘ returns 31-Dec-1961”

See Also

DateWindow() function, Set Date Window statement

FormatNumber$() function
Purpose

Returns a string representing a number, including thousands separators and decimal-place separators
that match the user’s system configuration.

Syntax
FormatNumber$ (num)

num is a numeric value or a string that represents a numeric value, such as “1234.56”

Return Value

String

Description

Returns a string that represents a number. If the number is large enough to need a thousands
separators, this function inserts thousands separators. MapInfo Professional reads the user’s system
configuration to determine which characters to use as the thousands separator and decimal separator.

Examples

The following table demonstrates how the FormatNumber$() function with a comma as the thousands
separator and period as the decimal separator (United States defaults):

If the user’s computer is set up to use period as the thousands separator and comma as the decimal
separator, the following table demonstrates the results:

Function Call Result returned

FormatNumber$(”12345.67”) “12,345.67” (inserted a thousands separator)

FormatNumber$(”12,345.67”) “12,345.67” (no change)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 259 MB_Ref.pdf

Reference Guide Chapter 5: FrontWindow() function
See Also

DeformatNumber$() function

FrontWindow() function
Purpose

Returns the Integer identifier of the active window.

Syntax
FrontWindow()

Return Value

Integer

Description

The FrontWindow() function returns the integer id of the foremost document window (Map, Browse,
Graph, or Layout). Note that immediately following a statement which creates a new window (for
example, Map, Browse, Graph, Layout), the new window is the foremost window.

Example
Dim map_win_id As Integer
Open Table ”states”
Map From states
map_win_id = FrontWindow()

See Also

NumWindows() function, WindowID() function, WindowInfo() function

Function... End Function statement
Purpose

Defines a custom function.

Restrictions

You cannot issue a Function...End Function statement through the MapBasic window.

Syntax
Function name ([[ByVal] parameter As datatype]

 [, [ByVal] parameter As datatype...]) As return_type
statement_list

End Function

name is the function name

parameter is the name of a parameter to the function

Function Call Result returned

FormatNumber$(”12345.67”) “12.345,67” (inserted a thousands separator, and changed the
decimal separator to match user’s setup)

FormatNumber$(”12,345.67”) “12.345,67” (changed both characters to match the user’s
setup)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 260 MB_Ref.pdf

Reference Guide Chapter 5: Function... End Function statement
datatype is a variable type, such as Integer; arrays and custom Types are allowed

return_type is a standard scalar variable type; arrays and custom Types are not allowed

statement_list is the list of statements that the function will execute

Description

The Function statement creates a custom, user-defined function. User-defined functions may be
called in the same fashion that standard MapInfo Professional functions are called.

Each Function...End Function definition must be preceded by a Declare Function statement.

A user-defined function is similar to a Sub procedure; but a function returns a value. Functions are
more flexible, in that any number of function calls may appear within one expression. For example, the
following statement performs an assignment incorporating two calls to the Proper$() function:

 fullname = Proper$(firstname) + ” ” + Proper$(lastname)

Within a Function...End Function definition, the function name parameter acts as a variable. The
value assigned to the name “variable” will be the value that is returned when the function is called. If no
value is assigned to name, the function will always return a value of zero (if the function has a numeric
data type), FALSE (if the function has a Logical data type), or a null string (if the function has a String
data type).

Restrictions on Parameter Passing
A function call can return only one “scalar” value at a time. In other words, a single function call cannot
return an entire array’s worth of values, nor can a single function call return a set of values to fill in a
custom data Type variable. By default, every parameter to a user-defined function is a by-reference
parameter. This means that the function’s caller must specify the name of a variable as the parameter.
If the function modifies the value of a by-reference parameter, the modified value will be reflected in the
caller’s variable.

Any or all of a function’s parameters may be specified as by-value if the optional ByVal keyword
precedes the parameter name in the Function...End Function definition. When a parameter is
declared by-value, the function’s caller can specify an expression for that parameter, rather than
having to specify the name of a single variable. However, if a function modifies the value of a by-value
parameter, there is no way for the function’s caller to access the new value. You cannot pass arrays,
custom Type variables, or Alias variables as ByVal parameters to custom functions. However, you can
pass any of those data types as by-reference parameters. If your custom function takes no parameters,
your Function...End Function statement can either include an empty pair of parentheses, or omit the
parentheses entirely. However, every function call must include a pair of parentheses, regardless of
whether the function takes parameters. For example, if you wish to define a custom function called
Foo, your Function...End Function statement could either look like this:

Function Foo()
’ ... statement list goes here ...

End Function

or like this:

Function Foo
’ ... statement list goes here ...

End Function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 261 MB_Ref.pdf

Reference Guide Chapter 5: Function... End Function statement
but all calls to the function would need to include the parentheses, in this fashion:

var_name = Foo()

Availability of Custom Functions
The user may not incorporate calls to user-defined functions when filling in standard MapInfo
Professional dialog boxes. A custom function may only be called from within a compiled MapBasic
application. Thus, a user may not specify a user-defined function within the SQL Select dialog box;
however, a compiled MapBasic program may issue a Select statement which does incorporate calls to
user-defined functions.

A custom function definition is only available from within the application that defines the function. If you
write a custom function which you wish to include in each of several MapBasic applications, you must
copy the Function...End Function definition to each of the program files.

Function Names
The Function statement’s name parameter can match the name of a standard MapBasic function,
such as Abs or Chr$. Such a custom function will replace the standard MapBasic function by the
same name (within the confines of that MapBasic application). If a program defines a custom function
named Abs, any subsequent calls to the Abs function will execute the custom function instead of
MapBasic’s standard Abs() function.

When a MapBasic application redefines a standard function in this fashion, other applications are not
affected. Thus, if you are writing several separate applications, and you want each of your applications
to use your own, customized version of the Distance function, each of your applications must include
the appropriate Function statement.

When a MapBasic application redefines a standard function, the re-definition applies throughout the
entire application. In every procedure of that program, all calls to the redefined function will use the
custom function, rather than the original.

Example

The following example defines a custom function, CubeRoot, which returns the cube root of a number
(the number raised to the one-third power). Because the call to CubeRoot appears earlier in the
program than the CubeRoot Function...End Function definition, this example uses the Declare
Function statement to pre-define the CubeRoot function parameter list.

Declare Function CubeRoot(ByVal x As Float) As Float
Declare Sub Main

Sub Main
Dim f_result As Float
f_result = CubeRoot(23)
Note Str$(f_result)

End Sub

Function CubeRoot(ByVal x As Float) As Float
CubeRoot = x ^ 0.33333333333

End Function

See Also

Declare Function statement, Declare Sub statement, Sub...End Sub statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 262 MB_Ref.pdf

Reference Guide Chapter 5: Get statement
Get statement
Purpose

Reads from a file opened in Binary or Random access mode.

Syntax
Get [#] filenum , [position] , var_name

filenum is the number of a file opened through an Open File statement

position is the file position to read from

var_name is the name of a variable where MapBasic will store results

Description

The Get statement reads from an open file. The behavior of the Get statement and the set of
parameters which it expects are affected by the options specified in the preceding Open File
statement.

If the Open File statement specified Random file access, the Get statement’s Position clause can be
used to indicate which record of data to read. When the file is opened, the file position points to the first
record of the file (record 1). A Get automatically increments the file position, and thus the Position
clause does not need to be used if sequential access is being performed. However, you can use the
Position clause to set the record position before the record is read.

If the Open File statement specified Binary file access, one variable can be read at a time. What data
is read depends on the byte-order format of the file and the var_name variable being used to store the
results. If the variable type is Integer, then 4 bytes of the binary file will be read, and converted to a
MapBasic variable. Variables are stored the following way:

With Binary file access, the Position parameter is used to position the file pointer to a specific offset in
the file. When the file is opened, the position is set to one (the beginning of the file). As a Get is
performed, the position is incremented by the same amount read. If the Position clause is not used,
the Get reads from where the file pointer is positioned.

Note: The Get statement requires two commas, even if the optional position parameter is omitted.

Variable Type Storage In File

Logical One byte, either 0 or non-zero

Smallint Two byte integer

Integer Four byte integer

Float Eight byte IEEE format

String Length of string plus a byte for a 0 string terminator

Date Four bytes: Smallint year, byte month, byte day

Other data types Cannot be read.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 263 MB_Ref.pdf

Reference Guide Chapter 5: GetFolderPath$() function
If a file was opened in Binary mode, the Get statement cannot specify a variable-length String variable;
any String variable used in a Get statement must be fixed-length.

See Also

Open File statement, Put statement

GetFolderPath$() function
Purpose

Return the path of a special MapInfo Professional or Windows folder.

Syntax
GetFolderPath$(folder_id)

folder_id is one of the following values:

FOLDER_MI_APPDATA
FOLDER_MI_LOCAL_APPDATA
FOLDER_MI_PREFERENCE
FOLDER_MI_COMMON_APPDATA
FOLDER_APPDATA
FOLDER_LOCAL_APPDATA
FOLDER_COMMON_APPDATA
FOLDER_COMMON_DOCS
FOLDER_MYDOCS
FOLDER_MYPICS

Return Value

String

Description

Given the id of a special MapInfo or Windows folder, GetFolderPath$() function returns the path of the
folder. An example of a special Windows folder is the My Documents folder. An example of a special
MapInfo folder is the preference folder; the default location to which MapInfo Professional writes out
the preference file.

The location of many of these folders varies between versions of Windows. They can also vary
depending on which user is logged in. Note that FOLDER_MI_APPDATA,
FOLDER_MI_LOCAL_APPDATA and FOLDER_MI_COMMON_APPDATA may not exist. Before
attempting to access those folders, test for their existence by using FileExists().
FOLDER_MI_PREFERENCE always exists

Ids beginning in FOLDER_MI return the path for folders specific to MapInfo Professional. The rest of
the ids return the path for Windows folders and correspond to the ids defined for WIN32 API function
SHGetFolderPath. The most common of these ids have been defined for easy use in MapBasic
applications. Any id valid to SHGetFolderPath will work with GetFolderPath$().
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 264 MB_Ref.pdf

Reference Guide Chapter 5: GetMetadata$() function
Example
include "mapbasic.def"
declare sub main
sub main
dim sMiPrfFile as string
sMiPrfFile = GetFolderPath$(FOLDER_MI_PREFERENCE)
Print sMiPrfFile
end subet128

See Also

LocateFile$() function

GetMetadata$() function
Purpose

Retrieves metadata from a table.

Syntax
GetMetadata$(table_name , key_name)

table_name is the name of an open table, specified either as an explicit table name (for example,
World) or as a string representing a table name (for example, “World”).

key_name is a string representing the name of a metadata key.

Return Value

String, up to 239 bytes long. If the key does not exist, or if there is no value for the key, MapInfo
Professional returns an empty string.

Description

This function returns a metadata value from a table. For more information about querying a table’s
metadata, see the Metadata statement, or see the MapBasic User Guide.

Example

If the Parcels table has a metadata key called “\Copyright” then the following statement reads the key’s
value:

Print GetMetadata$(Parcels, ”\Copyright”)

See Also

Metadata statement

GetSeamlessSheet() function
Purpose

Prompts the user to select one sheet from a seamless table, and then returns the name of the chosen
sheet.

Syntax
GetSeamlessSheet(table_name)

table_name is the name of a seamless table that is open.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 265 MB_Ref.pdf

Reference Guide Chapter 5: Global statement
Return Value

String, representing a table name (or an empty string if user cancels).

Description

This function displays a dialog box listing all of the sheets that make up a seamless table. If the user
chooses a sheet and clicks OK, this function returns the table name the user selected. If the user
cancels, this function returns an empty string.

Example
Sub Browse_A_Table(ByVal s_tab_name As String)

Dim s_sheet As String

If TableInfo(s_tab_name, TAB_INFO_SEAMLESS) Then
s_sheet = GetSeamlessSheet(s_tab_name)
If s_sheet <> ”” Then

Browse * From s_sheet
End If

Else
Browse * from s_tab_name

End If

End Sub

See Also

Set Table statement, TableInfo() function

Global statement
Purpose

Defines one or more global variables.

Syntax
Global var_name [, var_name ...] As var_type

[, var_name ...] As var_type ...]

var_name is the name of a global variable to define

var_type is Integer, Float, Date, Logical, String, or a custom variable Type

Description

A Global statement defines one or more global variables. Global statements may only appear outside
of a sub procedure.

The syntax of the Global statement is identical to the syntax of the Dim statement; the difference is
that variables defined through a Global statement are global in scope, while variables defined through
a Dim statement are local. A local variable may only be examined or modified by the sub procedure
which defined it, whereas any sub procedure in a program may examine or modify any global variable.
A sub procedure may define local variables with names which coincide with the names of global
variables. In such a case, the sub procedure’s own local variables take precedence (i.e. within the sub
procedure, any references to the variable name will utilize the local variable, not the global variable by
the same name). Global array variables may be re-sized with the ReDim statement. Windows, global
variables are “visible” to other Windows applications through DDE conversations.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 266 MB_Ref.pdf

Reference Guide Chapter 5: Goto statement
Example
Declare Sub testing()
Declare Sub Main()
Global gi_var As Integer
Sub Main()

Call testing
Note Str$(gi_var) ’ this displays ”23”

End Sub

Sub testing()
gi_var = 23

End Sub

See Also

Dim statement, ReDim statement, Type statement, UBound() function

Goto statement
Purpose

Jumps to a different spot (in the same procedure), identified by a label.

Restrictions

You cannot issue a Goto statement through the MapBasic window.

Syntax
Goto label

label is a label appearing elsewhere in the same procedure

Description

The Goto statement performs an unconditional jump. Program execution continues at the statement
line identified by the label. The label itself should be followed by a colon; however, the label name
should appear in the Goto statement without the colon.

Generally speaking, the Goto statement should not be used to exit a loop prematurely. The Exit Do
and Exit For statements provide the ability to exit a loop. Similarly, you should not use a Goto
statement to jump into the body of a loop.

A Goto statement may only jump to a label within the same procedure.

Example
Goto endproc

...

endproc: End Program

See Also

Do Case...End Case statement, Do...Loop statement, For...Next statement, OnError statement,
Resume statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 267 MB_Ref.pdf

Reference Guide Chapter 5: Graph statement
Graph statement
Purpose

Opens a new Graph window.

Syntax (5.5 and later)
Graph

 label_column , expr [, ...]
From table
[Position (x , y) [Units paperunits]]
[Width width [Units paperunits]]
[Height height [Units paperunits]]
[Min | Max]
[Using template_file [Restore] [Series In Columns]]

label_column is the name of the column to use for labelling the y-axis

expr is an expression providing values to be graphed

table is the name of an open table

paperunits is the name of a paper unit (for example, ”in”)

x , y specifies the position of the upper left corner of the Grapher, in paper units

window_width and window_height specify the size of the Grapher, in paper units

template file is a valid graph template file

Syntax (pre-version 5.5)
Graph

 label_column , expr [, ...]
From table
[Position (x , y) [Units paperunits]]
[Width width [Units paperunits]]
[Height height [Units paperunits]]
[Min | Max]

label_column is the name of the column to use for labelling the y-axis

expr is an expression providing values to be graphed

table is the name of an open table

paperunits is the name of a paper unit (for example, “in”)

x , y specifies the position of the upper left corner of the Grapher, in paper units

window_width and window_height specify the size of the Grapher, in paper units

Description

If the Using clause is present and template_file specifies a valid graph template file, then a graph is
created based on the specified template file. Otherwise a 5.0 graph is created. If the Restore clause is
included, then title text in the template file is used in the graph window. Otherwise default text is used
for each title in the graph. The Restore keyword is included when writing the Graph command to a
workspace, so when the workspace is opened the title text is restored exactly as is was when the
workspace was saved. The Restore keyword is not used in the Graph command constructed by the
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 268 MB_Ref.pdf

Reference Guide Chapter 5: Graph statement
Create Graph wizard, so the default text is used for each title. If the Series In Columns is included,
then the graph series are based on the table columns. Otherwise the series are based on the table
rows.

Graph commands in workspaces or programs that were created prior to version 5.5 will still create a
5.0 graph window. When a 5.0 graph window is active in MapInfo Professional 5.5 or later, the 5.0
graph menu will be also be active, so the user can modify the graph using the 5.0 editing dialogs. The
Create Graph wizard will always created a 5.5 or later version graph window.

The Graph statement adds a new Grapher window to the screen, displaying the specified table. The
graph will appear as a rotated bar chart; subsequent Set Graph statements can re-configure the
specifics of the graph (for example, the graph rotation, graph type, title, etc.).

MapInfo Professional ’s Window > Graph dialog is limited in that it only allows the user to choose
column names to graph. MapBasic’s Graph statement, however, is able to graph full expressions
which involve column names. Similarly, although the Graph dialog only allows the user to choose four
columns to graph, the Graph statement can construct a graph with up to 255 columns.

If the Graph statement includes the optional Max keyword, the resultant Grapher window is
maximized, taking up all of the screen space available to MapInfo Professional. Conversely, if the
Graph statement includes the Min keyword, the window is minimized.

Example (5.5 and later graphs)
Graph State_Name, Pop_1980, Pop_1990, Num_Hh_80 From States Using ”C:\Program
Files\MapInfo\GRAPHSUPPORT\Templates\Column\Percent.3tf”
Graph City, Tot_hu, Tot_pop From City_125 Using ”C:\Program
Files\MapInfo\GRAPHSUPPORT\Templates\Bar\Clustered.3tf” Series In Columns

Example (pre-5.5 graphs)
Graph Country, Population From Selection

See Also

Set Graph statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 269 MB_Ref.pdf

Reference Guide Chapter 6: HomeDirectory$() function
HomeDirectory$() function
Purpose

Returns a string indicating the user’s home directory path.

Syntax
HomeDirectory$()

Return Value

String

Description

The HomeDirectory$() function returns a string which indicates the user’s home directory path.

The significance of a home directory path depends on the hardware platform on which the user is
running. The table below summarizes the platform-dependent home directory path definitions.

Example
Dim s_home_dir As String
s_home_dir = HomeDirectory$()

See Also

ApplicationDirectory$() function, ProgramDirectory$() function, SystemInfo() function

If...Then statement
Purpose

Decides which block of statements to execute (if any), based on the current value of one or more
expressions.

Syntax
If if_condition Then

if_statement_list
[ElseIf elseif_condition Then
elseif_statement_list]
[ElseIf ...]
[Else
 else_statement_list]

End If

condition is a condition which will evaluate to TRUE or FALSE

statement_list is a list of zero or more statements

Restrictions

You cannot issue an If...Then statement through the MapBasic window.

Environment Definition of “Home Directory”

Windows The directory path to the user’s Windows directory. This is the directory contain-
ing Windows system files, such as SYSTEM.INI and WIN.INI. In a networked
environment, each user has a private Windows directory, to allow each user to
have a unique configuration.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 270 MB_Ref.pdf

Reference Guide Chapter 6: If...Then statement
Description

The If ... Then statement allows conditional execution of different groups of statements.

In its simplest form, the If statement does not include an ElseIf clause, nor an Else clause:

If if_condition Then
 if_statement_list

End If

With this arrangement, MapBasic evaluates the if_condition at run-time. If the if_condition is TRUE,
MapBasic executes the if_statement_list; otherwise, MapBasic skips the statement_list.

An If statement may also include the optional Else clause:

If if_condition Then
 if_statement_list

Else
 else_statement_list

End If

With this arrangement, MapBasic will either execute the if_statement_list (if the condition is TRUE) or
the else_statement_list (if the condition is FALSE).

Additionally, an If statement may include one or more ElseIf clauses, following the If clause (and
preceding the optional Else clause) :

If if_condition Then
 if_statement_list

ElseIf elseif_condition Then
 elseif_statement_list

Else
 else_statement_list

End If

With this arrangement, MapBasic tests a series of two or more conditions, continuing until either one of
the conditions turns out to be TRUE or until the Else clause or the End If is reached. If the if_condition
is TRUE, MapBasic will perform the if_statement_list, and then jump down to the statement which
follows the End If. But if that condition is FALSE, MapBasic then evaluates the else_if_condition; if that
condition is TRUE, MapBasic will execute the elseif_statement_list.

An If statement may include two or more ElseIf clauses, thus allowing you to test any number of
possible conditions. However, if you are testing for one out of a large number of possible conditions,
the Do Case statement is more elegant than an If statement with many ElseIf clauses.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 271 MB_Ref.pdf

Reference Guide Chapter 6: If...Then statement
Example
Dim today As Date
Dim today_mon, today_day, yearcount As Integer

today = CurDate() ’ get current date
today_mon = Month(today) ’ get the month value
today_day = Day(today) ’ get the day value (1-31)

If today_mon = 1 And today_day = 1 Then
Note ”Happy New Year!”
yearcount = yearcount + 1

ElseIf today_mon = 2 And today_day = 14 Then
Note ”Happy Valentine’s Day!”

ElseIf today_mon = 12 And today_day = 25 Then
Note ”Merry Christmas!”

Else
Note ”Good day.”

End If

See Also

Do Case...End Case statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 272 MB_Ref.pdf

Reference Guide Chapter 6: Import statement
Import statement
Purpose

Creates a new MapInfo Professional table by importing an exported file, such as a GML or DXF file.

Syntax 1 (for MIF/MID files, PICT files, or MapInfo for DOS files)
Import file_name

[Type file_type]
[Into table_name]
[Overwrite]

Syntax 2 (for DXF files)
Import file_name

[Type “DXF”]
[Into table_name]
[Overwrite]
[Warnings { On | Off }]
[Preserve

[AttributeData] [Preserve] [Blocks As MultiPolygonRgns]]
[CoordSys . . .]
[Autoflip]
[Transform

(DXF_x1 , DXF_y1) (DXF_x2 , DXF_y2)
(MI_x1 , MI_y1) (MI_x2 , MI_y2)]

[Read
[Integer As Decimal] [Read] [Float As Decimal]]

[Store [Handles] [Elevation] [VisibleOnly]]
[Layer DXF_layer_name

[Into table_name]
[Preserve

[AttributeData] [Preserve] [Blocks As MultiPolygonRgns]]
]
[Layer . . .]

Syntax 3 (for GML files)
Import file_name

[Type "GML"]
[Layer layer name]
[Into table_name]
[Style Auto [On | Off]]

Syntax 4(for GML 2.1 files)
Import file_name

[Type "GML21"]
[Layer layer_name]
[Into table_name]
[Overwrite]
[Coordsys clause]

file_name is a String that specifies the name of the file to import

file_type is a String that specifies the import file format (MIF, MBI, MMI, IMG, GML GML21, or PICT)

table_name specifies the name of the new table to create

DXF_x1, DXF_y1, etc. are numbers that represent coordinates in the DXF file

MI_x1, MI_y1, etc. are numbers that represent coordinates in the MapInfo table
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 273 MB_Ref.pdf

Reference Guide Chapter 6: Import statement
DXF_layer_name is a String representing the name of a layer in the DXF file

Layer layer_name is a String representing the name of a layer in the GML file.

Description

The Import statement creates a new MapInfo table by importing the contents of an existing file.

Note: To create a MapInfo table based on a spreadsheet or database file, use the Register Table
statement, not the Import statement.

The Into clause lets you override the name and location of the MapInfo table that is created. If no Into
clause is specified, the new table is created in the same directory location as the original file, with a
corresponding filename. For example, on Windows, if you import the text file “WORLD.MIF”, the new
table’s default name is “WORLD.TAB”.

The optional Type clause specifies the format of the file you want to import. The Type clause can take
one of the following forms:

If you omit the Type clause, MapInfo Professional assumes that the file’s extension indicates the file
format. For example, a file named “PARCELS.DXF” is assumed to be a DXF file.

If you include the optional Overwrite keyword, MapInfo Professional creates a new table, regardless of
whether a table by that name already exists; the new table replaces the existing table. If you omit the
Overwrite keyword, and the table already exists, MapInfo Professional does not overwrite the table.

Import Options for DXF Files
If you import a DXF file, the Import statement can include the following DXF-specific clauses.

Note: The order of the clauses is important; placing the clauses in the wrong order can cause
compilation errors.

Warnings On or Warnings Off
Controls whether warning messages are displayed during the import operation. By default, warnings
are off.

Preserve AttributeData
Include this clause if you want MapInfo Professional to preserve the attribute data from the DXF file.

Type clause File Format Specified

Type ”DXF” DXF file (a format supported by CAD packages, such as AutoCAD).

Type ”MIF” MIF / MID file pair, created by exporting a MapInfo table.

Type ”MBI” MapInfo Boundary Interchange, created by MapInfo for DOS.

Type ”MMI” MapInfo Map Interchange, created by MapInfo for DOS.

Type ”IMG” MapInfo Image file, created by MapInfo for DOS.

Type “GML” GML files

Type “GML21” GML 2.1 files.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 274 MB_Ref.pdf

Reference Guide Chapter 6: Import statement
Preserve Blocks As MultiPolygonRgns
Include this clause if you want MapInfo Professional to store all of the polygons from a DXF block
record into one multiple-polygon region object. If you omit this clause, each DXF polygon becomes a
separate MapInfo Professional region object.

CoordSys
Controls the projection and coordinate system of the table. For details, see CoordSys clause.

Autoflip
Include this option if you want the map’s x-coordinates to be flipped around the center line of the map.
This option is only allowed if you specify a non-Earth coordinate system.

Transform
Specifies a coordinate transformation. In the Transform clause, you specify the minimum and
maximum x- and y-coordinates of the imported file, and you specify the minimum and maximum
coordinates that you want to have in the MapInfo table.

Read Integer As Decimal
Include this clause if you want to store whole numbers from the DXF file in a Decimal column in the
new table. This clause is only allowed when you include the Preserve AttributeData clause.

Read Float As Decimal
Include this clause if you want to store floating-point numbers from the DXF file in a Decimal column in
the new table. This clause is only allowed when you include the Preserve AttributeData clause.

Store [Handles] [Elevation] [VisibleOnly]
If you include Handles, the MapInfo table stores handles (unique ID numbers of objects in the drawing)
in a column called _DXFHandle. If you include Elevation, MapInfo Professional stores each object’s
center elevation in a column called _DXFElevation. (For lines, MapInfo Professional stores the
elevation at the center of the line; for regions, MapInfo Professional stores the average of the object’s
elevation values.) If you include VisibleOnly, MapInfo Professional ignores invisible objects.

Layer . . .
If you do not include any Layer clauses, all objects from the DXF file are imported into a single MapInfo
table. If you include one or more Layer clauses, each DXF layer that you name becomes a separate
MapInfo table.

If your DXF file contains multiple layers, and if your Import statement includes one or more Layer
clauses, MapInfo Professional only imports the layers that you name. For example, suppose your DXF
file contains four layers (layers 0, 1, 2, and 3). The following Import statement imports all four layers
into a single MapInfo table:

Import ”FLOORS.DXF”
Into ”FLOORS.TAB”
Preserve AttributeData
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 275 MB_Ref.pdf

Reference Guide Chapter 6: Import statement
The following statement imports layers 1 and 3, but does not import layers 0 or 2:

Import ”FLOORS.DXF”
Layer ”1”

Into ”FLOOR_1.TAB”
Preserve AttributeData

Layer ”3”
Into ”FLOOR_3.TAB”
Preserve AttributeData

Importing GML Files

MapInfo Professional supports importing OSGB (Ordnance Survey of Great Britain) GML files.
Cartographic Symbol, Topographic Point, Topographic Line, Topographic Area and Boundary Line are
supported; Cartographic Text is not supported. Topographic Area can be distributed in two forms;
MapInfo Professional supports the non-topological form. If the files contains XLINKS, MapInfo
Professional only imports attribute data, and does not import spatial objects. These XLINKs are stored
in the GML file as "xlink:href=". If topological objects are included in the file, a warning displays
indicating that spatial objects cannot be imported. Access the Browser view to see the display of
attribute data.

Importing GML Files

file_name is the name of the GML 2.1 file to import.

Type is "GML21" for GML 2.1 files.

layer_name is the name of the GML layer.

table_name is the MapInfo table name.

Overwrite causes the TAB file to be automatically overwritten. If Overwrite is not specified, an error
will result if the TAB file already exists.

The Coordsys clause is optional. If the GML file contains a supported projection and the Coordsys
clause is not specified, the projection from the GML file will be used. If the GML file contains a
supported projection and the Coordsys clause is specified, the projection from the Coordsys clause will
be used. If the GML file does not contain a supported projection, the Coordsys clause must be
specified.

Note: If the Coordsys clause does not match the projection of the GML file, your data may not import
correctly. The coordsys must match the coordsys of the data in the GML file. It will not
transform the data from one projection to another.

Example

Sample importing using GML style:

Import "D:\midata\GML\est.gml" Type "GML" layer "LandformArea" style auto on Into
"D:\midata\GML\est_LandformArea.TAB" Overwrite

Sample importing using GML21 style:

Import "D:\midata\GML\GML2.1\mi_usa.xml" Type "GML21" layer "USA" Into
"D:\midata\GML\GML2.1\mi_usa_USA.TAB" Overwrite CoordSys Earth Projection 1, 104

Sample importing using current MapInfo style:

Import "D:\midata\GML\test.gml" Type "GML" layer "TopographicLine" style auto off
Into "D:\midata\GML\test_TopographicLine.TAB" Overwrite
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 276 MB_Ref.pdf

Reference Guide Chapter 6: Include statement
The following example imports a MIF (MapInfo Interchange Format) file:

Import ”WORLD.MIF”
Type ”MIF”
Into ”world_2.tab”

Map From world_2

See Also

Export statement

Include statement
Purpose

Incorporates the contents of a separate text file as part of a MapBasic program.

Syntax
Include “filename”

filename is the name of an existing text file

Restrictions

You cannot issue an Include statement through the MapBasic window.

Description

When MapBasic is compiling a program file and encounters an Include statement, the entire contents
of the included file are inserted into the program file. The file specified by an Include statement should
be a text file, containing only legitimate MapBasic statements.

If the filename parameter does not specify a directory path, and if the specified file does not exist in the
current directory, the MapBasic compiler looks for the file in the program directory. This arrangement
allows you to leave standard definitions files, such as MAPBASIC.DEF, in one directory, rather than
copying the definitions files to the directories where you keep your program files.

The most common use of the Include statement is to include the file of standard MapBasic definitions,
MAPBASIC.DEF. This file, which is provided with MapBasic, defines a number of important identifiers,
such as TRUE and FALSE.

Whenever you change the contents of a file that you use through an Include statement, you should
then recompile any MapBasic programs which Include that file.

Example
Include ”MAPBASIC.DEF”

Input # statement
Purpose

Reads data from a file, and stores the data in variables.

Syntax
Input # filenum, var_name [, var_name ...]

filenum is the number of a file opened through Open File
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 277 MB_Ref.pdf

Reference Guide Chapter 6: Insert statement
var_name is the name of a variable

Description

The Input # statement reads data from a file which was opened in a sequential mode (for example,
INPUT mode), and stores the data in one or more MapBasic variables.

The Input # statement reads data (up to the next end-of-line) into the variable(s) indicated by the
var_name parameter(s). MapInfo Professional treats commas and end-of-line characters as field
delimiters. To read an entire line of text into a single String variable, use Line Input #.

MapBasic automatically converts the data to the type of the variable(s). When reading data into a
String variable, the Input # statement treats a blank line as an empty string. When reading data into a
numeric variable, the Input # statement treats a blank line as a zero value.

After issuing an Input # statement, call the EOF() function to determine if MapInfo Professional was
able to read the data. If the input was successful, EOF() returns FALSE; if the end-of-file was reached
before the input was completed, EOF() returns TRUE.

For an example of the Input # statement, see the sample program NVIEWS (Named Views).

The following data types are not available with the Input # statement: Alias, Pen, Brush, Font, Symbol,
and Object.

See Also

EOF() function, Line Input statement, Open File statement, Write # statement

Insert statement
Purpose

Appends new rows to an open table.

Syntax
Insert Into table [(columnlist)]

{ Values (exprlist) | Select columnlist From table }

table is the name of an open table

columnlist is a list of column expressions, comma-separated

exprlist is a list of one or more expressions, comma-separated

Description

The Insert statement inserts new rows into an open table. There are two main forms of this statement,
allowing you to either add one row at a time, or insert groups of rows from another table (via the Select
clause). In either case, the number of column values inserted must match the number of columns in
the column list. If no column list is specified, all fields are assumed. Note that you must use a Commit
statement if you want to permanently save newly-inserted records to disk.

If you know exactly how many columns are in the table you are modifying, and if you have values to
store in each of those columns, then you do not need to specify the optional (columnlist) clause.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 278 MB_Ref.pdf

Reference Guide Chapter 6: InStr() function
In the following example, we know that the table has four columns (Name, Address, City and State),
and we provide MapBasic with a value for each of those columns.

Insert Into customers
Values (”Mary Ryan”, ”23 Main St”, ”Dallas”, ”TX”)

The preceding statement would generate an error at run-time if it turned out that the table had fewer
than (or more than) four columns. In cases where you do not know exactly how many columns are in a
table or the exact order in which the columns appear, you should use the optional (columnlist) clause.

The following example inserts a new row into the customer table, while providing only one column
value for the new row; thus, all other columns in the new row will initially be blank. Here, the one value
specified by the Values clause will be stored in the “Name” column, regardless of how many columns
are in the table, and regardless of the position of the “Name” column in the table structure.

Insert Into customers (Name)
Values (”Steve Harris”)

The following statement creates a point object and inserts the object into a new row of the Sites table.
Note that Obj is a special column name representing the table’s graphical objects.

Insert Into sites (Obj)
Values (CreatePoint(-73.5, 42.8))

The following example illustrates how the Insert statement can append records from one table to
another. In this example, we assume that the table NY_ZIPS contains ZIP code boundaries for New
York state, and NJ_ZIPS contains ZIP code boundaries for New Jersey. We want to put all ZIP code
boundaries into a single table, for convenience’s sake (since operations such as Find can only work
with one table at a time).

Accordingly, the Insert statement below appends all of the records from the New Jersey table into the
New York table.

Insert Into NY_ZIPS
Select * From NJ_ZIPS

In the following example, we select the graphical objects from the table World, then insert each object
as a new record in the table Outline.

Open Table ”world”
Open Table ”outline”
Insert Into outline (Obj)

Select Obj From World

See Also

Commit Table statement, Delete statement, Rollback statement

InStr() function
Purpose

Returns a character position, indicating where a substring first appears within another string.

Syntax
InStr (position, string, substring)

position is a positive integer, indicating the start position of the search
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 279 MB_Ref.pdf

Reference Guide Chapter 6: Int() function
string is a string expression

substring is a string expression which we will try to locate in string

Return Value

Integer

Description

The InStr() function tests whether the string expression string contains the string expression substring.
MapBasic searches the string expression, starting at the position indicated by the position parameter;
thus, if the position parameter has a value of one, MapBasic will search from the very beginning of the
string parameter.

If string does not contain substring, the InStr() function returns a value of zero.

If string does contain substring, the InStr() function returns the character position where the substring
appears. For example, if the substring appears at the very start of the string, InStr() will return a value
of one.

If the substring parameter is a null string, the InStr() function returns zero.

The InStr() function is case-sensitive. In other words, the InStr() function cannot locate the substring
“BC” within the larger string “abcde”, because “BC” is upper-case.

Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Example
Dim fullname As String, pos As Integer
fullname = ”New York City”
pos = InStr(1, fullname, ”York”)
’ pos will now contain a value of 5 (five)

pos = InStr(1, fullname, ”YORK”)
’ pos will now contain a value of 0;
’ YORK is uppercase, so InStr will not locate it
’ within the string ”New York City”

See Also

Mid$() function

Int() function
Purpose

Returns an integer value obtained by removing the fractional part of a decimal value.

Syntax
Int (num_expr)

num_expr is a numeric expression

Return Value

Integer
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 280 MB_Ref.pdf

Reference Guide Chapter 6: IntersectNodes() function
Description

The Int() function returns the nearest integer value that is less than or equal to the specified num_expr
expression. The Fix() function is similar to, but not identical to, the Int() function. The two functions
differ in the way that they treat negative fractional values. When passed a negative fractional number,
Fix() will return the nearest integer value greater than or equal to the original value; so, the function
call

Fix(-2.3)

will return a value of -2. But when the Int() function is passed a negative fractional number, it returns
the nearest integer value that is less than or equal to the original value. So, the function call

Int(-2.3)

returns a value of -3.

Example
Dim whole As Integer
whole = Int(5.999)
 ’ whole now has the value 5

whole = Int(-7.2)
’ whole now has the value -8

See Also

Fix() function, Round() function

IntersectNodes() function
Purpose

Calculates the set of points at which two objects intersect, and returns a polyline object that contains
each of the points of intersection.

Syntax
IntersectNodes (object1, object2, points_to_include)

object1 and object2 are object expressions; may not be point or text objects

points_to_include is one of the following SmallInt values:

• INCL_CROSSINGS returns points where segments cross
• INCL_COMMON returns end-points of segments that overlap
• INCL_ALL returns points where segments cross and points where segments overlap

Return Value

A polyline object that contains the specified points of intersection.

Description

The IntersectNodes() function returns a polyline object that contains all nodes at which two objects
intersect.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 281 MB_Ref.pdf

Reference Guide Chapter 6: IsPenWidthPixels() function
IsPenWidthPixels() function
Purpose

The IsPenWidthPixels function determines if a pen width is in pixels or in points.

Syntax
IsPenWidthPixels (penwidth)

penwidth is a small integer representing the pen width.

Return Value

True if the width value is in pixels. False if the width value is in points.

Description

The IsPenWidthPixels() function will return true if the given pen width is in pixels. The pen width for a
line may be determined using the StylAttr() function.

Example
Include “MAPBASIC.DEF”
Dim CurPen As Pen
Dim Width As Integer
Dim PointSize As Float
CurPen = CurrentPen()
Width = StyleAttr(CurPen, PEN_WIDTH)
If Not IsPenWidthPixels(Width) Then

PointSize = PenWidthToPoints(Width)
End If

See Also

CurrentPen() function, MakePen() function, Pen clause, PenWidthToPoints() function

Kill statement
Purpose

Deletes a file.

Syntax
Kill filespec

filespec is a String which specifies a filename (and, optionally, the file’s path)

Return Value

String

Description

The Kill statement deletes a file from the disk. There is no “undo” operation for a Kill statement.
Therefore, the Kill statement should be used with caution.

Example
Kill ”C:\TEMP\JUNK.TXT”

See Also

Open File statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 282 MB_Ref.pdf

Reference Guide Chapter 6: LabelFindByID() function
LabelFindByID() function
Purpose

Initializes an internal label pointer, so that you can query the label for a specific row in a map layer.

Syntax
LabelFindByID(map_window_id , layer_number , row_id , table , b_mapper)

map_window_id is an Integer window id, identifying a Map window

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer)

row_id is a positive Integer value, indicating the row number of the row whose label you wish to query.

table is a table name or an empty string (“”): when you query a table that belongs to a seamless table,
specify the name of the member table; otherwise, specify an empty string.

b_mapper is a Logical value. Specify TRUE to query the labels that appear when the Map is active;
specify FALSE to query the labels that appear when the map is inside a Layout.

Return Value

Logical value: TRUE means that a label exists for the specified row.

Description

Call LabelFindByID() when you want to query the label for a specific row in a map layer. If the return
value is TRUE, then a label exists for the row, and you can query the label by calling Labelinfo().
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 283 MB_Ref.pdf

Reference Guide Chapter 6: LabelFindFirst() function
Example

The following example maps the World table, displays automatic labels, and then determines whether
a label was drawn for a specific row in the table.

Include ”mapbasic.def”
Dim b_morelabels As Logical
Dim i_mapid As Integer
Dim obj_mytext As Object

Open Table ”World” Interactive As World
Map From World
i_mapid = FrontWindow()
Set Map Window i_mapid Layer 1 Label Auto On

’ Make sure all labels draw before we continue...
Update Window i_mapid

’ Now see if row # 1 was auto-labeled
b_morelabels = LabelFindByID(i_mapid, 1, 1, ””, TRUE)

If b_morelabels Then
’ The object was labeled; now query its label.

obj_mytext = LabelInfo(i_mapid, 1, LABEL_INFO_OBJECT)

’ At this point, you could save the obj_mytext object
’ in a permanent table; or you could query it by
’ calling ObjectInfo() or ObjectGeography().

End If

See Also

LabelFindFirst() function, LabelFindNext() function, Labelinfo() function

LabelFindFirst() function
Purpose

Initializes an internal label pointer, so that you can query the first label in a map layer.

Syntax
LabelFindFirst(map_window_id , layer_number , b_mapper)

map_window_id is an Integer window id, identifying a Map window

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer)

b_mapper is a Logical value. Specify TRUE to query the labels that appear when the Map is active;
specify FALSE to query the labels that appear when the map is inside a Layout.

Return Value

Logical value: TRUE means that labels exist for the specified layer (either labels are currently visible,
or the user has edited labels, and those edited labels are not currently visible).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 284 MB_Ref.pdf

Reference Guide Chapter 6: LabelFindNext() function
Description

Call LabelFindFirst() when you want to loop through a map layer’s labels to query the labels. Querying
labels is a two-step process:

1. Set MapBasic’s internal label pointer by calling one of these functions: LabelFindFirst(),
LabelFindNext(), or LabelFindByID().

2. If the function you called in step 1 did not return FALSE, you can query the current label by
calling Labelinfo().

To continue querying additional labels, return to step 1.

Example

For an example, see Labelinfo().

See Also

LabelFindByID() function, LabelFindNext() function, Labelinfo() function

LabelFindNext() function
Purpose

Advances the internal label pointer, so that you can query the next label in a map layer.

Syntax
LabelFindNext(map_window_id , layer_number)

map_window_id is an Integer window id, identifying a Map window

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer)

Return Value

Logical value: TRUE means the label pointer was advanced to the next label; FALSE means there are
no more labels for this layer.

Description

After you call LabelFindFirst() to begin querying labels, you can call LabelFindNext() to advance to
the next label in the same layer.

Example

For an example, see Labelinfo().

See Also

LabelFindByID() function, LabelFindFirst() function, Labelinfo() function

Labelinfo() function
Purpose

Returns information about a label in a map.

Syntax
Labelinfo(map_window_id , layer_number , attribute)

map_window_id is an Integer window id, identifying a Map window
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 285 MB_Ref.pdf

Reference Guide Chapter 6: Labelinfo() function
layer_number is the number of a layer in the current Map window (for example, 1 for the top layer)

attribute is a code indicating the type of information to return; see table below

Return Value

Return value depends on attribute.

Description

The Labelinfo() function returns information about a label in a Map window.

Note: Labels are different than text objects. To query a text object, call functions such as
ObjectInfo() or ObjectGeography().

Before calling Labelinfo(), you must initialize MapBasic’s internal label pointer by calling
LabelFindFirst(), LabelFindNext(), or LabelFindByID(). See example below.

The attribute parameter must be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.

attribute code Labelinfo() Return Value

LABEL_INFO_ANCHORX Float value, indicating the x coordinate of the label’s
anchor location.

LABEL_INFO_ANCHORY Float value, indicating the y coordinate of the label’s
anchor location.

LABEL_INFO_DRAWN Logical value; TRUE if label is currently visible.

LABEL_INFO_EDIT Logical value; TRUE if label has been edited.

LABEL_INFO_EDIT_ANCHOR Logical value; TRUE if label has been moved.

LABEL_INFO_EDIT_ANGLE Logical value; TRUE if label’s rotation angle has been
modified.

LABEL_INFO_EDIT_FONT Logical value; TRUE if label’s font has been modified.

LABEL_INFO_EDIT_OFFSET Logical value; TRUE if label’s offset has been modified.

LABEL_INFO_EDIT_PEN Logical value; TRUE if callout line’s Pen style has been
modified.

LABEL_INFO_EDIT_POSITION Logical value; TRUE if label’s position (relative to anchor)
has been modified.

LABEL_INFO_EDIT_TEXT Logical value; TRUE if label’s text has been modified.

LABEL_INFO_EDIT_TEXTARROW Logical value; TRUE if label’s text arrow setting has been
modified.

LABEL_INFO_EDIT_TEXTLINE Logical value; TRUE if callout line has been moved.

LABEL_INFO_EDIT_VISIBILITY Logical value; TRUE if label visibility has been set to OFF.

LABEL_INFO_OBJECT Text object is returned, which is an approximation of the
label. This feature allows you to convert a label into a text
object, which you can save in a permanent table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 286 MB_Ref.pdf

Reference Guide Chapter 6: Labelinfo() function
Example

The following example shows how to loop through all of the labels for a row, using the Labelinfo()
function to query each label.

Dim b_morelabels As Logical
Dim i_mapid, i_layernum As Integer
Dim obj_mytext As Object
’ Here, you would assign a Map window’s ID to i_mapid,
’ and assign a layer number to i_layernum.
b_morelabels = LabelFindFirst(i_mapid, i_layernum, TRUE)
Do While b_morelabels

obj_mytext = LabelInfo(i_mapid, i_layernum, LABEL_INFO_OBJECT)
’ At this point, you could save the obj_mytext object
’ in a permanent table; or you could query it by
’ calling ObjectInfo() or ObjectGeography().
b_morelabels = LabelFindNext(i_mapid, i_layernum)

Loop

See Also

LabelFindByID() function, LabelFindFirst() function, LabelFindNext() function

LABEL_INFO_OFFSET Integer value between 0 and 50, indicating the distance
(in points) the label is offset from its anchor location.

LABEL_INFO_POSITION Integer value between 0 and 8, indicating the label’s posi-
tion relative to its anchor location. The return value will
match one of these codes:
• LAYER_INFO_LBL_POS_CC (0),
• LAYER_INFO_LBL_POS_TL (1),
• LAYER_INFO_LBL_POS_TC (2),
• LAYER_INFO_LBL_POS_TR (3),
• LAYER_INFO_LBL_POS_CL (4),
• LAYER_INFO_LBL_POS_CR (5),
• LAYER_INFO_LBL_POS_BL (6),
• LAYER_INFO_LBL_POS_BC (7),
• LAYER_INFO_LBL_POS_BR (8).

For example, if the label is Below and to the Right of the
anchor, its position is 8; if the label is Centered horizon-
tally and vertically over its anchor, its position is zero.

LABEL_INFO_ROWID Integer value, representing the ID number of the row that
owns this label; returns zero if no label exists.

LABEL_INFO_SELECT Logical value; TRUE if label is selected.

LABEL_INFO_TABLE String value, representing the name of the table that owns
this label. Useful if you are using seamless tables and you
need to know which member table owns the label.

attribute code Labelinfo() Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 287 MB_Ref.pdf

Reference Guide Chapter 6: LayerInfo() function
LayerInfo() function
Purpose

Returns information about a layer in a Map window.

Syntax
LayerInfo(map_window_id , layer_number , attribute)

map_window_id is a Map window identifier

layer_number is the number of a layer in the current Map window (for example, 1 for the top layer); to
determine the number of layers in a Map window, call MapperInfo()

attribute is a code indicating the type of information to return; see table below

Return Value

Return value depends on attribute parameter.

Restrictions

Many of the settings that you can query using LayerInfo() only apply to conventional map layers (as
opposed to Cosmetic map layers, thematic map layers, and map layers representing raster image
tables). See example below.

Description

The LayerInfo() function returns information about one layer in an existing Map window. The
layer_number must be a valid layer (0 is the cosmetic layer, 1 is the topmost table layer, and so on).
The attribute parameter must be one of the codes from the following table; codes are defined in
MAPBASIC.DEF. From here you can also query the Hotlink options using the Layer_Hotlink attributes.

attribute code LayerInfo() Return Value

LAYER_INFO_NAME String indicating the name of the table associated with
this map layer. If the specified layer is the map’s Cos-
metic layer, the string will be a table name such as
“Cosmetic1”; this table name can be used with other
statements (for example, Select).

LAYER_INFO_EDITABLE Logical value; TRUE if the layer is editable.

LAYER_INFO_LBL_PARTIALSEGS Logical value; TRUE if the Label Partial Objects check
box is selected for this layer.

LAYER_INFO_SELECTABLE Logical value; TRUE if the layer is selectable.

LAYER_INFO_PATH String value representing the full directory path of the
table associated with the map layer.

LAYER_INFO_ZOOM_LAYERED Logical; TRUE if zoom-layering is enabled.

LAYER_INFO_ZOOM_MIN Float value, indicating the minimum zoom value (in
MapBasic’s current distance units) at which the layer dis-
plays. (To set MapBasic’s distance units, use Set Dis-
tance Units.)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 288 MB_Ref.pdf

Reference Guide Chapter 6: LayerInfo() function
LAYER_INFO_ZOOM_MAX Float value, indicating the maximum zoom value at which
the layer displays.

LAYER_INFO_COSMETIC Logical; TRUE if this is the Cosmetic layer.

LAYER_INFO_DISPLAY SmallInt, indicating how and whether this layer is dis-
played; return value will be one of these values:
• LAYER_INFO_DISPLAY_OFF (the layer is not dis-

played);
• LAYER_INFO_DISPLAY_GRAPHIC (objects in this

layer appear in their “default” style—the style saved in
the table);

• LAYER_INFO_DISPLAY_GLOBAL (objects in this
layer are displayed with a “style override” specified in
Layer Control);

• LAYER_INFO_DISPLAY_VALUE (objects in this layer
appear as thematic shading)

LAYER_INFO_OVR_LINE Pen style used for displaying linear objects.

LAYER_INFO_OVR_PEN Pen style used for displaying the borders of filled objects.

LAYER_INFO_OVR_BRUSH Brush style used for displaying filled objects.

LAYER_INFO_OVR_SYMBOL Symbol style used for displaying point objects.

LAYER_INFO_OVR_FONT Font style used for displaying text objects.

LAYER_INFO_LBL_CURFONT For applications compiled with MapBasic 4.0 or later, this
query always returns false.
For applications compiled with MapBasic 3.x, this query
returns the following values:
Logical value: TRUE if layer is set to use the current font,
or FALSE if layer is set to use the custom font (see
LAYER_INFO_LBL_FONT).

LAYER_INFO_LBL_FONT Font style used in labels.

LAYER_INFO_LBL_EXPR String value: the expression used in labels.

LAYER_INFO_LBL_LT Smallint value indicating what type of line, if any, con-
nects a label to its original location after you move the
label. The return value will match one of these values:
• LAYER_INFO_LBL_LT_NONE (no line)
• LAYER_INFO_LBL_LT_SIMPLE (simple line)
• LAYER_INFO_LBL_LT_ARROW (line with an arrow-

head)

LAYER_INFO_LBL_PARALLEL Logical value: TRUE if layer is set for parallel labels.

attribute code LayerInfo() Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 289 MB_Ref.pdf

Reference Guide Chapter 6: LayerInfo() function
LAYER_INFO_LBL_POS Smallint value, indicating label position. Return value will
match one of these values (T=Top, B=Bottom, C=Center,
R=Right, L=Left):
• LAYER_INFO_LBL_POS_TL
• LAYER_INFO_LBL_POS_TC
• LAYER_INFO_LBL_POS_TR
• LAYER_INFO_LBL_POS_CL
• LAYER_INFO_LBL_POS_CC
• LAYER_INFO_LBL_POS_CR
• LAYER_INFO_LBL_POS_BL
• LAYER_INFO_LBL_POS_BC
• LAYER_INFO_LBL_POS_BR

LAYER_INFO_LBL_VISIBILITY Smallint value, indicating whether labels are visible; see
the Visibility clause of the Set Map statement. Return
value will be one of these values:
• LAYER_INFO_LBL_VIS_ON (labels always visible)
• LAYER_INFO_LBL_VIS_OFF (labels never visible)
• LAYER_INFO_LBL_VIS_ZOOM (labels visible when

in zoom range)

LAYER_INFO_LBL_ZOOM_MIN Float value, indicating the minimum zoom distance for
this layer’s labels.

LAYER_INFO_LBL_ZOOM_MAX Float value, indicating the maximum zoom distance for
this layer’s labels.

LAYER_INFO_LBL_AUTODISPLAY Logical value: TRUE if this layer is set to display labels
automatically. See the Auto clause of the Set Map state-
ment.

LAYER_INFO_LBL_OVERLAP Logical value; TRUE if overlapping labels are allowed.

LAYER_INFO_LBL_DUPLICATES Logical value; TRUE if duplicate labels are allowed.

LAYER_INFO_LBL_OFFSET Smallint value from 0 to 50, indicating how far the labels
are offset from object centroids. The offset value repre-
sents a distance, in points.

LAYER_INFO_LBL_MAX Integer value, indicating the maximum number of labels
allowed for this layer. If no maximum has been set, return
value is 2,147,483,647.

LAYER_INFO_LBL_PARTIALSEGS Logical value; TRUE if the Label Partial Segments check
box is checked for this layer.

attribute code LayerInfo() Return Value

LAYER_INFO_ARROWS Logical value; TRUE if layer displays direction arrows on
linear objects.

LAYER_INFO_NODES Logical value; TRUE if layer displays object nodes.

LAYER_INFO_CENTROIDS Logical value; TRUE if layer displays object centroids.

LAYER_INFO_SELECTABLE Logical value; TRUE if the layer is selectable.

attribute code LayerInfo() Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 290 MB_Ref.pdf

Reference Guide Chapter 6: LayerInfo() function
Example

Many of the settings that you can query using LayerInfo() only apply to conventional map layers (as
opposed to cosmetic map layers, thematic map layers, and map layers representing raster image
tables).

To determine whether a map layer is a conventional layer, use the LAYER_INFO_TYPE setting, as
shown below:

i_lay_type = LayerInfo(map_id, layer_number, LAYER_INFO_TYPE)

If i_lay_type = LAYER_INFO_TYPE_NORMAL Then
’
’ ... then this is a ”normal” layer
’

End If

See Also

MapperInfo() function

LAYER_INFO_PATH String value representing the full directory path of the
table associated with the map layer.

LAYER_INFO_TYPE SmallInt value, indicating this layer’s file type:
• LAYER_INFO_TYPE_NORMAL for a normal layer;
• LAYER_INFO_TYPE_COSMETIC for the Cosmetic

layer;
• LAYER_INFO_TYPE_IMAGE for a raster image

layer;
• LAYER_INFO_TYPE_THEMATIC for a thematic

layer.
• LAYER_INFO_TYPE_GRID for a grid image layer.
• LAYER_INFO_TYPE_WMS for a layer from a Web

Service Map.

LAYER_HOTLINK_EXPR Returns the layer’s Hotlink filename expression.

LAYER_HOTLINK_MODE Returns the layer’s Hotlink mode, one of the following
predefined values:
• HOTLINK_MODE_LABEL
• HOTLINK_MODE_OBJ
• HOTLINK_MODE_BOTH

LAYER_HOTLINK_RELATIVE Returns True if the relative path option is on, False other-
wise.

attribute code LayerInfo() Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 291 MB_Ref.pdf

Reference Guide Chapter 6: Layout statement
Layout statement
Purpose

Opens a new layout window.

Syntax
Layout

[Position (x , y) [Units paperunits]]
[Width window_width [Units paperunits]]
[Height window_height [Units paperunits]]
[{ Min | Max }]

paperunits is a String representing the name of a paper unit (for example, “in” or “mm”)

x , y specifies the position of the upper left corner of the Layout, in paper units, where 0,0 represents
the upper-left corner of the MapInfo Professional window

window_width and window_height dictate the size of the window, in Paper units

Description

The Layout statement opens a new Layout window. If the statement includes the optional Min keyword,
the window is minimized before it is displayed. If the statement includes the optional Max keyword, the
window appears maximized, filling all of MapInfo Professional ’s screen space.

The Width and Height clauses control the size of the Layout window, not the size of the page layout
itself. The page layout size is controlled by the paper size currently in use and the number of pages
included in the Layout.

See the Set Layout statement for more information on setting the number of pages in a Layout.

MapInfo Professional assigns a special, hidden table name to each Layout window. The first Layout
window opened has the table name Layout1, the next Layout window that is opened has the table
name Layout2, etc.

A MapBasic program can create, select, or modify objects on a Layout window by issuing statements
which refer to these table names. For example, the following statement selects all objects from a
Layout window:

Select * From Layout1

Example

The following example creates a Layout window two inches wide by four inches high, located at the
upper-left corner of the MapInfo workspace.

Layout Position (0, 0) Width 2 Height 4

See Also

Open Window statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 292 MB_Ref.pdf

Reference Guide Chapter 6: LCase$() function
LCase$() function
Purpose

Returns a lower-case equivalent of a string.

Syntax
LCase$(string_expr)

string_expr is a string expression

Return Value

String

Description

The LCase$() function returns the string which is the lower-case equivalent of the string expression
string_expr.

Conversion from upper- to lower-case only affects alphabetic characters (A through Z); numeric digits
and punctuation marks are not affected. Thus, the function call:

LCase$(”A#12a”)

returns the string value “a#12a”.

Example
Dim regular, lower_case As String
regular = ”Los Angeles”
lower_case = LCase$(regular)
’
’ Now, lower_case contains the value ”los angeles”
’

See Also

Proper$() function, UCase$() function

Left$() function
Purpose

Returns part or all of a string, beginning at the left end of the string.

Syntax
Left$(string_expr, num_expr)

string_expr is a string expression

num_expr is a numeric expression, zero or larger

Return Value

String

Description

The Left$() function returns a string which consists of the leftmost num_expr characters of the string
expression string_expr.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 293 MB_Ref.pdf

Reference Guide Chapter 6: LegendFrameInfo() function
The num_expr parameter should be an integer value, zero or larger. If num_expr has a fractional value,
MapBasic rounds to the nearest integer. If num_expr is zero, Left$() returns a null string. If the
num_expr parameter is larger than the number of characters in the string_expr string, Left$() returns a
copy of the entire string_expr string.

Example
Dim whole, partial As String
whole = ”Afghanistan”
partial = Left$(whole, 6)

’ at this point, partial contains the string: ”Afghan”

See Also

Mid$() function, Right$() function

LegendFrameInfo() function
Purpose

Returns information about a frame within a legend.

Syntax
LegendFrameInfo(window_id, frame_id, attribute)

window_id is a number that specifies which legend window you want to query.

frame_id is a number that specifies which frame within the legend window you want to query. Frames
are numbered 1 to n where n is the number of frames in the legend.

attribute is an integer code indicating which type of information to return.

Return Value

Depends on the attribute parameter.

Attribute codes LegendFrameInfo() Return Value

FRAME_INFO_TYPE Returns one of the following predefined constant indicating
frame type:
• FRAME_TYPE_STYLE
• FRAME_TYPE_THEME

FRAME_INFO_MAP_LAYER_ID Returns the id of the layer to which the frame corresponds.

FRAME_INFO_REFRESHABLE Returns true if the frame was created without the Norefresh
keyword. Always returns true for theme frames.

FRAME_INFO_POS_X Returns the distance of the frames upper left corner from
the left edge of the legend canvas (in paper units).

FRAME_INFO_POS_Y Returns the distance of the frame’s upper left corner from
the top edge of the legend canvas (in paper units).

FRAME_INFO_WIDTH Returns the width of the frame (in paper units).

FRAME_INFO_HEIGHT Returns the height of the frame (in paper units).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 294 MB_Ref.pdf

Reference Guide Chapter 6: LegendInfo() function
LegendInfo() function
Purpose

Returns information about a legend.

Syntax
LegendInfo(window_id, attribute)

window_id is a number that specifies which legend window you want to query.

attribute is an integer code indicating which type of information to return.

Return Value

Depends on the attribute parameter.

FRAME_INFO_TITLE Returns the title of a style frame or theme frame.

FRAME_INFO_TITLE_FONT Returns the font of a style frame title. Returns the default
title font if the frame has no title or if it is a theme frame.

FRAME_INFO_SUBTITLE Returns the subtitle of a style frame or theme frame.

FRAME_INFO_SUBTITLE_FONT Same as title font.

FRAME_INFO_BORDER_PEN Returns the pen used to draw the border.

FRAME_INFO_NUM_STYLES Returns the number of styles in a frame. Zero if theme
frame.

FRAME_INFO_VISIBLE Returns true if the frame is visible (theme frames can be
invisible).

FRAME_INFO_COLUMN Returns the legend attribute column name as a string if
there is one. Returns an empty string for a theme frame.

FRAME_INFO_LABEL Returns the label expression as a string if there is one.
Returns an empty string for a theme frame.

Attribute Code LegendInfo() Return Value

LEGEND_INFO_MAP_ID Returns the ID of the parent map window (can also get this
value by issuing WindowInfo() with the WIN_INFO_TABLE
code).

LEGEND_INFO_ORIENTATION Returns predefined value to indicate the layout of the leg-
end:
• ORIENTATION_PORTRAIT
• ORIENTATION_LANDSCAPE
• ORIENTATION_CUSTOM

LEGEND_INFO_NUM_FRAMES Returns the number of frames in the legend.

LEGEND_INFO_STYLE_SAMPLE
_SIZE

Returns 0 for small legend sample size style or 1 for large
legend sample size style.

Attribute codes LegendFrameInfo() Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 295 MB_Ref.pdf

Reference Guide Chapter 6: LegendStyleInfo() function
Example
LegendInfo(FrontWindow() LEGEND_INFO_STYLE_SAMPLE_SIZE)

See Also:

LegendStyleInfo() function

LegendStyleInfo() function
Purpose

Returns information about a style item within a legend frame.

Syntax
LegendStyleInfo(window_id, frame_id, style_id, attribute)

window_id is a number that specifies which legend window you want to query.

frame_id is a number that specifies which frame within the legend window you want to query. Frames
are numbered 1 to n where n is the number of frames in the legend.

style_id is a number that specifies which style within a frame you want to query. Styles are numbered 1
to n where n is the number of styles in the frame.

attribute is an integer code indicating which type of information to return.

Return Value

Error Conditions

Generates an error when issued on a frame that has no styles (theme frame).

See Also

LegendInfo() function

Len() function
Purpose

Returns the number of characters in a string or the number of bytes in a variable.

Syntax
Len(expr)

expr is a variable expression. expr cannot be a Pen, Brush, Symbol, Font, or Alias.

Return Value

SmallInt

Attribute Code LegendStyleInfo() Return Values

LEGEND_STYLE_INFO_TEXT Returns the text of the style.

LEGEND_STYLE_INFO_FONT Returns the font of the style.

LEGEND_STYLE_INFO_OBJ Returns the object of the style.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 296 MB_Ref.pdf

Reference Guide Chapter 6: Like() function
Description

The behavior of the Len() function depends on the data type of the expr parameter.

If the expr expression represents a character string, the Len() function returns the number of
characters in the string.

Otherwise, if expr is a MapBasic variable, Len() returns the size of the variable, in bytes. Thus, if you
pass an Integer variable, Len() will return the value 4 (because each Integer variable occupies 4
bytes), while if you pass a SmallInt variable, Len() will return the value 2 (because each SmallInt
variable occupies 2 bytes).

Example
Dim name_length As SmallInt
name_length = Len(”Boswell”)

’ name_length now has the value: 7

See Also

ObjectLen() function

Like() function
Purpose

Returns TRUE or FALSE to indicate whether a string satisfies pattern-matching criteria.

Syntax
Like(string , pattern_string , escape_char)

string is a String expression to test

pattern_string is a string that contains regular characters or special wild-card characters

escape_char is a String expression defining an escape character. Use an escape character (for
example, “\”) if you need to test for the presence of one of the wild-card characters (“%” and “_”) in the
string expression. If no escape character is desired, use an empty string (“”)

Return Value

Logical value (TRUE if string matches pattern_string)

Description

The Like() function performs string pattern-matching. This string comparison is case-sensitive; to
perform a comparison that is case-insensitive, use the Like operator.

The pattern_string parameter can contain the following wild-card characters:

To search for instances of the underscore or percent characters, specify an escape_char parameter, as
shown in the table below.

_ (underscore) matches a single character

% (percent) matches zero or more characters
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 297 MB_Ref.pdf

Reference Guide Chapter 6: Line Input statement
See Also

Len() function, StringCompare() function

Line Input statement
Purpose

Reads a line from a sequential text file into a variable.

Syntax
Line Input [#] filenum, var_name

filenum is an Integer value, indicating the number of an open file

var_name is the name of a String variable

Description

The Line Input statement reads an entire line from a text file, and stores the results in a String variable.
The text file must already be open, in Input mode.

The Line Input statement treats each line of the file as one long string. If each line of a file contains a
comma-separated list of expressions, and you want to read each expression into a separate variable,
use Input instead of Line Input.

Example

The following program opens an existing text file, reads the contents of the text file one line at a time,
and copies the contents of the file to a separate text file.

Dim str As String
Open File ”original.txt” For Input As #1
Open File ”copy.txt” For Output As #2

Do While Not EOF(1)
Line Input #1, str
If Not EOF(1) Then

Print #2, str
End If

Loop
Close File #1
Close File #2

See Also

Input # statement, Open File statement, Print # statement

To determine if a string... Specify these parameters:

starts with “South” Like(string_var, “South%”, “”)

ends with “America” Like(string_var, “%America”, “”)

contains “ing” at any point Like(string_var, “%ing%”, “”)

starts with an underscore Like(string_var, “_%”, “\”)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 298 MB_Ref.pdf

Reference Guide Chapter 6: LocateFile$() function
LocateFile$() function
Purpose

Return the path to one of the MapInfo application data files.

Syntax
LocateFile$(file_id)

file_id is one of the following values

Returns

String

Description

Given the ID of a MapInfo application data file, this function returns the location where MapInfo
Professional found that file. In versions prior to 6.5 these files where, for the most part, installed into the
program directory (same directory as mapinfow.exe). As of 6.5, MapInfo Professional installs these
files under the user's Application Data directory, but there are several valid locations for these files,
including the program directory. MapBasic applications should not assume the location of these files,
instead LocateFile$() should be used to determine the actual location.

Value Description

LOCATE_PREF_FILE preference file (mapinfow.prf)

LOCATE_DEF_WOR default workspace file (mapinfow.wor)

LOCATE_CLR_FILE color file (mapinfow.clr)

LOCATE_PEN_FILE pen file (mapinfow.pen)

LOCATE_FNT_FILE symbol file (mapinfow.fnt)

LOCATE_ABB_FILE abbreviation file (mapinfow.abb)

LOCATE_PRJ_FILE projection file (mapinfow.prj)

LOCATE_MNU_FILE menu file (mapinfow.mnu)

LOCATE_CUSTSYMB_DIR custom symbol directory (custsymb)

LOCATE_THMTMPLT_DIR theme template directory (thmtmpl)

LOCATE_GRAPH_DIR graph support directory (GraphSupport)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 299 MB_Ref.pdf

Reference Guide Chapter 6: LOF() function
Example
include "mapbasic.def"
declare sub main
sub main
dim sGraphLocations as string
sGraphLocations = LocateFile$(LOCATE_GRAPH_DIR)
Print sGraphLocations
end sub

See Also

GetFolderPath$() function

LOF() function
Purpose

Returns the length of an open file.

Syntax
LOF(filenum)

filenum is the number of an open file

Return Value

Integer

Description

The LOF() function returns the length of an open file, in bytes.

The file parameter represents the number of an open file; this is the same number specified in the As
clause of the Open File statement.

Error Conditions

ERR_FILEMGR_NOTOPEN error generated if the specified file is not open

Example
Dim size As Integer
Open File ”import.txt” For Binary As #1
size = LOF(1)
’ size now contains the # of bytes in the file

See Also

Open File statement

Log() function
Purpose

Returns the natural logarithm of a number.

Syntax
Log(num_expr)

num_expr is a numeric expression
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 300 MB_Ref.pdf

Reference Guide Chapter 6: LTrim$() function
Return Value

Float

Description

The Log() function returns the natural logarithm of the numeric expression specified by the num_expr
parameter.

The natural logarithm represents the number to which the mathematical value e must be raised in
order to obtain num_expr. e has a value of approximately 2.7182818.

The logarithm is only defined for positive numbers; accordingly, the Log() function will generate an
error if num_expr has a negative value.

You can calculate logarithmic values in other bases (for example, base 10) using the natural logarithm.
To obtain the base-10 logarithm of the number n, divide the natural log of n (Log(n)) by the natural
logarithm of 10 (Log(10)).

Example
Dim original_val, log_val As Float
original_val = 2.7182818
log_val = Log(original_val)

’ log_val will now have a value of 1 (approximately),
’ since E raised to the power of 1 equals
’ 2.7182818 (approximately)

See Also

Exp() function

LTrim$() function
Purpose

Trims space characters from the beginning of a string and returns the results.

Syntax
LTrim$(string_expr)

string_expr is a string expression

Return Value

String

Description

The LTrim$() function removes any spaces from the beginning of the string_expr string, and returns
the resultant string.

Example
Dim name As String
name = ” Mary Smith”
name = LTrim$(name)

’ name now contains the string ”Mary Smith”

See Also

RTrim$() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 301 MB_Ref.pdf

Reference Guide Chapter 6: Main procedure
Main procedure
Purpose

The first procedure called when an application is run.

Syntax
Declare Sub Main
Sub Main

 statement_list
End Sub

statement_list is a list of statements to execute when an application is run

Description

Main is a special-purpose MapBasic procedure name. If an application contains a sub procedure called
Main, MapInfo Professional runs that procedure automatically when the application is first run. The
Main procedure can then take actions (for example, issuing Call statements) to cause other sub
procedures to be executed.

However, you are not required to explicitly declare the Main procedure. Instead of declaring a
procedure named Main, you can simply place one or more statements at or near the top of your
program file, outside of any procedure declaration. MapBasic will then treat that group of statements as
if they were in a Main procedure. This is known as an “implicit” Main procedure (as opposed to an
“explicit” Main procedure).

Example

A MapBasic program can be as short as a single line. For example, you could create a MapBasic
program consisting only of the following statement:

Note ”Testing, one two three.”

If the statement above comprises your entire program, MapBasic considers that program to be in an
implicit Main procedure. When you run that application, MapBasic will execute the Note statement.

Alternately, the following example explicitly declares the Main procedure, producing the same results
(i.e. a Note statement).

Declare Sub Main
Sub Main

Note ”Testing, one two three.”
End Sub

The next example contains an implicit Main procedure, and a separate sub procedure called Talk. The
implicit Main procedure calls the Talk procedure through the Call statement.

Declare Sub Talk(ByVal msg As String)
Call Talk(”Hello”)
Call Talk(”Goodbye”)
Sub Talk(ByVal msg As String)

Note msg
End Sub
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 302 MB_Ref.pdf

Reference Guide Chapter 6: MakeBrush() function
The next example contains an explicit Main procedure, and a separate sub procedure called Talk. The
Main procedure calls the Talk procedure through the Call statement.

Declare Sub Main
Declare Sub Talk(ByVal msg As String)

Sub Main
Call Talk(”Hello”)
Call Talk(”Goodbye”)

End Sub

Sub Talk(ByVal msg As String)
Note msg

End Sub

See Also

EndHandler procedure, RemoteMsgHandler procedure, SelChangedHandler procedure,
Sub...End Sub statement, ToolHandler procedure, WinClosedHandler procedure

MakeBrush() function
Purpose

Returns a Brush value.

Syntax
MakeBrush(pattern, forecolor, backcolor)

pattern is an Integer value from 1 to 8 or from 12 to 71, dictating a fill pattern. See Brush clause for a
listing of the patterns.

forecolor is the Integer RGB color value of the foreground of the pattern. See the RGB() function for
details.

backcolor is the Integer RGB color value of the background of the pattern. To make the background
transparent, specify -1 as the background color, and specify a pattern of 3 or greater.

Return Value

Brush

Description

The MakeBrush function returns a Brush value. The return value can be assigned to a Brush variable,
or may be used as a parameter within a statement that takes a Brush setting as a parameter (such as
Create Ellipse, Set Map, Set Style, or Shade).

See the description of the Brush clause for more information about Brush settings.

Example
Include ”mapbasic.def”
Dim b_water As Brush
b_water = MakeBrush(64, CYAN, BLUE)

See Also

Brush clause, CurrentBrush() function, StyleAttr() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 303 MB_Ref.pdf

Reference Guide Chapter 6: MakeCustomSymbol() function
MakeCustomSymbol() function
Purpose

Returns a Symbol value based on a bitmap file.

Syntax
MakeCustomSymbol(filename, color, size, customstyle)

filename is a string up to 31 characters long, representing the name of a bitmap file. The file must be in
the CustSymb directory inside the user’s MapInfo directory.

color is an integer RGB color value; see the RGB() function for details.

size is an Integer point size, from 1 to 48.

customstyle is an Integer code controlling color and background attributes. See table below.

Return Value

Symbol

Description

The MakeCustomSymbol() function returns a Symbol value based on a bitmap file. See the
description of the Symbol clause for information about other symbol types.

The following table describes how the customstyle argument controls the symbol’s style:

Example
Include ”mapbasic.def”
Dim sym_marker As Symbol
sym_marker = MakeCustomSymbol(”CAR1-64.BMP”, BLUE, 18, 0)

See Also

CurrentSymbol() function, MakeFontSymbol() function, MakeSymbol() function, StyleAttr()
function, Symbol clause

customstyle value Symbol Style

0 Both the Show Background setting and the Apply Color setting are off; the
symbol appears in its default state. White pixels in the bitmap are dis-
played as transparent, allowing whatever is behind the symbol to show
through.

1 The Show Background setting is on; white pixels in the bitmap are opaque.

2 The Apply Color setting is on; non-white pixels in the bitmap are replaced
with the symbol’s color setting.

3 Both Show Background and Apply Color are on.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 304 MB_Ref.pdf

Reference Guide Chapter 6: MakeFont() function
MakeFont() function
Purpose

Returns a Font value.

Syntax
MakeFont(fontname, style, size, forecolor, backcolor)

fontname is a text string specifying a font (for example, “Helv”). This argument is case sensitive.

style is a positive integer expression; 0 = plain text, 1 = bold text, etc. See Font clause for details.

size is an integer point size, one or greater

forecolor is the RGB color value for the text. See the RGB() function.

backcolor is the RGB color value for the background (or the halo color, if the style setting specifies a
halo). To make the background transparent, specify -1 as the background color.

Return Value

Font

Description

The MakeFont() function returns a Font value. The return value can be assigned to a Font variable, or
may be used as a parameter within a statement that takes a Font setting as a parameter (such as
Create Text or Set Style).

See the description of the Font clause for more information about Font settings.

Example
Include ”mapbasic.def”
Dim big_title As Font
big_title = MakeFont(”Helvetica”, 1, 20,BLACK,WHITE)

See Also

CurrentFont() function, Font clause, StyleAttr() function

MakeFontSymbol() function
Purpose

Returns a Symbol value, using a character from a TrueType font as the symbol.

Syntax
MakeFontSymbol(shape, color, size, fontname, fontstyle, rotation)

shape is a SmallInt value, 31 or larger (31 is invisible), specifying a character code from a TrueType
font.

color is an integer RGB color value; see the RGB() function for details.

size is a SmallInt value from 1 to 48, dictating the point size of the symbol.

fontname is a string representing the name of a TrueType font (for example, “WingDings”). This
argument is case sensitive.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 305 MB_Ref.pdf

Reference Guide Chapter 6: MakePen() function
fontstyle is a numeric code controlling bold, outline, and other attributes; see below.

rotation is a floating-point number indicating the symbol’s rotation angle, in degrees.

Return Value

Symbol

Description

The MakeFontSymbol function returns a Symbol value based on a character in a TrueType font. See
the description of the Symbol clause for information about other symbol types.

The following table describes how the fontstyle argument controls the symbol’s style:

To specify two or more style attributes, add the values from the left column. For example, to specify
both the Bold and the Drop Shadow attributes, use a fontstyle value of 33. Border and Halo are
mutually exclusive.

Example
Include ”mapbasic.def”
Dim sym_marker As Symbol
sym_marker = MakeFontSymbol(65,RED,24,”WingDings”,32,0)

See Also

CurrentSymbol() function, MakeCustomSymbol() function, MakeSymbol() function,
StyleAttr() function, Symbol clause

MakePen() function
Purpose

Returns a Pen value.

Syntax
MakePen(width, pattern, color)

width specifies a pen width

pattern specifies a line pattern; see Pen clause for a listing

color is the RGB color value; see the RGB() function for details

Return Value

Pen

fontstyle value Symbol Style

0 Plain

1 Bold

16 Border (black outline)

32 Drop Shadow

256 Halo (white outline)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 306 MB_Ref.pdf

Reference Guide Chapter 6: MakeSymbol() function
Description

The MakePen() function returns a Pen value, which defines a line style. The return value can be
assigned to a Pen variable, or may be used as a parameter within a statement that takes a Pen setting
as a parameter (such as Create Line, Create Polyline, Set Style, or Set Map).

See the description of the Pen clause for more information about Pen settings.

Example
Include ”mapbasic.def”
Dim p_bus_route As Pen
p_bus_route = MakePen(3, 9, RED)

See Also

CurrentPen() function, Pen clause, StyleAttr() function

MakeSymbol() function
Purpose

Returns a Symbol value, using a character from the MapInfo 3.0 symbol set. The MapInfo 3.0 symbol
set is the symbol set that was originally published with MapInfo for Windows 3.0 and has been
maintained in subsequent versions of MapInfo Professional.

Syntax
MakeSymbol(shape, color, size)

shape is a SmallInt value, 31 or larger (31 is invisible), specifying a symbol shape; standard symbol set
provides symbols 31 through 67; see Symbol clause for a listing

color is an integer RGB color value; see the RGB() function for details

size is a SmallInt value from 1 to 48, dictating the point size of the symbol

Return Value

Symbol

Description

The MakeSymbol() function returns a Symbol value. The return value can be assigned to a Symbol
variable, or may be used as a parameter within a statement that takes a Symbol setting as a parameter
(such as Create Point, Set Map, Set Style, or Shade).

To create a symbol from a character in a TrueType font, call MakeFontSymbol().

To create a symbol from a bitmap file, call MakeCustomSymbol().

See the description of the Symbol clause for more information about Symbol settings.

Example
Include ”mapbasic.def”
Dim sym_marker As Symbol
sym_marker = MakeSymbol(44, RED, 16)

See Also

CurrentSymbol() function, MakeCustomSymbol() function, MakeFontSymbol() function,
StyleAttr() function, Symbol clause
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 307 MB_Ref.pdf

Reference Guide Chapter 6: Map statement
Map statement
Purpose

Opens a new Map window.

Syntax
Map From table [, table ...]

[Position (x, y) [Units paperunits]]
[Width window_width [Units paperunits]]
[Height window_height [Units paperunits]]
[{ Min | Max }]

table is the name of an open table

paperunits is the name of a paper unit (for example, “in”)

x , y specifies the position of the upper left corner of the Map window, in paper units

window_width and window_height specify the size of the Map window, in paper units

Description

The Map statement opens a new Map window. After you open a Map window, you can modify the
window by issuing Set Map statements.

The table name specified must already be open. The table must also be mappable; in other words, the
table must be able to have graphic objects associated with the records. The table does not need to
actually contain any graphical objects, but the structure of the table must specify that objects may be
attached.

The Map statement must specify at least one table, since any Map window must contain at least one
layer. Optionally, the Map statement can specify multiple table names (separated by commas) to open
a multi-layer Map window. The first table name in the Map statement will be drawn last whenever the
Map window is redrawn; thus, the first table in the Map statement will always appear on top. Typically,
tables with point objects appear earlier in Map statements, and tables with region (boundary) objects
appear later in Map statements.

The default size of the resultant Map window is roughly a quarter of the screen size; the default
position of the window depends on how many windows are currently on the screen. Optional Position,
Height, and Width clauses allow you to control the size and position of the new Map window. The
Height and Width clauses dictate the window size, in inches. Note that the Position clause specifies a
position relative to the upper left corner of the MapInfo application, not relative to the upper left corner
of the screen.

If the Map statement includes the optional Max keyword, the new Map window is maximized, taking up
all of the screen space available to MapInfo Professional. Conversely, if the Map statement includes
the Min keyword, the window is minimized immediately.

Each Map window can have its own projection. MapInfo Professional decides a Map window’s initial
projection based on the native projection of the first table mapped. A user can change a map’s
projection by choosing the Map > Options command. A MapBasic program can change the projection
by issuing a Set Map statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 308 MB_Ref.pdf

Reference Guide Chapter 6: Map3dInfo() function
Example

The following example opens a Map window three inches wide by two inches high, inset one inch from
the upper left corner of the MapInfo application. The map has two layers.

Open Table ”world”
Open Table ”cust1994” As customers
Map from customers, world

Position (1,1) Width 3 Height 2

See Also

Add Map statement, Remove Map statement, Set Map statement, Set Shade statement, Shade
statement

Map3dInfo() function
Purpose

Returns properties of a 3DMap window.

Syntax
Map3DInfo(window_id , attribute)

window_id is an Integer window identifier

attribute is an Integer code, indicating which type of information should be returned.

Returns

Float, Logical, or String, depending on the attribute parameter.

Description

The Map3DInfo() function returns information about a 3DMap window.

The window_id parameter specifies which 3DMap window to query. To obtain a window identifier, call
the FrontWindow() function immediately after opening a window, or call the WindowID() function at
any time after the window’s creation.

There are several numeric attributes that Map3DInfo() can return about any given 3DMap window.
The attribute parameter tells the Map3DInfo() function which Map window statistic to return. The
attribute parameter should be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.

Attribute Return Value

MAP3D_INFO_SCALE Float result representing the 3DMaps scale factor.

MAP3D_INFO_RESOLUTION_X Integer result representing the X resolution of the
grid(s) in the 3DMap window.

MAP3D_INFO_RESOLUTION_Y Integer result representing the Y resolution of the
grid(s) in the 3DMap window.

MAP3D_INFO_BACKGROUND Integer result representing the background color, see
the RGB function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 309 MB_Ref.pdf

Reference Guide Chapter 6: Map3dInfo() function
MAP3D_INFO_UNITS String representing the map’s abbreviated area unit
name, for example, ”mi” for miles.

MAP3D_INFO_LIGHT_X Float result representing the X coordinate of the Light
in the scene.

MAP3D_INFO_LIGHT_Y Float result representing the Y coordinate of the Light
in the scene.

MAP3D_INFO_LIGHT_Z Float result representing the Z coordinate of the Light
in the scene.

MAP3D_INFO_LIGHT_COLOR Integer result representing the Light color, see the
RGB function.

MAP3D_INFO_CAMERA_X Float result representing the X coordinate of the Cam-
era in the scene.

MAP3D_INFO_CAMERA_Y Float result representing the Y coordinate of the Cam-
era in the scene.

MAP3D_INFO_CAMERA_Z Float result representing the Z coordinate of the Cam-
era in the scene.

MAP3D_INFO_CAMERA_FOCAL_X Float result representing the X coordinate of the Cam-
eras FocalPoint in the scene.

MAP3D_INFO_CAMERA_FOCAL_Y Float result representing the Y coordinate of the Cam-
eras FocalPoint in the scene.

MAP3D_INFO_CAMERA_FOCAL_Z Float result representing the Z coordinate of the Cam-
eras FocalPoint in the scene.

MAP3D_INFO_CAMERA_VU_1 Float result representing the first value of the ViewUp
Unit Normal Vector

MAP3D_INFO_CAMERA_VU_2 Float result representing the second value of the
ViewUp Unit Normal Vector.

MAP3D_INFO_CAMERA_VU_3 Float result representing the third value of the ViewUp
Unit Normal Vector.

MAP3D_INFO_CAMERA_VPN_1 Float result representing the first value of the View-
Plane Unit Normal Vector.

MAP3D_INFO_CAMERA_VPN_2 Float result representing the second value of the View-
Plane Unit Normal Vector.

MAP3D_INFO_CAMERA_VPN_3 Float result representing the third value of the View-
Plane Unit Normal Vector.

MAP3D_INFO_CAMERA_CLIP_NEAR Float result representing the cameras near clipping
plane.

MAP3D_INFO_CAMERA_CLIP_FAR Float result representing the cameras far clipping
plane.

Attribute Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 310 MB_Ref.pdf

Reference Guide Chapter 6: MapperInfo() function
Example

Prints out all the state variables specific to the 3DMap window:

include ”Mapbasic.def”
Print ”MAP3D_INFO_SCALE: ” + Map3DInfo(FrontWindow(), MAP3D_INFO_SCALE)
Print ”MAP3D_INFO_RESOLUTION_X: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_RESOLUTION_X)
Print ”MAP3D_INFO_RESOLUTION_Y: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_RESOLUTION_Y)
Print ”MAP3D_INFO_BACKGROUND: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_BACKGROUND)
Print ”MAP3D_INFO_UNITS: ” + Map3DInfo(FrontWindow(), MAP3D_INFO_UNITS)
Print ”MAP3D_INFO_LIGHT_X : ” + Map3DInfo(FrontWindow(), MAP3D_INFO_LIGHT_X)
Print ”MAP3D_INFO_LIGHT_Y : ” + Map3DInfo(FrontWindow(), MAP3D_INFO_LIGHT_Y)
Print ”MAP3D_INFO_LIGHT_Z: ” + Map3DInfo(FrontWindow(), MAP3D_INFO_LIGHT_Z)
Print ”MAP3D_INFO_LIGHT_COLOR: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_LIGHT_COLOR)
Print ”MAP3D_INFO_CAMERA_X: ” + Map3DInfo(FrontWindow(), MAP3D_INFO_CAMERA_X)
Print ”MAP3D_INFO_CAMERA_Y : ” + Map3DInfo(FrontWindow(), MAP3D_INFO_CAMERA_Y)
Print ”MAP3D_INFO_CAMERA_Z : ” + Map3DInfo(FrontWindow(), MAP3D_INFO_CAMERA_Z)
Print ”MAP3D_INFO_CAMERA_FOCAL_X: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_FOCAL_X)
Print ”MAP3D_INFO_CAMERA_FOCAL_Y: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_FOCAL_Y)
Print ”MAP3D_INFO_CAMERA_FOCAL_Z: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_FOCAL_Z)
Print ”MAP3D_INFO_CAMERA_VU_1: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VU_1)
Print ”MAP3D_INFO_CAMERA_VU_2: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VU_2)
Print ”MAP3D_INFO_CAMERA_VU_3: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VU_3)
Print ”MAP3D_INFO_CAMERA_VPN_1: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VPN_1)
Print ”MAP3D_INFO_CAMERA_VPN_2: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VPN_2)
Print ”MAP3D_INFO_CAMERA_VPN_3: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_VPN_3)
Print ”MAP3D_INFO_CAMERA_CLIP_NEAR: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_CLIP_NEAR)
Print ”MAP3D_INFO_CAMERA_CLIP_FAR: ” + Map3DInfo(FrontWindow(),
MAP3D_INFO_CAMERA_CLIP_FAR)

See Also

Create Map3D statement, Set Map3D statement

MapperInfo() function
Purpose

Returns coordinate or distance information about a Map window.

Syntax
MapperInfo(window_id , attribute)

window_id is an Integer window identifier

attribute is an Integer code, indicating which type of information should be returned
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 311 MB_Ref.pdf

Reference Guide Chapter 6: MapperInfo() function
Return Value

Float, Logical, or String, depending on the attribute parameter

Description

The MapperInfo() function returns information about a Map window.

The window_id parameter specifies which Map window to query. To obtain a window identifier, call the
FrontWindow() function immediately after opening a window, or call the WindowID() function at any
time after the window’s creation.

There are several numeric attributes that MapperInfo() can return about any given Map window. The
attribute parameter tells the MapperInfo() function which Map window statistic to return. The attribute
parameter should be one of the codes from the following table; codes are defined in MAPBASIC.DEF.

attribute setting MapperInfo() Return Value

MAPPER_INFO_AREAUNITS String representing the map’s abbreviated area unit
name, for example, “sq mi” for square miles.

MAPPER_INFO_CENTERX The x-coordinate of the Map window’s center.

MAPPER_INFO_CENTERY The y-coordinate of the Map window’s center.

MAPPER_INFO_COORDSYS_CLAUSE string result, indicating the window’s CoordSys
clause.

MAPPER_INFO_COORDSYS_NAME String result, representing the name of the map’s
CoordSys as listed in MAPINFOW.PRJ (but without
the optional “\p...” suffix that appears in MAPIN-
FOW.PRJ). Returns empty string if CoordSys is not
found in MAPINFOW.PRJ.

MAPPER_INFO_DISPLAY Small integer, indicating what aspect of the map is
displayed on the status bar. Corresponds to Set Map
Display. Return value will be one of these:
• MAPPER_INFO_DISPLAY_SCALE
• MAPPER_INFO_DISPLAY_ZOOM
• MAPPER_INFO_DISPLAY_POSITION

MAPPER_INFO_DISPLAY_DMS A SmallInt that indicates whether the map displays
coordinates in decimal degrees; degrees, minutes,
seconds; o in the Military Reference system. Return
value will be one of the following:
• MAPPER_INFO_DISPLAY_DECIMAL for

degrees decimal coordinates (0)
• MAPPER_INFO_DISPLAY_DEGMINSEC for

degrees, minutes, seconds coordinates (1)
• MAPPER_INFO_DISPLAY_MGRS for Military

Grid System coordinates (2)

MAPPER_INFO_DISTUNITS String representing the map’s abbreviated distance
unit name, for example, “mi” for miles.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 312 MB_Ref.pdf

Reference Guide Chapter 6: MapperInfo() function
MAPPER_INFO_EDIT_LAYER A SmallInt indicating the number of the currently-
editable layer. A value of zero means that the Cos-
metic layer is editable. A value of -1 means that no
layer is editable.

MAPPER_INFO_LAYERS Returns number of layers in the Map window as a
SmallInt (excludes the cosmetic layer).

MAPPER_INFO_MAXX The largest x-coordinate shown in the window.

MAPPER_INFO_MAXY The largest y-coordinate shown in the window.

MAPPER_INFO_MINX The smallest x-coordinate shown in the window.

MAPPER_INFO_MINY The smallest y-coordinate shown in the window.

MAPPER_INFO_NUM_THEMATIC Small integer, indicating the number of thematic lay-
ers in this Map window.

MAPPER_INFO_SCALE The Map window’s current scale, defined in terms of
the number of map distance units (for example,
Miles) per paper unit (for example, Inches) displayed
in the window. This returns a value in MapBasic’s
current distance units.

MAPPER_INFO_SCROLLBARS Logical value indicating whether the Map window
shows scrollbars.

MAPPER_INFO_XYUNITS String representing the map’s abbreviated coordinate
unit name, for example, “degree” .Small integer, indi-
cating whether the map displays coordinates in deci-
mal degrees, DMS (degrees, minutes, seconds), or
Military Grid Reference System format.Return value
will be one of these:
• MAPPER_INFO_DISPLAY_DECIMAL
• MAPPER_INFO_DISPLAY_DMS
• MAPPER_INFO_DISPLAY_MGRS (Military Grid

Reference System)

MAPPER_INFO_ZOOM The Map window’s current zoom value (i.e. the East-
West distance currently displayed in the Map win-
dow), specified in MapBasic’s current distance units;
see Set Distance Units.

MAPPER_INFO_COORDSYS_CLAUSE
_WITH_BOUNDS

String result, indicating the window’s CoordSys
clause including the bounds.

MAPPER_INFO_MOVE_DUPLICATE_
NODES

Small integer, indicating whether duplicate nodes
should be moved when reshaping objects in this Map
window. If the value is 0, duplicate nodes are not
moved. If the value is 1, any duplicate nodes within
the same layer will be move. The attribute.

attribute setting MapperInfo() Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 313 MB_Ref.pdf

Reference Guide Chapter 6: MapperInfo() function
When you call MapperInfo() to obtain coordinate values (for example, by specifying
MAPPER_INFO_CENTERX as the attribute), the value returned represents a coordinate in
MapBasic’s current coordinate system, which may be different from the coordinate system of the Map
window. Use the Set CoordSys statement to specify a different coordinate system.

A setting for each Map window and providing MapBasic support to set and get the current setting for
each mapper. During Reshape, the move duplicate nodes can be set to none or move all duplicates
within the same layer.

Whenever a new Map window is created, the initial move duplicate nodes setting will be retrieved from
the mapper preference (Options / Preference / Map Window / Move Duplicate Nodes in).

An existing Map window can be queried for it’s current Move Duplicate Nodes setting using a new
attribute in MapperInfo() function.

The current state can be changed for a mapper window using the Set Map MapBasic statement.

Coordinate Value Returns
MapperInfo() does not return coordinates (i.e. MINX, MAXX, MINY, MAXY) in the units set for the map
window. Instead, the coordinate values are returned in the units of the internal coordinate system of the
MapInfo Professional session or the MapBasic application that calls the function (if the coordinate
system was changed within the application). Also, the MAPPER_INFO_XYUNITS attribute returns the
units that are used to display the cursor location in the Status Bar (set by using Set Map Window
Frontwindow() XY Units).

Clip Region Information
Beginning with MapInfo Professional 6.0, there are three methods that are used for Clip Region
functionality. The MAPPER_INFO_CLIP_OVERLAY method is the method that has been the only
option until MapInfo Professional 6.0. Using this method, the Overlap() function (Erase Outside) is
used internally. Since the Overlap() function can’t produce result with Text objects, text objects are
never clipped. For Point objects, a simple point in region test is performed to either include or exclude

MAPPER_INFO_DIST_CALC_TYPE Small integer, indicating type of calculation to use for
distance, length, perimeter, and area calculations for
mapper. Corresponds to Set Map Distance Type.
Return values include
• MAPPER_INFO_DIST_SPHERICAL
• MAPPER_INFO_DIST CARTESIAN

MAPPER_INFO_CLIP_REGION Returns a string to indicate if a clip region is enabled.
Returns the string ”on” if a clip region is enabled in
the Mapper window. Otherwise, it returns the string
”off”.

MAPPER_INFO_CLIP_TYPE The type of clipping being implemented. Choices
include:
• MAPPER_INFO_CLIP_DISPLAY_ALL
• MAPPER_INFO_CLIP_DISPLAY_POLYOBJ
• MAPPER_INFO_CLIP_OVERLAY

attribute setting MapperInfo() Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 314 MB_Ref.pdf

Reference Guide Chapter 6: Maximum() function
the Point. Label objects are treated similar to Point objects and are either completely displayed (is the
label point is inside the clip region object) or ignored. Since the clipping is done at the spatial object
level, styles (wide lines, symbols, text) are never clipped. never clipped.

The MAPPER_INFO_DISPLAY_ALL method uses the Windows Display to perform the clipping. All
object types are clipped. Thematics, rasters, and grids are also clipped. Styles (wide lines, symbols,
text) are always clipped. This is the default clipping type.

The MAPPER_INFO_CLIP_DISPLAY_POLYOBJ uses the Windows Display to selectively perform
clipping which mimics the functionality produced by MAPPER_INFO_CLIP_OVERLAY. Windows
Display Clipping is used to clip all Poly Objects (Regions and Polylines) and objects than can be
converted to Poly Objects (rectangles, rounded rectangles, ellipses and arcs). These objects will
always have their symbology clipped. Points, Labels, and Text are treated as they would be in the
MAPPER_INFO_CLIP_OVERLAY method. In general, this method should provide better performance
that the MAPPER_INFO_CLIP_OVERLAY method.

Error Conditions

ERR_BAD_WINDOW error generated if parameter is not a valid window number

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

ERR_WANT_MAPPER_WIN error generated if window id is not a Map window

See Also

LayerInfo() function, Set Distance Units statement, Set Map statement

Maximum() function
Purpose

Returns the larger of two numbers.

Syntax
Maximum(num_expr , num_expr)

num_expr is a numeric expression

Return Value

Float

Description

The Maximum() function returns the larger of two numeric expressions.

Example
Dim x, y, z As Float
x = 42
y = 27
z = Maximum(x, y)

’ z now contains the value: 42

See Also

Minimum() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 315 MB_Ref.pdf

Reference Guide Chapter 6: MBR() function
MBR() function
Purpose

Returns a rectangle object, representing the minimum bounding rectangle of another object.

Syntax
MBR(obj_expr)

obj_expr is an object expression

Return Value

Object (a rectangle)

Description

The MBR() function calculates the minimum bounding rectangle (or MBR) which encompasses the
specified obj_expr object.

A minimum bounding rectangle is defined as being the smallest rectangle which is large enough to
encompass a particular object. In other words, the MBR of the United States extends east to the
eastern tip of Maine, south to the southern tip of Hawaii, west to the western tip of Alaska, and north to
the northern tip of Alaska.

The MBR of a point object has zero width and zero height.

Example
Dim o_mbr As Object
Open Table ”world”
Fetch First From world
o_mbr = MBR(world.obj)

See Also

Centroid() function, CentroidX() function, CentroidY() function

Menu Bar statement
Purpose

Shows or hides the menu bar.

Syntax
Menu Bar { Hide | Show }

Description

The Menu Bar statement shows or hides MapInfo Professional’s menu bar. An application might hide
the menu bar in order to provide more screen room for windows.

Following a Menu Bar Hide statement, the menu bar remains hidden until a Menu Bar Show statement
is executed. Since users can be severely handicapped without the menu bar, you should be very
careful when using the Menu Bar Hide statement. Every Menu Bar Hide statement should be followed
(eventually) by a Menu Bar Show statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 316 MB_Ref.pdf

Reference Guide Chapter 6: MenuitemInfoByHandler() function
While the menu bar is hidden, MapInfo Professional ignores any menu-related hotkeys. For example,
an MapInfo Professional user might ordinarily press Ctrl + O to bring up the Open dialog; but while the
menu bar is hidden, MapInfo Professional ignores the Ctrl + O hotkey.

See Also

Alter Menu Bar statement, Create Menu Bar statement

MenuitemInfoByHandler() function
Purpose

Returns information about a MapInfo Professional menu item.

Syntax
MenuitemInfoByHandler(handler , attribute)

handler is either a string (containing the name of a handler procedure specified in a Calling clause) or
an Integer (which was specified as a constant in a Calling clause)

attribute is an Integer code indicating which attribute to return; see table below

Description

The handler parameter can be an integer or a string. If you specify a string (a procedure name), and if
two or more menu items call that procedure, MapInfo Professional returns information about the first
menu item that calls the procedure. If you need to query multiple menu items that call the same handler
procedure, give each menu item an ID number (for example, using the optional ID clause in the Create
Menu statement), and call MenuitemInfoByID() instead of calling MenuitemInfoByHandler().

The attribute parameter is a numeric code (defined in MAPBASIC.DEF) from the following table:

attribute setting Return value

MENUITEM_INFO_ACCELERATOR String: The code sequence for the menu item’s accelerator (for exam-
ple, “/W^Z” or “/W#%119”) or an empty string if the menu item has no
accelerator. For details on menu accelerators, see the Create Menu
statement.

MENUITEM_INFO_CHECKABLE Logical: TRUE if this menu item is checkable (specified by the “!” pre-
fix in the menu text)

MENUITEM_INFO_CHECKED Logical: TRUE if the menu item is checkable and currently checked;
also return TRUE if the menu item has alternate menu text (for exam-
ple, if the menu item toggles between Show... and Hide...), and the
menu item is in its “show” state. Otherwise, return FALSE.

MENUITEM_INFO_ENABLED Logical: TRUE if the menu item is enabled

MENUITEM_INFO_HANDLER Integer: The menu item’s handler number. If the menu item’s Calling
clause specified a numeric constant (for example, Calling
M_FILE_SAVE), this call returns the value of the constant. If the Call-
ing clause specified “OLE”, “DDE”, or the name of a procedure, this
call returns a unique Integer (an internal handler number) which can
be used in subsequent calls to MenuitemInfoByHandler() or in the
Run Menu Command statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 317 MB_Ref.pdf

Reference Guide Chapter 6: MenuitemInfoByID() function
See Also

MenuitemInfoByID() function

MenuitemInfoByID() function
Purpose

Returns information about a MapInfo Professional menu item.

Syntax
MenuitemInfoByID(menuitem_ID , attribute)

menuitem_ID is an Integer menu ID (specified in the ID clause in Create Menu)

attribute is an Integer code indicating which attribute to return

Description

This function is identical to the MenuitemInfoByHandler() function, except that the first argument to
this function is an Integer ID.

Call this function to query the status of a menu item when you know the ID of the menu item you need
to query. Call MenuitemInfoByHandler() to query the status of a menu item if you would rather identify
the menu item by its handler.

The attribute argument is a code from MAPBASIC.DEF, such as MENUITEM_INFO_CHECKED. For a
listing of codes you can use, see MenuitemInfoByHandler().

See Also

MenuitemInfoByHandler() function

MENUITEM_INFO_HELPMSG String: the menu item’s help message (as specified in the HelpMsg
clause in Create Menu) or empty string if the menu item has no help
message.

MENUITEM_INFO_ID Integer: The menu ID number (specified in the optional ID clause in a
Create Menu statement), or 0 if the menu item has no ID.

MENUITEM_INFO_SHOWHIDEABLE Logical: TRUE if this menu item has alternate menu text (i.e. if the
menu item toggles between Show... and Hide...). An item has alter-
nate text if it was created with “!” at the beginning of the menu item
text (in Create Menu or Alter Menu) and it has a caret (^) in the string.

MENUITEM_INFO_TEXT String: the full text used (for example, in a Create Menu statement) to
create the menu item.

attribute setting Return value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 318 MB_Ref.pdf

Reference Guide Chapter 6: Metadata statement
Metadata statement
Purpose

Manages a table’s metadata.

Syntax 1
Metadata Table table_name

{ SetKey key_name To key_value |
DropKey key_name [Hierarchical] |
SetTraverse starting_key_name [Hierarchical]
Into ID traverse_ID_var }

table_name is the name of an open table.

key_name is a string, representing the name of a metadata key. The string must start with a backslash
(“\”), and it cannot end with a backslash.

key_value is a string up to 239 characters long, representing the value to assign to the key.

starting_key_name is a string representing the first key name to retrieve from the table. To set up the
traversal at the very beginning of the list of keys, specify “\” (backslash).

traverse_ID_var is the name of an Integer variable; MapInfo Professional stores a traversal ID in the
variable, which you can use in subsequent Metadata Traverse... statements.

Syntax 2
Metadata Traverse traverse_ID

{ Next Into Key key_name_var In key_value_var |
 Destroy }

traverse_ID is an Integer value (such as the value of the traverse_ID_var variable described above).

key_name_var is the name of a string variable; MapInfo Professional stores the fetched key’s name in
this variable.

key_value_var is the name of a string variable; MapInfo Professional stores the fetched key’s value in
this variable.

Description

The Metadata statement manages the metadata stored in MapInfo tables. Metadata is information that
is stored in a table’s .TAB file, instead of being stored as rows and columns.

Each table can have zero or more keys. Each key represents an information category, such as an
author’s name, a copyright notice, etc. Each key has a string value associated with it. For example, a
key called “\Copyright” might have the value “Copyright 2001 MapInfo Corporation.” For more
information about Metadata, see the MapBasic User Guide.

Modifying a Table’s Metadata
To create, modify, or delete metadata, use Syntax 1. The following clauses apply:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 319 MB_Ref.pdf

Reference Guide Chapter 6: Metadata statement
SetKey
Assigns a value to a metadata key. If the key already exists, MapInfo Professional assigns it a new
value. If the key does not exist, MapInfo Professional creates a new key. When you create a new key,
the changes take effect immediately; you do not need to perform a Save operation.

MetaData Table Parcels SetKey ”\Info\Date” To Str$(CurDate())

Note: MapInfo Professional automatically creates a metadata key called “\IsReadOnly” (with a
default value of “FALSE”) the first time you add a metadata key to a table. The \IsReadOnly
key is a special key, reserved for internal use by MapInfo Professional.

DropKey
Deletes the specified key from the table. If you include the Hierarchical keyword, MapInfo Professional
deletes the entire metadata hierarchy at and beneath the specified key. For example, if a table has the
keys “\Info\Author” and “\Info\Date” you can delete both keys with the following statement:

MetaData Table Parcels DropKey ”\Info” Hierarchical

Reading a Table’s Metadata
To read a table’s metadata values, use the SetTraverse clause to initialize a traversal, and then use the
Next clause to fetch key values. After you are finished fetching key values, use the Destroy clause to
free the memory used by the traversal. The following clauses apply:

SetTraverse
Prepares to traverse the table’s keys, starting with the specified key. To start at the beginning of the list
of keys, specify “\” as the starting key name. If you include the Hierarchical keyword, the traversal can
hierarchically fetch every key. If you omit the Hierarchical keyword, the traversal is flat, meaning that
MapInfo Professional will only fetch keys at the root level (for example, the traversal will fetch the
“\Info” key, but not the “\Info\Date” key).

Next Into Key ... Into Value ...
Attempts to read the next key. If there is a key to read, MapInfo Professional stores the key’s name in
the key_name_var variable, and stores the key’s value in the key_value_var variable. If there are no
more keys to read, MapInfo Professional stores empty strings in both variables.

Destroy
Ends the traversal, and frees the memory that was used by the traversal.

Note: A hierarchical metadata traversal can traverse up to ten levels of keys (for example,
“\One\Two\Three\Four\Five\Six\Seven\Eight\Nine\Ten”) if you begin the traversal at the root
level (“\”). If you need to retrieve a key that is more than ten levels deep, begin the traversal at
a deeper level (for example, begin the traversal at “\One\Two\Three\Four\Five”).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 320 MB_Ref.pdf

Reference Guide Chapter 6: MGRSToPoint() function
Example

The following procedure reads all metadata values from a table; the table name is specified by the
caller. This procedure prints the key names and key values to the Message window.

Sub Print_Metadata(ByVal table_name As String)
Dim i_traversal As Integer
Dim s_keyname, s_keyvalue As String

’ Initialize the traversal:
Metadata Table table_name

SetTraverse ”\” Hierarchical Into ID i_traversal

’ Attempt to fetch the first key:
Metadata Traverse i_traversal
Next Into Key s_keyname Into Value s_keyvalue

’ Now loop for as long as there are key values;
’ with each iteration of the loop, retrieve
’ one key, and print it to the Message window.
Do While s_keyname <> ””

Print ” ”
Print ”Key name: ” & s_keyname
Print ”Key value: ” & s_keyvalue

Metadata Traverse i_traversal
Next Into Key s_keyname Into Value s_keyvalue

Loop

’ Release this traversal to free memory:
MetaData Traverse i_traversal Destroy

End Sub

See Also

GetMetadata$() function, TableInfo() function

MGRSToPoint() function
Purpose

Converts a string representing an MGRS (Military Grid Reference System) coordinate into a point
object in the current MapBasic coordinate system.

Syntax
MGRSToPoint(string)

string is a string expression representing an MGRS coordinate.

The default longitude-latitude coordinate system is used as the initial selection.

Return Value

Object
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 321 MB_Ref.pdf

Reference Guide Chapter 6: MGRSToPoint() function
Description

The returned point will be in the current MapBasic coordinate system, which by default is Long/
Lat (no datum). For the most accurate results when saving the resulting points to a table, set the
MapBasic coordinate system to match the destination table’s coordinate system before calling
MGRSToPoint(). This will prevent MapInfo Professional from doing an intermediate conversion to the
datumless Long/Lat coordinate system, which can cause a significant loss of precision.

Example

Example 1:

dim obj1 as Object
dim s_mgrs As String
dim obj2 as Object

obj1 = CreatePoint(-74.669, 43.263)
s_mgrs = PointToMGRS$(obj1)
obj2 = MGRSToPoint(s_mgrs)

Example 2:

Open Table "C:\Temp\MyTable.TAB" as MGRSfile

’ When using the PointToMGRS$() or MGRSToPoint() functions,
’ it is very important to make sure that the current MapBasic
’ coordsys matches the coordsys of the table where the
’ point object is being stored.

’Set the MapBasic coordsys to that of the table used
Set CoordSys Table MGRSfile

’Update a Character column (for example COL2) with MGRS strings from
’a table of points

Update MGRSfile
Set Col2 = PointToMGRS$(obj)

’Update two float columns (Col3 & Col4) with
’CentroidX & CentroidY information
’from a character column (Col2) that contains MGRS strings.

Update MGRSfile
Set Col3 = CentroidX(MGRSToPoint(Col2))

Update mgrstestfile ' MGRSfile
Set Col4 = CentroidY(MGRSToPoint(Col2))

Commit Table MGRSfile
Close Table MGRSfile

See Also

PointToMGRS$ () function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 322 MB_Ref.pdf

Reference Guide Chapter 6: Mid$() function
Mid$() function
Purpose

Returns a string extracted from the middle of another string.

Syntax
Mid$(string_expr, position, length)

string_expr is a string expression

position is a numeric expression, indicating a starting position in the string

length is a numeric expression, indicating the number of characters to extract

Return Value

String

Description

The Mid$() function returns a substring copied from the specified string_expr string.

Mid$() copies length characters from the string_expr string, starting at the character position indicated
by position. A position value less than or equal to one tells MapBasic to copy from the very beginning
of the string_expr string.

If the string_expr string is not long enough, there may not be length characters to copy; thus,
depending on all of the parameters, the Mid$() may or may not return a string length characters long.
If the position parameter represents a number larger than the number of characters in string_expr,
Mid$() returns a null string. If the length parameter is zero, Mid$() returns a null string. If the length or
position parameters are fractional, MapBasic rounds to the nearest integer.

Example
Dim str_var, substr_var As String
str_var = ”New York City”
substr_var = Mid$(str_var, 10, 4)

’ substr_var now contains the string ”City”

See Also

InStr() function, Left$() function, Right$() function

MidByte$() function
Purpose

Accesses individual bytes of a string on a system with a double-byte character system.

Syntax
MidByte$(string_expr, position, length)

string_expr is a string expression

position is an integer numeric expression, indicating a starting position in the string

length is an integer numeric expression, indicating the number of bytes to return
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 323 MB_Ref.pdf

Reference Guide Chapter 6: Minimum() function
Return Value

String

Description

The MidByte$() function returns individual bytes of a string.

Use the MidByte$() function when you need to extract a range of bytes from a string, and the
application is running on a system that uses a double-byte character set (DBCS systems). For
example, the Japanese version of Microsoft Windows uses a double-byte character system.

On systems with single-byte character sets, the results returned by the MidByte$() function are
identical to the results returned by the Mid$() function.

See Also

InStr() function, Left$() function, Right$() function

Minimum() function
Purpose

Returns the smaller of two numbers.

Syntax
Minimum(num_expr , num_expr)

num_expr is a numeric expression

Return Value

Float

Description

The Minimum() function returns the smaller of two numeric expressions.

Example
Dim x, y, z As Float
x = 42
y = -100
z = Minimum(x, y)

’ z now contains the value: -100

See Also

Maximum() function

Month() function
Purpose

Returns the month component (1 - 12) of a date value.

Syntax
Month(date_expr)

date_expr is a date expression
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 324 MB_Ref.pdf

Reference Guide Chapter 6: Nearest statement
Return Value

SmallInt value from 1 to 12, inclusive

Description

The Month() function returns an integer, representing the month component (one to twelve) of the
specified date.

Examples

The following example shows how you can extract just the month component from a particular date
value, using the Month() function.

If Month(CurDate()) = 12 Then
’
’ ... then it is December...
’

End If

You can also use the Month() function within the SQL Select statement. The following Select
statement extracts only particular rows from the Orders table. This example assumes that the Orders
table has a Date column, called Order_Date. The Select statement’s Where clause tells MapInfo
Professional to only select the orders from December of 1993.

Open Table ”orders”
Select *

From orders
Where Month(orderdate) = 12 And Year(orderdate) = 1993

See Also

CurDate() function, Day() function, Weekday() function, Year() function

Nearest statement
Purpose

Find the object in a table that is closest to a particular object. The result is a 2 point Polyline object
representing the closest distance.

Syntax
Nearest [N | ALL] From { Table fromtable | Variable fromvar }
To totable Into intotable
[Type { Spherical | Cartesian }]
[Ignore [Contains] [Min min_value] [Max max_value] Units unitname]
[Data clause]

N optional parameter representing the number of "nearest" objects to find. The default is 1. If All is
used, then a distance object is created for every combination.

fromtable represents a table of objects that you want to find closest distances from.

fromvar represents a MapBasic variable representing an object that you want to find the closest
distances from.

totable represents a table of objects that you want to find closest distances to.

intotable represents a table to place the results into.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 325 MB_Ref.pdf

Reference Guide Chapter 6: Nearest statement
Type is the method used to calculate the distances between objects. It can either be Spherical or
Cartesian. The type of distance calculation must be correct for the coordinate system of the intotable or
an error will occur. If the Coordsys of the intotable is NonEarth and the distance method is Spherical,
then an error will occur. If the Coordsys of the intotable is Latitude/Longitude, and the distance method
is Cartesian, then an error will occur.

The Ignore clause limits the distances returned. Any distances found which are less than or equal to
min_value or greater than max_value are ignored. min_value and max_value are in the distance unit
signified by unitname. If unitname is not a valid distance unit, an error will occur. The entire Ignore
clause is optional, as are the Min and Max subclauses within it (e.g., only a Min or only a Max, or both
may occur).

Normally, if one object is contained within another object, the distance between the objects is zero. For
example, if the From table is WorldCaps and the To table is World, then the distance between London
and the United Kingdom would be zero. If the Contains flag is set within the Ignore clause, then the
distance will not be automatically be zero. Instead, the distance from London to the boundary of the
United Kingdom will be returned. In effect, this will treat all closed objects, such as regions, as polylines
for the purpose of this operation.

The Data clause can be used to mark which fromtable object and which totable object the result came
from.

Description

Every object in the fromtable is considered. For each object in the fromtable, the nearest object in the
totable is found. If N is present, then the N nearest objects in totable are found. A two-point Polyline
object representing the closest points between the fromtable object and the chosen totable object is
placed in the intotable. If All is present, then an object is placed in the <intotable> representing the
distance between the fromtable object and each totable object.

If there are multiple objects in the totable that are the same distance from a given fromtable object,
then only one of them may be returned. If multiple objects are requested (i.e., if N is greater than 1),
then objects of the same distance will fill subsequent slots. If the tie exists at the second closest object,
and three objects are requested, then the object will become the third closest object.

The types of the objects in the fromtable and totable can be anything except Text objects. For example,
if both tables contain Region objects, then the minimum distance between Region objects is found, and
the two-point Polyline object produced represents the points on each object used to calculate that
distance. If the Region objects intersect, then the minimum distance is zero, and the two-point Polyline
returned will be degenerate, where both points are identical and represent a point of intersection.

The distances calculated do not take into account any road route distance. It is strictly a "as the bird
flies" distance.

The Ignore clause can be used to limit the distances to be searched, and can effect how many totable
objects are found for each fromtable object. One use of the Min distance could be to eliminate
distances of zero. This may be useful in the case of two point tables to eliminate comparisons of the
same point. For example, if there are two point tables representing Cities, and we want to find the
closest cities, we may want to exclude cases of the same city.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 326 MB_Ref.pdf

Reference Guide Chapter 6: Nearest statement
The Max distance can be used to limit the objects to consider in the <totable>. This may be most useful
in conjunction with N or All. For example, we may want to search for the five airports that are closest
to a set of cities (where the fromtable is the set of cities and the totable is a set of airports), but we don't
care about airports that are farther away than 100 miles. This may result in less than five airports being
returned for a given city. This could also be used in conjunction with the All parameter, where we
would find all airports within 100 miles of a city.

Supplying a Max parameter can improve the performance of the Nearest statement, since it effectively
limits the number of <totable> objects that are searched.

The effective distances found are strictly greater than the min_value and less than or equal to the
max_value:

min_value < distance <= max_value

This can allow ranges or distances to be returned in multiple passes using the Nearest statement. For
example, the first pass may return all objects between 0 and 100 miles, and the second pass may
return all objects between 100 and 200 miles, and the results should not contain duplicates (i.e., a
distance of 100 should only occur in the first pass and never in the second pass).

Data Clause
Data IntoColumn1=column1, IntoColumn2=column2

The IntoColumn on the left hand side of the equals must be a valid column in intotable. The column
name on the right hand side of the equals must be a valid column name from either totable or
fromtable. If the same column name exists in both totable and fromtable, then the column in totable will
be used (e.g., totable is searched first for column names on the right hand side of the equals). To avoid
any conflicts such as this, the column names can be qualified using the table alias:

Data name1=states.state_name, name2=county.state_name

It is currently not possible to fill in a column in the intotable with the distance. However, this can be
easily accomplished after the Nearest operation is completed by using the TABLE > UPDATE COLUMN…
functionality from the menu or by using the Update MapBasic statement.

Examples

Assume that we have a point table representing locations of ATM machines and that there are at least
two columns in this table: business which represents the name of the business which contains the ATM
and Address which represents the street address of that business. Assume that the current selection
represents our current location. Then the following will find the closest ATM to where we currently are:

Nearest From selection To atm Into result Data where=buisness,address=address

If we wanted to find the closest five ATM machines to our current location:

Nearest 5 From selection To atm Into result Data where=business,address=address

If we want to find all ATM machines within a 5 mile radius:

Nearest All From selection To atm Into result Ignore Max 5 Units "mi" Data
where=buisness,address=address
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 327 MB_Ref.pdf

Reference Guide Chapter 6: Note statement
Assume we have a table of house locations (the fromtable) and a table representing the coastline (the
totable). To find the distance from a given house to the coastline:

Nearest From customer To coastline Into result Data
who=customer.name,where=customer.address,coast_loc=coastline.county,type=coastli
ne.designation

If we don't care about customer locations which are greater than 30 miles from any coastline:

Nearest From customer To coastline Into result Ignore Max 30 Units "mi" Data
who=customer.name,where=customer.address,coast_loc=coastline.county,type=coastli
ne.designation

Assume we have a table of cities (the fromtable) and another table of state capitals (the totable), and
we want to find the closest state capital to each city, but we want to ignore the case where the city in
the fromtable is also a state capital:

Nearest From uscty_1k To usa_caps Into result Ignore Min 0 Units "mi" Data
city=uscty_1k.name,capital=usa_caps.capital

See Also

Farthest statement, CartesianObjectDistance() function, ObjectDistance() function,
SphericalObjectDistance() function, CartesianConnectObjects() function, ConnectObjects()
function, SphericalConnectObjects() function

Note statement
Purpose

Displays a simple message in a dialog box.

Syntax
Note message

message is an expression to be displayed in a dialog

Description

The Note statement creates a dialog to display a message. The dialog contains an OK menu button;
the message dialog remains on the screen until the user clicks the Ok button.

The message expression does not need to be a string expression. If message is an object expression,
MapBasic will automatically produce an appropriate string (for example, “Region”) for display in the
Note dialog. If the message expression is a string, the string can be up to 300 characters long, and can
occupy up to 6 rows.

Example
Note ”Total # of records processed: ” + Str$(i_count)

See Also

Ask() function, Dialog statement, Print statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 328 MB_Ref.pdf

Reference Guide Chapter 6: NumAllWindows() function
NumAllWindows() function
Purpose

Returns the number of windows owned by MapInfo Professional, including special windows such as
ButtonPads and the Info window.

Syntax
NumAllWindows()

Return Value

SmallInt

Description

The NumAllWindows() function returns the number of windows owned by MapInfo Professional.

To determine the number of document windows opened by MapInfo Professional (Map, Browse,
Graph, and Layout windows), call NumWindows().

See Also

NumWindows() function, WindowID() function

NumberToDate() function
Purpose

Returns a Date value, given an Integer.

Syntax
NumberToDate(numeric_date)

numeric_date is an eight-digit Integer in the form YYYYMMDD (for example, 19951231)

Return Value

Date

Description

The NumberToDate() function returns a Date value represented by an eight-digit Integer. For example,
the following function call returns a Date value of December 31, 1995:

NumberToDate(19951231)

Example

The following example subtracts one Date value from another Date. The result of the subtraction is the
number of days between the two dates.

Dim i_elapsed As Integer

i_elapsed = CurDate() - NumberToDate(19950101)

’ i_elapsed now contains the number of days
’ since January 1, 1995

See Also

StringToDate() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 329 MB_Ref.pdf

Reference Guide Chapter 6: NumCols() function
NumCols() function
Purpose

Returns the number of columns in a specified table.

Syntax
NumCols(table)

table is the name of an open table

Return Value

SmallInt

Description

The NumCols() function returns the number of columns contained in the specified open table.

The number of columns returned by NumCols() does not include the special column known as Object
(or Obj for short), which refers to the graphical objects attached to mappable tables. Similarly, the
number of columns returned does not include the special column known as RowID.

Note: If a table has temporary columns (for example, because of an Add Column statement), the
number returned by NumCols() includes the temporary column(s).

Error Conditions

ERR_TABLE_NOT_FOUND error generated if the specified table is not available

Example
Dim i_counter As Integer
Open Table ”world”
i_counter = NumCols(world)

See Also

ColumnInfo() function, NumTables() function, TableInfo() function

NumTables() function
Purpose

Returns the number of tables currently open.

Syntax
NumTables()

Return Value

Smallint

Description

The NumTables() function returns the number of tables that are currently open.

A street-map table may consist of two “companion” tables. For example, when you open the
Washington, DC street map named DCWASHS, MapInfo Professional secretly opens the two
companion tables DCWASHS1.TAB and DCWASHS2.TAB. However, MapInfo Professional treats the
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 330 MB_Ref.pdf

Reference Guide Chapter 6: NumWindows() function
DCWASHS table as a single table; for example, the Layer Control dialog box shows only the table
name DCWASHS. Similarly, the NumTables() function counts a street map as a single table, although
it may actually be composed of two companion tables.

Example
If NumTables() < 1 Then

Note ”You must open a table before continuing.”
End If

See Also

Open Table statement, TableInfo() function, ColumnInfo() function

NumWindows() function
Purpose

Returns the number of open document windows (Map, Browse, Graph, Layout).

Syntax
NumWindows()

Return Value

SmallInt

Description

The NumWindows() function returns the number of Map, Browse, Graph, and Layout windows that are
currently open. The result is independent of whether windows are minimized or not.

To determine the total number of windows opened by MapInfo Professional (including ButtonPads and
special windows such as the Info window), call NumAllWindows().

Example
Dim num_open_wins As SmallInt
num_open_wins = NumWindows()

See Also

NumAllWindows() function, WindowID() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 331 MB_Ref.pdf

Reference Guide Chapter 7: ObjectDistance() function
ObjectDistance() function
Purpose

Returns the distance between two objects.

Syntax
ObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float

Description

ObjectDistance() returns the minimum distance between object1 and object2 using a spherical
calculation method with the return value in unit_name. If the calculation cannot be done using a
spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then a cartesian
distance method will be used.

ObjectGeography() function
Purpose

Returns coordinate or angle information describing a graphical object.

Syntax
ObjectGeography(object , attribute)

object is an Object expression

attribute is an Integer code specifying which type of information should be returned

Return Value

Float

Description

The attribute parameter controls which type of information will be returned. The table below
summarizes the different codes that you can use as the attribute parameter; codes in the left column
(for example, OBJ_GEO_MINX) are defined in MAPBASIC.DEF.

Some attributes apply only to certain types of objects. For example, arc objects are the only objects
with begin-angle or end-angle attributes, and text objects are the only objects with the text-angle
attribute.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 332 MB_Ref.pdf

Reference Guide Chapter 7: ObjectGeography() function
The ObjectGeography() function has been extended to support Multipoints and Collections. Both
types support attributes 1 - 4 (coordinates of object's minimum bounding rectangle (MBR)

.

attribute setting Return value (Float)

OBJ_GEO_MINX minimum x coordinate of an object’s minimum bounding rectan-
gle (MBR), unless object is a line; if object is a line, returns same
value as OBJ_GEO_LINEBEGX.

OBJ_GEO_MINY minimum y coordinate of object’s MBR. For lines, returns
OBJ_GEO_LINEBEGY value.

OBJ_GEO_MAXX maximum x coordinate of object’s MBR. Does not apply to Point
objects. For lines, returns OBJ_GEO_LINEENDX value.

OBJ_GEO_MAXY maximum y coordinate of the object’s MBR. Does not apply to
Point objects. For lines, returns OBJ_GEO_LINEENDY value.

OBJ_GEO_ARCBEGANGLE beginning angle of an Arc object.

OBJ_GEO_ARCENDANGLE ending angle of an Arc object.

OBJ_GEO_LINEBEGX x coordinate of the starting node of a Line object.

OBJ_GEO_LINEBEGY y coordinate of the starting node of a Line object.

OBJ_GEO_LINEENDX x coordinate of the ending node of a Line object.

OBJ_GEO_LINEENDY y coordinate of the ending node of a Line object.

OBJ_GEO_POINTX x coordinate of a Point object.

OBJ_GEO_POINTY y coordinate of a Point object.

OBJ_GEO_ROUNDRADIUS diameter of the circle that defines the rounded corner of a
Rounded Rectangle object, expressed in terms of coordinate
units (for example, degrees).

OBJ_GEO_CENTROID returns a point object for centroid of regions, collections, multi-
points, and polylines. This is most commonly used with the Alter
Object statement.

OBJ_GEO_TEXTLINEX x coordinate of the end of a Text object’s label line.

OBJ_GEO_TEXTLINEY y coordinate of the end of a Text object’s label line.

OBJ_GEO_TEXTANGLE rotation angle of a Text object.

OBJ_GEO_MINX (1) minimum x coordinate of an object's MBR.

OBJ_GEO_MINY (2) minimum y coordinate of object’s MBR.

OBJ_GEO_MAXX (3) maximum x coordinate of object's MBR.

OBJ GEO_MAXY (4) maximum y coordinate of object's MBR.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 333 MB_Ref.pdf

Reference Guide Chapter 7: ObjectInfo() function
Example

The following example reads the starting coordinates of a line object from the table City. A Set Map
statement then uses these coordinates to re-center the Map window.

Include ”MAPBASIC.DEF”
Dim i_obj_type As Integer, f_x, f_y As Float
Open Table ”city”
Map From city
Fetch First From city
’ at this point, the expression:
’ city.obj
’ represents the graphical object that’s attached
’ to the first record of the CITY table.
i_obj_type = ObjectInfo(city.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_LINE Then

f_x = ObjectGeography(city.obj, OBJ_GEO_LINEBEGX)
f_y = ObjectGeography(city.obj, OBJ_GEO_LINEBEGY)
Set Map Center (f_x, f_y)

End If

See Also

Centroid() function, CentroidX() function, CentroidY() function, ObjectInfo() function

ObjectInfo() function
Purpose

Returns Pen, Brush, or other values describing a graphical object.

Syntax
ObjectInfo(object , attribute)

object is an Object expression

attribute is an Integer code specifying which type of information should be returned

Return Value

SmallInt, Integer, String, Float, Pen, Brush, Symbol, or Font, depending on the attribute parameter

OBJ_INFO_NPOLYGONS (21) is an Integer that indicates the number of polygons (in the case of a region)
or sections (in the case of a polyline) which make up an object.

OBJ_INFO_NPOLYGONS+N (21) is an Integer that indicates the number of nodes in the Nth polygon of a
region or the Nth section of a polyline.

Note: With region objects, MapInfo Professional counts the starting node twice (once as the start
node and once as the end node). For example, ObjectInfo returns a value of 4 for a triangle-
shaped region.

Description

The ObjectInfo() function returns general information about one aspect of a graphical object. The first
parameter should be an object value (for example, the name of an Object variable, or a table
expression of the form tablename.obj).

Each object has several attributes. For example, each object has a “type” attribute, identifying whether
the object is a point, a line, or a region, etc. Most types of objects have Pen and/or Brush attributes,
which dictate the object’s appearance. The ObjectInfo() function returns one attribute of the specified
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 334 MB_Ref.pdf

Reference Guide Chapter 7: ObjectInfo() function
object. Which attribute is returned depends on the value used in the attribute parameter. Thus, if you
need to find out several pieces of information about an object, you will need to call ObjectInfo() a
number of times, with different attribute values in each call.

The table below summarizes the various attribute settings, and the corresponding return values.

attribute Setting Return Value

OBJ_INFO_TYPE (1) SmallInt, representing the object type; the return value is
one of the values listed in the table below (for example,
OBJ_TYPE_LINE). This attribute from the DEF file is 1
(ObjectInfo(Object,1)).

OBJ_INFO_PEN (2) Pen style is returned; this query is only valid for the follow-
ing object types: Arc, Ellipse, Line, Polyline, Frame,
Regions,
Rectangle, Rounded Rectangle.

OBJ_INFO_BRUSH (3) Brush style is returned; this query is only valid for the fol-
lowing object types: Ellipse, Frame, Region, Rectangle,
Rounded
Rectangle.

OBJ_INFO_TEXTFONT (2) Font style is returned; this query is only valid for Text
objects.
 Note: If the Text object is contained in a mappable table

(as opposed to a Layout window), the Font
specifies a point size of zero, and the text height
is controlled by the Map window’s zoom distance.

OBJ_INFO_SYMBOL (2) Symbol style; this query is only valid for Point objects.

OBJ_INFO_NPNTS (20) Integer, indicating the total number of nodes in a polyline or
region object.

OBJ_INFO_SMOOTH (4) Logical, indicating whether the specified Polyline object is
smoothed.

OBJ_INFO_FRAMEWIN (4) Integer, indicating the window id of the window attached to
a Frame object.

OBJ_INFO_FRAMETITLE (6) String, indicating a Frame object’s title.

OBJ_INFO_NPOLYGONS (21) SmallInt, indicating the number of polygons (in the case of
a region) or sections (in the case of a polyline) which make
up an object.

OBJ_INFO_NPOLYGONS+N (21) Integer, indicating the number of nodes in the Nth polygon
of a region or the Nth section of a polyline.
 Note: With region objects, MapInfo Professional counts

the starting node twice (once as the start node
and once as the end node). For example,
ObjectInfo returns a value of 4 for a triangle-
shaped region.

OBJ_INFO_TEXTSTRING (3) String, representing the body of a Text object; if the object
has multiple lines of text, the string includes embedded
line-feeds (Chr$(10) values).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 335 MB_Ref.pdf

Reference Guide Chapter 7: ObjectInfo() function
The codes in the left column (for example, OBJ_INFO_TYPE) are defined through the MapBasic
definitions file, MAPBASIC.DEF. Your program should Include “MAPBASIC.DEF” if you intend to call
the ObjectInfo() function.

Each graphic attribute only applies to some types of graphic objects. For example, point objects are the
only objects with Symbol attributes, and text objects are the only objects with Font attributes.
Therefore, the ObjectInfo() function cannot return every type of attribute setting for every type of
object.

OBJ_INFO_TEXTSPACING (4) Float value of 1, 1.5, or 2, representing a Text object’s line
spacing.

OBJ_INFO_TEXTJUSTIFY (5) SmallInt, representing justification of a Text object: 0 = left,
1 = center, 2 = right.

OBJ_INFO_TEXTARROW (6) SmallInt, representing the line style associated with a Text
object: 0 = no line, 1 = simple line, 2 = arrow line.

OBJ_INFO_FILLFRAME (7) Logical: TRUE if the object is a frame that contains a Map
window, and the frame’s “Fill Frame With Map” setting is
checked.

OBJ_INFO_NONEMPTY (11) Logical, returns TRUE if a Multipoint object has nodes,
FALSE - if object is empty.

OBJ_INFO_REGION (8) Object value representing region part of a collection object.
If collection object does not have a region, it returns empty
region. This query is valid only for collection objects

OBJ_INFO_PLINE (9) Object value representing polyline part of a collection
object. If collection object does not have a polyline, it
returns empty polyline object. This query is valid only for
collection objects

OBJ_INFO_MPOINT (10) Object value representing Multipoint part of a collection
object. If collection object does not have a Multipoint, it
returns empty Multipoint object. This query is valid only for
collection objects

OBJ_INFO_Z_UNIT_SET(12) Logical, indicating whether Z units are defined.

OBJ_INFO_Z_UNIT(13) String result: indicates distance units used for Z-values.
Return empty string if units are not specified.

OBJ_INFO_HAS_Z(14) Logical, indicating whether object has Z values.

OBJ_INFO_HAS_M(15) Logical, indicating whether object has M values.

attribute Setting Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 336 MB_Ref.pdf

Reference Guide Chapter 7: ObjectInfo() function
If you specify OBJ_INFO_TYPE as the attribute setting, the ObjectInfo() function returns one of the
object types listed in the table below.

Example
Include ”MAPBASIC.DEF”
Dim counter, obj_type As Integer
Open Table ”city”
Fetch First From city

’ at this point, the expression: city.obj
’ represents the graphical object that’s attached
’ to the first record of the CITY table.

obj_type = ObjectInfo(city.obj, OBJ_INFO_TYPE)
Do Case obj_type

Case OBJ_TYPE_LINE
Note ”First object is a line.”

Case OBJ_TYPE_PLINE
Note ”First object is a polyline...”
counter = ObjectInfo(city.obj, OBJ_INFO_NPNTS)
Note ” ... with ” + Str$(counter) + ” nodes.”

Case OBJ_TYPE_REGION
Note ”First object is a region...”
counter = ObjectInfo(city.obj, OBJ_INFO_NPOLYGONS)
Note ”, made up of ” + Str$(counter) + ” polygons...”
counter = ObjectInfo(city.obj, OBJ_INFO_NPOLYGONS+1)
Note ”The 1st polygon has” + Str$(counter) + ” nodes”

End Case

See Also

Alter Object statement, Brush clause, Font clause, ObjectGeography() function, Pen clause,
Symbol clause

Object type code Corresponding object type

OBJ_TYPE_ARC Arc object

OBJ_TYPE_ELLIPSE Ellipse / circle objects

OBJ_TYPE_LINE Line object

OBJ_TYPE_PLINE Polyline object

OBJ_TYPE_POINT Point object

OBJ_TYPE_FRAME Layout window Frame object

OBJ_TYPE_REGION Region object

OBJ_TYPE_RECT Rectangle object

OBJ_TYPE_ROUNDRECT Rounded rectangle object

OBJ_TYPE_TEXT Text object

OBJ_TYPE_MULTIPOINT Collection text object
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 337 MB_Ref.pdf

Reference Guide Chapter 7: ObjectLen() function
ObjectLen() function
Purpose

Returns the geographic length of a line or polyline object.

Syntax
ObjectLen(expr , unit_name)

expr is an object expression

unit_name is a string representing the name of a distance unit (for example, “mi” for miles)

Return Value

Float

Description

The ObjectLen() function returns the length of an object expression. Note that only line and polyline
objects have length values greater than zero; to measure the circumference of a rectangle, ellipse, or
region, use the Perimeter() function.

The ObjectLen() function returns a length measurement in the units specified by the unit_name
parameter; for example, to obtain a length in miles, specify “mi” as the unit_name parameter. See the
Set Distance Units statement for the list of valid unit names.

For the most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a
spherical operation is performed unless the coordinate system is nonEarth, in which case, a Cartesian
operation is performed.

Example
Dim geogr_length As Float
Open Table ”streets”
Fetch First From streets
geogr_length = ObjectLen(streets.obj, ”mi”)
’ geogr_length now represents the length of the
’ street segment, in miles

See Also

Distance() function, Perimeter() function, Set Distance Units statement

ObjectNodeM() function
Purpose

Returns the m-value of a specific node in a region, polyline or multipoint object.

Syntax
ObjectNodeM(object, polygon_num, node_num)

object is an Object expression

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 338 MB_Ref.pdf

Reference Guide Chapter 7: ObjectNodeX() function
Return Value

Float

Description

The ObjectNodeM() function returns the m-value of a specific node from a region, polyline or multipoint
object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeM() function
supports Multipoint objects and returns the m-value of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the object's
nodes should be queried. You can use the ObjectInfo() function to determine the number of nodes in
an object.

If object does not support m values or m-value for this node is not defined, then, error is set.

Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float

Open Table "routes"
Fetch First From routes

' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then

' ... then the object is a polyline...
z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM(routes.obj, 1, 1) ' read m-value

End If

See Also

Querying map objects

ObjectNodeX() function
Purpose

Returns the x-coordinate of a specific node in a region or polyline object.

Syntax
ObjectNodeX(object , polygon_num , node_num)

object is an Object expression

polygon_num is a positive Integer value indicating which polygon or section to query s a positive
integer. It is ignored for Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 339 MB_Ref.pdf

Reference Guide Chapter 7: ObjectNodeY() function
Return Value

Float

Description

The ObjectNodeX() function returns the x-value of a specific node from a region or polyline object.
The corresponding ObjectNodeY() function returns the y-coordinate value.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeX() function
supports Multipoint objects and returns the x-coordinate of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the object’s
nodes should be queried. You can use the ObjectInfo() function to determine the number of nodes in
an object. The ObjectNodeX() function will return the value in the coordinate system currently in use
by MapBasic; by default, MapBasic uses a longitude, latitude coordinate system. See the Set
CoordSys statement for more information about coordinate systems.

Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries the x- and y-coordinates of the first node in the polyline, then creates a new Point
object at the location of the polyline’s starting node.

Dim i_obj_type As SmallInt, x, y As Float, new_pnt As Object
Open Table ”routes”
Fetch First From routes
’ at this point, the expression:
’ routes.obj
’ represents the graphical object that’s attached
’ to the first record of the routes table.
i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then
’ ... then the object is a polyline...

x = ObjectNodeX(routes.obj, 1, 1) ’ read longitude
y = ObjectNodeY(routes.obj, 1, 1) ’ read latitude
Create Point Into Variable new_pnt (x, y)
Insert Into routes (obj) Values (new_pnt)

End If

See Also

Alter Object statement, ObjectGeography() function, ObjectInfo() function, ObjectNodeY()
function, Set CoordSys statement

ObjectNodeY() function
Purpose

Returns the y-coordinate of a specific node in a region or polyline object.

Syntax
ObjectNodeY(object , polygon_num , node_num)

object is an Object expression
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 340 MB_Ref.pdf

Reference Guide Chapter 7: ObjectNodeZ() function
polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read

Return Value

Float

Description

The ObjectNodeY() function returns the y-value of a specific node from a region or polyline object.
See the description of the ObjectNodeX() function for more information.

Example

See the ObjectNodeX() function description.

See Also

Alter Object statement, ObjectGeography() function, ObjectInfo() function, ObjectNodeX()
function, Set CoordSys statement

ObjectNodeZ() function
Purpose

Returns the z-coordinate of a specific node in a region, polyline, or multipoint object.

Syntax
ObjectNodeZ(object, polygon_num, node_num)

object is an Object expression

polygon_num is a positive Integer value indicating which polygon or section to query. It is ignored for
Multipoint objects (it used for regions and polylines).

node_num is a positive Integer value indicating which node to read

Return Value

Float

Description

The ObjectNodeZ() function returns the z-value of a specific node from a region, polyline or multipoint
object.

The polygon_num parameter must have a value of one or more. This specifies which polygon (if
querying a region) or which section (if querying a polyline) should be queried. Call the ObjectInfo()
function to determine the number of polygons or sections in an object. The ObjectNodeZ() function
supports Multipoint objects and returns the z-coordinate of a specific node in a Multipoint object.

The node_num parameter must have a value of one or more; this tells MapBasic which of the object's
nodes should be queried. You can use the ObjectInfo() function to determine the number of nodes in
an object.

If object does not support Z values or Z-value for this node is not defined then an error is thrown.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 341 MB_Ref.pdf

Reference Guide Chapter 7: Objects Check statement
Example

The following example queries the first graphic object in the table Routes. If the first object is a polyline,
the program queries z-coordinates and m-values of the first node in the polyline.

Dim i_obj_type As SmallInt,
z, m As Float

Open Table "routes"
Fetch First From routes

' at this point, the expression:
' routes.obj
' represents the graphical object that's attached
' to the first record of the routes table.

i_obj_type = ObjectInfo(routes.obj, OBJ_INFO_TYPE)
If i_obj_type = OBJ_PLINE Then

' ... then the object is a polyline...
z = ObjectNodeZ(routes.obj, 1, 1) ' read z-coordinate
m = ObjectNodeM(routes.obj, 1, 1) ' read m-value

End If

See Also

Querying map objects

Objects Check statement
Purpose

Checks a given table for various aspects of incorrect data, or possible incorrect data, which may cause
problems and/or incorrect results in various operations.

Syntax
Objects Check From tablename Into Table tablename

[SelfInt [Symbol Clause]]
[Overlap [Pen Clause] [Brush Clause]]
[Gap Area [Unit Units] [Pen Clause] [Brush Clause]]]

Description

Objects Check will check the table designated in the From clause for various aspects of bad data
which may cause problems or incorrect results with various operations. Only region objects will be
checked. The region objects will be optionally checked for self-intersections, and areas of overlap and
gaps.

Self-intersections may cause problems with various calculations, including the calculation for the area
of a region. They may also cause incorrect results from various object-processing operations, such as
combine, buffer, erase, erase outside, and split.

For any of these problems, a point object is created and placed into the output table. The output table
can be supplied through the Into Table clause. If no Into Table clause exists, the output data is placed
into the same table as the input table

If the SelfInt option is included, then the table will be checked for self-intersections. Where found, point
objects are created using the style provided by the Symbol Clause. By default, this is a 28-point red
pushpin.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 342 MB_Ref.pdf

Reference Guide Chapter 7: Objects Clean statement
Many region tables are designed to be boundary tables. The states.tab and world.tab files provided
with the sample data are examples of boundary tables. In tables such as these, boundaries should not
overlap (for example, the state of Utah should not overlap with the state of Wyoming). The Overlap
option will check the table for places where regions overlap with other regions. Regions will be created
in the output table representing any areas of overlap. These regions will be created using the Brush
Clause to represent the interior of the regions, and the Pen Clause to represent the boundary of the
regions. By default, these regions are drawn with solid yellow interiors and thin black boundaries.

Gaps are enclosed areas where no region object currently exists. In a boundary table, most regions
abut other regions and share a common boundary. Just as there should be no overlaps between the
regions, there should also be no gaps between the regions. In some cases, these boundary gaps are
legitimate for the data. An example of this would be the Great Lakes in the World map, which separate
parts of Canada from the USA. Most gaps that are data problems occur because adjacent boundaries
do not have common boundaries that completely align. These gap areas are generally small.

To help weed out the legitimate gap areas, such as the Great Lakes, from problem gap areas, a Gap
Area is used. Any potential gap that is larger than this gap area is discarded and not reported. The
units that the Gap Area is in is presented by the Units clause. If the Units sub-clause is not present,
then the Gap Area value will be interpreted in MapBasic's current area unit.

Gaps will be presented using the Pen and Brush clauses that follow the Gap keyword. By default,
these regions are drawn with blue interiors and a thin black boundary.

Example

This example will run Objects Check on the table called TestFile and store the results in the table called
DumpFile. It will also perform the overlap parameter and change the default Point and Polygon styles.

objects check from TestFile into table Dumpfile Overlap
Selfint Symbol (67, 16711680, 28)
Overlap Pen (1,2,0) Brush (2, 16776960,0)
Gap 100000 Units "sq mi" Pen (1,2,0) Brush (2,255,0)

See Also

Objects Enclose statement

Objects Clean statement
Purpose

Cleans the objects from the given table, and optionally removes overlaps and gaps between regions.
The table may be the Selection table. All objects to be cleaned must be closed object types (i.e.,
regions, rectangles, rounded rectangles, or ellipses).

 Syntax
Objects Clean From tablename

[Overlap]
[Gap Area [Unit Units]]
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 343 MB_Ref.pdf

Reference Guide Chapter 7: Objects Combine statement
Description

The objects in the input tablename are first checked for various data problems and inconsistencies,
such as self-intersections, overlaps, and gaps. Self-intersecting regions in the form of a figure 8 will be
changed into a region containing two polygons that touch each other at a single point. Regions
containing spikes will have the spike portion removed. The resulting cleaned object will replace the
original input object.

If the Overlap keyword is included, then overlapping areas will be removed from regions. The portion
of the overlap will be removed from all overlapping regions except the one with the largest area.

Note: Objects Clean removes the overlap when one object is completely inside another. This is an
exception to the rule of “biggest object wins”. If one object is completely inside another object,
then the object that is inside remains, and a hole is punched in the containing object. The
result does not contain any overlaps.

Gaps are enclosed areas where no region object currently exists. In a boundary table, most regions
abut other regions and share a common boundary. Just as there should be no overlaps between the
regions, there should also be no gaps between the regions. In some cases, both these boundary gaps
and holes are legitimate for the data. An example of this would be the Great Lakes in the World map,
which separate parts of Canada from the USA. Most gaps that are data problems occur because
adjacent boundaries do not have common boundaries that completely align. These gap areas are
generally small.

To help weed out the legitimate gap areas, such as the Great Lakes, from problem gap areas, a Gap
Area is used. Any potential gap that is larger than this gap area is discarded and not reported. The
units of the Gap Area are indicated by the Units clause. If the Units sub-clause is not present, then the
Gap Area value will be interpreted in MapBasic's current area unit. Gaps that are found will be
removed by combining the area defining the gap to the region with the largest area that touches the
gap. To help determine a reasonable Gap Area, use the Objects Check command. Any gaps that the
Objects Check command flags will be removed with the Objects Clean command.

Example
Open Table "STATES.TAB" Interactive
Map From STATES
Set Map Layer 1 Editable On
select * from STATES
Objects Clean From Selection Overlap Gap 10 Units "sq m"

See Also

Create Object statement, Objects Disaggregate statement, Objects Check statement

Objects Combine statement
Purpose

Combines objects in a table; corresponds to MapInfo’s Objects > Combine command.

Syntax
Objects Combine

[Into Target]
[Data column = expression [, column = expression ...]]

column is the name of a column in the table being modified
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 344 MB_Ref.pdf

Reference Guide Chapter 7: Objects Combine statement
Description

Objects Combine creates an object representing the geographic union of the currently-selected
objects. Optionally, Objects Combine can also perform data aggregation, calculating sums or
averages of the data values that are associated with the objects being combined.

The Objects Combine statement corresponds to MapInfo’s Objects > Combine menu item. For an
introduction to this operation, see the discussion of the Objects > Combine menu item in the MapInfo
Professional Reference. To see a demonstration of the Objects Combine statement, run MapInfo,
open MapInfo’s MapBasic Window, and use the Objects > Combine command. Objects involved in the
combine operation must either be all closed objects (for example, regions, rectangles, rounded
rectangles or ellipses) or all linear objects (for example, lines, polylines or arcs). Mixed closed and
linear objects are not allowed and point and text objects are not allowed.

Into Target clause
The optional Into Target clause is only valid if an editing target has been specified (either by the user
or through the Set Target statement), and only if the target consists of one object. If you include the
Into Target clause, MapInfo Professional combines the currently-selected objects with the current
target object. The object produced by the combine operation then replaces the object that had been
the editing target.

If you include the Into Target clause, and if the selected objects are from the same table as the target
object, MapInfo Professional deletes the rows corresponding to the selected objects.

If you include the Into Target clause, and if the selected objects are from a different table than the
target object, MapInfo Professional does not delete the selected objects. If you omit the Into Target
clause, MapInfo Professional combines the currently-selected objects without involving the current
editing target (if there is an editing target). The rows corresponding to the selected objects are deleted,
and a new row is added to the table, containing the object produced by the combine operation.

Data clause
The Data clause controls data aggregation. (For an introduction to data aggregation, see the
description of the Objects > Combine operation in the MapInfo Professional Reference.) The Data
clause includes a comma-separated list of assignments. You can assign any expression to a column,
assuming the expression is of the correct data type (numeric, string, etc.).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 345 MB_Ref.pdf

Reference Guide Chapter 7: Objects Disaggregate statement
The following table lists the more common types of column assignments:

The Data clause can contain an assignment for every column in the table. If the Data clause only
includes assignments for some of the columns, MapBasic assigns blank values to those columns that
are not listed in the Data clause. If you omit the Data clause entirely, but you include the Into Target
clause, then MapInfo Professional retains the target object’s original column values.

If you omit both the Data clause and the Into Target clause, then the object produced by the combine
operation is stored in a new row, and MapInfo Professional assigns blank values to all of the columns
of the new row.

See Also

Combine() function, Set Target statement

Objects Disaggregate statement
Purpose

Breaks an object into its component parts.

Syntax
Objects Disaggregate [IntoTable name]

[All | Collection]
[Data column_name = expression
 [, column_name = expression ...]

Description

If an object contains multiple entities, then a new object is created in the output table for each entity.

By default, any multi-part object will be divided into its atomic parts. A Region object will be broken
down into some number of region objects, depending on the All flag. If the All flag is present, then the
Region will produce a series of single polygon Region objects, one object for each polygon contained
in the original object. Holes (interior boundaries) will produce solid single polygon Region objects. If the

Expression Description

col_name = col_name The column contents are not altered.

col_name = value MapBasic stores the hard-coded value in the column
of the result object.

col_name = Sum(col_name) Used only for numeric columns. The column in the
result object contains the sum of the column values of
all objects being combined.

col_name = Avg(col_name) Used only for numeric columns. The column in the
result object contains the average of column values of
all objects in the group.

col_name=WtAvg(colname, wtcolname) Used only for numeric columns. MapInfo Professional
performs weighted averaging, averaging all of the
col_name column values, and weighting the average
calculation based on the contents of the wt_colname
column.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 346 MB_Ref.pdf

Reference Guide Chapter 7: Objects Disaggregate statement
All flag is not present, then Holes will be retained in the output objects. For example, if an input Region
contains 3 polygons, and one of those polygons is a Hole in another polygon, then the output will be 2
Region objects - one of which will contain the hole.

Multiple section Polyline objects will produce new single section Polyline objects. Multipoint objects will
produce new Point objects, one Point object per node from the input Multipoint.

Collections will be treated recursively. If a Collection contains a Region, then new Region objects will
be produced as described above, depending on the All switch. If the Collection contains a Polyline
object, the new Polyline objects will be produced for each section that exists in the input object. If a
Collection contains a Multipoint, then new Point objects will be produced, one Point object for each
node in the Mutlipoint.All other object types, including Points, Lines, Arcs, Rectangles, Rounded
Rectangles, and Ellipses, which are already single component objects, will be moved to the output
unchanged.

If a Region contains a single polygon, it will be passed unchanged to the output. If a Polyline object
contains a single section, it will be passed unchanged to the output. If a Multipoint object contains a
single node, the output object will be changed into a Point object containing that node. Arcs,
Rectangles, Rounded Rectangles, and Ellipses will be passed unchanged to the output. Other object
types, such as Text, will not be accepted by the Objects Disaggregate command, and will produce an
error.

The Collection switch will only break up Collection objects. If a Collection object contains a Region,
then that Region will be a new object on output. If a Collection object contains a Polyline, then that
Polyline will be a new object in the output. If a Collection object contains a Multipoint, then that
Multipoint will be a new object in the output. This differs from the above functionality since the output
Region may contain multiple polygons, the output Polyline may contain multiple segments. The
functionality above will never produce a Multipoint object.

With the Collection switch, all other object types, including Points, Multipoints, Lines, Polylines, Arcs,
Regions, Rectangles, Rounded Rectangles, and Ellipses, will be passed to the output unchanged.

If no Into Table is provided, the currently editable table is used as the output table. The input objects
are taken from the current selection.

The optional Data clause controls what values are stored in the columns of the target objects. The
Data clause can contain a comma-separated list of column assignments. Each column assignment can
take one of the forms listed in the following table:

Assignment Effect

col_name = col_name Does not alter the value stored in the column.

col_name = value Stores a specific value in the column. If the column is a
character

column, the value can be a string; if the column is a numeric column,
the value can be a number.

col_name = Proportion(
col_name)

Used only for numeric columns; reduces the number stored
in the column in proportion to how much of the object's area
was erased.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 347 MB_Ref.pdf

Reference Guide Chapter 7: Objects Enclose statement
The Data clause can contain an assignment for every column in the table. If the Data clause only
specifies assignments for some of the columns, blank values are assigned to those columns that are
not listed in the Data clause. If you omit the Data clause entirely, all columns are blanked out of the
target objects, storing zero values in numeric columns and blank values in character columns.

Example
Open Table "STATES.TAB" Interactive
Map From STATES
Set Map Layer 1 Editable On
select * from STATES
Objects Disaggregate Into Table STATES

See Also

Create Object statement

Objects Enclose statement
Purpose

Creates regions that are formed from collections of polylines; corresponds to MapInfo’s Objects
Enclose command.

Syntax
Objects Enclose

[Into Table tablename]
[Region]

tablename table you want to place objects in.

Description

Objects Enclose creates objects representing closures linear objects (lines , polylines and arcs). A
new region is created for each enclosed polygonal area. Input objects are obtained from the current
selection. Unlike the Objects Combine statement, the Objects Enclose statement will not remove the
original input objects. No data aggregation is done.

The optional Region clause will allow closed objects (regions, rectangles, rounded rectangles and
ellipses) to be used as input to the Objects Enclose operation. The input regions will be converted to
Polylines for the purpose of this operation. The effects are identical to first converting any closed
objects to Polyline objects, and then performing the Objects Enclose operation. All input objects must
be linear or closed, and any other objects (i.e., points, multipoints, collections and text) will cause the
operation to produce an error. If closed objects exist in the selection, and the Region switch is not
present, then those objects will be ignored.

The Objects Enclose statement corresponds to MapInfo’s Objects > Enclose menu item. For an
introduction to this operation, see the discussion of the Objects > Enclose menu item in the MapInfo
Professional Reference. To see a demonstration of the Objects Enclose statement, run MapInfo
Professional, open the MapBasic Window, and use the Objects > Combine command.

The optional Into Table will place the objects created by this command into the table. Otherwise, the
output objects will be placed in the same table that contains the input objects.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 348 MB_Ref.pdf

Reference Guide Chapter 7: Objects Erase statement
Example

This will select all the objects in a table called testfile, perform an Objects Enclose and store the
resulting objects in a table called dump_file.

select * from testfile
Objects Enclose Into Table dump_file

See Also

Objects Check statement, Objects Combine statement

Objects Erase statement
Purpose

Erases any portions of the target object(s) that overlap the selection; corresponds to choosing Objects
> Erase.

Syntax
Objects Erase Into Target

[Data column_name = expression
 [, column_name = expression ...]

Description

The Objects Erase statement erases part of (or all of) the objects that are currently designated as the
editing target. Using the Objects Erase statement is equivalent to choosing MapInfo Professional’s
Objects > Erase menu item. For an introduction to using Objects > Erase, see the MapInfo
Professional Reference.

Objects Erase erases any parts of the target objects that overlap the currently-selected objects. To
erase only the parts of the target objects that do not overlap the selection, use the Objects Intersect
statement.

Before you call Objects Erase, one or more closed objects (regions, rectangles, rounded rectangles,
or ellipses) must be selected, and an editing target must exist. The editing target may have been set by
the user choosing Objects > Set Target, or it may have been set by the MapBasic statement Set
Target.

For each Target object, one object will be produced for that portion of the target that lies outside all
cutter objects. If the Target lies inside cutter objects, then no object is produced for output.

The optional Data clause controls what values are stored in the columns of the target objects. The
Data clause can contain a comma-separated list of column assignments.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 349 MB_Ref.pdf

Reference Guide Chapter 7: Objects Erase statement
Each column assignment can take one of the forms listed in the following table:

The Data clause can contain an assignment for every column in the table. If the Data clause only
specifies assignments for some of the columns, MapBasic assigns blank values to those columns that
are not listed in the Data clause.

If you omit the Data clause entirely, MapBasic blanks out all columns of the target object.

Objects, storing zero values in numeric columns and blank values in character columns.

Example

In the following example, the Objects Erase statement does not include a Data clause. As a result,
MapBasic stores blank values in the columns of the target object(s). This example assumes that one or
more target objects have been designated, and one or more objects have been selected.

Objects Erase Into Target

In the next example, the Objects Erase statement includes a Data clause, which specifies expressions
for three columns (State_Name, Pop_1990, and Med_Inc_80). This operation assigns the string “area
remaining” to the State_Name column and specifies that the Pop_1990 column should be reduced in
proportion to the amount of the object that is erased. The Med_Inc_80 column retains the value it had
before the Objects Erase statement. The target objects’ other columns are blanked out.

Objects Erase Into Target
Data

State_Name = ”area remaining”,
Pop_1990 = Proportion(Pop_1990),
Med_Inc_80 = Med_Inc_80

See Also

Erase() function, Objects Intersect statement

Assignment Effect

col_name =
col_name

MapBasic does not alter the value stored in the column.

col_name = value MapBasic stores a specific value in the column. If it is a character col-
umn, the value can be a string; if it is a numeric column, the value can be
a number.

col_name =
Proportion(
col_name)

Used only for numeric columns; MapBasic reduces the number stored in
the column in proportion to how much of the object’s area was erased.
So, if the operation erases half of an area’s object, the object’s column
value is reduced by half.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 350 MB_Ref.pdf

Reference Guide Chapter 7: Objects Intersect statement
Objects Intersect statement
Purpose

Erases any portions of the target object(s) that do not overlap the selection; corresponds to choosing
Objects > Erase Outside.

Syntax
Objects Intersect Into Target

[Data column_name = expression
[, column_name = expression ...]]

Description

The Objects Intersect statement erases part or all of the object(s) currently designated as the editing
target. Using the Objects Intersect statement is equivalent to choosing MapInfo’s Objects > Erase
Outside menu item. For an introduction to using Objects > Erase Outside, see the MapInfo
Professional Reference.

The optional Data clause controls what values are stored in the columns of the target objects. The
Data clause can contain a comma-separated list of column assignments. Each column assignment can
take one of the forms listed in the following table:

The Data clause can contain an assignment for every column in the table. If the Data clause only
specifies assignments for some of the columns, MapBasic assigns blank values to those columns that
are not listed in the Data clause. If you omit the Data clause entirely, MapBasic blanks out all columns
of the target objects, storing zero values in numeric columns and blank values in character columns.

The Objects Intersect statement is very similar to the Objects Erase statement, with one important
difference: Objects Intersect erases the parts of the target objects(s) that do not overlap the current
selection, while Objects Erase erases the parts of the target object. For each Target object, a new
object is created for each area that intersects a cutter object. For example, if a target object is
intersected by three cutter objects, then three new objects will be created. The parts of the target that
lie outside all cutter objects will be discarded. For more information, see the description of the Objects
Erase statement.

Assignment Effect

col_name = col_name MapBasic does not alter the value stored in the column.

col_name = value MapBasic stores a specific value in the column. If the col-
umn is a character column, the value can be a string; if
the column is a numeric column, the value can be a num-
ber.

col_name = Proportion(col_name) Used only for numeric columns; MapBasic reduces the
number stored in the column in proportion to how much of
the object’s area was erased. Thus, if the operation
erases half of the area of an object, the object’s column
value is reduced by half.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 351 MB_Ref.pdf

Reference Guide Chapter 7: Object Move statement
Example
Objects Intersect Into Target

Data
Field2=Proportion(Field2)

See Also

Create Object statement, Overlap() function

Object Move statement
Purpose

Objects Move moves the objects obtained from the current selection within the input table.

Syntax
Objects Move

Angle angle
Distance distance
[Units unit]
[Type {Spherical | Cartesian}]

Description

Objects Move moves the objects within the input table. The source objects are obtained from the
current selection. The resulting objects replace the input objects. No data aggregation is performed or
necessary, since the data associated with the original source objects is unchanged.

The object is moved in the direction represented by angle, measured from the positive X-axis (east)
with positive angles being counterclockwise, and offset at a distance given by the distance parameter.
The distance is in the units specified by unit parameter, if present. If the Units clause is not present,
then the current distance unit is the default. By default, MapBasic uses miles as the distance unit; to
change this unit, see the Set Distance Units statement.

The optional Type sub-clause lets you specify the type of distance calculation used to create the offset.
If the Spherical type is used, then the calculation is done by mapping the data into a Latitude/
Longitude On Earth projection and using distance measured using Spherical distance calculations. If
the Cartesian type is used, then the calculation is done by considering the data to be projected to a flat
surface and distances are measured using cartesian distance calculations. If the Type sub-clause is
not present, then the Spherical distance calculation type is used. If the data is in a Latitude/Longitude
Projection, then Spherical calculations are used regardless of the Type setting. If the data is in a
NonEarth Projection, the Cartesian calculations are used regardless of the Type setting.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 352 MB_Ref.pdf

Reference Guide Chapter 7: Objects Offset statement
For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into the
Coordinate System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the
fixed point. The actual converted distance measurement could vary at different locations on the object.
The distance from the input object and the new offset object is only guaranteed to be exact at the
single fixed point used.

Example
Objects Move Angle 45 Distance 100 Units “mi” Type Spherical

See Also

Objects Offset statement

Objects Offset statement
Purpose

Objects Offset copies objects, obtained from the current selection, offset from the original objects.

Syntax
Objects Offset

[Into Table intotable]
Angle angle
Distance distance
[Units unit]
[Type {Spherical | Cartesian}]
[Data column = expression [, column = expression ...]]

Description

Objects Offset makes a new copy of objects offset from the original source objects. The source
objects are obtained from the current selection. The resulting objects are placed in the Into Table, if the
Into clause is present. Otherwise, the objects are placed into the same table as the input objects are
obtained from (i.e., the base table of the selection).

The object is moved in the direction represented by angle, measured from the positive X-axis (east)
with positive angles being counterclockwise, and offset at a distance given by the distance parameter.
The distance is in the units specified by unit parameter. If the Units clause is not present, then the
current distance unit is the default. By default, MapBasic uses miles as the distance unit; to change this
unit, see the Set Distance Units statement.

The optional Type sub-clause lets you specify the type of distance calculation used to create the offset.
If the Spherical type is used, then the calculation is done by mapping the data into a Latitude/
Longitude On Earth projection and using distance measured using Spherical distance calculations. If
the Cartesian type is used, then the calculation is done by considering the data to be projected to a flat
surface and distances are measured using cartesian distance calculations. If the Type sub-clause is
not present, then the Spherical distance calculation type is used. If the data is in a Latitude/Longitude
Projection, then Spherical calculations are used regardless of the Type setting. If the data is in a
NonEarth Projection, the Cartesian calculations are used regardless of the Type setting.

If you specify a Data clause, the application performs data aggregation.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 353 MB_Ref.pdf

Reference Guide Chapter 7: Objects Overlay statement
There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into the
Coordinate System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the
fixed point. The actual converted distance measurement could vary at different locations on the object.
The distance from the input object and the new offset object is only guaranteed to be exact at the
single fixed point used.

Example
Objects Offset Into Table c:\temp\table1.tbl Angle 45 Distance 100 Units “mi”
Type Spherical

See Also

Offset() function

Objects Overlay statement
Purpose

Adds nodes to the target objects at any places where the target objects intersect the currently-selected
objects; corresponds to choosing Objects > Overlay Nodes.

Syntax
Objects Overlay Into Target

Description

Before you call Objects Overlay, one or more objects must be selected, and an editing target must
exist. The editing target may have been set by the user choosing Objects > Set Target, or it may have
been set by the MapBasic statement Set Target. For more information, see the discussion of Overlay
Nodes in the MapInfo Professional Reference.

See Also

OverlayNodes() function, Set Target statement

Objects Pline statement
Purpose

Splits a single section polyline into two polylines.

Syntax
Objects Pline Split At Node index

[Into Table name]
[Data column_name = expression

 [, column_name = expression ...]]
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 354 MB_Ref.pdf

Reference Guide Chapter 7: Objects Snap statement
Description

If an object is a single section polyline, then two new single section polyline objects are created in the
output table name. The Node index should be a valid MapBasic index for the polyline to be split. If
Node is a start or end node for the polyline, the operation is cancelled and an error message is
displayed.

The optional Data clause controls what values are stored in the columns of the output objects. The
Data clause can contain a comma-delimited list of column assignments. Each column assignment can
take one of the forms listed in the following table:

The Data clause can contain an assignment for every column in the table. If the Data clause specifies
assignments for only some of the columns, blank values are assigned to those columns that are not
listed in the Data clause.

If you omit the Data clause entirely, all columns are blanked out of the target objects, storing zero
values in numeric columns and blank values in character columns.

Example

In the following partial example, the selected polyline is split at the specified node (node index of 12).
The unchanged values from each record of the selected polyline are inserted into the new records for
the split polyline.

Objects Pline Split At Node 12 Into Table WORLD Data
Country=Country,Capital=Capital,Continent=Continent,Numeric_code=Numeric_code,FI
PS=FIPS,ISO_2=ISO_2,ISO_3=ISO_3,Pop_1994=Pop_1994,Pop_Grw_Rt=Pop_Grw_Rt,Pop_Male
=Pop_Male,Pop_Fem=Pop_Fem...

See Also

ObjectLen() function, ObjectNodeX() function, ObjectNodeY() function, Objects Disaggregate
statement

Objects Snap statement
Purpose

Cleans the objects from the given table, and optionally performs various topology-related operations on
the objects, including snapping nodes from different objects that are close to each other into the same
location and generalization/thinning. The table may be the Selection table. All of the objects to be
cleaned must either be all linear (i.e., polylines and arcs) or all closed (i.e., regions, rectangles,
rounded rectangles, or ellipses). Mixed linear and closed objects can't be cleaned in one operation,
and an error will result.

Assignment Effect

col_name = col_name Does not alter the value stored in the column.

col_name = value Stores a specific value in the column. If the column is a character col-
umn the value can be a string; if the column is a numeric column, the
value can be a number.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 355 MB_Ref.pdf

Reference Guide Chapter 7: Objects Snap statement
Syntax
Objects Snap From tablename

[Tolerance [Node node_distance] [Vector vector_distance]
[Units unit_string]]

[Thin [Bend bend_distance] [Distance spacing_distance]
[Units unit_string]]

[Cull Area cull_area [Units unit_string]]]

Description

The objects from the input tablename are checked for various data problems and inconsistencies, such
as self-intersections. Self-intersecting regions in the form of a figure 8 will be changed into a region
containing two polygons that touch each other at a single point. Regions containing spikes will have the
spike portion removed. The resulting cleaned object will replace the original input object. If any
overlaps exist between the objects they will be removed. Removal of overlaps generally consists of
cutting the overlapping portion out of one of the objects, while leaving it in the other object. The region
that contains the originally overlapping section will consist of multiple polygons. One polygon will
represent the non-overlapping portion, and a separate polygon will represent each overlapping section.

The Node and Vector Tolerances values will snap nodes from different objects together, and can be
used to eliminate small overlaps and gaps between objects. The Units sub-clause of Tolerances lets
you specify a distance measurement name (such as “km” for kilometers) to apply to the Node and
Vector values. If the Units sub-clause is not present, then the Node and Vector values will be
interpreted in MapBasic's current distance unit. By default, MapBasic uses miles as the distance units;
to change this unit, see the Set Distance Units statement.

The Node tolerance is a radius around the end point nodes of a polyline. If there are nodes from other
objects within this radius, then one or both of the nodes will be moved such that they will be in the
same location (i.e., they will be snapped together). The Vector tolerance is a radius used for internal
nodes of polylines. Its purpose is the same as the Node tolerance, except it is used only for internal
(non-end point) nodes of a polyline. Note that for Region objects, there is no explicit concept of end
point nodes, since the nodes form a closed loop. For Region objects, only the Vector tolerance is used,
and it is applied to all nodes in the object. The Node tolerance is ignored for Region objects. For
Polyline objects, the Node tolerance must be greater than or equal to the Vector tolerance.

The Bend and Distance values can be used to help Thin or generalize the input objects. This will
reduce the number of nodes used in the object while maintaining the general shape of the object. The
Units sub-clause of Thin lets you specify a distance measurement name (such as “km” for kilometers)
to apply to the Bend and Distance values. If the Units sub-clause is not present, then the Bend and
Distance values will be interpreted in MapBasic's current distance unit.

The Bend tolerance is used to control how co-linear a series of nodes can be. Given 3 nodes, connect
the all of the nodes in a triangle. Measure the perpendicular distance from the second node to the line
connecting the first and third nodes. If this distance is less than the Bend tolerance, then the three
nodes are considered co-linear, and the second node is removed from the object.

The Distance tolerance is used to eliminate nodes within the same object that are close to each other.
Measure the distance between two successive nodes in an object. If the distance between them is less
than the Distance tolerance, then one of the nodes can be removed.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 356 MB_Ref.pdf

Reference Guide Chapter 7: Objects Split statement
The Cull Area value is used to eliminate polygons from regions that are smaller than the threshold
area. The Units sub-clause of Cull lets you specify an area measurement name (such as “sq km” for
square kilometers) to apply to the Area value. If the Units sub-clause is not present, then the Area
value will be interpreted in MapBasic's current area unit. By default, MapBasic uses square miles as
the area unit; to change this unit, see the Set Area Units statement.

Note: For all of the distance and area values mentioned above, the Type of measurement used is
always Cartesian. Please keep in mind the coordinate system that your data is in. An length
and area calculations in Longitude/Latitude calculated using the Cartesian method is not
mathematically precise. Ensure that you are working in a suitable coordinate system (a
Cartesian system) before applying the tolerance values.

Example
Open Table "STATES.TAB" Interactive
Map From STATES
Set Map Layer 1 Editable On
select * from STATES
Objects Snap From Selection Tolerance Node 3 Vector 3 Units "mi" Thin Bend 0.5
Distance 1 Units "mi" Cull Area 10 Units "sq mi"

See Also

Create Object statement, Overlap() function

Objects Split statement
Purpose

Splits target objects, using the currently-selected objects as a “cookie cutter”; corresponds to choosing
Objects > Split.

Syntax
Objects Split Into Target

[Data column_name = expression
 [, column_name = expression ...]

Description

Use the Objects Split statement to split each of the target objects into multiple objects. Using Objects
Split is equivalent to choosing MapInfo’s Objects > Split menu item. For more information on split
operations, see the MapInfo Professional Reference.

Before you call Objects Split, one or more closed objects (regions, rectangles, rounded rectangles, or
ellipses) must be selected, and an editing target must exist. The editing target may have been set by
the user choosing Objects > Set Target, or it may have been set by the MapBasic statement Set
Target.

For each target object, a new object is created for each area that intersects a cutter object. For
example, if a target object is intersected by three cutter objects, then three new objects will be created.
In addition, a single object will be created for all parts of the target object that lie outside all cutter
objects. This is equivalent to performing both an Objects Erase and Objects Intersect (Erase Outside)

The optional Data clause controls what values are stored in the columns of the target objects. The
Data clause can contain a comma-separated list of column assignments. Each column assignment can
take one of the forms listed in the following table:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 357 MB_Ref.pdf

Reference Guide Chapter 7: Objects Split statement
The Data clause can contain an assignment for every column in the table. If the Data clause only
specifies assignments for some of the columns, MapBasic assigns blank values to those columns that
are not listed in the Data clause.

If you omit the Data clause entirely, MapBasic blanks out all columns of the target objects, storing zero
values in numeric columns and blank values in character columns.

Example

In the following example, the Objects Split statement does not include a Data clause. As a result,
MapBasic stores blank values in the columns of the target object(s).

Objects Split Into Target

In the next example, the statement includes a Data clause, which specifies expressions for three
columns (State_Name, Pop_1990, and Med_Inc_80). This first part of the Data clause assigns the
string “sub-division” to the State_Name column; as a result, “sub-division” will be stored in the
State_Name column of each object produced by the split. The next part of the Data clause specifies
that the target object’s original Pop_1990 value should be divided among the objects produced by the
split. The third part of the Data clause specifies that each of the new objects should retain the original
value from the Med_Inc_80 column.

Objects Split Into Target
Data

State_Name = ”sub-division”,
Pop_1990 = Proportion(Pop_1990),
Med_Inc_80 = Med_Inc_80

See Also

Alter Object statement

Assignment Effect

col_name = col_name MapBasic does not alter the value stored in the column;
each object resulting from the split operation retains the
original
column value.

col_name = value MapBasic stores a specific value in the column. If the col-
umn is a character column, the value can be a string; if
the column is a numeric column, the value can be a num-
ber. Each object resulting from the split operation retains
the specified value.

col_name = Proportion(col_name) Used only for numeric columns; MapInfo Professional
divides the original target object’s column value among
the graphical objects resulting from the split. Each object
receives “part of” the original column value, with larger
objects receiving larger portions of the numeric values.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 358 MB_Ref.pdf

Reference Guide Chapter 7: Offset() function
Offset() function
Purpose

Returns a copy of the input object offset by the specified distance and angle.

Syntax

Offset(object, angle, distance, units)

object is the object being offset,

angle is the angle to offset the object,

distance is the distance to offset the object, and

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

This function produces a new object that is a copy of the input object offset by distance along angle (in
degrees with horizontal in the positive X-axis being 0 and positive being counterclockwise). The unit
string, similar to that used for ObjectLen or Perimeter, is the unit for the distance value. The
DistanceType used is Spherical unless the Coordinate System is NonEarth. For NonEarth, Cartesian
DistanceType is automatically used. The coordinate system used is the coordinate system of the input
object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into the
Coordinate System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the
fixed point. The actual converted distance measurement could vary at different locations on the object.
The distance from the input object and the new offset object is only guaranteed to be exact at the
single fixed point used.

Example
Offset(Rect, 45, 100, “mi”)

See Also

Objects Offset statement, OffsetXY() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 359 MB_Ref.pdf

Reference Guide Chapter 7: OffsetXY() function
OffsetXY() function
Purpose

Returns a copy of the input object offset by the specified X and Y offset values

Syntax
OffsetXY(object, xoffset, yoffset, units)

object is the object being offset,

xoffset and yoffset are the distance along the x and y axes to offset the object, and

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

This function produces a new object that is a copy of the input object offset by xoffset along the X-axis
and yoffset along the Y-axis. The unit string, similar to that used for ObjectLen or Perimeter, is the unit
for the distance values. The DistanceType used is Spherical unless the Coordinate System is
NonEarth. For NonEarth, Cartesian DistanceType is automatically used. The coordinate system used
is the coordinate system of the input object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into the
Coordinate System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the
fixed point. The actual converted distance measurement could vary at different locations on the object.
The distance from the input object and the new offset object is only guaranteed to be exact at the
single fixed point used.

Example
OffsetXY(Rect, 92, -22, “mi”)

See Also

Offset() function

OnError statement
Purpose

Enables an error-handling routine.

Syntax
OnError Goto { label | 0 }

label is a label within the same procedure or function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 360 MB_Ref.pdf

Reference Guide Chapter 7: OnError statement
Restrictions

You cannot issue an OnError statement through the MapBasic window.

Description

The OnError statement either enables an error-handling routine, or disables a previously enabled
error-handler. (An error-handler is a group of statements executed in the event of an error).

BASIC programmers should note that in the MapBasic syntax, OnError is a single word.

An OnError Goto label statement enables an error-handling routine. Following such an OnError
statement, if the application generates an error, MapBasic will jump to the label line specified. The
statements following the label presumably correct the error condition, warn the user about the error
condition, or both. Within the error-handling routine, use a Resume statement to resume program
execution.

Once you have inserted error-handling statements in your program, you may need to place a flow-
control statement (for example, Exit Sub or End Program) immediately before the error handler’s
label. This prevents the program from unintentionally “falling through” to the error handling statements,
but it does not prevent MapBasic from calling the error handler in the event of an error. See example
below.

An OnError Goto 0 statement disables the current error-handling routine. If an error occurs while there
is no error-handling routine, MapBasic will display an error dialog, then halt the application.

Each error handler is local to a particular function or procedure. Thus, a sub procedure can define an
error handler by issuing a statement such as this:

OnError Goto recover

(assuming that the same procedure contains a label called “recover”). If, after executing the above
OnError statement, the procedure issues a Call statement to call another sub procedure, the “recover”
error handler is suspended until the program returns from the Call. This is because each label (for
example, “recover”) is local to a specific procedure or function. With this arrangement, each function
and each sub procedure can have its own error handling.

Note: If an error occurs within an error-handling routine, your MapBasic program halts.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 361 MB_Ref.pdf

Reference Guide Chapter 7: Open File statement
Example
OnError GoTo no_states
Open Table ”states”

OnError GoTo no_cities
Open Table ”cities”

Map From cities, states

after_mapfrom:
OnError GoTo 0
’
’ ...
’

End Program

no_states:
Note ”Could not open table States... no Map used.”
Resume after_mapfrom

no_cities:
Note ”City data not available...”
Map From states
Resume after_mapfrom

See Also

Err() function, Error statement, Error$() function, Resume statement

Open File statement
Purpose

Opens a file for input/output.

Syntax
Open File filespec

[For { Input | Output | Append | Random | Binary }]
[Access { Read | Write | Read Write }]
As [#] filenum
[Len = recordlength]
[ByteOrder { LOWHIGH | HIGHLOW }]
[CharSet char_set]

filespec is a String: the name of the file to be opened

filenum is an Integer number to associate with the open file; this number is used in subsequent
operations (for example, Get, Put)

recordlength identifies the number of characters per record, including any end-of-line markers used;
applies only to Random access

char_set is the name of a character set; see the separate CharSet discussion

Restrictions

You cannot issue an Open File statement through the MapBasic window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 362 MB_Ref.pdf

Reference Guide Chapter 7: Open File statement
Description

The Open File statement opens a file, so that MapBasic can read information from and/or write
information to the file.

In MapBasic, there is an important distinction between files and tables. MapBasic provides one set of
statements for using tables (for example, Open Table, Fetch, and Select) and another set of
statements for using other files in general (for example, Open File, Get, Put, Input #, Print #).

The For clause specifies what type of file i/o to perform: Sequential, Random, or Binary. Each type of i/
o is described below. If you omit the For clause, the file is opened in Random mode.

Sequential File I/O
If you are going to read a text file that is variable-length (for example, one line is 55 characters long,
and the next is 72 characters long, etc.), you should specify a Sequential mode: Input, Output, or
Append.

If you specify the For Input clause, you can read from the file by issuing Input # and Line Input #
statements.

If you specify the For Output clause or the For Append clause, you can write to the file by issuing
Print # and Write # statements.

If you specify For Input, the Access clause may only specify Read; conversely, if you specify For
Output, the Access clause may only specify Write.

Do not specify a Len clause for files opened in any of the Sequential modes.

Random File I/O
If the text file you are going to read is fixed-length (for example, every line is 80 characters long), you
can access the file in Random mode, by specifying the clause: For Random.

When you open a file in Random mode, you must provide a Len = recordlength clause to specify the
record length. The recordlength value should include any end-of-line designator, such as a carriage-
return line-feed sequence.

When using Random mode, you can use the Access clause to specify whether you intend to Read
from the file, Write to the file, or do both (Read Write). After opening a file in Random mode, use the
Get and Put statements to read from and write to the file.

Binary File I/O
In Binary access, MapBasic converts MapBasic variables to binary values when writing, and converts
from binary values when reading. Storing numerical data in a Binary file is more compact than storing
Binary data in a text file; however, Binary files cannot be displayed or printed directly, as can text files.

To open a file in Binary mode, specify the clause: For Binary.

When using Binary mode, you can use the Access clause to specify whether you intend to Read from
the file, Write to the file, or do both (Read Write). After opening a file in Binary mode, use the Get and
Put statements to read from and write to the file.

Do not specify a Len clause or a CharSet clause for files opened in Binary mode.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 363 MB_Ref.pdf

Reference Guide Chapter 7: Open Report statement
Controlling How the File Is Interpreted
The CharSet clause specifies a character set. The char_set parameter should be a string constant,
such as “WindowsLatin1”. If you omit the CharSet clause, MapInfo Professional uses the default
character set for the hardware platform that is in use at run-time. Note that the CharSet clause only
applies to files opened in Input, Output, or Random modes. See the CharSet clause discussion for
more information.

If you open a file for Random or Binary access, the ByteOrder clause specifies how numbers are
stored within the file.

If your application will run on only one hardware platform, you do not need to be concerned with byte
order; MapBasic simply uses the byte-order scheme that is “native” to that platform. However, if you
intend to read and write binary files, and you need to transport the files across multiple hardware
platforms, you may need to use the ByteOrder clause.

Examples
Open File ”cxdata.txt” For INPUT As #1
Open File ”cydata.txt” For RANDOM As #2 Len=42
Open File ”czdata.bin” For BINARY As #3

See Also

Close File statement, EOF() function, Get statement, Input # statement, Open Table statement,
Print # statement, Put statement, Write # statement

Open Report statement
Purpose

Loads a report into the Crystal Report Designer module.

Syntax
Open Report reportfilespec

reportfilespec is a full path and filename for an existing report file.

See Also

Create Report From Table statement

Open Table statement
Purpose

Opens a MapInfo Professional table for input/output.

Syntax
Open Table filespec [As tablename]

[Hide] [ReadOnly] [Interactive] [Password pwd]
[NoIndex] [View Automatic] [DenyWrite]

filespec specifies which MapInfo table to open

tablename is an “alias” name by which the table should be identified
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 364 MB_Ref.pdf

Reference Guide Chapter 7: Open Table statement
pwd is the database-level password for the database, to be specified when database security is turned
on. Applies to Access tables only.

Description

The Open Table statement opens an existing table. The effect is comparable to the effect of an end-
user choosing File > Open and selecting a table to open. A table must be opened before MapInfo
Professional can process that table in any way.

Note: The name of the file to be opened (specified by the filespec parameter) must correspond to a
table which already exists; to create a new table from scratch, see the Create Table statement.
The Open Table statement only applies to MapInfo tables; to use files that are in other
formats, see the Register Table and Open File statements.

If the statement includes an As clause, MapInfo Professional opens the table under the “alias” table
name indicated by the tablename parameter, rather than by the actual table name. This affects the way
the table name appears in lists, such as the list that appears when a user chooses File > Close.
Furthermore, when an Open Table statement specifies an alias table name, subsequent MapBasic
table operations (for example, a Close Table statement) must refer to the alias table name, rather than
the permanent table name. An alias table name remains in effect until the table is closed. Opening a
table under an alias does not have the effect of permanently renaming the table.

If the statement includes the Hide clause, the table will not appear in any dialogs that display lists of
open tables (for example, the File > Close dialog). Use the Hide clause if you need to open a table that
should remain hidden to the user. If the statement includes the ReadOnly clause, the user is not
allowed to edit the table.

The optional Interactive keyword tells MapBasic to prompt the user to locate the table if it is not found
at the specified path. The Interactive keyword is useful in situations where you do not know the
location of the user’s files. If the statement includes the NoIndex keyword, the MapInfo index will not
be re-built for an MS Access table when opened.

View Automatic is an optional clause to the Open Table statement that allows the MapInfo table,
workspace or application file associated with a hotlink object to launch in the currently running instance
of MapInfo Professional or start a new instance if none is running. If View Automatic is present, after
opening the table, MapInfo Professional will either add it to an existing mapper, open a new mapper or
open a browser. This is especially useful with the HotLinks feature.

DenyWrite is an optional clause for MS Access tables only that if specified, other users will not be able
to edit the table. If another user already has read-write access to the table, the Open Table command
will fail.

Attempting to open two tables that have the same name

MapInfo Professional can open two separate tables that have the same name. In such cases, MapInfo
Professional needs to open the second table under a special name, to avoid conflicts. Depending on
whether the Open Table statement includes the Interactive keyword, MapBasic either assigns the
special table name automatically, or displays a dialog to let the user select a special table name.

For example, a user might keep two copies of a table called “Sites”, one copy in a directory called 1993
(for example, “C:\1993\SITES.TAB”) and another, perhaps newer copy of the table in a different
directory (for example, “C:\1994\SITES.TAB”). When the user (or an application) opens the first Sites
table, MapInfo Professional opens the table under its default name (“Sites”). If an application issues an
Open Table statement to open the second Sites table, MapInfo Professional automatically opens the
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 365 MB_Ref.pdf

Reference Guide Chapter 7: Open Window statement
second table under a modified name (for example, “Sites_2”) to distinguish it from the first table.
Alternately, if the Open Table statement includes the Interactive clause, MapInfo Professional
displays a dialog to let the user select the alternate name.

Regardless of whether the Open Table statement specifies the Interactive keyword, the result is that a
table may be opened under a non-default name. Following an Open Table statement, issue the
function call:

TableInfo(0, TAB_INFO_NAME)

to determine the name with which MapInfo Professional opened the table.

Attempting to open a table that is already open

If a table is already open, and an Open Table...As statement tries to re-open the same table under a
new name, MapBasic generates an error code. A single table may not be open under two different
names simultaneously.

However, if a table is already open, and then an Open Table statement tries to re-open that table
without specifying a new name, MapBasic does not generate an error code. The table simply remains
open under its current name.

Example

The following example opens the table STATES.TAB, then displays the table in a Map window.
Because the Open Table statement uses an As clause to open the table under an alias (USA), the
Map window’s title bar will say “USA Map” rather than “States Map.”

Open Table ”States” As USA
Map From USA

The next example follows an Open Table statement with a TableInfo() function call. In the unlikely
event that a separate table by the same name (States) is already open when you run the program
below, MapBasic will open “C:STATES.TAB” under a special alias (for example, “STATES_2”). The
TableInfo() function call returns the alias under which the “C:STATES.TAB” table was opened.

Include ”MAPBASIC.DEF”
Dim s_tab As String
Open Table ”C:states”
s_tab = TableInfo(0, TAB_INFO_NAME)
Browse * From s_tab
Map From tab

See Also

Close Table statement, Create Table statement, Delete statement, Fetch statement, Insert
statement, TableInfo() function, Update statement

Open Window statement
Purpose

Opens / shows a window.

Syntax
Open Window window_name

window_name is a window name (for example, Ruler) or window code (for example, WIN_RULER)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 366 MB_Ref.pdf

Reference Guide Chapter 7: Overlap() function
Description

The Open Window statement displays an MapInfo Professional window. For example, the following
statement displays the statistics window, as if the user had chosen Options > Show Statistics Window.

 Open Window Statistics

The window_name parameter should be one of the window names from the table below.

You cannot open a document window (Map, Graph, Browse, Layout) through the Open Window
statement. There is a separate statement for opening each type of document window (see the Map,
Graph, Browse, Layout, and Create Redistricter statements).

See Also

Close Window statement, Print statement, Set Window statement

Overlap() function
Purpose

Returns an object representing the geographic intersection of two objects; produces results similar to
MapInfo’s Objects > Erase Outside command.

Syntax
Overlap(object1 , object2)

object1 is an object; cannot be a point or text object

object2 is an object; cannot be a point or text object

Return Value

An object that is the geographic intersection of object1 and object2.

Description

The Overlap() function calculates the geographic intersection of two objects (the area covered by both
objects), and returns an object representing that intersection.

MapBasic retains all styles (color, etc.) of the original object1 parameter; then, if necessary, MapBasic
applies the current drawing styles.

Window Name Window Description

MapBasic The MapBasic window. You also can refer to this window by its define code
from MAPBASIC.DEF (WIN_MAPBASIC)

Statistics The Statistics window (WIN_STATISTICS)

Legend The Theme Legend window (WIN_LEGEND)

Info The Info tool window (WIN_INFO)

Ruler The Ruler tool window (WIN_RULER)

Help The Help window (WIN_HELP)

Message The Message window used by the Print statement (WIN_MESSAGE)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 367 MB_Ref.pdf

Reference Guide Chapter 7: OverlayNodes() function
If one of the objects is linear (for example, a polyline) and the other object is closed (for example, a
region), Overlap() returns the portion of the linear object that is covered by the closed object.

See Also

AreaOverlap() function, Erase() function, Objects Intersect statement

OverlayNodes() function
Purpose

Returns an object based on an existing object, with new nodes added at points where the object
intersects a second object.

Syntax
OverlayNodes (input_object, overlay_object)

input_object is the object whose nodes will be included in the output object; may not be a point or text
object

overlay_object is the object that will be intersected with input_object; may not be a point or text object

Return Value

A region object or a polyline object

Description

The OverlayNodes() function returns an object that contains all the nodes in input_object plus nodes
at all locations where input_object intersects with overlay_object.

If the input_object was a closed object (region, rectangle, rounded rectangle or ellipse),
OverlayNodes() returns a region object. If input_object was a linear object (line, polyline or arc),
OverlayNodes() returns a polyline.

The object returned retains all styles (color, etc.) of the original input_object.

To determine whether the OverlayNodes() function added any nodes to the input_object, use the
ObjectInfo() function to count the number of nodes (OBJ_INFO_NPNTS). Even if two objects do
intersect, the OverlayNodes() function will not add any nodes if input_object already has nodes at the
points of intersection.

See Also

Objects Overlay statement

Pack Table statement
Purpose

Provides the functionality of MapInfo’s Table > Maintenance > Pack Table command.

Syntax
Pack Table table { Graphic | Data | Graphic Data } [Interactive]

table is the name of an open table that does not have unsaved changes
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 368 MB_Ref.pdf

Reference Guide Chapter 7: PathToDirectory$() function
Description

To pack a table’s data, include the optional Data keyword. When you pack a table’s data, MapInfo
Professional physically deletes any rows that had been flagged as “deleted.”

To pack a table’s graphical objects, include the optional Graphic keyword. Packing the graphical
objects removes empty space from the map file, resulting in a smaller table. However, packing a table’s
graphical objects may cause editing operations to be slower.

The Pack Table statement can include both the Graphic keyword and the Data keyword, and it must
include at least one of the keywords.

A Pack Table statement may cause map layers to be removed from a Map window, possibly causing
the loss of themes or cosmetic objects.

If you include the Interactive keyword, MapInfo Professional prompts the user to save themes and/or
cosmetic objects (if themes or cosmetic objects are about to be lost). This statement cannot pack
linked tables. Also, this statement cannot pack a table that has unsaved edits. To save edits, use the
Commit statement.

Note: Packing a table can invalidate custom labels that are stored in workspaces. Suppose you
create custom labels and save them in a workspace. If you delete rows from your table and
pack the table, you may get incorrect labels the next time you load the workspace. (Within a
workspace, custom labels are stored with respect to row ID numbers; when you pack a table,
you change the table’s row ID numbers, possibly invalidating custom labels stored in
workspaces.) If you only delete rows from the end of the table (i.e. from the bottom of the
Browser window), packing will not invalidate the custom labels.

Packing Access Tables
The Pack Table statement will save a copy of the original Microsoft Access table without the column
types that MapInfo Professional does not support. If a Microsoft Access table has MEMO, OLE, or
LONG BINARY type columns, those columns will be lost during a pack.

Example
Pack Table parcels Data

See Also

Open Table statement

PathToDirectory$() function
Purpose

Given a file specification, return only the file’s directory.

Syntax
PathToDirectory$(filespec)

filespec is a String expression representing a full file specification

Return Value

String
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 369 MB_Ref.pdf

Reference Guide Chapter 7: PathToFileName$() function
Description

The PathToDirectory$() function returns just the “directory” component from a full file specification.

A full file specification can include a directory and a filename. The following file specification:

”C:\MAPINFO\DATA\WORLD.TAB”

includes the directory “C:\MAPINFO\DATA\”.

Example
Dim s_filespec, s_filedir As String
s_filespec = ”C:\MAPINFO\DATA\STATES.TAB”
s_filedir = PathToDirectory$(s_filespec)

’ s_filedir now contains the string ”C:\MAPINFO\DATA\”

See Also

PathToFileName$() function, PathToTableName$() function

PathToFileName$() function
Purpose

Given a file specification, return just the filename (without the directory).

Syntax
PathToFileName$(filespec)

filespec is a String expression representing a full file specification

Return Value

String

Description

The PathToFileName$() function returns just the “filename” component from a full file specification.

A full file specification can include a directory and a filename. The PathToFileName$() function
returns the file’s name, including the file extension if there is one.

The following file specification:

”C:\MAPINFO\DATA\WORLD.TAB”

includes a directory (“C:\MAPINFO\DATA\”) and a filename (“WORLD.TAB”).

Example
Dim s_filespec, s_filename As String
s_filespec = ”C:\MAPINFO\DATA\STATES.TAB”
s_filename = PathToFileName$(s_filespec)

’ filename now contains the string ”STATES.TAB”

See Also

PathToDirectory$() function, PathToTableName$() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 370 MB_Ref.pdf

Reference Guide Chapter 7: PathToTableName$() function
PathToTableName$() function
Purpose

Given a complete file specification (such as “C:\MapInfo\Data\1995 Data.tab”), returns a string
representing a table alias (such as “_1995_Data”).

Syntax
PathToTableName$(filespec)

filespec is a String expression representing a full file specification

Return Value

String, up to 31 characters long.

Description

Given a full file name that identifies a table’s .TAB file, this function returns a string that represents the
table’s alias. The alias is the name by which a table appears in the MapInfo Professional user interface
(for example, on the title bar of a Browser window).

To convert a file name to a table alias, MapInfo Professional removes the directory path from the
beginning of the string and removes “.TAB” from the end of the string. Any special characters (for
example, spaces or punctuation marks) are replaced with the underscore character (_). If the table
name starts with a number, MapInfo Professional inserts an underscore at the beginning of the alias. If
the resulting string is longer than 31 characters, MapInfo Professional trims characters from the end;
aliases cannot be longer than 31 characters.

Note that a table may sometimes be open under an alias that differs from its default alias. For example,
the following Open Table statement uses the optional As clause to force the World table to use the
alias “Earth”:

Open Table ”C:\MapInfo\Data\World.tab” As Earth

Furthermore, if the user opens two tables that have identical names but different directory locations,
MapInfo Professional assigns the second table a different alias, so that both tables can be open at
once. In either of these situations, the “default alias” returned by PathToTableName$() might not
match the alias under which the table is currently open. To determine the alias under which a table was
actually opened, call TableInfo() with the TAB_INFO_NAME code.

Example
Dim s_filespec, s_tablename As String
s_filespec = ”C:\MAPINFO\DATA\STATES.TAB”
s_tablename = PathToTableName$(s_filespec)
’ s_tablename now contains the string ”STATES”

See Also

PathToDirectory$() function, PathToFileName$() function, TableInfo() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 371 MB_Ref.pdf

Reference Guide Chapter 7: Pen clause
Pen clause
Purpose

Specifies a line style for graphic objects.

Syntax
Pen pen_expr

pen_expr is a Pen expression, for example, MakePen(width, pattern, color)

Description

The Pen clause specifies a line style - in other words, a set of thickness, pattern, and color settings that
dictate the appearance of a line or polyline object.

The Pen clause is not a complete MapBasic statement. Various object-related statements, such as
Create Line, let you include a Pen clause to specify an object’s line style. The keyword Pen may be
followed by an expression which evaluates to a Pen value. This expression can be a Pen variable:

Pen pen_var

or a call to a function (for example, CurrentPen() or MakePen()) which returns a Pen value:

Pen MakePen(1, 2, BLUE)

With some MapBasic statements (for example, Set Map), the keyword Pen can be followed
immediately by the three parameters that define a Pen style (width, pattern, and color) within
parentheses:

Pen(1, 2, BLUE)

Some MapBasic statements take a Pen expression as a parameter (for example, the name of a Pen
variable), rather than a full Pen clause (the keyword Pen followed by the name of a Pen variable). The
Alter Object statement is one example.

The following table summarizes the components that define a Pen:

The available pen patterns appear in the next figure:

Component Description

width Integer value, usually from 1 to 7, representing the thickness of the line (in pixels).
To
create an invisible line style, specify a width of zero, and use a pattern value of 1
(one).

pattern Integer value from 1 to 118; see table below. Pattern 1 is invisible.

color Integer RGB color value; see the RGB() function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 372 MB_Ref.pdf

Reference Guide Chapter 7: PenWidthToPoints() function
Example
Include ”MAPBASIC.DEF”
Dim cable As Object
Create Line

Into Variable cable
(73.5, 42.6) (73.67, 42.9)
Pen MakePen(1, 2, BLACK)

See Also

Alter Object statement, CreateLine() function, Create Pline statement, CurrentPen() function,
MakePen() function, RGB() function, Set Style statement

PenWidthToPoints() function
Purpose

The PenWidthToPoints function returns a point size for a given pen width.

Syntax
PenWidthToPoints(penwidth)

penwidth is an integer greater than 10 representing the pen width.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 373 MB_Ref.pdf

Reference Guide Chapter 7: PointsToPenWidth() function
Return Value

Float

Description

The PenWidthToPoints function takes a pen width and returns the point size for that pen. The pen
width for a line style may be returned by the StyleAttr function. The pen width returned by the
StyleAttr function may be in points or pixels. Pen widths of less than ten are in pixels. Any pen width of
ten or greater is in points. PenWidthToPoints only returns values for pen widths that are in points. To
determine if pen widths are in pixels or points, use the IsPenWidthPixels function.

Example
Include “MAPBASIC.DEF”
Dim CurPen As Pen
Dim Width As Integer
Dim PointSize As Float
CurPen = CurrentPen()
Width = StyleAttr(CurPen, PEN_WIDTH)
If Not IsPenWidthPixels(Width) Then

PointSize = PenWidthToPoints(Width)
End If

See Also

CurrentPen() function, IsPenWidthPixels() function, MakePen() function, Pen clause,
PointsToPenWidth() function, StyleAttr() function

PointsToPenWidth() function
Purpose

The PointsToPenWidth function returns a pen width for a given point size.

Syntax
PointsToPenWidth(pointsize)

pointsize is a float value in tenths of a point.

Return Value

SmallInt

Description

The PointsToPenWidth function takes a value in tenths of a point and converts that into a pen width.

Example
Include “MAPBASIC.DEF”
Dim Width As Integer
Dim p_bus_route As Pen
Width = PointsToPenWidth(1.7)
p_bus_route = MakePen(Width, 9, RED)

See Also

CurrentPen() function, IsPenWidthPixels() function, MakePen() function, Pen clause,
PenWidthToPoints() function, StyleAttr() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 374 MB_Ref.pdf

Reference Guide Chapter 7: Perimeter() function
Perimeter() function
Purpose

Returns the perimeter of a graphical object.

Syntax
Perimeter(obj_expr, unit_name)

obj_expr is an object expression
unit_name is a string representing the name of a distance unit (for example, “km”)

Return Value

Float

Description

The Perimeter() function calculates the perimeter of the obj_expr object. The Perimeter() function is
defined for the following object types: ellipses, rectangles, rounded rectangles, and polygons. Other
types of objects have perimeter measurements of zero.

The Perimeter() function returns a length measurement in the units specified by the unit_name
parameter; for example, to obtain a length in miles, specify “mi” as the unit_name parameter. See the
Set Distance Units statement for the list of valid unit names.

The Perimeter() function returns approximate results when used on rounded rectangles. MapBasic
calculates the perimeter of a rounded rectangle as if the object were a conventional rectangle. For the
most part, MapInfo Professional performs a Cartesian or Spherical operation. Generally, a spherical
operation is performed unless the coordinate system is nonEarth, in which case, a Cartesian operation
is performed.

Example

The following example shows how you can use the Perimeter() function to determine the perimeter of
a particular geographic object.

Dim perim As Float
Open Table ”world”
Fetch First From world
perim = Perimeter(world.obj, ”km”)
’ The variable perim now contains
’ the perimeter of the polygon that’s attached to
’ the first record in the World table.

You can also use the Perimeter() function within the SQL Select statement. The following Select
statement extracts information from the States table, and stores the results in a temporary table called
Results. Because the Select statement includes the Perimeter() function, the Results table will
include a column showing each state’s perimeter.

Open Table ”states”
Select state, Perimeter(obj, ”mi”)

From states
Into results

See Also

Area() function, ObjectLen() function, Set Distance Units statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 375 MB_Ref.pdf

Reference Guide Chapter 7: PointToMGRS$ () function
PointToMGRS$ () function
Purpose

Converts an object value representing a point into a string representing an MGRS (Military Grid
Reference System) coordinate. Only point objects are supported.

Syntax
PointToMGRS$(inputobject)

inputobject is an object expression representing a point

Description

MapInfo Professional automatically converts the input point from the current MapBasic coordinate
system to a Long/Lat (WGS84) datum before performing the conversion to an MGRS string. However,
by default, the MapBasic coordinate system is Long/Lat (no datum); using this as an intermediate
coordinate system can cause a significant loss of precision in the final output, since datumless
conversions are much less accurate. As a rule, the MapBasic coordinate system should be set to either
Long/Lat (WGS84) or to the coordinate system of the source data table, so that no unnecessary
intermediate conversions are performed. See Example 2 below.

Return Value

String

Example

The following examples illustrate the use of both the MGRSToPoint() and PointToMGRS$() functions.

Example 1:

dim obj1 as Object
dim s_mgrs As String
dim obj2 as Object

obj1 = CreatePoint(-74.669, 43.263)
s_mgrs = PointToMGRS$(obj1)
obj2 = MGRSToPoint(s_mgrs)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 376 MB_Ref.pdf

Reference Guide Chapter 7: Print statement
Example 2:

Open Table "C:\Temp\MyTable.TAB" as MGRSfile

’ When using the PointToMGRS$() or MGRSToPoint() functions,
’ it is very important to make sure that the current MapBasic
’ coordsys matches the coordsys of the table where the
’ point object is being stored.

’Set the MapBasic coordsys to that of the table used
Set CoordSys Table MGRSfile

’Update a Character column (e.g. COL2) with MGRS strings from
’a table of points

Update MGRSfile
Set Col2 = PointToMGRS$(obj)

’Update two float columns (Col3 & Col4) with
’CentroidX & CentroidY information
’from a character column (Col2) that contains MGRS strings.

Update MGRSfile
Set Col3 = CentroidX(MGRSToPoint(Col2))

Update mgrstestfile ' MGRSfile
Set Col4 = CentroidY(MGRSToPoint(Col2))

Commit Table MGRSfile
Close Table MGRSfile

See Also

MGRSToPoint() function

Print statement
Purpose

Prints a prompt or a status message in the Message window.

Syntax
Print message

message is a String expression

Description

The Print statement prints a message to the Message window. The Message window is a special
window which does not appear in MapInfo’s standard user interface. The Message window lets you
display custom messages that relate to a MapBasic program. You could use the Message window to
display status messages (“Record deleted”) or prompts for the user (“Select the territory to analyze.”).
To set the font for the Message window, use the Set Window statement. A MapBasic program can
explicitly open the Message window through the Open Window statement.

If a Print statement occurs while the Message window is closed, MapBasic opens the Message
window automatically. The Print statement is similar to the Note statement, in that you can use either
statement to display status messages or debugging messages. However, the Note statement displays
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 377 MB_Ref.pdf

Reference Guide Chapter 7: Print # statement
a dialog box, pausing program execution until the user clicks OK. The Print statement simply prints
text to a window, without pausing the program. Each Print statement is printed to a new line in the
Message window. After you have printed enough messages to fill the Message window, scroll buttons
appear at the right edge of the window, to allow the user to scroll through the messages.

To clear the Message window, print a string which includes the form-feed character (code 12):

Print Chr$(12) ’This statement clears the Message window

By embedding the line-feed character (code 10) in a message, you can force a single message to be
split onto two or more lines. The following Print statement produces a two-line message:

Print ”Map Layers:” + Chr$(10) + ” World, Capitals”

The Print statement converts each Tab character (code 09) to a space (code 32).

Example

The next example displays the Message window, sets the window’s size (three inches wide by one inch
high), sets the window’s font (Helvetica, bold, 10-point), and prints a message to the window.

Include ”MAPBASIC.DEF” ’ needed for color name ’BLUE’
Open Window Message ’ open Message window
Set Window Message

Font (”Helv”, 1, 10, BLUE) ’ Helvetica bold...
Position (0.25, 0.25) ’ place in upper left
Width 3.0 ’ make window 3” wide
Height 1.0 ’ make window 1” high

Print ”MapBasic Dispatcher now on line”

Note: The buffer size for message window text has been doubled to 8191 characters.
See Also

Ask() function, Close Window statement, Note statement, Open Window statement, Set
Window statement

Print # statement
Purpose

Writes data to a file opened in a Sequential mode (Output or Append).

Syntax
Print # file_num [, expr]

file_num is the number of a file opened through the Open File statement

expr is an expression to write to the file
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 378 MB_Ref.pdf

Reference Guide Chapter 7: PrintWin statement
Description

The Print # statement writes data to an open file. The file must be open, in a sequential mode which
allows output (Output or Append).

The file_num parameter corresponds to the number specified in the As clause of the Open File
statement.

MapInfo Professional writes the expression expr to a line of the file. To store a comma-separated list of
expressions in each line of the file, use Write # instead of Print #.

See Also

Line Input statement, Open File statement, Write # statement

PrintWin statement
Purpose

Prints an existing window.

Syntax
PrintWin [Window window_id] [Interactive] [File output_filename] [Overwrite
]

window_id is a window identifier

output_filename is a string representing the name of an output file. If the output file already exists, an
error will occur, unless the Overwrite token is specified.

Description

The PrintWin statement prints a window.

If the statement includes the optional Window clause, MapBasic prints the specified window;
otherwise, MapBasic prints the active window.

The window_id parameter represents a window identifier; see the FrontWindow() and WindowInfo()
functions for more information about obtaining window identifiers.

If you include the Interactive keyword, MapInfo Professional displays the Print dialog. If you omit the
Interactive keyword, MapInfo Professional prints the window automatically, without displaying the
dialog.

Example1
Dim win_id As Integer
Open Table ”world”
Map From world
win_id = FrontWindow()
’
’ knowing the ID of the Map window,
’ the program could now print the map by
’ issuing the statement:
’
PrintWin Window win_id Interactive
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 379 MB_Ref.pdf

Reference Guide Chapter 7: PrismMapInfo() function
Example 2
PrintWin Window FrontWindow() File "c:\output\file.plt"

See Also

FrontWindow() function, Run Menu Command statement, WindowInfo() function

PrismMapInfo() function
Purpose

Returns properties of a Prism Map window.

Syntax
PrismMapInfo(window_id , attribute)

window_id is an Integer window identifier

attribute is an Integer code, indicating which type of information should be returned

Returns

Float, Logical, or String, depending on the attribute parameter.

Description

The PrismMapInfo() function returns information about a Prism Map window.

The window_id parameter specifies which Prism Map window to query. To obtain a window identifier,
call the FrontWindow() function immediately after opening a window, or call the WindowID() function
at any time after the window's creation.

There are several numeric attributes that PrismMapInfo() can return about any given Prism Map
window. The attribute parameter tells the PrismMapInfo() function which Map window statistic to
return. The attribute parameter should be one of the codes from the following table; codes are defined
in MAPBASIC.DEF.

Attribute Return Value

PRISMMAP_INFO_SCALE Float result representing the PrismMaps scale fac-
tor.

PRISMMAP_INFO_BACKGROUND Integer result representing the background color,
see the RGB function.

PRISMMAP_INFO_LIGHT_X Float result representing the X coordinate of the
light in the scene.

PRISMMAP_INFO_LIGHT_Y Float result representing the Y coordinate of the
Light in the scene.

PRISMMAP_INFO_LIGHT_Z Float result representing the Z coordinate of the
Light in the scene.

PRISMMAP_INFO_LIGHT_COLOR Integer result representing the Light color, see the
RGB function.

PRISMMAP_INFO_CAMERA_X Float result representing the X coordinate of the
Camera in the scene.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 380 MB_Ref.pdf

Reference Guide Chapter 7: PrismMapInfo() function
PRISMMAP_INFO_CAMERA_Y Float result representing the Y coordinate of the
Camera in the scene.

PRISMMAP_INFO_CAMERA_Z Float result representing the Z coordinate of the
Camera in the scene.

PRISMMAP_INFO_CAMERA_FOCAL_X Float result representing the X coordinate of the
Cameras FocalPoint in the scene.

PRISMMAP_INFO_CAMERA_FOCAL_Y Float result representing the Y coordinate of the
Cameras FocalPoint in the scene.

PRISMMAP_INFO_CAMERA_FOCAL_Z Float result representing the Z coordinate of the
Camera’s FocalPoint in the scene.

PRISMMAP_INFO_CAMERA_VU_1 Float result representing the first value of the
ViewUp Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VU_2 Float result representing the second value of the
ViewUp Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VU_3 Float result representing the third value of the
ViewUp Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VPN_1 Float result representing the first value of the View
Plane Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VPN_2 Float result representing the second value of the
ViewPlane Unit Normal Vector.

PRISMMAP_INFO_CAMERA_VPN_3 Float result representing the third value of the
ViewPlane Unit Normal Vector.

PRISMMAP_INFO_CAMERA_CLIP_NEAR Float result representing the cameras near clip-
ping plane.

PRISMMAP_INFO_CAMERA_CLIP_FAR Float result representing the cameras far clipping
plane.

PRISMMAP_INFO_INFOTIP_EXPR String for Infotip. not previously documented.

Attribute Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 381 MB_Ref.pdf

Reference Guide Chapter 7: PrismMapInfo() function
Example

Prints out all the state variables specific to the PrismMap window:

include "Mapbasic.def"
Print "PRISMMAP_INFO_SCALE: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_SCALE)
Print "PRISMMAP_INFO_BACKGROUND: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_BACKGROUND)
Print "PRISMMAP_INFO_UNITS: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_UNITS)
Print "PRISMMAP_INFO_LIGHT_X : " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_LIGHT_X)

Print "PRISMMAP_INFO_LIGHT_Y : " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_LIGHT_Y)
Print "PRISMMAP_INFO_LIGHT_Z: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_LIGHT_Z)
Print "PRISMMAP_INFO_LIGHT_COLOR: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_LIGHT_COLOR)
Print "PRISMMAP_INFO_CAMERA_X: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_X)
Print "PRISMMAP_INFO_CAMERA_Y : " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_Y)
Print "PRISMMAP_INFO_CAMERA_Z : " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_Z)

Print "PRISMMAP_INFO_CAMERA_FOCAL_X: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_FOCAL_X)
Print "PRISMMAP_INFO_CAMERA_FOCAL_Y: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_FOCAL_Y)
Print "PRISMMAP_INFO_CAMERA_FOCAL_Z: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_FOCAL_Z)
Print "PRISMMAP_INFO_CAMERA_VU_1: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VU_1)
Print "PRISMMAP_INFO_CAMERA_VU_2: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VU_2)
Print "PRISMMAP_INFO_CAMERA_VU_3: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VU_3)

Print "PRISMMAP_INFO_CAMERA_VPN_1: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VPN_1)
Print "PRISMMAP_INFO_CAMERA_VPN_2: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VPN_2)
Print "PRISMMAP_INFO_CAMERA_VPN_3: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_VPN_3)
Print "PRISMMAP_INFO_CAMERA_CLIP_NEAR: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_CLIP_NEAR)
Print "PRISMMAP_INFO_CAMERA_CLIP_FAR: " + PrismMapInfo(FrontWindow(),
PRISMMAP_INFO_CAMERA_CLIP_FAR)

See Also

Create PrismMap statement, Set PrismMap statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 382 MB_Ref.pdf

Reference Guide Chapter 7: ProgramDirectory$() function
ProgramDirectory$() function
Purpose

Returns the directory path to where the MapInfo Professional software is installed.

Syntax
ProgramDirectory$()

Return Value

String

Description

The ProgramDirectory$() function returns a string representing the directory path where the MapInfo
Professional software is installed.

Example
Dim s_prog_dir As String
s_prog_dir = ProgramDirectory$()

See Also

HomeDirectory$() function, SystemInfo() function

ProgressBar statement
Purpose

Displays a dialog with a Cancel button and a horizontal progress bar.

Syntax
ProgressBar status_message

Calling handler
[Range n]

status_message is a String value displayed as a message in the dialog

handler is the name of a Sub procedure

n is a number at which the job is finished

Restrictions

You cannot issue the ProgressBar statement through the MapBasic window.

Description

The ProgressBar statement displays a dialog with a horizontal progress bar and a Cancel button. The
bar indicates the percentage of completion of a lengthy operation. The user can halt the operation by
clicking the Cancel button. Following the ProgressBar statement, a MapBasic program can call
CommandInfo(CMD_INFO_DLG_OK) to determine whether the operation finished or whether the
user cancelled first (see below).

The status_message parameter is a String value, such as “Processing data...”, which is displayed in
the dialog.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 383 MB_Ref.pdf

Reference Guide Chapter 7: ProgressBar statement
The handler parameter is the name of a sub procedure in the same MapBasic program. As described
below, the sub procedure must perform certain actions in order for it to interact with the ProgressBar
statement.

The n parameter is a number, representing the count value at which the operation will be finished. For
example, if an operation needs to process 7,000 rows of a table, the ProgressBar statement might
specify 7000 as the n parameter. If no Range n clause is specified, the n parameter has a default value
of 100.

When a program issues a ProgressBar statement, MapBasic calls the specified handler sub
procedure. The sub procedure should perform a small amount of processing - a few seconds’ worth of
processing at most - and then it should end. At that time, MapBasic checks to see if the user clicked
the Cancel button. If the user did click Cancel, MapBasic removes the dialog, and proceeds with the
statements which follow the ProgressBar statement (and thus, the lengthy operation is never
completed). Alternately, if the user did not click Cancel, MapBasic automatically calls the handler sub
procedure again. If the user never clicks Cancel, the ProgressBar statement repeatedly calls the
procedure until the operation is finished.

The handler procedure must be written in such a way that each call to the procedure performs only a
small percent of the total job. Once a ProgressBar statement has been issued, MapBasic will
repeatedly call the handler procedure until the user clicks Cancel or until the handler procedure
indicates that the procedure is finished. The handler indicates the job status by assigning a value to the
special MapBasic variable, also named ProgressBar.

If the handler assigns a value of negative one to the ProgressBar variable:

ProgressBar = -1

then MapBasic detects that the operation is finished, and accordingly halts the ProgressBar loop and
removes the dialog. Alternately, if the handler procedure assigns a value other than negative one to the
ProgressBar variable:

ProgressBar = 50

then MapBasic re-displays the dialog’s “percent complete” horizontal bar, to reflect the latest figure of
percent completion. MapBasic calculates the current percent of completion by dividing the current
value of the ProgressBar variable by the Range setting, n . For example, if the ProgressBar statement
specified the Range clause:

Range 400

and if the current value of the ProgressBar variable is 100, then the current percent of completion is
25%, and MapBasic will display the horizontal bar as being 25% filled.

The statements following the ProgressBar statement often must determine whether the ProgressBar
loop halted because the operation was finished, or because the user clicked the Cancel button.
Immediately following the ProgressBar statement, the function call:

CommandInfo(CMD_INFO_DLG_OK)

returns TRUE if the operation was complete, or FALSE if the operation halted because the user clicked
cancel.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 384 MB_Ref.pdf

Reference Guide Chapter 7: ProgressBar statement
Example

The following example demonstrates how a procedure can be written to work in conjunction with the
ProgressBar statement. In this example, we have an operation involving 600 iterations; perhaps we
have a table with 600 rows, and each row must be processed in some fashion. The main procedure
issues the ProgressBar statement, which then automatically calls the sub procedure, write_out. The
write_out procedure processes records until two seconds have elapsed, and then returns (so that
MapBasic can check to see if the user pressed Cancel). If the user does not press Cancel, MapBasic
will repeatedly call the write_out procedure until the entire task is done.

Include ”mapbasic.def”
Declare Sub Main
Declare Sub write_out

Global next_row As Integer

Sub Main
next_row = 1
ProgressBar ”Writing data...” Calling write_out Range 600
If CommandInfo(CMD_INFO_STATUS) Then

Note ”Operation complete! Thanks for waiting.”
Else

Note ”Operation interrupted!”
End If

End Sub

Sub write_out
Dim start_time As Float
start_time = Timer()
’ process records until either (a) the job is done,
’ or (b) more than 2 seconds elapse within this call

Do While next_row <= 600 And Timer() - start_time < 2
’’
’’’ Here, we would do the actual work ’’’
’’’ of processing the file. ’’’
’’
next_row = next_row + 1

Loop

’ Now figure out why the Do loop terminated: was it
’ because the job is done, or because more than 2
’ seconds have elapsed within this iteration?
If next_row > 600 Then

ProgressBar = -1 ’tell caller ”All Done!”
Else

ProgressBar = next_row ’tell caller ”Partly done”
End If

End Sub

See Also

CommandInfo() function, Note statement, Print statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 385 MB_Ref.pdf

Reference Guide Chapter 7: Proper$() function
Proper$() function
Purpose

Returns a mixed-case string, where only the first letter of each word is capitalized.

Syntax
Proper$(string_expr)

string_expr is a string expression

Return Value

String

Description

The Proper$() function first converts the entire string_expr string to lower case, and then capitalizes
only the first letter of each word in the string, thus producing a result string with “proper” capitalization.
This style of capitalization is appropriate for proper names.

Example
Dim name, propername As String

name = ”ed bergen”
propername = Proper$(name)
’ propername now contains the string ”Ed Bergen”

name = ”ABC 123”
propername = Proper$(name)
’ propername now contains the string ”Abc 123”

name = ”a b c d”
propername = Proper$(name)
’ propername now contains the string ”A B C D”

See Also

LCase$() function, UCase$() function

ProportionOverlap() function
Purpose

Returns a number that indicates what percentage of one object is covered by another object.

Syntax
ProportionOverlap(object1, object2)

object1 is the bottom object (not text or points)

object2 is the top object (not text or points)

Return Value

A Float value equal to Area(Overlap(object1,object2)) / Area(object1).

See Also

AreaOverlap() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 386 MB_Ref.pdf

Reference Guide Chapter 7: Put statement
Put statement
Purpose

Writes the contents of a MapBasic variable to an open file.

Syntax
Put [#] filenum, [position] , var_name

filenum is the number of a file opened through an Open File statement

position is the file position to write to (does not apply to sequential file access)

var_name is the name of a variable which contains the data to be written

Description

The Put statement writes to an open file.

Note: If the Open File statement specified a sequential access mode (OUTPUT or APPEND), use
Print # or Write # instead of Put.

If the Open File statement specified Random file access, the Put statement’s Position clause can be
used to indicate which record in the file to overwrite. When the file is opened, the file position points to
the first record of the file (record 1). If the Open File statement specified Binary file access, one
variable can be written at a time. The byte sequence written to the file depends on whether the
hardware platform’s byte ordering; see the ByteOrder clause of the Open File statement. The number
of bytes written depends on the variable type, as summarized below:

The Position parameter sets the file pointer to a specific offset in the file. When the file is opened, the
position is initialized to 1 (the start of the file). As a Put is done, the position is incremented by the
number of bytes written. If the Position clause is not used, the Put simply writes to the current file
position. If the file was opened in BINARY mode, the Put statement cannot specify a variable-length
String variable; any String variable used in a Put statement must be fixed-length. If the file was opened
in RANDOM mode, the Put statement cannot specify a fixed-length String variable which is longer than
the record length of the file.

See Also

EOF() function, Get statement, Open File statement, Print # statement, Write # statement

Variable Type Storage In File

Logical One byte, either 0 or non-zero.

SmallInt Two byte integer

Integer Four byte integer

Float Eight byte IEEE format

String Length of string plus a byte for a 0 string terminator

Date Four bytes: Small integer year, byte month, byte day

Other Variable types Cannot be written.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 387 MB_Ref.pdf

Reference Guide Chapter 7: Randomize statement
Randomize statement
Purpose

Initializes MapBasic’s random number function.

Syntax
Randomize [With seed]

seed is an Integer expression

Description

The Randomize statement “seeds” the random number generator so that later calls to the Rnd()
function produce random results. Without this statement before the first call to Rnd(), the actual series
of random numbers will follow a standard list. In other words, unless the program includes a
Randomize statement, the sequence of values returned by Rnd() will follow the same pattern each
time the application is run.

The Randomize statement is only needed once in a program and should occur prior to the first call to
the Rnd() function.

If you include the With clause, the seed parameter is used as the seed value for the pseudo-random
number generator. If you omit the With clause, MapBasic automatically seeds the pseudo-random
number generator using the current system clock. Use the With clause if you need to create
repeatable test scenarios, where your program generates repeatable sequences of “random” numbers.

Example
Randomize

See Also

Rnd() function

ReadControlValue() function
Purpose

Reads the current status of a control in the active dialog.

Syntax
ReadControlValue(id_num)

id_num is an integer value indicating which control to read

Return Value

Integer, Logical, String, Pen, Brush, Symbol, or Font, depending on the type of control

Description

The ReadControlValue() function returns the current value of one of the controls in an active dialog. A
ReadControlValue() function call is only valid while there is an active dialog; thus, you may only call
the ReadControlValue() function from within a dialog control’s handler procedure.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 388 MB_Ref.pdf

Reference Guide Chapter 7: ReadControlValue() function
The integer id_num parameter specifies which control MapBasic should read. If the id_num parameter
has a value of -1 (negative one), the ReadControlValue() function returns the value of the last control
which was operated by the user. To explicitly specify which control you want to read, pass
ReadControlValue() an Integer ID that identifies the appropriate control.

Note: A dialog control does not have a unique ID unless you include an ID clause in the Dialog
statement’s Control clause. Some types of dialog controls have no readable values (for
example, static text labels).

The chart below summarizes what types of values will be returned by various controls. Note that
special processing is required for handling MultiListBox controls: since the user can select more than
one item from a MultiListBox control, a program may need to call ReadControlValue() multiple times
to obtain a complete list of the selected items.

Control Type: ReadControlValue() Return Value

EditText String, up to 32,767 bytes long, representing the current contents of the text
box; if the EditText is tall enough to accommodate multiple lines of text, the
string may include Chr$(10) values, indicating that the user entered line-
feeds (for example, in Windows, by pressing Ctrl-Enter)

CheckBox TRUE if the check box is currently selected, FALSE otherwise

DocumentWindow Integer that represents the HWND for the window control. This HWND
should be passed as the parent window handle in the Set Next Document
Parent statement.

RadioGroup SmallInt value identifying which button is selected (1 for the first button)

PopupMenu SmallInt value identifying which item is selected (1 for the first item)

ListBox SmallInt value identifying the selected list item (1 for the first, 0 if none)

BrushPicker Brush value

FontPicker Font value

PenPicker Pen value

SymbolPicker Symbol value

MultiListBox Integer identifying one of the selected items. The user can select one or
more of the items in a MultiListBox control. Since ReadControlValue can
only return one piece of information at a time, your program may need to
call ReadControlValue multiple times in order to determine how many items
are selected.
The first call to ReadControlValue will return the number of the first selected
list item (1 if the first list item is selected); the second call will return the
number of the second selected list item, etc. When ReadControlValue
returns zero, the list of selected items has been exhausted. Subsequent
calls to ReadControlValue then begin back at the top of the list of selected
items. If ReadControlValue() returns zero on the first call, none of the list
items are selected.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 389 MB_Ref.pdf

Reference Guide Chapter 7: ReDim statement
Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range
ERR_INVALID_READ_CONTROL error generated if the ReadControlValue() function is called when
no dialog is active.

Example

The following example creates a dialog that asks the user to type a name in a text edit box. If the user
clicks OK, the application calls ReadControlValue() to read in the name that was typed.

Declare Sub Main
Declare Sub okhandler
Sub Main

Dialog
Title ”Sign in, Please”

Control OKButton
Position 135, 120 Width 50
Title ”OK”
Calling okhandler

Control CancelButton
Position 135, 100 Width 50
Title ”Cancel”

Control StaticText
Position 5, 10
Title ”Please enter your name:”

Control EditText
Position 55, 10 Width 160
Value ”(your name here)”
Id 23 ’arbitrary ID number

End Sub

Sub okhandler
’ this sub is called when/if the user
’ clicks the OK control
Note ”Welcome aboard, ” + ReadControlValue(23) + ”!”

End Sub

See Also

Alter Control statement, Dialog statement, Dialog Preserve statement, Dialog Remove
statement

ReDim statement
Purpose

Re-sizes an array variable.

Syntax
ReDim var_name (newsize) [, ...]

var_name is the name of an existing local or global array variable

newsize is an integer value dictating the new array size. The maximum value is 32,767.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 390 MB_Ref.pdf

Reference Guide Chapter 7: ReDim statement
Description

The ReDim statement re-sizes (or “re-dimensions”) one or more existing array variables. The variable
identified by var_name must have already been defined as an array variable through a Dim or a
Global statement.

The ReDim statement can increase or decrease the size of an existing array. If your program no longer
needs a given array variable, the ReDim statement can re-size that array to have zero elements (this
minimizes the amount of memory required to store variables).

Unlike some BASIC languages, MapBasic does not allow custom subscript settings for arrays; a
MapBasic array’s first element always has a subscript of one.

If you store values in an array, and then enlarge the array through the ReDim statement, the values
you stored in the array remain intact.

Example
Dim names_list(10) As String, cur_size As Integer
’ The following statements determine the current
’ size of the array, and then ReDim the array to
’ a size 10 elements larger

cur_size = UBound(names_list)
ReDim names_list(cur_size + 10)

’ The following statement ReDims the array to a
’ size of zero elements. Presumably, this array
’ is no longer needed, and it is resized to zero
’ for the sake of saving memory.

ReDim names_list(0)

As shown below, the ReDim statement can operate on arrays of custom Type variables, and also on
arrays that are Type elements.

Type customer
name As String
serial_nums(0) As Integer

End Type

Dim new_customers(1) As customer

’ First, redimension the ”new_customers” array,
’ making it five items deep:

ReDim new_customers(5)

’ Now, redimension the ”serial_nums” array element
’ of the first item in the ”new_customers” array:

ReDim new_customers(1).serial_nums(10)

See Also

Dim statement, Global statement, UBound() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 391 MB_Ref.pdf

Reference Guide Chapter 7: Register Table statement
Register Table statement
Purpose

Builds a MapInfo Professional table from a spreadsheet, database, text file, raster, or grid image.

Syntax
Register Table source_file

{ Type “NATIVE” |
Type “DBF” [Charset char_set] |
Type “ASCII” [Delimiter delim_char][Titles][CharSet char_set] |
Type “WKS” [Titles] [Range range_name] |
Type “WMS” Coordsys...
Type “WFS” [Charset char_set] Coordsys...[Symbol...]

[Linestyle Pen(...)] [Regionstyle Pen(...) Brush(...)]
Type “XLS” [Titles] [Range range_name] [Interactive] |
Type “Access” Table table_name [Password pwd] [CharSet char_set] }
Type ODBC

Connection { Handle ConnectionNumber | ConnectionString }
Toolkit toolkitname
Cache { On | OFF }
Table SQLQuery
[Versioned {Off | On}]
[Workspace WorkspaceName]
[ParentWorkspace ParentWorkspaceName]

Type "GRID" | Type "RASTER"
[ControlPoints (MapX1 , MapY1) (RasterX1 , RasterY1),
(MapX2 , MapY2) (RasterX2, RasterY2),
(MapX3 , MapY3) (RasterX3, RasterY3)
[, ...]
]
[CoordSys ...]

Type "SHAPEFILE" [Charset char_set] CoordSys...
[PersistentCache { On |Off }]
[Symbol...] [Linestyle Pen(...)]
[Regionstyle Pen(...) Brush(...)] [Interactive]
[Into destination_file]

source_file is a string that specifies the name of an existing database, spreadsheet, text file, raster, or
grid image. If you are registering an Access table, this argument must identify a valid Access db.

char_set is the name of a character set; see the separate CharSet discussion.

delim_char specifies the character used as a column delimiter. If the file uses Tab as the delimiter,
specify 9. If the file uses commas, specify 44.

range_name is a string indicating a named range (for example, “MyTable”) or a cell range (for example,
an Excel range can be specified as “Sheet1!R1C1:R9C6” or as “Sheet1!A1:F9”).

table_name is a string that identifies an Access table.

pwd is the database-level password for the database, to be specified when database security is turned
on.

ConnectionNumber is an integer value that identifies an existing connection to an ODBC database.

ConnectionString is a string used to connect to a database server. See the Server Connect function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 392 MB_Ref.pdf

Reference Guide Chapter 7: Register Table statement
toolkitname is “ODBC” or “ORAINET.”

SQLQuery is the SQL query used to define the MapInfo table.

ControlPoints are optional, but can be specified if the type is Grid or Raster. If the ControlPoints token
is specified, it must be followed by at least 3 pairs of Map and Raster coordinates which are used to
georegister an image. If the ControlPoints are specified, they will override and replace any control
points associated with the image or an associated World file.

For WMS and Shapefiles, the CoordSys clause is mandatory. The compiler will indicate an error if it is
missing. For other Types, the CoordSys clause is optional, but it can be specified for the Grid or
Raster Types. If CoordSys is specified, it will override and replace any coordinate system associated
with the image. This is useful when registering a raster image that has an associated World file.

PersistentCache On specifies if .MAP and .ID files generated during the opening of Shapefiles are
saved on hard disk after closing a table. If PersistentCache is set to Off, then these .MAP and .ID files
will be deleted after closing a table and will be generated each time the table is opened.

Symbol (...) clause specifies the symbol style to be used for a point object type created from a
shapefile

Linestyle Pen (...) clause specifies the line style to be used for a line object type created from a
shapefile

Regionstyle Pen (...) Brush(...) clause specifies the line style and fill style to be used for a region
object type created from a shapefile

The Interactive keyword is optional, but can be specified if the type XLS, Grid, or Raster. If the
Interactive keyword is specified for type Grid or Raster, the user will be prompted for any missing
control point or projection information. If the Interactive keyword is not specified, a .TAB file will be
generated without user input and will be created as though the user had selected “Display” when
opening a raster image from the File > Open dialog.

Note: If the Interactive keyword is specified for type XLS, it instructs the interface to display the Set
Field Properties window when importing Excel files.

destination_file specifies the name to give to the MapInfo table (.TAB file). This string may include a
path; if it does not include a path, the file is built in the same directory as the source file.

Versioned indicates if the table to be opened is an version-enabled (ON) table or not (OFF).

WorkspaceName is the name of the current workspace in which the table will be operated. The name
is case sensitive.

ParentWorkspaceName is the name of parent workspace of the current workspace.

Description

Before you can use a non-native file (for example, a dBASE file) in MapInfo, you must register the file.
The Register Table statement tells MapInfo Professional to examine a non-native file (for example,
filename.DBF) and build a corresponding table file (filename.TAB). Once the Register Table operation
has built a table file, you can access the file as an MapInfo table.

The Register Table statement does not copy or alter the original data file. Instead, it scans the data,
determines the datatypes of the columns, and creates a separate table file. The table is not opened
automatically. To open the table, use an Open Table statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 393 MB_Ref.pdf

Reference Guide Chapter 7: Register Table statement
Note: Each data file need only be registered once. Once the Register Table operation has built the
appropriate table file, subsequent MapInfo Professional sessions simply Open the table, rather
than repeat the Register Table operation.

The Type clause specifies where the file came from originally. This consists of the keyword Type,
followed by one of the following character constants: NATIVE, DBF, ASCII, WKS, XLS, Raster, Access,
or Grid. The other information is necessary for preparing certain types of tables. If the type of file being
registered is a grid, the coordsys string will be read from the grid file and a MapInfo .TAB file will be
created. If a raster file is being registered, the .TAB file that is generated will be the same as if the user
selected ”Display” when opening a raster image from the File> Open dialog.

If the type of file being registered is a grid, the coordsys string will be read from the grid file and a
MapInfo .TAB file will be created. If a raster file is being registered, the .TAB file that is generated
depends upon if georegistration information can be found in the image file or associated World file.

The CharSet clause specifies a character set. The char_set parameter should be a string such as
“WindowsLatin1”. If you omit the CharSet clause, MapInfo Professional uses the default character set
for the hardware platform that is in use at run-time. See the CharSet clause discussion for more
information.

The Delimiter clause is followed by a string containing the delimiter character. The default delimiter is
a TAB. The Titles clause indicates that the row before the range of data in the worksheet should be
used as column titles. The Range clause allows the specification of a named range to use. The Into
clause is used to override the table name or location of the .TAB file. By default, it will be named the
same as the data file, and stored in the same directory. However, when reading a read-only device
such as a CD-ROM, you need to store the .TAB file on a volume that is not read-only.

Registering Access Tables
When you register an Access table, MapInfo Professional checks for a counter column with a unique
index. If there is already a counter column, MapInfo Professional registers that column in the .TAB file.
The column is read-only.

If the Access table does not have a counter column, MapInfo Professional modifies the Access table by
adding a column called MAPINFO_ID with the counter datatype. In this case, the counter column does
not display in MapInfo.

Note: Do not alter the counter column in any way. It must be exclusively maintained automatically by
MapInfo.

Access datatypes are translated into the closest MapInfo datatypes. Special Access datatypes, such
as OLE objects and binary fields, are not editable in MapInfo Professional.

Registering ODBC Tables
Before accessing a table live from a remote database, it is highly recommended that you first open a
map table (for example, canada.tab) for the database table. If you don't open a map table, the entire
database table will be downloaded all at once, which could take a long time.

Open a map table and zoom in to an area that corresponds to a subset of rows you wish to see from
the database table. For example, if you want to download rows pertaining to Ontario, zoom in to
Ontario on the map. As a result, when you open the database table, only rows within the map window's
MBR (minimum bounding rectangle), in this case Ontario, will be downloaded.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 394 MB_Ref.pdf

Reference Guide Chapter 7: Register Table statement
This is a list of known problems/issues with live access:

• Every table must have a single unique key column.
• FastEdit is not supported.
• With MS ACCESS if the key is character, it will not display rows where the key value is less

than the full column width for example, if the key is char(5) the value 'aaaa' will look like a
deleted row.

• For Live Access, the ReadOnly checkbox on the save table dialogue will be grayed out.
• Changes made by another user are not visible until a browser is scrolled or somehow

refreshed. Inserts by another user are not seen until either : 1). An MBR search returns the row
or 2). PACK command is issued In addition if cache is on another users updates may not
appear until the cache is invalidated by a pan or zooming out.

• There will be a problem if a client side join (through SQL Select menu item or MapBasic) is
done against 2 or more SPATIALWARE tables that are stored in different coordinate systems.
This is not an efficient thing to do (it is better to do the join in the SQL statement that defines
the table) but it is a problem in the current build.

• Oracle 7 tables that are indexed on a decimal field larger than 8 bytes will cause MapInfo
Professional to crash when editing.

• If the Cache OFF statement is before the connection string an error will be generated at
compile time.

Registering Shapefiles
When you register shapefiles, they can be opened in MapInfo Professional with read-only access.
Since a shapefile itself does not contain projection information, you must specify a CoordSys clause. It
is also possible to set styles that will be used when shapefile objects are displayed in MapInfo
Professional. Projection and style information is stored as metadata in the TAB file.

Note: INTERACTIVE is not a valid parameter to use when registering SHP files.
Example1

Register Table ”c:\mapinfo\data\rpt23.dbf”
Type ”DBF”
Into ”Report23”

Open Table ”c:\mapinfo\data\Report23”

Example2
Open Table ”C:\Data\CANADA\Canada.tab” Interactive
Map From Canada
set map redraw off
Set Map Zoom 1000 Units ”mi”
set map redraw on
Register Table ”odbc_cancaps”

TYPE ODBC
TABLE ”Select * From informix.can_caps”
CONNECTION

DSN=ius_adak;UID=informix;PWD=informix;DATABASE=sw;HOST=adak;
SERVER=adak_tli;SERVICE=sqlexec;PROTOCOL=onsoctcp;”

Into
”D:\MI\odbc_cancaps.TAB”

Open Table ”D:\MI\odbc_cancaps.TAB” Interactive
Map From odbc_cancaps
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 395 MB_Ref.pdf

Reference Guide Chapter 7: Register Table statement
Example3

Registering a completely georeferenced raster image (the raster handler can return at least 3 control
points and a projection)

Register Table "GeoRef.tif" type "raster" into "GeoRef.TAB"

Example4

Registering a raster image that has an associated World file containing control point information, but no
projection.

Register Table "RasterWithWorld.tif" type "raster" coordsys earth projection 9,
62, "m", -96, 23, 29.5, 45.5, 0, 0 into "RasterWithWorld.TAB"

Example5

Registering a raster image that has no control point or projection information.

Register Table "NoRegistration.BMP" type "raster" controlpoints (1000,2000)
(1,2), (2000,3000) (2, 3), (5000,6000) (5,6) coordsys earth projection 9, 62,
"m", -96, 23, 29.5, 45.5, 0, 0 into "NoRegistration.tab"

Example6

The following example registers a shapefile.

Register Table "C:\Shapefiles\CNTYLN.SHP" TYPE SHAPEFILE Charset "WindowsLatin1"
CoordSys Earth Projection 1, 33 PersistentCache Off linestyle Pen (2,26,16711935)
Into "C:\Temp\CNTYLN.TAB"
Open Table "C:\Temp\CNTYLN.TAB" Interactive
Map From CNTYLN

Example7

The following example creates a tab file and then opens the tab file.

Register Table "Gwmusa" TYPE ODBC
 TABLE "Select * From ""MIUSER"".""GWMUSA"""
 CONNECTION "SRVR=troyny;UID=miuser;PWD=miuser"
 toolkit "ORAINET"
 Versioned On
 Workspace "MIUSER"
 ParentWorkspace "LIVE"
 Into "C:\projects\data\testscripts\english\remote\Gwmusa.tab"

Open Table "C:\Projects\Data\TestScripts\English\remote\Gwmusa.TAB" Interactive
Map From Gwmusa

See Also

Open Table statement, Create Table statement, Server Create Workspace statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 396 MB_Ref.pdf

Reference Guide Chapter 7: Relief Shade statement
Relief Shade statement
Purpose

Adds relief shade information to an open grid table.

Syntax
Relief Shade

Grid tablename
Horizontal xy_plane_angle
Vertical incident_angle
Scale z_scale_factor

tablename is the alias name of the grid to which relief shade information is being calculated.

xy_plane_angle is the direction angle, in degrees, of the light source in the horizontal or xy plane. An
xy_plane_angle of zero represents a light source shining from due East. A positive angle places the
light source counterclockwise, so to place the light source in the NorthWest, set the xy_plane_angle to
135.

incident_angle is the angle of the light source above the horizon or xy plane. An incident_angle of zero
represents a light source right at the horizon. An incident_angle of 90 places the light source directly
overhead.

z_scale_factor is the scale factor applied to the z-component of each grid cell. Increasing the
z_scale_factor enhances the shading effect by exaggerating the vertical component. This can be used
to bring out more detail in relatively flat grids.

Example
Relief Shade

Grid Lumens
Horizontal 135
Vertical 45
Scale 30

Reload Symbols statement
Purpose

Opens and reloads the MapInfo symbol file; this can change the set of symbols displayed in the
Options > Symbol Style dialog.

Syntax 1 (MapInfo 3.0 Symbols)
Reload Symbols

Syntax 2 (Bitmap File Symbols)
Reload Custom Symbols From directory

directory is a string representing a directory path.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 397 MB_Ref.pdf

Reference Guide Chapter 7: RemoteMapGenHandler procedure
Description

This statement is used by the SYMBOL.MBX utility, which allows users to create custom symbols.

Note: MapInfo 3.0 Symbols refers to the symbol set that came with MapInfo for Windows 3.0 and has
been maintained in subsequent versions of MapInfo Professional.

See Also

Alter Object statement

RemoteMapGenHandler procedure
Purpose

A reserved procedure name, called when an OLE Automation client calls the MapGenHandler
Automation method.

Syntax
Declare Sub RemoteMapGenHandler
Sub RemoteMapGenHandler

 statement_list
End Sub

statement_list is a list of MapBasic statements to execute when the OLE Automation client calls the
MapGenHandler method.

Description

RemoteMapGenHandler is a special-purpose MapBasic procedure name, which is invoked through
OLE Automation. If you are using OLE Automation to control MapInfo, and you call the
MapGenHandler method, MapInfo Professional calls the RemoteMapGenHandler procedures of any
MapBasic applications that are running. The MapGenHandler method is part of the MapGen
Automation model introduced in MapInfo Professional 4.1.

The MapGenHandler Automation method takes one argument: a string. Within the
RemoteMapGenHandler procedure, you can retrieve the string argument by issuing the following
function call ...

CommandInfo(CMD_INFO_MSG)

... and assigning the results to a String variable.

Example

For an example of using RemoteMapGenHandler, see the sample program MAPSRVR.MB.

RemoteMsgHandler procedure
Purpose

A reserved procedure name, called when a remote application sends an execute message.

Syntax
Declare Sub RemoteMsgHandler
Sub RemoteMsgHandler

 statement_list
End Sub

statement_list is a list of statements to execute upon receiving an execute message
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 398 MB_Ref.pdf

Reference Guide Chapter 7: RemoteQueryHandler() function
Description

RemoteMsgHandler is a special-purpose MapBasic procedure name that handles inter-application
communication. If you run a MapBasic application that includes a procedure named
RemoteMsgHandler, MapInfo Professional automatically calls the RemoteMsgHandler procedure
every time another application (for example, a spreadsheet or database package) issues an “execute”
command. The MapBasic procedure then can call CommandInfo() to retrieve the string
corresponding to the execute command.

You can use the End Program statement to terminate a RemoteMsgHandler procedure once it is no
longer wanted. Conversely, you should be careful not to issue an End Program statement while the
RemoteMsgHandler procedure is still needed.

Inter-Application Communication Using Windows DDE

If a Windows application is capable of conducting a DDE (Dynamic Data Exchange) conversation, that
application can initiate a conversation with MapInfo. In the conversation, the external application is the
client (active party), and a specific MapBasic application is the server (passive party).

Each time the DDE client sends an execute command, MapInfo Professional calls the server’s
RemoteMsgHandler procedure. Within the RemoteMsgHandler procedure, you can use function call:

CommandInfo(CMD_INFO_MSG)

to retrieve the string sent by the remote application. The DDE conversation must use the name of the
sleeping application (for example, “C:\MAPBASIC\DISPATCH.MBX”) as the topic in order to facilitate
RemoteMsgHandler functionality.

See Also

DDEExecute statement, DDEInitiate() function, SelChangedHandler procedure, ToolHandler
procedure, WinChangedHandler procedure, WinClosedHandler procedure

RemoteQueryHandler() function
Purpose

A special function, called when a MapBasic program acts as a DDE server, and the DDE client
performs a “peek” request.

Syntax
Declare Function RemoteQueryHandler() As String
Function RemoteQueryHandler() As String

 statement_list
End Function

statement_list is a list of statements to execute upon receiving a peek request

Description

The RemoteQueryHandler() function works in conjunction with DDE (Dynamic Data Exchange). For
an introduction to DDE, see the MapBasic User Guide. An external application can initiate a DDE
conversation with your MapBasic program. To initiate the conversation, the external application uses
“MapInfo” as the DDE application name, and it uses the name of your MapBasic application as the
DDE topic. Once the conversation is initiated, the external application (the client) can issue peek
requests to request data from your MapBasic application (the server).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 399 MB_Ref.pdf

Reference Guide Chapter 7: Remove Cartographic Frame statement
To handle peek requests, include a function called RemoteQueryHandler() in your MapBasic
application. When the client application issues a peek request, MapInfo Professional automatically
calls the RemoteQueryHandler() function. The client’s peek request is handled synchronously; the
client waits until RemoteQueryHandler() returns a value.

Note: The DDE client can peek at the global variables in your MapBasic program, even if you do not
define a RemoteQueryHandler() function. If the client issues a peek request using the name
of a MapBasic global variable, MapInfo Professional automatically returns the global’s value to
the client instead of calling RemoteQueryHandler(). In other words, if the data you want to
expose is already stored in global variables, you do not need RemoteQueryHandler().

Example

The following example calls CommandInfo() to determine the item name specified by the DDE client.
The item name is used as a flag; in other words, this program decides which value to return based on
whether the client specified “code1” as the item name.

Function RemoteQueryHandler() As String
Dim s_item_name As String

s_item_name = CommandInfo(CMD_INFO_MSG)

If s_item_name = ”code1” Then
RemoteQueryHandler = custom_function_1()

Else
RemoteQueryHandler = custom_function_2()

End If

End Function

See Also

DDEInitiate() function, RemoteMsgHandler procedure

Remove Cartographic Frame statement
Purpose

The Remove Cartographic Frame statement allows you to remove cartographic frames from an
existing cartographic legend created with the Create Cartographic Legend statement.

Syntax
Cartographic Frame

[Window legend_window_id]
Id frame_id, frame_id, frame_id, ...

legend_window_id is an Integer window identifier which you can obtain by calling the FrontWindow()
and WindowId() functions.

frame_id is the ID of the frame on the legend. You cannot use a layer name. For example, three frames
on a legend would have the successive ID’s 1, 2, and 3.

See Also

Add Cartographic Frame statement, Alter Cartographic Frame statement, Create Cartographic
Legend statement, Set Cartographic Legend statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 400 MB_Ref.pdf

Reference Guide Chapter 7: Remove Map statement
Remove Map statement
Purpose

Removes one or more layers from a Map window.

Syntax
Remove Map [Window window_id]

Layer map_layer [, map_layer . . .] [Interactive]

window_id is the Integer window identifier of a Map window; to obtain a window identifier, call
FrontWindow() or WindowID()

map_layer specifies which map layer(s) to remove; see examples below

Description

The Remove Map statement removes one or more layers from a Map window. If no window_id is
provided, the statement affects the topmost Map window.

The map_layer parameter can be an integer greater than zero, a string containing the name of a table,
or the keyword Animate, as summarized in the following table.

If you include the Interactive keyword, and if the layer removal will cause the loss of labels or themes,
MapInfo Professional displays a dialog that allows the user to save (a workspace), discard the labels
and themes, or cancel the layer removal. If you omit the Interactive keyword, the user is not prompted.

A Remove Map statement does not close any tables; it only affects the number of layers displayed in
the Map window. If a Remove Map statement removes the last non-cosmetic layer in a Map window,
MapInfo Professional automatically closes the window.

See Also

Create Map statement, Map statement, Set Map statement

Examples Descriptions of Examples

Remove Map Layer 1 If you specify “1” (one) as the map_layer parameter, the top
map layer (other than the Cosmetic layer) is removed. Specify
“1, 2” to remove the top two layers.

Remove Map Layer ”Zones” The Zones layer is removed (assuming that one of the layers in
the map is named “Zones”).

Remove Map Layer ”Zones(1)” The first thematic layer based on the Zones layer is removed.

Remove Map Layer Animate The animation layer is removed. To learn how to add an anima-
tion layer, see the Add Map statement.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 401 MB_Ref.pdf

Reference Guide Chapter 7: Rename File statement
Rename File statement
Purpose

Changes the name of a file.

Syntax
Rename File old_filespec As new_filespec

old_filespec is a String representing an existing file’s name (and, optionally, path); the file must not be
open

new_filespec is a String representing the new name (and, optionally, path) for the file

Description

The Rename File statement renames a file.

The new_filespec parameter specifies the file’s new name. If new_filespec contains a directory path
that differs from the file’s original location, MapInfo Professional moves the file to the specified
directory.

Example
Rename File ”startup.wor” As ”startup.bak”

See Also

Rename File statement, Save File statement

Rename Table statement
Purpose

Changes the names (and, optionally, the location) of the files that make up a table.

Syntax
Rename Table table As newtablespec

table is the name of an open table

newtablespec is the new name (and, optionally, path) for the table

Description

The Rename Table statement assigns a new name to an open table.

The newtablespec parameter specifies the table’s new name. If newtablespec contains a directory
name, MapBasic attempts to move the table to the specified directory in addition to renaming the table.
The Rename Table statement renames the physical files which comprise a table. This effect is
permanent (unless/until another Rename Table statement is issued).

Note: This action can invalidate existing workspaces. Any workspaces created before the
renaming operation will refer to the table by its previous, no-longer-applicable name.

Do not use the Rename Table statement to assign a temporary, working table name. If you need to
assign a temporary name, use the Open Table statement’s optional As clause.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 402 MB_Ref.pdf

Reference Guide Chapter 7: Reproject statement
The Rename Table statement cannot rename a table that is actually a “view.” For example, a
StreetInfo table (such as SF_STRTS) is actually a view, combining two other tables (SF_STRT1 and
SF_STRT2). You could not rename the SF_STRTS table by calling Rename Table. You cannot
rename temporary query tables (for example, QUERY1). You cannot rename tables that have unsaved
edits; if a table has unsaved edits, you must either save or discard the edits (Commit or Rollback)
before renaming.

Example

The following example renames the table casanfra as sf_hiway.

Open Table ”C:\DATA\CASANFRA.TAB”
Rename Table CASANFRA As ”SF_HIWAY.TAB”

The following example renames a table and moves it to a different directory path.

Open Table ”C:\DATA\CASANFRA.TAB”
Rename Table CASANFRA As ”c:\MAPINFO\SF_HIWAY”

See Also

Close Table statement, Drop Table statement

Reproject statement
Purpose

Allows you to specify which columns should appear the next time a table is browsed. This statement
has been deprecated.

Resume statement
Purpose

Returns from an OnError error handler.

Syntax
Resume { 0 | Next | label }

label is a label within the same procedure or function

Restrictions

You cannot issue a Resume statement through the MapBasic window.

Description

The Resume statement tells MapBasic to return from an error-handling routine.

The OnError statement enables an error-handling routine, which is a group of statements MapBasic
carries out in the event of a run-time error. Typically, each error-handling routine includes one or more
Resume statements. The Resume statement causes MapBasic to exit the error-handling routine.

The various forms of the Resume statement let the application dictate which statement MapBasic is to
execute after exiting the error-handling routine:

A Resume 0 statement tells MapBasic to retry the statement which generated the error.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 403 MB_Ref.pdf

Reference Guide Chapter 7: RGB() function
A Resume Next statement tells MapBasic to go to the first statement following the statement which
generated the error.

A Resume label statement tells MapBasic to go to the line identified by the label. Note that the label
must be in the same procedure.

Example
OnError GoTo no_states
Open Table ”states”
Map From states

after_mapfrom:
 ...

End Program
no_states:

Note ”Could not open States; no Map used.”
Resume after_mapfrom

See Also

Err() function, Error statement, Error$() function, OnError statement

RGB() function
Purpose

Returns an RGB color value calculated from Red, Green, Blue components.

Syntax
RGB(red, green, blue)

red is a numeric expression from 0 to 255, representing a concentration of red

green is a numeric expression from 0 to 255, representing a concentration of green

blue is a numeric expression from 0 to 255, representing a concentration of blue

Return Value

Integer

Description

Some MapBasic statements allow you to specify a color as part of a pen or brush definition (for
example, the Create Point statement). MapBasic pen and brush definitions require that each color be
specified as a single integer value, known as an RGB value. The RGB() function lets you calculate
such an RGB value.

Colors are often defined in terms of the relative concentrations of three components - the red, green
and blue components. Accordingly, the RGB() function takes three parameters - red, green, and blue -
each of which specifies the concentration of one of the three primary colors. Each color component
should be an integer value from 0 to 255, inclusive.

The RGB value of a given color is calculated by the formula:

(red * 65536) + (green * 256) + blue

The standard definitions file, MAPBASIC.DEF, includes Define statements for several common colors
(BLACK, WHITE, RED, GREEN, BLUE, CYAN, MAGENTA, and YELLOW). If you want to specify red,
you can simply use the identifier RED instead of calling RGB().
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 404 MB_Ref.pdf

Reference Guide Chapter 7: Right$() function
Example
Dim red,green,blue,color As Integer
red = 255
green = 0
blue = 0
color = RGB(red, green, blue)

’ the RGB value stored in the variable: color
’ will represent pure, saturated red.

See Also

Brush clause, Font clause, Pen clause, Symbol clause

Right$() function
Purpose

Returns part or all of a string, beginning at the right end of the string.

Syntax
Right$(string_expr, num_expr)

string_expr is a string expression

num_expr is a numeric expression

Return Value

String

Description

The Right$() function returns a string which consists of the rightmost num_expr characters of the
string expression string_expr.

The num_expr parameter should be an integer value, zero or larger. If num_expr has a fractional value,
MapBasic rounds to the nearest integer. If num_expr is zero, Right$() returns a null string. If
num_expr is larger than the number of characters in the string_expr string, Right$() returns a copy of
the entire string_expr string.

Example
Dim whole, partial As String
whole = ”Afghanistan”
partial = Right$(whole, 4)

’ at this point, partial contains the string: ”stan”

See Also

Left$() function, Mid$() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 405 MB_Ref.pdf

Reference Guide Chapter 7: Rnd() function
Rnd() function
Purpose

Returns a random number.

Syntax
Rnd(list_type)

list_type selects the kind of random number list

Return Value

A number of type Float between 0 and 1 (exclusive)

Description

The Rnd() function returns a random floating-point number, greater than zero and less than one.

The conventional use is of the form Rnd(1), in which the function returns a random number. The
sequence of random numbers is always the same unless you insert a Randomize statement in the
program. Any positive list_type parameter value produces this type of result.

A less common use is the form Rnd(0), which returns the previous random number generated by the
Rnd() function. This functionality is provided primarily for debugging purposes.

A very uncommon use is a call with a negative list_type value, such as Rnd(-1). For a given negative
value, the Rnd() function always returns the same number - regardless of whether you have issued a
Randomize statement. This functionality is provided primarily for debugging purposes.

Example
Chknum = 10 * Rnd(1)

See Also

Randomize statement

Rollback statement
Purpose

Discards a table’s unsaved edits.

Syntax
Rollback Table tablename

tablename is the name of an open table

Description

If the specified table has been edited, but the edits have not been saved, the Rollback statement
discards the unsaved edits. The user can obtain the same results by choosing File > Revert, except
that the Revert command displays a dialog box.

Note: When you Rollback a query table, MapInfo Professional discards any unsaved edits in the
permanent table used for the query (except in cases where the query produces a join, or the
query produces aggregated results, for example, using the Select statement’s Group By
clause).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 406 MB_Ref.pdf

Reference Guide Chapter 7: Rotate() function
For example, if you edit a permanent table (such as WORLD), make a selection from WORLD, and
browse the selection, MapInfo Professional will “snapshot” the Selection table, and call the snapshot
(something like) QUERY1. If you then Rollback the QUERY1 table, MapInfo Professional discards any
unsaved edits in the WORLD table, since the WORLD table is the table on which QUERY1 is based.

Using a Rollback statement on a linked table discards the unsaved edits and returns the table to the
state it was in prior to the unsaved edits.

Example
If keep_changes Then

Commit Table towns
Else

Rollback Table towns
End If

See Also

Commit Table statement

Rotate() function
Purpose

Allows an object (not a text object) to be rotated about the rotation anchor point.

Syntax
Rotate(object, angle)

object represents an object that can be rotated. It cannot be a text object.

angle is a float value that represents the angle (in degrees) to rotate the object.

Return Value

A rotated object.

Description

Rotates all object types except for text objects without altering the source object in any way.

To rotate text objects, use the Alter Object OBJ_GEO_TEXTANGLE statement.

If an arc, ellipse, rectangle, or rounded rectangle is rotated, the resultant object will be converted to a
polyline/polygon so that the nodes can be rotated.

Example
dim RotateObject as object
Open Table "C:\MapInfo_data\TUT_USA\USA\STATES.TAB"
map from states
select * from States where state = "IN"
RotateObject = rotate(selection.obj, 45)
insert into states (obj) values (RotateObject)

See Also

RotateAtPoint() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 407 MB_Ref.pdf

Reference Guide Chapter 7: RotateAtPoint() function
RotateAtPoint() function
Purpose

Allows an object (not a text object) to be rotated about a specified anchor point.

Syntax
RotateAtPoint(object, angle, anchor_point_object)

object represents an object that can be rotated. It cannot be a text object.

angle is a float value that represents the angle (in degrees) to rotate the object.

anchor_point_object is an object representing the anchor point which the object nodes are rotated
about.

Return Value

A rotated object.

Description

Rotates all object types except for text objects without altering the source object in any way.

To rotate text objects, use the Alter Object OBJ_GEO_TEXTANGLE statement.

If an arc, ellipse, rectangle, or rounded rectangle is rotated, the resultant object will be converted to a
polyline/polygon so that the nodes can be rotated.

Example
dim RotateAtPointObject as object
dim obj1 as object
dim obj2 as object
Open Table "C:\MapInfo_data\TUT_USA\USA\STATES.TAB"]
map from states
select * from States where state = "CA"
obj1 = selection.obj
select * from States where state = "NV"
obj2 = selection.obj
oRotateAtPointObject = RotateAtPoint(obj1 , 65, centroid(obj2))
insert into states (obj) values (RotateAtPointObject)

See Also

Rotate() function

Round() function
Purpose

Returns a number obtained by rounding off another number.

Syntax
Round(num_expr, round_to)

num_expr is a numeric expression

round_to is the number to which num_expr should be rounded off
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 408 MB_Ref.pdf

Reference Guide Chapter 7: RTrim$() function
Return Value

Float

Description

The Round() function returns a rounded-off version of the numeric num_expr expression.

The precision of the result depends on the round_to parameter. The Round() function rounds the
num_expr value to the nearest multiple of the round_to parameter. If round_to is 0.01, MapInfo
Professional rounds to the nearest hundredth; if round_to is 5, MapInfo Professional rounds to the
nearest multiple of 5; etc.

Example
Dim x, y As Float
x = 12345.6789

y = Round(x, 100)
’ y now has the value 12300

y = Round(x, 1)
’ y now has the value 12346

y = Round(x, 0.01)
’ y now has the value 12345.68

See Also

Fix() function, Format$() function, Int() function

RTrim$() function
Purpose

Trims space characters from the end of a string, and returns the results.

Syntax
RTrim$(string_expr)

string_expr is a string expression

Return Value

String

Description

The RTrim$() function removes any spaces from the end of the string_expr string, and returns the
resultant string.

Example
Dim s_name As String
s_name = RTrim$(”Mary Smith ”)

’ s_name now contains the string ”Mary Smith”
’ (no spaces at the end)

See Also

LTrim$() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 409 MB_Ref.pdf

Reference Guide Chapter 7: Run Application statement
Run Application statement
Purpose

Runs a MapBasic application or adds a MapInfo workspace.

Syntax
Run Application file

file is the name of an application file or a workspace file

Description

The Run Application statement runs a MapBasic application or loads an MapInfo workspace. By
issuing a Run Application statement, one MapBasic application can run another application. To do so,
the file parameter must represent the name of a compiled application file. The Run Application
statement cannot run an uncompiled application. To halt an application launched by the Run
Application statement, use the Terminate Application statement.

Example

The following statement runs the MapBasic application, REPORT.MBX:

Run Application ”C:\MAPBASIC\APP\REPORT.MBX”

The following statement loads the workspace, Parcels.wor:

Run Application ”Parcels.wor”

See Also

Run Command statement, Run Menu Command statement, Run Program statement, Terminate
Application statement

Run Command statement
Purpose

Executes a MapBasic command represented by a string.

Syntax
Run Command command

command is a character string representing a MapBasic statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 410 MB_Ref.pdf

Reference Guide Chapter 7: Run Command statement
Description

The Run Command statement interprets a character string as a MapBasic statement, then executes
the statement.

The Run Command statement has some restrictions, due to the fact that the command parameter is
interpreted at run-time, rather than being compiled. You cannot use a Run Command statement to
issue a Dialog statement. Also, variable names may not appear within the command string; that is,
variable names may not appear enclosed in quotes. For example, the following group of statements
would not work, because the variable names x and y appear inside the quotes that delimit the
command string:

’ this example WON’T work
Dim cmd_string As String
Dim x, y As Float

cmd_string = ” x = Abs(y) ”
Run Command cmd_string

However, variable names can be used in the construction of the command string.

In the following example, the command string is constructed from an expression that includes a
character variable.

’this example WILL work
Dim cmd_string As String
Dim map_it, browse_it As Logical

Open Table ”world”
If map_it Then

cmd_string = ”Map From ”
Run Command cmd_string + ”world”

End If
If browse_it Then

cmd_string = ”Browse * From ”
Run Command cmd_string + ”world”

End If
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 411 MB_Ref.pdf

Reference Guide Chapter 7: Run Menu Command statement
Example

The Run Command statement provides a flexible way of issuing commands that have variable-length
argument lists. For example, the Map From statement can include a single table name, or a comma-
separated list of two or more table names. An application may need to decide at run time (based on
feedback from the user) how many table names should be included in the Map From statement. One
way to do this is to construct a text string at run time, and execute the command through the Run
Command statement.

Dim cmd_text As String
Dim cities_wanted, counties_wanted As Logical

Open Table ”states”
Open Table ”cities”
Open Table ”counties”

cmd_text = ”states” ’ always include STATES layer

If counties_wanted Then
cmd_text = ”counties, ” + cmd_text

End If

If cities_wanted Then
cmd_text = ”cities, ” + cmd_text

End If

Run Command ”Map From ” + cmd_text

The following example shows how to duplicate a Map window, given the window ID of an existing map.
The WindowInfo() call returns a string containing MapBasic statements; the Run Command statement
executes the string.

Dim i_map_id As Integer

’ First, get the ID of an existing Map window
’ (assuming the Map window is the active window):
i_map_id = FrontWindow()

’ Now clone the active map window:
Run Command WindowInfo(i_map_id, WIN_INFO_CLONEWINDOW)

See Also

Run Application statement, Run Menu Command statement, Run Program statement

Run Menu Command statement
Purpose

Runs a MapInfo Professional menu command, as if the user had selected the menu item. Can also be
used to select a button on a ButtonPad.

Syntax
Run Menu Command { command_code | ID command_ID }

command_code is an integer code from MENU.DEF (such as M_FILE_NEW), representing a standard
menu item or button
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 412 MB_Ref.pdf

Reference Guide Chapter 7: Run Menu Command statement
command_ID is a number representing a custom menu item or button

Description

To execute a standard MapInfo Professional menu command, include the command_code parameter.
The value of this parameter must match one of the menu codes listed in MENU.DEF. For example, the
following MapBasic statement executes MapInfo’s File > New command:

Run Menu Command M_FILE_NEW

To select a standard button from MapInfo’s ButtonPads, specify that button’s code (from MENU.DEF).
For example, the following statement selects the Radius Search button:

Run Menu Command M_TOOLS_SEARCH_RADIUS

To select a custom button or menu command (i.e. a button or a menu command created through a
MapBasic program), use the ID clause.

For example, if your program creates a custom tool button by issuing a statement such as this...

Alter ButtonPad ID 1 Add
ToolButton

Calling sub_procedure_name
ID 23
Icon MI_ICON_CROSSHAIR

...then the custom button has an ID of 23. The following statement selects the button.

Run Menu Command ID 23

Using MapBasic, the Run Menu Command statement can execute the MapInfo Help > MapInfo
Professional Tutorial on the Web command.

Run Menu Command M_HELP_MAPINFO_WWW_TUTORIAL

MapInfo’s Preferences dialog is a special case. The Preferences dialog contains several buttons, each
of which displays a sub-dialog. You can use Run Menu Command to invoke individual sub-dialogs. For
example, the following statement displays the Map Window Preferences sub-dialog: Run Menu
Command M_EDIT_PREFERENCES_MAP.

You can access invert selection using the following MapBasic command:

Run Menu Command M_QUERY_INVERTSELECT.

In version 6.0 and later, access Page settings in Options > Preferences > Printer by using the following
syntax:

RUN MENU COMMAND M_EDIT_PREFERENCES_PRINTER
Or
RUN MENU COMMAND 217
’ if running from MapBasic window

See Also

Run Application statement, Run Program statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 413 MB_Ref.pdf

Reference Guide Chapter 7: Run Program statement
Run Program statement
Purpose

Runs an executable program.

Syntax
Run Program program_spec

program_spec is a command string; this string specifies the name of the program to run, and may also
specify command-line arguments.

Description

If the specified program_spec does not represent a Windows application, MapBasic invokes a DOS
shell, and runs the specified DOS program from there. If the program_spec is the character string
“COMMAND.COM”, MapBasic invokes the DOS shell without any other program. In this case, the user
is able to issue DOS commands, and then type “Exit” to return to MapInfo. When you spawn a program
through a Run Program statement, Windows continues to control the computer. While the spawned
program is running, Windows may continue to run other “background tasks” - including your MapBasic
program. This multitasking environment could potentially create conflicts. Thus, the MapBasic
statements which follow the Run Program statement must not make any assumptions about the status
of the spawned program.

When issuing the Run Program statement, you should take precautions to avoid multitasking conflicts.
One way to avoid such conflicts is to place the Run Program statement at the end of a sequence of
events. For example, you could create a custom menu item which calls a handler sub procedure, and
you could make the Run Program statement the final statement in the handler procedure.

Example

The following Run Program statement runs the Windows text editor, “Notepad,” and instructs Notepad
to open the text file THINGS.2DO.

Run Program ”notepad.exe things.2do”

The following statement issues a DOS command.

Run Program ”command.com /c dir c:\mapinfo\ > C:\temp\dirlist.txt”

See Also

Run Application statement, Run Command statement, Run Menu Command statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 414 MB_Ref.pdf

Reference Guide Chapter 8: Save File statement
Save File statement
Purpose

Copies a file.

Syntax
Save File old_filespec As new_filespec [Append]

old_filespec is a String representing the name (and, optionally, the path) of an existing file; the file must
not be open

new_filespec is a String representing the name (and, optionally, the path) to which the file will be
copied; the file must not be open

Description

The Save File statement copies a file. The file must not already be open for input/output.

If you include the optional Append keyword, and if the file new_filespec already exists, the contents of
the file old_filespec are appended to the end of the file new_filespec.

Do not use Save File to copy a file that is a component of an open table (for example, filename.tab,
filename.map, etc.). To copy a table, use the Commit Table...As statement.

The Save File statement cannot copy a file to itself.

Example
Save File ”settings.txt” As ”settings.bak”

See Also

Kill statement, Rename File statement

Save MWS statement
Purpose

This statements allows you to save the current workspace as an XML-based MWS file for use with
MapXtreme 2004 applications. These MWS files can be shared across platforms in ways that
workspaces cannot.

Syntax
Save MWS Window (window_id [, window_id ...]) Default default_window_id As
filespec

window_id is an Integer window identifier for a Map window

default_window_id is an Integer window identifier for the Map window to be recorded in the MWS as
the default map.

Description

MapInfo Professional enables you to save the maps in your workspace to an XML format for use with
MapXtreme 2004 applications. When saving a workspace to MWS format, only the map windows and
legends are saved. All other windows are discarded as MapXtreme 2004 applications cannot read that
information. Once your workspace is saved in this format, it can be opened with the Workspace
Manager utility that is included in the MapXtreme 2004 installation or with an application developed
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 415 MB_Ref.pdf

Reference Guide Chapter 8: Save MWS statement
using MapXtreme 2004. The file is valid XML so can also be viewed using any XML viewer or editor.
MWS files created with MapInfo Professional 7.8 or later can be validated using schemas supplied with
MapXtreme 2004.

Note: You will not be able to read files saved in MWS format in MapInfo Professional 7.8 or later.

In MapInfo Professional, you can set the visibility of a modifier theme without regard to its reference
feature layer, so you can turn the visibility of the main reference layer off but still display the theme. In
MapXtreme2004, the modifier themes (Dot Density, Ranges, Individual Value) are only drawn if the
reference feature layer is visible. To ensure that modifiers marked as visible in MapInfo Professional
display in tools like Workspace Manager, we force the visibility of the reference feature layer so that its
modifier themes display.

What is Saved in the MWS

The following information is included in the MWS workspace file:

• Tab files’ name and alias
• Coordsys information
• Map center and zoom settings
• Layer list with implied order
• Map size as pixel width and height
• Map resize method
• Style overrides
• Raster layer overrides
• Label and label edit information
• Individual value themes
• Dot density themes
• Graduated symbol themes
• Bar themes
• Range themes
• Pie themes
• Grid themes as MapXtreme 2004 grid layers with a style override
• Themes and label expressions based upon a single attribute column.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 416 MB_Ref.pdf

Reference Guide Chapter 8: Save Window statement
What is Not Saved to the MWS

The following information is not saved in the MWS workspace file:

• Any non-map windows (browsers, charts, redistricters, 3D map windows, Prism maps)
• Distance, area, or XY and military grid units
• Snap mode, autoscroll, and smart pan settings
• Printer setup information
• Any table that is based on a query
• Any theme that is generated from a complex expression

Note: A complex expression includes any operator or multiple referenced tables.

• Any queries
• Export options
• Line direction arrows
• Whether object nodes are drawn or not
• Hot links for labels and objects

See Also

Save Workspace statement

Save Window statement
Purpose

Saves an image of a window to a file; corresponds to choosing File > Save Window As.

Syntax
Save Window window_id

As filespec
Type filetype
[Width image_width [Units paper_units]]
[Height image_height [Units paper_units]]
[Resolution output_dpi]
[Copyright notice [Font ...]]

window_id is an Integer Window ID representing a Map, Layout, Graph, Legend, Statistics, Info, or
Ruler window; to obtain a window ID, call a function such as FrontWindow() or WindowID()

filespec is a String representing the name of the file to create
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 417 MB_Ref.pdf

Reference Guide Chapter 8: Save Window statement
filetype is a String representing a file format:

• “BMP” specifies Bitmap format;
• "WMF” specifies Windows Metafile format;
• "JPEG” specifies JPEG format;
• "JP2" specifies JPEG 2000 format
• "PNG” specifies Portable Network Graphics format;
• "TIFF” specifies TIFF format;
• ”TIFFCMYK" specifies TIFF CMYK format
• “TIFFG4” specifies TIFFG4 format
• TIFFLZW” specifies TIFFLZW format
• “GIF” specifies GIF format
• "PSD” specifies Photoshop 3.0 format;
• "EMF" specifies Windows Enhanced Metafile format.

image_width is a number that specifies the desired image width

image_height is a number that specifies the desired image height

paper_units is a string representing a paper unit name (for example, “cm” for centimeters)

output_dpi is a number that specifies the output resolution in DPI (dots per inch).

notice is a string that represents a copyright notice; it will appear at the bottom of the image

The Font clause specifies a text style

Description

The Save Window statement saves an image of a window to a file. The effect is comparable to the
user choosing File > Save Window As, except that the Save Window statement does not display a
dialog. For Map, Layout, or Graph windows, the default image size is the size of the original window.
For Legend, Statistics, Info, or Ruler windows, the default size is the size needed to represent all of the
data in the window. Use the optional Width and Height clauses to specify a non-default image size.
Resolution allows you to specify the dpi when exporting images to raster formats. The Font clause
specifies a text style in the copyright notice.

Specifying a Copyright Notice

To include a copyright notice on the bottom of the image, use the optional Copyright clause. See
example below. To eliminate the default notice, specify a Copyright clause with an empty string (“”).

Error Codes

Error number 408 generated if the export fails due to lack of memory or disk space. Note that
specifying very large image sizes increases the likelihood of this error.

Examples

This example produces a Windows metafile:

Save Window i_mapper_ID As ”riskmap.wmf” Type ”WMF”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 418 MB_Ref.pdf

Reference Guide Chapter 8: Save Workspace statement
This example shows how to specify a copyright notice. The Chr$() function is used to insert the
copyright symbol.

Save Window i_mapper_ID As ”riskmap.bmp”
Type ”BMP”
Copyright ”Copyright ” + Chr$(169) + ” 1996, MapInfo Corp.”

See Also

Export statement

Save Workspace statement
Purpose

Creates a workspace file representing the current MapInfo Professional session.

Syntax
Save Workspace As filespec

filespec is a String representing the name of the workspace file to create

Description

The Save Workspace statement creates a workspace file that represents the current MapInfo
Professional session. The effect is comparable to the user choosing File > Save Workspace, except
that the Save Workspace statement does not display a dialog.

To load an existing workspace file, use the Run Application statement.

Example
Save Workspace As ”market.wor”

See Also

Run Application statement

SearchInfo() function
Purpose

Returns information about the search results produced by SearchPoint() or SearchRect().

Syntax
SearchInfo (sequence_number , attribute)

sequence_number is an Integer number, from 1 to the number of objects located

attribute is a small Integer code from the table below

Return Value

String or Integer, depending on attribute

Description

After you call SearchRect() or SearchPoint() to search for map objects, call SearchInfo() to process
the search results.

The sequence_number argument is an Integer number, 1 or larger. The number returned by
SearchPoint() or SearchRect() is the maximum value for the sequence_number.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 419 MB_Ref.pdf

Reference Guide Chapter 8: SearchInfo() function
The attribute argument must be one of the codes (from MAPBASIC.DEF) in the following table:

Search results remain in memory until the application halts or until you perform another search. Note
that search results remain in memory even after the user closes the window or the tables associated
with the search; therefore, you should process search results immediately. To manually free the
memory used by search results, perform a search which you know will fail (for example, search at
location 0, 0).

MapInfo Professional maintains a separate set of search results for each MapBasic application that is
running, plus another set of search results for MapInfo Professional itself (for commands entered
through the MapBasic window).

Error Conditions

ERR_FCN_ARG_RANGE error generated if sequence_number is larger than the number of objects
located

Example

The following program creates two custom tool buttons. If the user uses the point tool, this program
calls SearchPoint(); if the user uses the rectangle tool, the program calls SearchRect(). In either
case, this program calls SearchInfo() to determine which object(s) the user chose.

Include ”mapbasic.def”
Include ”icons.def”
Declare Sub Main
Declare Sub tool_sub

Sub Main
Create ButtonPad ”Searcher” As

ToolButton Calling tool_sub ID 1
Icon MI_ICON_ARROW
Cursor MI_CURSOR_ARROW
DrawMode DM_CUSTOM_POINT
HelpMsg ”Click on a map location\nClick a location”

Separator
ToolButton Calling tool_sub ID 2
Icon MI_ICON_SEARCH_RECT
Cursor MI_CURSOR_FINGER_LEFT
DrawMode DM_CUSTOM_RECT
HelpMsg ”Drag a rectangle in a map\nDrag a rectangle”

Width 3

Print ”Searcher program now running.”
Print ”Choose a tool from the Searcher toolbar”
Print ”and click on a map.”

End Sub

attribute code SearchInfo() returns:

SEARCH_INFO_TABLE String value: the name of the table containing this object. If an object
is from a Cosmetic layer, this string has the form “CosmeticN”
(where N is a number, 1 or larger).

SEARCH_INFO_ROW Integer value: this row’s rowID number. You can use this rowID num-
ber in a Fetch statement or in a Select statement’s Where clause.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 420 MB_Ref.pdf

Reference Guide Chapter 8: SearchInfo() function
Sub tool_sub
’ This procedure is called whenever the user uses
’ one of the custom buttons on the Searcher toolbar.
Dim x, y, x2, y2 As Float,

i, i_found, i_row_id, i_win_id As Integer,
s_table As Alias

i_win_id = FrontWindow()
If WindowInfo(i_win_id, WIN_INFO_TYPE) <> WIN_MAPPER Then

Note ”This tool only works on Map windows.”
Exit Sub

End If
’ Determine the starting point where the user clicked.
x = CommandInfo(CMD_INFO_X)
y = CommandInfo(CMD_INFO_Y)
If CommandInfo(CMD_INFO_TOOLBTN) = 1 Then

’ Then the user is using the point-mode tool.
’ determine how many objects are at the chosen point.
i_found = SearchPoint(i_win_id, x, y)

Else
’ The user is using the rectangle-mode tool.
’ Determine what objects are within the rectangle.
x2 = CommandInfo(CMD_INFO_X2)
y2 = CommandInfo(CMD_INFO_y2)
i_found = SearchRect(i_win_id, x, y, x2, y2)

End If

If i_found = 0 Then
Beep ’ No objects found where the user clicked.

Else
Print Chr$(12)
If CommandInfo(CMD_INFO_TOOLBTN) = 2 Then

Print ”Rectangle: x1= ” + x + ”, y1= ” + y
Print ”x2= ” + x2 + ”, y2= ” + y2

Else
Print ”Point: x=” + x + ”, y= ” + y

End If

’ Process the search results.
For i = 1 to i_found

’ Get the name of the table containing a ”hit”.
s_table = SearchInfo(i, SEARCH_INFO_TABLE)

’ Get the row ID number of the object that was a hit.
i_row_id = SearchInfo(i, SEARCH_INFO_ROW)

If Left$(s_table, 8) = ”Cosmetic” Then
Print ”Object in Cosmetic layer”

Else
’ Fetch the row of the object the user clicked on.
Fetch rec i_row_id From s_table
s_table = s_table + ”.col1”
Print s_table

End If
Next
End If

End Sub

See Also

SearchPoint() function, SearchRect() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 421 MB_Ref.pdf

Reference Guide Chapter 8: SearchPoint() function
SearchPoint() function
Purpose

Searches for map objects at a specific x/y location.

Syntax
SearchPoint (map_window_id , x , y)

map_window_id is a Map window’s Integer ID number

x is an x-coordinate (for example, longitude)

y is a y-coordinate (for example, latitude)

Return Value

Integer, representing the number of objects found

Description

The SearchPoint() function searches for map objects at a specific x/y location. The search applies to
all selectable layers in the Map window, even the Cosmetic layer (if it is currently selectable). The
return value indicates the number of objects found.

This function does not select any objects, nor does it affect the current selection. Instead, this function
builds a list of objects in memory. After calling SearchPoint(), call SearchInfo() to process the search
results.

The search allows for a small tolerance, identical to the tolerance allowed by MapInfo Professional’s
Info tool. Points or linear objects that are very close to the location are included in the search results,
even if the user did not click on the exact location of the object.

To allow the user to select an x/y location with the mouse, use the Create ButtonPad statement or the
Alter ButtonPad statement to create a custom ToolButton. Use DM_CUSTOM_POINT as the button’s
draw mode. Within the button’s handler procedure, call CommandInfo() to determine the x/y
coordinates.

Example

For a code example, see SearchInfo().

See Also

SearchInfo() function, SearchRect() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 422 MB_Ref.pdf

Reference Guide Chapter 8: SearchRect() function
SearchRect() function
Purpose

Searches for map objects within a rectangular area.

Syntax
SearchRect (map_window_id , x1 , y1 , x2 , y2)

map_window_id is a Map window’s Integer ID number

x1 , y1 are coordinates that specify one corner of a rectangle

x2 , y2 are coordinates that specify the opposite corner of a rectangle

Return Value

Integer, representing the number of objects found

Description

The SearchRect() function searches for map objects within a rectangular area. The search applies to
all selectable layers in the Map window, even the Cosmetic layer (if it is currently selectable). The
return value indicates the number of objects found.

Note: This function does not select any objects, nor does it affect the current selection. Instead, this
function builds a list of objects in memory. After calling SearchRect() you call SearchInfo() to
process the search results.

The search behavior matches the behavior of MapInfo Professional’s Marquee Select button: If an
object’s centroid falls within the rectangle, the object is included in the search results.

To allow the user to select a rectangular area with the mouse, use the Create ButtonPad statement or
the Alter ButtonPad statement to create a custom ToolButton. Use DM_CUSTOM_RECT as the
button’s draw mode. Within the button’s handler procedure, call CommandInfo() to determine the x/y
coordinates.

Example

For a code example, see SearchInfo().

See Also

SearchInfo() function, SearchPoint() function

Seek() function
Purpose

Returns the current file position.

Syntax
Seek (filenum)

filenum is the number of an open file

Return Value

Integer
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 423 MB_Ref.pdf

Reference Guide Chapter 8: Seek statement
Description

The Seek() function returns MapBasic’s current position in an open file.

The file parameter represents the number of an open file; this is the same number specified in the As
clause of the Open File statement.

The integer value returned by the Seek() function represents a file position. If the file was opened in
random-access mode, Seek() returns a record number (the next record to be read or written). If the file
was opened in binary mode, Seek() returns the byte position of the next byte to be read from or written
to the file.

Error Conditions

ERR_FILEMGR_NOTOPEN error generated if the specified file is not open

See Also

Get statement, Open File statement, Put statement, Seek statement

Seek statement
Purpose

Sets the current file position, to prepare for the next file input/output operation.

Syntax
Seek [#]filenum , position

filenum is an Integer value, indicating the number of an open file

position is an Integer value, indicating the desired file position

Description

The Seek statement resets the current file position of an open file. File input / output operations which
follow a Seek statement will read from (or write to) the location specified by the Seek.

If the file was opened in Random access mode, the position parameter specifies a record number.

If the file was opened in a sequential access mode, the position parameter specifies a specific byte
position; a position value of one represents the very beginning of the file.

See Also

Get statement, Input # statement, Open File statement, Print # statement, Put statement, Seek()
function, Write # statement

SelChangedHandler procedure
Purpose

A reserved procedure, called automatically when the set of selected rows changes.

Syntax
Declare Sub SelChangedHandler
Sub SelChangedHandler

 statement_list
End Sub
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 424 MB_Ref.pdf

Reference Guide Chapter 8: Select statement
statement_list is a list of statements to execute when the set of selected rows changes

Description

SelChangedHandler is a special MapBasic procedure name. If the user runs an application with a
procedure named SelChangedHandler, the application “goes to sleep” when the Main procedure runs
out of statements to execute. The sleeping application remains in memory until the application
executes an End Program statement. As long as the application remains in memory, MapInfo
Professional automatically calls the SelChangedHandler procedure whenever the set of selected rows
changes.

Within the SelChangedHandler procedure, you can obtain information about recent changes made to
the selection by calling CommandInfo() with one of the following codes:

When any procedure in an application executes the End Program statement, the application is
completely removed from memory. Thus, you can use the End Program statement to terminate a
SelChangedHandler procedure once it is no longer wanted. Be careful not to issue an End Program
statement while the SelChangedHandler procedure is still needed.

Multiple MapBasic applications can be “sleeping” at the same time. When the Selection table changes,
MapBasic automatically calls all sleeping SelChangedHandler procedures, one after another.

A SelChangedHandler procedure should not take actions that affect the GUI “focus” or reset the
current window. In other words, the SelChangedHandler procedure should not issue statements such
as Note, Print, or Dialog.

See Also

CommandInfo() function, SelectionInfo() function

Select statement
Purpose

Selects particular rows and columns from one or more open tables, and treats the results as a
separate, temporary table. Also provides the ability to sort and sub-total data.

Syntax
Select expression_list

From table_name [, ...] [Where expression_group]
[Into results_table [Noselect]]
[Group By column_list]
[Order By column_list]

attribute code CommandInfo(attribute) returns:

CMD_INFO_SELTYPE 1 if one row was added to the selection; 2 if one row was removed
from the selection;3 if multiple rows were added to the selection; 4 if
multiple rows were de-selected.

CMD_INFO_ROWID Integer value: The number of the row which was selected or de-
selected (only applies if a single row was selected or de-selected).

CMD_INFO_INTERRUPT Logical value: TRUE if the user interrupted a selection process by
pressing Esc; FALSE otherwise.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 425 MB_Ref.pdf

Reference Guide Chapter 8: Select statement
expression_list is a comma-separated list of expressions which will comprise the columns of the
Selection results

expression_group is a list of one or more expressions, separated by the keywords AND or OR

table_name is the name of an open table

results_table is the name of the table where query results should be stored

column_list is a list of one or more names of columns, separated by commas

Description

The Select statement provides MapBasic programmers with the capabilities of MapInfo Professional’s
Query > SQL Select dialog.

The MapBasic Select statement is modeled after the Select statement in the Structured Query
Language (SQL). Thus, if you have used SQL-oriented database software, you may already be familiar
with the Select statement. Note, however, that MapBasic’s Select statement includes geographic
capabilities that you will not find in other packages.

Column expressions (for example, tablename.columnname) in a Select statement may only refer to
tables that are listed in the Select statement’s From clause. For example, a Select statement may only
incorporate the column expression STATES.OBJ if the table STATES is included in the statement’s
From clause.

The Select statement serves a variety of different purposes. One select statement might apply a test to
a table, making it easy to browse only the records which met the criteria (this is sometimes referred to
as filtering). Alternately, Select might be used to calculate totals or subtotals for an entire table. Select
can also: sort the rows of a table; derive new column values from one or more existing columns; or
combine columns from two or more tables into a single results table.

Generally speaking, a Select statement queries one or more open tables, and selects some or all of
the rows from said table(s). The Select statement then treats the group of selected rows as a results
table; Selection is the default name of this table (although the results table can be assigned another
name through the Into clause). Following a Select statement, a MapBasic program - or, for that matter,
an MapInfo Professional user - can treat the results table as any other MapInfo table.

After issuing a Select statement, a MapBasic program can use the SelectionInfo() function to
examine the current selection.

The Select statement format includes several clauses, most of which are optional. The nature and
function of a Select statement depend upon which clauses are included. For example: if you wish to
use a Select statement to set up a filter, you should include a Where clause; if you wish to use a
Select statement to subtotal the values in the table, you should include a Group By clause; if you want
MapBasic to sort the results of the Select statement, you should include an Order By clause. Note that
these clauses are not mutually exclusive; one Select statement may include all of the optional clauses.

Select clause
This clause dictates which columns MapBasic should include in the results table. The simplest type of
expression_list is an asterisk character (“*”). The asterisk signifies that all columns should be included
in the results. The statement:

Select * From world
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 426 MB_Ref.pdf

Reference Guide Chapter 8: Select statement
tells MapBasic to include all of the columns from the “world” table in the results table. Alternately, the
expression_list clause can consist of a list of expressions, separated by commas, each of which
represents one column to include in the results table. Typically, each of these expressions involves the
names of one or more columns from the table in question. Very often, MapBasic function calls and/or
operators are used to derive some new value from one or more of the column names. For example, the
following Select statement specifies an expression_list clause with two expressions:

Select country, Round(population,1000000)
From world

The expression_list above consists of two expressions, the first of which is a simple column name
(country), and the second of which is a function call (Round()) which operates on another column
(population).

After MapBasic carries out the above Select statement, the first column in the results table will contain
values from the world table’s name column. The second column in the results table will contain values
from the world table’s population column, rounded off to the nearest million.

Each expression in the expression_list clause can be explicitly named by having an alias follow the
expression; this alias would appear, for example, at the top of a Browser window displaying the
appropriate table. The following statement would assign the field alias “Millions” to the second column
of the results table:

Select country,Round(population,1000000) ”Millions”
From world

Any mappable table also has a special column, called object (or obj for short). If you include the
column expression obj in the expression_list, the resultant table will include a column which indicates
what type of object (if any) is attached to that row.

The expression_list may include either an asterisk or a list of column expressions, but not both. If an
asterisk appears following the keyword Select, then that asterisk must be the only thing in the
expression_list. In other words, the following statement would not be legitimate:

Select *, object From world ’ this won’t work!

From clause
The From clause specifies which table(s) to select data from. If you are doing a multiple-table join, the
tables you are selecting from must be base tables, rather than the results of a previous query.

Where clause
One function of the Where clause is to specify which rows to select. Any expression can be used (see
Expressions section below). Note, however, that groups of two or more expressions must be
connected by the keywords And or Or, rather than being comma-separated. For example, a two-
expression Where clause might read like this:

Where Income > 15000 And Income < 25000

Note that the And operator makes the clause more restrictive (both conditions must evaluate as TRUE
for MapBasic to select a record), whereas the Or operator makes the clause less restrictive (MapBasic
will select a record if either of the expressions evaluates to TRUE).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 427 MB_Ref.pdf

Reference Guide Chapter 8: Select statement
By referring to the special column name object, a Where clause can test geographic aspects of each
row in a mappable table. Conversely, the expression “Not object” can be used to single out records
which do not have graphical objects attached. For example, the following Where clause would tell
MapBasic to select only those records which are currently un-geocoded:

Where Not Object

If a Select statement is to use two or more tables, the statement must include a Where clause, and the
Where clause must include an expression which tells MapBasic how to join the two tables. Such a join-
related expression typically takes the form Where tablename1.field = tablename2.field, where the two
fields have corresponding values. The following example shows how you might join the tables “States”
and “City_1k.” The column City_1k.state contains two-letter state abbreviations which match the
abbreviations in the column States.state.

Where States.state = City_1k.state

Alternately, you can specify a geographic operator to tell MapInfo Professional how to join the two
tables.

Where states.obj Contains City_1k.obj

A Where clause can incorporate a subset of specific values by including the Any or All keyword. The
Any keyword defines a subset, for the sake of allowing the Where clause to test if a given expression
is TRUE for any of the values in the subset. Conversely, the All keyword defines a subset, for the sake
of allowing the Where clause to test if a given condition is true for all of the values in the subset.

The following query selects any customer record whose state column contains “NY,” “MA,” or “PA.” The
Any() function functions the same way as the SQL “IN” operator.

Select * From customers
Where state = Any (”NY”, ”MA”, ”PA”)

A Where clause can also include its own Select statement, to produce what is known as a subquery. In
the next example, we use two tables: “products” is a table of the various products which our company
sells, and “orders” is a table of the orders we have for our products. At any given time, some of the
products may be sold out. The task here is to figure out which orders we can fill, based on which
products are currently in stock. This query uses the logic, “select all orders which are not among the list
of items that are currently sold out.”

Select * From orders
Where partnum <>
All(Select partnum from products

where not instock)

On the second line of the query, the keyword Select appears a second time; this produces our sub-
select. The sub-select builds a list of the parts that are currently not in stock. The Where clause of the
main query then uses All() function to access the list of unavailable parts.

In the example above, the sub-select produces a set of values, and the main select statement’s Where
clause tests for inclusion in that set of values. Alternately, a sub-select might use an aggregate
operator to produce a single result.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 428 MB_Ref.pdf

Reference Guide Chapter 8: Select statement
The example below uses the Avg() aggregate operator to calculate the average value of the pop field
within the table states. Accordingly, the net result of the following Select statement is that all records
having higher-than-average population are selected.

Select * From states
Where population >

(Select Avg(population) From states)

MapInfo Professional also supports the SQL keyword In. A Select statement can use the keyword In in
place of the operator sequence = Any. In other words, the following Where clause, which uses the Any
keyword:

Where state = Any (”NY”, ”MA”, ”PA”)

 is equivalent to the following Where clause, which uses the In keyword:

Where state In (”NY”, ”MA”, ”PA”)

In a similar fashion, the keywords Not In may be used in place of the operator sequence: <> All.

Note: A single Select statement may not include multiple, non-nested subqueries. Additionally,
MapBasic’s Select statement does not support “correlated subqueries.” A correlated subquery
involves the inner query referencing a variable from the outer query. Thus, the inner query is
reprocessed for each row in the outer table. Thus, the queries are correlated. An example:

’ Note: the following statement, which illustrates
’ correlated subqueries, will NOT work in MapBasic

Select * from leads
Where lead.name =

(Select var.name From vars
Where lead.name = customer.name)

This limitation is primarily of interest to users who are already proficient in SQL queries, through the
use of other SQL-compatible database packages.

Into clause
This optional clause lets you name the results table. If no Into clause is specified, the resulting table is
named Selection. Note that when a subsequent operation references the Selection table, MapInfo
Professional will take a “snapshot” of the Selection table, and call the snapshot QUERYn (for example,
QUERY1).

If you include the Noselect keyword, the statement performs a query without changing the pre-existing
Selection table. Use the NoSelect keyword if you need to perform a query, but you do not want to de-
select whatever rows are already selected.

Note: If you include the Noselect keyword, the query does not trigger the SelChangedHandler
procedure.

Group By clause
This optional clause specifies how to group the rows when performing aggregate functions (sub-
totalling). In a Group By clause, you typically specify a column name (or a list of column names);
MapBasic then builds a results table containing subtotals. For example, if you want to subtotal your
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 429 MB_Ref.pdf

Reference Guide Chapter 8: Select statement
table on a state-by-state basis, your Group By clause should specify the name of a column which
contains state names. The Group By clause may not reference a function with a variable return type,
such as the ObjectInfo() function.

The aggregate functions Sum(), Min(), Max(), Count(*), Avg() and WtAvg() allow you to calculate
aggregated results.

Note: These aggregate functions do not appear in the Group By clause. Typically, the Select
expression_list clause includes one or more of the aggregate functions listed above, while the
Group By clause indicates which column(s) to use in grouping the rows.

Suppose the Q4Sales table describes sales information for the fourth fiscal quarter. Each record in this
table contains information about the dollar amount of a particular sale. Each record’s Territory column
indicates the name of the territory where the sale occurred. The following query counts how many
sales occurred within each territory, and calculates the sum total of all of the sales within each territory.

Select territory, Count(*), Sum(amount)
From q4sales
Group By territory

The Group By clause tells MapBasic to group the table results according to the contents of the
Territory column, and then create a subtotal for each unique territory name. The expression list
following the keyword Select specifies that the results table should have three columns: the first
column will state the name of a territory; the second column will state the number of records in the
q4sales table “belonging to” that territory; and the third column of the results table will contain the sum
of the Amount columns of all records belonging to that territory.

Note: The Sum() function requires a parameter, to tell it which column to summarize. The Count()
function, however, simply takes an asterisk as its parameter; this tells MapBasic to simply
count the number of records within that sub-totalled group. The Count() function is the only
aggregate function that does not require a column identifier as its parameter.

The following table describes MapInfo Professional’s aggregate functions.

Function name Description

Avg(column) Returns the average value of the specified column.

Count(*) Returns the number of rows in the group. Specify * (asterisk)
instead of column name.

Max(column) Returns the largest value of the specified column for all rows
in the group.

Min(column) Returns the smallest value of the specified column for all
rows in the group.

Sum(column) Returns the sum of the column values for all rows in the
group.

WtAvg(column , weight_column) Returns the average of the column values, weighted. See
below.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 430 MB_Ref.pdf

Reference Guide Chapter 8: Select statement
Calculating Weighted Averages
Use the Wtavg() aggregate function to calculate weighted averages. For example, the following
statement uses the Wtavg() function to calculate a weighted average of the literacy rate in each
continent:

Select continent, Sum(pop_1994), WtAvg(literacy, Pop_1994)
From World
Group By continent
Into Lit_query

Because of the Group By clause, MapInfo Professional groups rows of the table together, according to
the values in the Continent column. All rows having “North America” in the Continent column will be
treated as one group; all rows having “Asia” in the Continent column will be treated as another group;
etc. For each group of rows—in other words, for each continent—MapInfo Professional calculates a
weighted average of the literacy rates.

A simple average (using the Avg() function) calculates the sum divided by the count. A weighted
average (using the WtAvg() function) is more complicated, in that some rows affect the average more
than other rows. In this example, the average calculation is weighted by the Pop_1994 (population)
column; in other words, countries that have a large population will have more of an impact on the result
than countries that have a small population.

Column Expressions in the Group By clause
In the preceding example, the Group By territory clause identifies the Territory column by name.
Alternately, a Group By clause can identify a column by a number, using an expression of the form
col#. In this type of expression, the # sign represents an integer number, having a value of one or
more, which identifies one of the columns in the Select clause. Thus, the above Select statement
could have read Group By col1, or even Group By 1, rather than Group By territory.

It is sometimes necessary to use one of these alternate syntaxes. If you wish to Group By a derived
expression, which does not have a column name, then the Group By clause must use the col# syntax
or the # syntax to refer to the proper column expression. In the following example, we Group By a
column value derived through the Month() function. Since this column expression does not have a
conventional column name, our Group By clause refers to it using the col# format:

Select Month(sick_date), Count(*)
From sickdays
Group By 1

This example assumes that each row in the sickdays table represents a sick day claim. The results
from this query would include twelve rows (one row for each month); the second column would indicate
how many sick days were claimed for that month.

Grouping By Multiple Columns
Depending on your application, you may need to specify more than one column in the Group By
clause; this happens when the contents of a column are not sufficiently unique. For example, you may
have a table describing counties across the United States. County names are not unique; for example,
many different states have a Franklin county. Therefore, if your Group By clause specifies a single
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 431 MB_Ref.pdf

Reference Guide Chapter 8: Select statement
county-name column, MapBasic will create one sub-total row in the results table for the county
“Franklin”. That row would summarize all counties having the name “Franklin”, regardless of whether
the records were in different states.

When this type of problem occurs, your Group By clause must specify two or more columns,
separated by commas. For example, a group by clause might read:

Group By county, state

With this arrangement, MapBasic would construct a separate group of rows (and, thus, a separate sub-
total) for each unique expression of the form countyname , statename. The results table would have
separate rows for Franklin County, MA versus Franklin County, FL.

Order By clause
This optional clause specifies which column or set of columns to order the results by. As with the
Group By clause, the column is specified by name in the field list, or by a number representing the
position in the field list. Multiple columns are separated by commas.

By default, results sorted by an Order By clause are in ascending order. An ascending character sort
places “A” values before “Z” values; an ascending numeric sort places small numbers before large
ones. If you want one of the columns to be sorted in descending order, you should follow that column
name with the keyword DESC.

Select * From cities
Order By state, population Desc

This query performs a two-level sort on the table Cities. First, MapBasic sorts the table, in ascending
order, according to the contents of the state column. Then MapBasic sorts each state’s group of
records, using a descending order sort of the values in the population column. Note that there is a
space, not a comma, between the column name and the keyword DESC.

The Order By clause may not reference a function with a variable return type, such as the
ObjectInfo() function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 432 MB_Ref.pdf

Reference Guide Chapter 8: Select statement
Geographic Operators

MapBasic supports several geographic operators: Contains, Contains Part, Contains Entire, Within,
Partly Within, Entirely Within, and Intersects. These operators can be used in any expression, and are
very useful within the Select statement’s Where clause. All geographic operators are infix operators
(operate on two objects and return a boolean). The operators are listed in the table below.

Selection Performance
Some Select statements are considerably faster than others, depending in part on the contents of the
Where clause.

If the Where clause contains one expression of the form:

columnname = constant_expression

or if the Where clause contains two or more expressions of that form, joined by the And operator, then
the Select statement will be able to take maximum advantage of indexing, allowing the operation to
proceed quickly. However, if multiple Where clause expressions are joined by the Or operator instead
of by the And operator, the statement will take more time, because MapInfo Professional will not be
able to take maximum advantage of indexing.

Similarly, MapInfo Professional provides optimized performance for Where clause expressions of the
form:

[tablename .] obj geographic_operator object_expression

and for Where clause expressions of the form:

RowID = constant_expression

RowID is a special column name. Each row’s RowID value represents the corresponding row number
within the appropriate table; in other words, the first row in a table has a RowID value of one.

Usage Evaluates TRUE if:

objectA Contains objectB first object contains the centroid of second object

objectA Contains Part objectB first object contains part of second object

objectA Contains Entire objectB first object contains all of second object

objectA Within objectB first object’s centroid is within the second object

objectA Partly Within objectB part of the first object is within the second object

objectA Entirely Within objectB the first object is entirely inside the second object

objectA Intersects objectB the two objects intersect at some point
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 433 MB_Ref.pdf

Reference Guide Chapter 8: SelectionInfo() function
Examples

This example selects all customers that are in New York, Connecticut, or Massachusetts. Each
customer record does not need to include a state name; rather, the query relies on the geographic
position of each customer object to determine whether that customer is “in” a given state.

Select * From customers
Where obj Within Any(Select obj From states

Where state = ”NY” or state = ”CT” or state = ”MA”)

The next example demonstrates a sub-select. Here, we want to select all sales territories which contain
customers that have been designated as “Federal.” The subselect selects all customer records flagged
as Federal, and then the main select works from the list of Federal customers to select certain
territories.

Select * From territories
Where obj Contains Any (Select obj From customers

Where customers.source = ”Federal”)

The following query selects all parcels that touch parcel 120059.

Select * From parcels
Where obj Intersects (Select obj From parcels

Where parcel_id = 120059)

See Also

Open Table statement

SelectionInfo() function
Purpose

Returns information about the current selection.

Note: Selected labels do not count as a “selection,” because labels are not complete objects, they
are attributes of other objects.

Syntax
SelectionInfo(attribute)

attribute is an Integer code from the table below.

Return Value

String or Integer; see table below
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 434 MB_Ref.pdf

Reference Guide Chapter 8: Server Begin Transaction statement
Description

The table below summarizes the codes (from MAPBASIC.DEF) that you can use as the attribute
parameter.

Note: If the current selection is the result of a join of two or more tables,
SelectionInfo(SEL_INFO_NROWS) returns the number of rows selected in the base table,
which might not equal the number of rows in the Selection table. See example below.

Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Example

The following example uses a Select statement to perform a join. Afterwards, the variable i contains 40
(the number of rows currently selected in the base table, States) and the variable j contains 125 (the
number of rows in the query results table).

Dim i, j As Integer
Select * From States, City_125

Where States.obj Contains City_125.obj Into QResults
i = SelectionInfo(SEL_INFO_NROWS)
j = TableInfo(QResults, TAB_INFO_NROWS)

See Also

Select statement, TableInfo() function

Server Begin Transaction statement
Purpose

Requests a remote data server to begin a new unit of work.

Syntax
Server ConnectionNumber Begin Transaction

ConnectionNumber is an integer value that identifies the specific connection.

Description

The Server Begin Transaction command is used to mark a beginning point for transaction
processing. The database does not save the results of subsequent SQL Insert, Delete, and Update
statements issued via the Server_Execute() function until a call to Server Commit is issued. Use the
Server Rollback command to discard changes.

attribute setting SelectionInfo() Return Value

SEL_INFO_TABLENAME String: The name of the table the selection was based on. Returns an
empty string if no data currently selected.

SEL_INFO_SELNAME String: The name of the temporary table (for example, “Query1”) represent-
ing the query. Returns an empty string if no data currently selected.

SEL_INFO_NROWS Integer: The number of selected rows. Returns zero if no data currently
selected.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 435 MB_Ref.pdf

Reference Guide Chapter 8: Server Bind Column statement
Example
Dim hdbc As Integer
hdbc = Server_Connect(”ODBC”, "DLG=1”)
Server hdbc Begin Transaction
’ ... other server statements ...
Server hdbc Commit

See Also

Server Commit statement, Server Rollback statement

Server Bind Column statement
Purpose

Assigns local storage that can be used by the remote data server.

Syntax
Server StatementNumber Bind Column n To Variable, StatusVariable

StatementNumber is an integer value that identifies information about an SQL statement.

n is a column number in the result set to bind.

Variable is a MapBasic variable to contain a column value following a fetch.

StatusVariable is an integer code indicating the status of the value as either null, truncated, or a
positive integer value.

Description

The Server Bind Column command sets up an application variable as storage for the result data of a
column specified in a remote Select statement. When the subsequent Server Fetch operation
retrieves a row of data from the server, the value for the column is stored in the variable specified by
the Server Bind Column statement. The status of the column result is stored in the status variable.

StatusVariable value Condition

SRV_NULL_DATA Returned when the column has no data for that row.

SRV_TRUNCATED_DATA Returned when there is more data in the column than can be
stored in the MapBasic variable.

Positive Integer Value Number of bytes returned by the server.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 436 MB_Ref.pdf

Reference Guide Chapter 8: Server Close statement
Example
’ Application to ”print” address labels
’ Assumes that a relational table ADDR exists with 6 columns...
Dim hdbc, hstmt As Integer
Dim first_name, last_name, street, city, state, zip As String
Dim fn_stat, ln_stat, str_stat, ct_stat, st_stat, zip_stat As Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
hstmt = Server_Execute(hdbc, ”select * from ADDR”)
Server hstmt Bind Column 1 To first_name,fn_stat
Server hstmt Bind Column 2 To last_name, ln_stat
Server hstmt Bind Column 3 To street, str_stat
Server hstmt Bind Column 4 To city, ct_stat
Server hstmt Bind Column 5 To state, st_stat
Server hstmt Bind Column 6 To zip, zip_stat
Server hstmt Fetch NEXT

While Not Server_Eot(hstmt)
Print first_name + ” ” + last_name
Print street
Print city + ”, ” + state + ” ” + zip
Server hstmt Fetch NEXT

Wend
Server hstmt Close
Server hdbc Disconnect

See Also

Server_ColumnInfo() function

Server Close statement
Purpose

Frees resources associated with running a remote data access statement.

Syntax
Server StatementNumber Close

StatementNumber is an integer value that identifies information about an SQL statement.

Description

The Server Close command is used to inform the server that processing on the current remote
statement is finished. All resources associated with the statement are returned. Remember to call
Server Close immediately after Server_Execute for any non-query SQL statement you are finished
processing.

Example
’ Fetch the 5th record then close the statement
hstmt = Server_Execute(hdbc, ”Select * from Massive_Database”)
Server hstmt Fetch Rec 5
Server hstmt Close

See Also

Server_Execute() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 437 MB_Ref.pdf

Reference Guide Chapter 8: Server_ColumnInfo() function
Server_ColumnInfo() function
Purpose

Retrieves information about columns in a result set.

Syntax
Server_ColumnInfo(StatementNumber, ColumnNo, Attr)

StatementNumber is an integer value that identifies information about an SQL statement.

ColumnNo is the number of the column in the table, starting at 1 with the leftmost column.

Attr is a code indicating which aspect of the column to return.

Return Value

The return value is conditional based on the value of the attribute passed (Attr).

Description

The Server_ColumnInfo function returns information about the current fetched column in the result
set of a remote data source described by a remotely executed Select statement. The
StatementNumber parameter specifies the particular statement handle associated with that
connection. The ColumnNo parameter indicates the desired column (the columns are numbered from
the left starting at 1). Attr selects the kind of information that will be returned.

The following table contains the attributes returned to the Attr parameter. These types are defined in
MAPBASIC.DEF.

Attr Server_ColumnInfo() returns:

SRV_COL_INFO_NAME String result, the name identifying the column

SRV_COL_INFO_TYPE Integer result, a code indicating the column type:
• SRV_COL_TYPE_NONE
• SRV_COL_TYPE_CHAR
• SRV_COL_TYPE_DECIMAL
• SRV_COL_TYPE_INTEGER
• SRV_COL_TYPE_SMALLINT
• SRV_COL_TYPE_DATE
• SRV_COL_TYPE_LOGICAL
• SRV_COL_TYPE_FLOAT
• SRV_COL_TYPE_FIXED_LEN_STRING
• SRV_COL_TYPE_BIN_STRING

See Server Fetch for how MapInfo Professional interprets data
types.

SRV_COL_INFO_SCALE Integer result, indicating the number of digits to the right of the
decimal for a SRV_COL_TYPE_DECIMAL column, or -1 for any
other column type.

SRV_COL_INFO_PRECISION Integer result, indicating the total number of digits for a
SRV_COL_TYPE_DECIMAL column, or -1 for any other column
type.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 438 MB_Ref.pdf

Reference Guide Chapter 8: Server Commit statement
Example
Dim hdbc, Stmt As Integer

Dim Col As Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)

Stmt = Server_Execute(hdbc, ”Select * from emp”)
Server Stmt Fetch NEXT

For Col = 1 To Server_NumCols(Stmt)
Print Server_ColumnInfo(Stmt, Col, SRV_COL_INFO_NAME) +
” = ” +
Server_ColumnInfo(Stmt, Col, SRV_COL_INFO_VALUE)

Next

See Also

Server Bind Column statement, Server Fetch statement, Server_NumCols() function

Server Commit statement
Purpose

Causes the current unit of work to be saved to the database.

Syntax
Server ConnectionNumber Commit

ConnectionNumber is an integer value that identifies the specific connection.

Description

The Server Commit statement makes permanent the effects of all remote SQL statements on the
connection issued since the last Server Begin Transaction statement to the database. You must have
an open transaction initiated by the Server Begin Transaction statement before you can use the
Server Commit command. Then you must issue a new Server Begin Transaction statement
following the Server Commit command to begin a new transaction.

SRV_COL_INFO_WIDTH Integer result, indicating maximum number of characters in a col-
umn of type SRV_COL_TYPE_CHAR or
SRV_COL_TYPE_FIXED_LEN_CHAR.
When using ODBC the null terminator is not counted.The value
returned is the same as the server database table column width.

SRV_COL_INFO_VALUE Result type varies. Returns the actual data value from the col-
umn of the current row. Long character column values greater
than 32,766 will be truncated. Binary column values are returned
as a double length string of hexadecimal characters.

SRV_COL_INFO_STATUS Integer result, indicating the status of the column value:
SRV_NULL_DATA - Returned when the column has no data for
that row. SRV_TRUNCATED_DATA - Returned when there is
more data in the column than can be stored in the MapBasic vari-
able. Positive Integer Value - Number of bytes returned by the
server.

SRV_COL_INFO_ALIAS Column alias returned if an alias was used for the column in the
query.

Attr Server_ColumnInfo() returns:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 439 MB_Ref.pdf

Reference Guide Chapter 8: Server_Connect() function
Example
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
Server hdbc Begin Transaction
hstmt = Server_Execute(hdbc, ”Update Emp Set salary = salary * 1.5”)
Server hdbc Commit

See Also

Server Begin Transaction statement, Server Rollback statement

Server_Connect() function
Purpose

Establishes communications with a remote data server.

Syntax
Server_Connect(toolkit, connect_string)

toolkit is a string value identifying the remote interface, for example, “ODBC”, “ORAINET”. Valid values
for toolkit can be obtained from the Server_DriverInfo() function.

connect_string is a string value with additional information necessary to obtain a connection to the
database.

Return Value

Integer

Description

The Server_Connect() function establishes a connection to a data source. This function returns a
connection number. A connection number is an identifier to the connection. This identifier must be
passed to all server statements that you wish to operate on the connection.

The parameter toolkit identifies the MapInfo Professional remote interface toolkit through which the
connection to a database server will be made. Information can be obtained about the possible values
via calls to Server_NumDrivers and Server_DriverInfo().

The connect_string parameter supplies additional information to the toolkit necessary to obtain a
connection to the database. The parameters depend on the requirements of the remote data source
being accessed.

The connection string sent to Server_Connect() has the form:

attribute=value[;attribute=value...]

(There are no spaces allowed in the connection string.)

Passing the DLG=1 connect option provides a nice connect dialog with active help buttons.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 440 MB_Ref.pdf

Reference Guide Chapter 8: Server_Connect() function
Microsoft ACCESS Attributes
The attributes used by ACCESS are:

An example of a connection string for ACCESS is:

”DSN=MI ACCESS;UID=ADMIN;PWD=SECRET”

ORACLE ODBC Connection
If your application requires a connection string to connect to a data source, you must specify the data
source name that tells the driver which section of the system information to use for the default
connection information. Optionally, you may specify attribute=value pairs in the connection string to
override the default values stored in the system information. These values are not written to the system
information.

You can specify either long or short names in the connection string. The connection string has the
form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

An example of a connection string for Oracle is:

DSN=Accounting;HOST=server1;PORT=1522;SID=ORCL;UID=JOHN;PWD=XYZZY

The paragraphs that follow give the long and short names for each attribute, as well as a description.
The defaults listed are initial defaults that apply when no value is specified in either the connection
string or in the data source definition in the system information. If you specified a value for the attribute
when configuring the data source, that value is the default.

ApplicationUsingThreads (AUT): ApplicationUsingThreads={0 | 1}. Ensures that the driver works with
multi-threaded applications.

When set to 1 (the initial default), the driver is thread-safe.

When using the driver with single-threaded applications, you can set this option to 0 to avoid additional
processing required for ODBC thread-safety standards.

ArraySize (AS): The number of bytes the driver uses for fetching multiple rows. Values can be an
integer from 1 up to 4 GB. Larger values increase throughput by reducing the number of times the
driver fetches data across the network. Smaller values increase response time, as there is less waiting
time for the server to transmit data.

The initial default is 60,000.

Attribute Description

DSN The name of the ODBC data source for Microsoft ACCESS.

UID The user login ID.

PWD The user-specified password.

SCROLL The default value is NO. If SCROLL=YES the ODBC cursor library is used for this
connection allowing the ability to fetch first, last, previous, or record n of the data-
base.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 441 MB_Ref.pdf

Reference Guide Chapter 8: Server_Connect() function
CatalogOptions (CO): CatalogOptions={0 | 1}. Determines whether the result column REMARKS for
the catalog functions SQLTables and SQLColumns and COLUMN_DEF for the catalog function
SQLColumns have meaning for Oracle. If you want to obtain the actual default value, set CO=1.

The initial default is 0.

DataSourceName (DSN): A string that identifies an Oracle data source configuration in the system
information. Examples include "Accounting" or "Oracle-Serv1."

DescribeAtPrepare (DAP): DescribeAtPrepare={0 | 1}. Determines whether the driver describes the
SQL statement at prepare time.

When set to 0 (the initial default), the driver does not describe the SQL statement at prepare time.

EnableDescribeParam (EDP): EnableDescribeParam={0 | 1}. Determines whether the ODBC API
function SQLDescribeParam is enabled, which results in all parameters being described with a data
type of SQL_VARCHAR.

This attribute should be set to 1 when using Microsoft Remote Data Objects (RDO) to access data. The
initial default is 0.

EnableStaticCursorsForLongData (ESCLD): EnableStaticCursorsForLongData={0 | 1}. Determines
whether the driver supports long columns when using a static cursor. Using this attribute causes a
performance penalty at the time of execution when reading long data.

The initial default is 0.

HostName (HOST): HostName={servername | IP_address}. Identifies the Oracle server to which you
want to connect. If your network supports named servers, you can specify a host name such as
Oracleserver. Otherwise, specify an IP address such as 199.226.224.34.

LockTimeOut (LTO): LockTimeOut={0 | -1}. Determines whether Oracle should wait for a lock to be
freed before raising an error when processing a Select...For Update statement.

When set to 0, Oracle does not wait.

When set to -1 (the initial default), Oracle waits indefinitely.

LogonID (UID): The default logon ID (user name) that the application uses to connect to your Oracle
database. A logon ID is required only if security is enabled on your database. If so, contact your system
administrator to get your logon ID.

Password (PWD): The password that the application uses to connect to your Oracle database.

PortNumber (PORT): Identifies the port number of your Oracle listener. The initial default value is
1521. Check with your database administrator for the correct number.

ProcedureRetResults (PRR): ProcedureRetResults={0 | 1}. Determines whether the driver returns
result sets from stored procedure functions.

When set to 0 (the initial default), the driver does not return result sets from stored procedures.

When set to 1, the driver returns result sets from stored procedures. When set to 1 and you execute a
stored procedure that does not return result sets, you will incur a small performance penalty.

SID (SID): The Oracle System Identifier that refers to the instance of Oracle running on the server.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 442 MB_Ref.pdf

Reference Guide Chapter 8: Server_Connect() function
UseCurrrentSchema (UCS): UseCurrentSchema={0 | 1}. Determines whether the driver specifies
only the current user when executing SQLProcedures.

When set to 0, the driver does not specify only the current user.

When set to 1 (the initial default), the call for SQLProcedures is optimized, but only procedures owned
by the user are returned.

Oracle8i Spatial Attributes
Oracle8i Spatial is an implementation of a spatial database from Oracle Corporation.
It has some similarities to the previous Oracle SDO implementation, but is significantly different.
Oracle8i Spatial maintains the Oracle SDO implementation via a relational schema. However, MapInfo
Professional does not support the Oracle SDO relational schema via OCI. MapInfo Professional does
support simultaneous connections to Oracle8i through OCI and to other databases through ODBC.
MapInfo Professional does not support downloading Oracle8I Spatial geometry tables via ODBC using
the current ODBC driver from Intersolv.

There is no DSN component.

An example of a connection string to access an Oracle8i Spatial server using TCP/IP is:

“SRVR=FATBOY;USR=SCOTT;PWD=TIGER”

SQL SERVER Attributes
If your application requires a connection string to connect to a data source, you must specify the data
source name that tells the driver which section in the system information to use for the default
connection information. Optionally, you may specify attribute=value pairs in the connection string to
override the default values stored in system information. These values are not written to the system
information.

The connection string has the form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

An example of a connection string for SQL Server is:

DSN=Accounting;UID=JOHN;PWD=XYZZY

Attribute Description

LogonID (UID) The logon ID (user name) that the application uses to connect to your
Oracle database. A logon ID is required only if security is enabled on
your database. If so, contact your system administrator to get your logon
ID.

Password (PWD) Your password. This, too, should be supplied by your system administra-
tor.

ServerName (SRVR) The name of the Oracle server.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 443 MB_Ref.pdf

Reference Guide Chapter 8: Server_Connect() function
The paragraphs that follow give the long and short names, when applicable, for each attribute, as well
as a description. The defaults listed are initial defaults that apply when no value is specified in either
the connection string or in the data source definition in the system information. If you specified a value
for the attribute when configuring the data source, that value is the default.

Address: The network address of the server running SQL Server. Used only if the Server keyword
does not specify the network name of a server running SQL Server. Address is usually the network
name of the server, but can be other names such as a pipe, or a TCP/IP port and socket address. For
example, on TCP/IP: 199.199.199.5, 1433 or MYSVR, 1433.

AnsiNPW: AnsiNPW={yes | no}. Determines whether ANSI-defined behaviors are exposed. When set
to yes, the driver uses ANSI-defined behaviors for handling NULL comparisons, character data
padding, warnings, and NULL concatenation. When set to no, ANSI-defined behaviors are not
exposed.

APP: The name of the application calling SQLDriverConnect (optional). If specified, this value is stored
in the master.dbo.sysprocesses column program_name and is returned by sp_who and the Transact-
SQL APP_NAME function.

AttachDBFileName: The name of the primary file of an attachable database. Include the full path and
escape any slash (\) characters if using a C character string variable:

AttachDBFileName=c:\\MyFolder\\MyDB.mdf

This database is attached and becomes the default database for the connection. To use
AttachDBFileName you must also specify the database name in either the SQLDriverConnnect
DATABASE parameter or the SQL_COPT_CURRENT_CATALOG connection attribute. If the database
was previously attached, SQL Server will not reattach it; it will use the attached database as the default
for the connection.

AutoTranslate: AutoTranslate={yes | no}. Determines how ANSI character strings are translated.

When set to yes, ANSI character strings sent between the client and server are translated by
converting through Unicode to minimize problems in matching extended characters between the code
pages on the client and the server.

These conversions are performed on the client by the SQL Server Wire Protocol driver. This requires
that the same ANSI code page (ACP) used on the server be available on the client.

These settings have no effect on the conversions that occur for the following transfers:

• Unicode SQL_C_WCHAR client data sent to char, varchar, or text on the server.
• Char, varchar, or text server data sent to a Unicode SQL_C_WCHAR variable on the client.
• ANSI SQL_C_CHAR client data sent to Unicode nchar, nvarchar, or ntext on the server.
• Unicode char, varchar, or text server data sent to an ANSI SQL_C_CHAR variable on the

client.
• When set to no, character translation is not performed.
• The SQL Server Wire Protocol driver does not translate client ANSI character SQL_C_CHAR

data sent to char, varchar, or text variables, parameters, or columns on the server. No
translation is performed on char, varchar, or text data sent from the server to SQL_C_CHAR
variables on the client.

• If the client and SQL Server are using different ACPs, then extended characters can be
misinterpreted.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 444 MB_Ref.pdf

Reference Guide Chapter 8: Server_Connect() function
DATABASE: The name of the default SQL Server database for the connection. If DATABASE is not
specified, the default database defined for the login is used. The default database from the ODBC data
source overrides the default database defined for the login. The database must be an existing
database unless AttachDBFileName is also specified. If AttachDBFileName is specified, the primary
file it points to is attached and given the database name specified by DATABASE.

LANGUAGE: The SQL Server language name (optional). SQL Server can store messages for multiple
languages in sysmessages. If connecting to a SQL Server with multiple languages, this attribute
specifies which set of messages are used for the connection.

Network: The name of a network library dynamic-link library. The name need not include the path and
must not include the .dll file name extension, for example, Network=dbnmpntw.

PWD: The password for the SQL Server login account specified in the UID parameter. PWD need not
be specified if the login has a NULL password or when using Windows NT authentication
(Trusted_Connection=yes).

QueryLogFile: The full path and file name of a file to be used for logging data about long-running
queries.

QueryLog_On: QueryLog_On={yes | no}. Determines whether long-running query data is logged.

When set to yes, logging long-running query data is enabled on the connection.

When set to no, long-running query data is not logged.

QueryLogTime: A digit character string specifying the threshold (in milliseconds) for logging long-
running queries. Any query that does not receive a response in the time specified is written to the long-
running query log file.

QuotedID: QuotedID={yes | no}. Determines whether QUOTED_IDENTIFIERS is set ON or OFF for
the connection.

When set to yes, QUOTED_IDENTIFIERS is set ON for the connection, and SQL Server uses the
SQL-92 rules regarding the use of quotation marks in SQL statements.

When set to no, QUOTED_IDENTIFIERS is set OFF for the connection, and SQL Server uses the
legacy Transact-SQL rules regarding the use of quotation marks in SQL statements.

Regional: Regional={yes | no}. Determines how currency, date, and time data are converted.

When set to yes, the SQL Server Wire Protocol driver uses client settings when converting currency,
date, and time data to character data. The conversion is one way only; the driver does not recognize
non-ODBC standard formats for date strings or currency values.

When set to no, the driver uses ODBC standard strings to represent currency, date, and time data that
is converted to string data.

SAVEFILE: The name of an ODBC data source file into which the attributes of the current connection
are saved if the connection is successful.

SERVER: The name of a server running SQL Server on the network. The value must be either the
name of a server on the network, or the name of a SQL Server Client Network Utility advanced server
entry. You can enter "(local)" as the server name on Windows NT to connect to a copy of SQL Server
running on the same computer.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 445 MB_Ref.pdf

Reference Guide Chapter 8: Server_Connect() function
StatsLogFile: The full path and file name of a file used to record SQL Server Wire Protocol driver
performance statistics.

StatsLog_On: StatsLog_On={yes | no}. Determines whether SQL Server Wire Protocol driver
performance data is available.

When set to yes, SQL Server Wire Protocol driver performance data is captured.

When set to no, SQL Server Wire Protocol driver performance data is not available on the connection.

Trusted_Connection: Trusted_Connection={yes | no}. Determines what information the SQL Server
Wire Protocol driver will use for login validation.

When set to yes, the SQL Server Wire Protocol driver uses Windows NT Authentication Mode for login
validation. The UID and PWD keywords are optional.

When set to no, the SQL Server Wire Protocol driver uses a SQL Server username and password for
login validation. The UID and PWD keywords must be specified.

UID: A valid SQL Server login account. UID need not be specified when using Windows NT
authentication.

WSID: The workstation ID. Typically, this is the network name of the computer on which the application
resides (optional). If specified, this value is stored in the master.dbo.sysprocesses column hostname
and is returned by sp_who and the Transact-SQL HOST_NAME function.

Informix Attributes
If your application requires a connection string to connect to a data source, you must specify the data
source name that tells the driver which section of the system information to use for the default
connection information. Optionally, you may specify attribute=value pairs in the connection string to
override the default values stored in the system information. These values are not written to system
information.

You can specify either long or short names in the connection string. The connection string has the
form:

DSN=data_source_name[;attribute=value[;attribute=value]...]

An example of a connection string for Informix is:

DSN=Informix TABLES;DB=PAYROLL

The paragraphs that follow give the long and short names for each attribute, as well as a description.
The defaults listed are initial defaults that apply when no value is specified in either the connection
string or in the data source definition in the system information. If you specified a value for the attribute
when configuring the data source, that value is the default.

ApplicationUsingThreads (AUT): ApplicationUsingThreads={0 | 1}. Ensures that the driver works
with multi-threaded applications. The default is 1, which makes the driver thread-safe. When using the
driver with single-threaded applications, you may set this option to 0 to avoid additional processing
required for ODBC thread safety standards.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 446 MB_Ref.pdf

Reference Guide Chapter 8: Server_ConnectInfo() function
CancelDetectInterval (CDI): A value in seconds that determines how often the driver checks whether
a query has been canceled using SQLCancel. If the driver determines that SQLCancel has been
issued, the query is canceled. This attribute determines whether long-running queries in threaded
applications are canceled if the application issues a SQLCancel. If set to 0 (the initial default), queries
are not canceled even if SQLCancel is issued.

For example, if CancelDetectInterval is set to 5, then for every pending request, the driver checks
every five seconds to see whether the application has canceled execution of the query using
SQLCancel.

Database (DB): Name of the database to which you want to connect.

DataSourceName (DSN): Identifies an Informix data source configuration in the system information.
Examples include "Accounting" or "Informix-Serv1."

HostName (HOST): Name of the machine on which the Informix server resides.

LogonID (UID): Your user name as specified on the Informix server.

PortNumber (PORT): The port number of the server listener. There is no default value.

ServerName (SRVR): The name of the server running the Informix database.

TrimBlankFromIndexName (TBFIN): TrimBlankFromIndexName={0 | 1}. Specifies whether or not the
leading space should be trimmed from a system-generated index name. This option is provided to
address problems with applications that cannot process a leading space in index names. When set to 1
(the default), the driver trims the leading space. When set to 0, the driver does not trim the space.

Example
Dim hdbc As Integer
hdbc = Server_Connect("ODBC",
"DSN=Informix;SRV=IUSSrvr;USR=atsmipro;PWD=miproats")

See Also

Server Disconnect statement

Server_ConnectInfo() function
Purpose

Retrieves information about the active database connections.

Syntax
Server_ConnectInfo (ConnectionNo, Attr)

ConnectionNumber is the integer returned by Server_Connect that identifies the database connection.

Attr is a code indicating which information to return.

Return Value

String

Description

The Server_ConnectInfo function returns information about a database connection. The first
parameter selects the connection number (starting at 1). The second parameter selects the kind of
information that will be returned. Refer to the following table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 447 MB_Ref.pdf

Reference Guide Chapter 8: Server Create Map statement
Example
Dim dbname as string
Dim hdbc As Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
dbname=Server_ConnectInfo(hdbc, SRV_CONNECT_INFO_DB_NAME)
Print dbname

Server Create Map statement
Purpose

This function identifies the spatial information for a server table. It does not alter the table to add the
spatial columns.

Syntax
Server ConnectionNumber Create Map

For linked_table
Type { MICODE columnname | XYINDEX columnname| SPATIALWARE }
CoordSys ...
[MapBounds {Data|Coordsys|Values (x1, y1) (x2, y2)}]
[ObjectType { Point | Line | Region | ALL }]
[Symbol (...)]
[Linestyle Pen(...)]
[Regionstyle Pen(...) Brush(...)]
[Style Type style_number (0 or 1) [Column column_name]]

connectionNumber is an integer value that identifies the specific connection.

linked_table is the name of an open, linked ODBC table.

columnname is the name of the column containing the coordinates for the specified type.

x1, y1, x2, y2 define the coordinate system bounds. See the MapBounds clause discussion for more
information.

CoordSys ... clause specifies the coordinate system and projection to be used

MapBounds clause allows you to specify what to store for the entire/default table view bounds in the
MapCatalog. The default is Data which calculates the bounds of all the data in the layer. (For programs
compiled before 7.5, the default will be CoordSys.).

The Coordsys option stores the coordinate system bounds. This is not recommended as it may cause
the entire layer.default view to appear empty if the coordsys bounds are significantly greater than the
bounds of the actual data. Most users are zoomed out too far to see their data using this option.

Attr Server_ConnectInfo() returns:

SRV_CONNECT_INFO_DRIVER_NAME String result, the name identifying the toolkit driver-
name associated with this connection.

SRV_CONNECT_INFO_DB_NAME String result, returning the database name.

SRV_CONNECT_INFO_SQL_USER_ID String result, returning the name of the SQL user ID.

SRV_CONNECT_INFO_DS_NAME String result, returning the data source name.

SRV_CONNECT_INFO_QUOTE_CHAR String result, returning the quote character.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 448 MB_Ref.pdf

Reference Guide Chapter 8: Server Create Map statement
The Values option lets you specify your own bounds values for the MapCatalog.

ObjectType clause specifies the type of object in the table: points, lines, regions, or all objects. If no
object type clause is specified, the default is points.

Symbol (...) clause specifies the symbol style to be used for a point object type

Linestyle Pen (...) clause specifies the line style to be used for a line object type

Regionstyle Pen (...) Brush(...) clause specifies the line style and fill style to be used for a region
object type

StyleType sets per-row symbology. The Column token and argument must be present when the Type
is set to 1 (one). When the style_number is set to zero the Column token is ignored and the rendition
columns in the MAPCATALOG are cleared.

Description

The Server Create Map statement makes a table linked to a remote database mappable. For a
SpatialWare, Oracle Spatial or Oracle SDO table, you can make the table mappable for points, lines, or
regions. For all other tables, you can make a table mappable for points only. Any MapInfo Professional
table may be displayed in a Browser, but only a mappable table can have graphical objects attached to
it and be displayed in a Map window.

Note: If Oracle9i is the server and the coordinate system is specified as Lat/Long without specifying
the datum, the default datum, World Geodetic System 1984(WGS 84), will be assigned to the
Lat/Long coordinate system. This behavior is consistent with the Server Create Table
statement and Easyloader

.

Examples
Sub Main
Dim ConnNum As Integer
ConnNum = Server_Connect("ODBC", "DSN=SQLServer;DB=QADB;UID=mipro;PWD=mipro")
Server ConnNum Create Map For "Cities"
Type SPATIALWARE
CoordSys Earth Projection 1, 0
ObjectType All
ObjectType Point

Symbol (35,0,12)
Server ConnNum Disconnect
End Sub

See Also

Server Link Table statement, Unlink statement

Attribute Types Description

ORA_SP OracleSpatial

IUS_SW SpatialWare IUS Blade

IUS_MM_SW > MapInfo MapMarker Geocoding DataBlade for SpatialWare

IUS_MM_XY <columnname> MapInfo MapMarker Geocoding DataBlade for XY

SPATIALWARE SpatialWare for SQL Server

MICODE XYINDEX
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 449 MB_Ref.pdf

Reference Guide Chapter 8: Server Create Style statement
Server Create Style statement
Purpose

Changes the per object style settings for a mapped table. This statement is similar to the Server Set
Map statement and returns success or failure.

Syntax
Server ConnectionNumber Set Map linked table...

[Style Type style_ number (0 or 1) [Column <column_ name>]]

connectionNumber is an integer value that identifies the specific connection.

linked_table is the name of an open linked ODBC table

columnname is the name of the column containing the coordinates for the specified type

StyleType sets per row symbology. The Column token and argument need to be present when the
Type is set to 1 (one). When the style_number is set to zero the Column token is ignored and the
rendition columns in the MAPCATALOG are cleared.

Description

The Column token and argument need to be present when the Type is set to 1 (one). When the
style_number is set to zero the Column token is ignored and the rendition columns in the
MAPCATALOG are cleared.

In order to succeed, the map catalog must have the structure to support styles. It must contain the
columns RENDITIONTYPE, RENDITIONCOLUMN, and RENDITIONTABLE. The command should
not succeed if the style columns are not character or varchar columns. The SQL statement itself will
probably fail if it tries to set a string value into a column with a different data type.

Example
Server 2 Create Map For "qadb:informix.arc"
Type MICODE "mi_sql_micode" ("mi_sql_x","mi_sql_y")
CoordSys Earth Projection 1, 0 ObjectType Point Symbol (35,0,12) Style Type 1
Column "mi_symbology"

See Also

Server_Connect() function

Server Create Table statement
Purpose

 Creates a new table on a specified remote database.

 Syntax
Server ConnectionNumber Create Table TableName(ColumnName ColumnType [,…])

[KeyColumn ColumnName]
[ObjectColumn ColumnName]
[StyleColumn ColumnName]
[CoordSys...]

ConnectionNumber is an integer value that identifies the specific connection to a database.

TableName is the name of the table as you want it to appear in a database.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 450 MB_Ref.pdf

Reference Guide Chapter 8: Server Create Table statement
ColumnName is the name of a column to create. Column names can be up to 31 characters long, and
can contain letters, numbers, and the underscore(_) character. Column names cannot begin with
numbers.

ColumnType is the data type associated with the column.

KeyColumn clause specifies the key column of the table.

ObjectColumn clause specifies the spatial geometry/object column of the table.

StyleColumn clause specifies the Per Row Style column, which allows the use of different object
styles for each row on the table.

CoordSys... clause specifies the coordinate system and projection to be used.

Description

The Server Create Table statement creates a new empty table on the given database of up to 250
columns.

The length of TableName varies with the type of database. We recommend using 14 or fewer
characters for a table name to ensure that it works correctly for all databases. The maximum
tablename length is 14 characters.

ColumnType uses the same data types defined and provided in the Create Table Statement. Some
types may be converted to the database-supported types accordingly, once the table is created on the
database.

 If the optional KeyColumn clause is specified, a unique index will be created on this column. We
recommend using this clause since it is also allows MapInfo Professional to open the table for live
access.

The optional ObjectColumn clause enables you to create a table with a spatial geometry/object
column. If it is specified, a spatial index will also be created on this column. However, if the server does
not have the ability to handle spatial geometry/objects, the table will not be created. If the server is an
SQL Server with SpatialWare, the table is also spatialized once the table is created. If the Server is
Oracle Spatial, spatial metadata is updated once the table is created.

If Server Create Table is used and the ObjectCOlumn clause is passed in the statement, you will also
have to use Server Create Map in order to open the table in MapInfo Professional.

The optional CoordSys... clause becomes mandatory only if the table is created with spatial object/
geometry on Oracle Spatial (Oracle8i or later with spatial option). If Oracle9i is the server and the
coordinate system is specified as Lat/Long without specifying the datum, the default datum, World
Geodetic System 1984(WGS 84), will be assigned to the Lat/Long coordinate system. The Coordinate
System must be the same as the one specified in the Server Create Map Statement when making it
mappable. For other DBMS, this clause has no effect on table creation.

The supported databases include Oracle, SQL Server, IUS, and Microsoft Access. However, to create
a table with a spatial geometry/object column, SpatialWare/Blade is required for SQL Server and IUS,
and the spatial option is required for Oracle.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 451 MB_Ref.pdf

Reference Guide Chapter 8: Server Create Workspace statement
Examples

The following examples show how to create a table named ALLTYPES that contains seven columns
that cover each of the data types supported by MapInfo Professional, plus the three columns Key,
SpatialObject, and Style columns, for a total of ten columns.

For SQL Server with SpatialWare or IUS with SpatialWare Blade:

dim hodbc as integer
hodbc = server_connect("ODBC", "dlg=1")
Server hodbc Create Table ALLTYPES(Field1 char(10),Field2 integer,Field3
smallint,Field4 float,Field5 decimal(10,4),Field6 date,Field7 logical)
KeyColumn SW_MEMBER
ObjectColumn SW_GEOMETRY
StyleColumn MI_STYLE

For Oracle Spatial:

dim hodbc as integer
hodbc = server_connect("ORAINET", "SRVR=cygnus;UID=mipro;PWD=mipro")
Server hodbc Create Table ALLTYPES(Field1 char(10),Field2 integer,Field3
smallint,Field4 float,Field5 decimal(10,4),Field6 date,Field7logical)

KeyColumn MI_PRINX
ObjectColumn GEOLOC
StyleColumn MI_STYLE
Coordsys Earth Projection 1, 0

See also

Create Map statement, Server Create Map statement, Server Link Table statement, Unlink
statement

Server Create Workspace statement
Purpose

Creates a new workspace in the database (Oracle 9i or later).

Syntax
Server ConnectionNumber Create

Workspace WorkspaceName
[Description Description]
[Parent ParentWorkspaceName]

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive, and it must be
unique.The length of a workspace name must not exceed 30 characters.

Description is a string to describe the workspace.

ParentWorkspaceName is the name of the workspace which will be the parent of the new workspace
WorkspaceName. By default, when a workspace is created, it is created from the topmost, or LIVE,
database workspace.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 452 MB_Ref.pdf

Reference Guide Chapter 8: Server Disconnect statement
Description

This statement only applies to Oracle9i or later. The new workspace WorkspaceName is a child of the
parent workspace ParentWorkspaceName or LIVE if the Parent is not specified.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples

The following example creates a workspace named GARYG in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create
Workspace "MIUSER"
Description "MIUser private workspace"

The following example creates a child workspace under MIUSER in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Create Workspace "MBPROG" Description "MapBasic project" Parent
"MIUSER"

See also

Server Remove Workspace statement, Server Versioning statement

Server Disconnect statement
Purpose

Shuts down the communication established via Server_Connect with the remote data server.

Syntax
Server ConnectionNumber Disconnect

ConnectionNumber is an integer value that identifies the specific connection.

Description

The Server Disconnect function shuts down the database connection. All resources allocated with
respect to the connection are returned to the system.

Example
Dim hdbc As Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
Server hdbc Disconnect

See Also

Server_Connect() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 453 MB_Ref.pdf

Reference Guide Chapter 8: Server_DriverInfo() function
Server_DriverInfo() function
Purpose

Retrieves information about the installed toolkits and data sources.

Syntax
Server_DriverInfo(DriverNo, Attr)

DriverNo is an integer value assigned to an interface toolkit by MapInfo Professional when you start
MapInfo Professional.

Attr is a code indicating which information to return.

Return Value

String

Description

The Server_DriverInfo function returns information about the data sources. The first parameter
selects the toolkit (starting at 1). The total number of toolkits can be obtained by a call to the
Server_NumDrivers() function. The second parameter selects the kind of information that will be
returned. Refer to the following table.

Example
Dim dlg_string, source As String
dlg_string = Server_DriverInfo(0, SRV_DRV_INFO_NAME_LIST)
source = Server_DriverInfo(1, SRV_DRV_DATA_SOURCE)
While source <> ””

Print ”Available sources on toolkit ” +
Server_DriverInfo(1, SRV_DRV_INFO_NAME) + ”: ” +

source
source = Server_DriverInfo(1,

SRV_DRV_DATA_SOURCE)
Wend

See Also

Server_NumDrivers() function

Attr Server_DriverInfo() returns:

SRV_DRV_INFO_NAME String result, the name identifying the toolkit. ODBC indicates
an ODBC data source. ORAINET indicates an Oracle Spatial
connection.

SRV_DRV_INFO_NAME_LIST String result, returning all the toolkit names, separated by
semicolons. i.e. ODBC, ORAINET. The DriverNo parameter is
ignored.

SRV_DRV_DATA_SOURCE String result, returning the name of the data sources supported
by the toolkit. Repeated calls will fetch each name. After the
last name for a particular toolkit, the function will return an
empty string. Calling the function again for that toolkit will
cause it to start with the first name on the list again.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 454 MB_Ref.pdf

Reference Guide Chapter 8: Server_EOT() function
Server_EOT() function
Purpose

Determines whether the end of the result table has been reached via a Server Fetch statement.

Syntax
Server_EOT(StatementNumber)

StatementNumber is the is the number of the fetch statement you are checking.

Return Value

Logical

Description

The Server_EOT function returns TRUE or FALSE indicating whether the previous fetch statement
encountered a condition where there was no more data to return. Attempting to fetch a previous record
immediately after fetching the first record causes this to return TRUE. Attempting to fetch the next
record after the last record also returns a value of TRUE.

Example
Dim hdbc, hstmt As Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
hstmt = Server_Execute(hdbc, ”Select * from ADDR”)
Server hstmt Fetch FIRST
While Not Server_EOT(hstmt)

’ Processing for each row of data ...
Server hstmt Fetch Next

Wend

See Also

Server Fetch statement

Server_Execute() function
Purpose

Sends an SQL string to execute on a remote data server.

Syntax
Server_Execute(ConnectionNumber, server_string)

ConnectionNumber is an integer value that identifies the specific connection.

server_string is any valid SQL statement supported by the connected server. Refer to the SQL
language guide of your server database for information on valid SQL statements.

Return Value

Integer

Description

The Server_Execute function sends the server_string (an SQL statement) to the server connection
specified by the ConnectionNumber. Any valid SQL statement supported by the active server is a valid
value for the server_string parameter. Refer to the SQL language guide of your server database for
information on valid SQL statements.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 455 MB_Ref.pdf

Reference Guide Chapter 8: Server Fetch statement
This function returns a statement number. The statement number is used to associate subsequent
SQL requests, like the Fetch and Close operations, to a particular SQL statement.

You should perform a Server Close for each Server_Execute function as soon as you are done using
the statement handle. For selects, this is as soon as you are done fetching the desired data. This will
close the cursor on the remote server and free up the result set. Otherwise, you can exceed the cursor
limit and further executes will fail. Not all database servers support forward and reverse scrolling
cursors. For other SQL commands, issue a Server Close statement immediately following the
Server_Execute function.

Dim hdbc, hstmt As Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
hstmt = Server_Execute(hdbc, ”Select * from ADDR”)
Server hstmt Close

Example
Dim hdbc, hstmt As Integer
hdbc = Server_Connect(”ODBC”, DSN=ORACLE7;DLG=1”)
hstmt = Server_Execute (hdbc,

”CREATE TABLE NAME_TABLE (NAME CHAR (20))”)
Server hstmt Close
hstmt = Server_Execute (hdbc,

”INSERT INTO NAME_TABLE VALUES (‘Steve’)”)
Server Close hstmt
hstmt = Server_Execute (hdbc,

”UPDATE NAME_TABLE SET name = ‘Tim’ ”)
Server Close hstmt
Server hdbc Disconnect

See Also

Server Close statement, Server Fetch statement

Server Fetch statement
Purpose

Retrieves result set rows from a remote data server.

Syntax
Server StatementNumber Fetch [NEXT | PREV | FIRST | LAST | [REC]recno]

or

Server StatementNumber Fetch INTO Table [FILE path]

StatementNumber is an integer value that identifies information about an SQL statement.

Description

The Server Fetch command retrieves result set data (specified by the StatementNumber) from the
database server. For fetching the data one row at a time, it is placed in local storage and can be bound
to variables with the Server Bind Column command, or retrieved one column at a time with the
Server_ColumnInfo(SRV_COL_INFO_VALUE) function. The other option is to fetch an entire result
set into a MapInfo table at once, using the ‘Into Table’ clause.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 456 MB_Ref.pdf

Reference Guide Chapter 8: Server Fetch statement
The Server Fetch and Server Fetch Into commands will halt and set the error code ERR() =
ERR_SRV_ESC if the user presses Escape. This allows your MapBasic application using the Server
Fetch commands to handle the escape.

Following a Server Fetch Into statement, the MapInfo table is committed and there are no outstanding
transactions on the table. All character fields greater than 254 bytes are truncated. All binary fields are
downloaded as double length hexadecimal character strings. The column names for the downloaded
table will use the column alias name if a column alias is specified in the query.

Null Handling
When you execute a Select and fetch a row containing a table column that contains a null, the following
behavior occurs. There is no concept of null values in a MapInfo table or variable, so the default value
is used within the domain of the data type. This is the value of a MapBasic variable that is DIMed but
not set. However, an Indicator is provided that the value returned was null.

For Bound variables (See Server Bind Column), a status variable can be specified and its value will
indicate if the value was null following the fetch. For unbound columns, SRV_COL_INFO with the Attr
type SRV_COL_INFO_STATUS will return the status which can indicate null.

How MapInfo Professional Interprets Data Types

Refer to the MapBasic User Guide information on how MapInfo Professional interprets data types.

Errors

The command “Server n Fetch Into table” will generate an error condition if any attempts to insert
records into the local MapInfo table fail. The commands “Server n Fetch [Next|Prev|recno]” generate
errors if the desired record is not available.

Example
 ’ An example of Server Fetch downloading into a MapInfo table
Dim hdbc, hstmt As Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
hstmt = Server_Execute(hdbc, ”Select * from emp”)
Server hstmt Fetch Into ”MyEmp”
Server hstmt Close

Example
 ’ An example of Server Fetch using bound variables
Dim hdbc, hstmt As Integer
dim NameVar, AddrVar as String
dim NameStatus, AddrStatus as Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
hstmt = Server_Execute(hdbc, ”Select Name, Addr from emp”)
Server hstmt Bind Column 1 to NameVar, NameStatus
Server hstmt Bind Column 2 to AddrVar, AddrStatus
Server hstmt Fetch Next
While Not Server_Eot(hstmt)

Print ”Name = ” + NameVar + ”; Address = ” + AddrVar
Server hstmt Fetch Next

Wend

See Also

Server_ColumnInfo() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 457 MB_Ref.pdf

Reference Guide Chapter 8: Server_GetodbcHConn() function
Server_GetodbcHConn() function
Purpose

Return the ODBC connection handle associated with the remote database connection.

Syntax
Server_GetodbcHConn(ConnectionNumber)

ConnectionNumber is the Integer returned by Server_Connect that identifies the database connection.

Description

This function returns an Integer containing the ODBC connection handle associated with the remote
database connection. This enables you to call any function in the ODBC DLL to extend the functionality
available through the MapBasic Server Statements.

Example
’* Find the identity of the Connected database
DECLARE FUNCTION SQLGetInfo LIB ”ODBC32.DLL” (BYVAL odbchdbc AS INTEGER, BYVAL
infoflag AS INTEGER, val AS STRING, BYVAL len AS INTEGER, outlen AS INTEGER) AS
INTEGER

Dim rc, outlen, hdbc, odbchdbc AS INTEGER
Dim DBName AS STRING

’ Connect to a database
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
odbchdbc = Server_GetodbcHConn(hdbc) ’ get ODBC connection handle

’ Get database name from ODBC
DBName = STRING$(33, ”0”) ’ Initialize output buffer
rc = SQLGetInfo(odbchdbc, 17 , DBName, 40, outlen) ’ get ODBC Database Name

’ Display results (database name)
if rc <> 0 THEN

Note ”SQLGetInfo Error rc=” + rc + ”, outlen=” + outlen
else

Note ”Connected to Database: ” + DBName
end if

See Also

Server_GetodbcHStmt() function

Server_GetodbcHStmt() function
Purpose

Return the ODBC statement handle associated with the MapBasic Server statement.

Syntax
Server_GetodbcHStmt(StatementNumber)

StatementNumber is the integer returned by Server_Execute() that identifies the result set of the SQL
statement executed.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 458 MB_Ref.pdf

Reference Guide Chapter 8: Server Link Table statement
Description

This function returns the ODBC statement handle associated with the MapBasic Server statement.
This enables you to call any ODBC function to extend the functionality available through the MapBasic
Server Statements.

Example
’ Find the Number of rows affected by an Update
Dim rc, outlen, hdbc, hstmt, odbchstmt AS INTEGER
Dim RowsUpdated AS INTEGER
’ Find the Number of rows affected by an Update
DECLARE FUNCTION SQLRowCount LIB ”ODBC32.DLL” (BYVAL odbchstmt AS INTEGER, rowcnt
AS INTEGER) AS INTEGER
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
hstmt = Server_Execute(hdbc, ”UPDATE TIML.CUSTOMER SET STATE=’NY’ WHERE
STATE=’NY’”)
odbchstmt = Server_GetodbcHStmt(hstmt)
rc = SQLRowCount(odbchstmt, RowsUpdated)
Note ”Updated ” + RowsUpdated + ” New customers to Tier 1”

See Also

Server_GetodbcHConn() function

Server Link Table statement
Purpose

Creates a linked table.

Syntax 1
Server Link Table

SQLQuery
Using ConnectionString
Into TableName
Toolkit Toolkitname
[File FileSpec]
[ReadOnly]

Syntax 2
Server ConnectionNumber Link Table

SQLQuery
Into TableName
Toolkit toolkitname
[File FileSpec]
[ReadOnly]

ConnectionNumber is an integer value that identifies an existing connection.

SQLQuery is an SQL query statement (in native SQL dialect plus object keywords) that generates a
result set. The MapInfo linked table is linked to this result set. See the SQL Query section.

ConnectionString is a string used to connect to a database server. See the Server Connect function.

TableName is the alias of the MapInfo table to create.

FileSpec is an optional tab filename. If the parameter is not present, the tab filename is created based
on the alias and current directory. If a FileSpec is given and a tab file with this name already exists, an
error occurs.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 459 MB_Ref.pdf

Reference Guide Chapter 8: Server Link Table statement
ReadOnly indicates that the table should not be edited.

Toolkitname is a string indicating the type of connection, ODBC or ORAINET.

Description

This statement creates a linked MapInfo table on disk. The table is opened and enqueued. This table is
considered a MapInfo base table under most circumstances, except the following: The MapBasic Alter
Table command will fail with linked tables. Linked tables cannot be packed. The Pack Table dialog will
not list linked tables. Use the Server Link Table syntax to establish a connection to a database server
and to link a table. Use the Server ConnectionNumber Link Table to link a table using an existing
connection. Linked tables contain information to reestablish connections and identify the remote data
to be updated. This information is stored as metadata in the tab file.

The absence of the ReadOnly keyword does not indicate that the table is editable. The linked table
can be read-only under any of the following circumstances: the result set is not editable; the result set
does not contain a primary key; there are no editable columns in the result set; and, the ReadOnly
keyword is present.

SQL Query Syntax
The MapInfo keyword OBJECT may be used to reference the spatial column(s) within the SQL Query.
MapInfo Professional translates the keyword OBJECT into the appropriate spatial column(s). A
SELCT*FROM tablename will always pick up the spatial columns, but if you want to specify a subset of
columns, use the keywords OBJECT. For example:

SELECT col1, col2, OBJECT
FROM tablename

Will download the two columns plus the spatial object. This syntax will work for any database that
MapInfo Professional supports.

MapInfo Professional Spatial Query
MapInfo Professional supports the keyword WITHIN which is used for spatial queries. It is used for
selecting spatial objects in a table that exists within an area identified by a spatial object. The following
two keywords may be used along with the WITHIN keyword:

CURRENT MAPPER:entire rectangular area shown in the current Map window.
SELECTION:area within the selection n the current Map window.

The syntax to find all of the rows in a table with a spatial object that exists within the current Map
window would be as follows:

SELECT col1,col2,OBJECT
FROM tablename
WHERE OBJECT WITHIN CURRENT_MAPPER

This syntax will work for any database that MapInfo Professional supports .MapInfo Professional will
also execute spatial SQL queries that are created using the native SQL syntax for the spatial database.
Valid values for toolkitname can be obtained from the ServerDriverInfo() function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 460 MB_Ref.pdf

Reference Guide Chapter 8: Server_NumCols() function
Examples
Declare Sub Main
Sub Main
Open table ”C:\mapinfo\data\states.tab”
Server Link Table ”Select * from Statecap” Using ”DSN=MS
Access;DBQ=C:\MSOFFICE\ACCESS\DB1.mdb” Into test File ”C:\tmp\test”
Map From Test,States
End Sub ’Main

Declare Sub Main
Sub Main

Dim ConnNum As Integer
ConnNum = Server_Connect(”ODBC”,”DSN=SQS;PWD=sysmal;SRVR=seneca”)
Server ConnNum Link Table

”Select * from CITY_1”
Into temp
Map From temp

Server ConnNum Disconnect
End Sub

See Also

Close Table statement, Commit Table statement, Drop Table statement, Rollback statement,
Save File statement, Server Refresh statement, Unlink statement

Server_NumCols() function
Purpose

Retrieves the number of columns in the result set.

Syntax
Server_NumCols(StatementNumber)

StatementNumber is an integer value that identifies information about an SQL statement.

Return Value

Integer

Description

The Server_NumCols() function returns the number of columns in the result set currently referenced
by StatementNumber.

Example
Dim hdbc, hstmt As Integer
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
hstmt = Server_Execute(hdbc, ”Select Name, Addr from emp”)
Print ”Number of columns = ” + Server_NumCols(hstmt)

See Also

Server_ColumnInfo() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 461 MB_Ref.pdf

Reference Guide Chapter 8: Server_NumDrivers() function
Server_NumDrivers() function
Purpose

Retrieves the number of database connection toolkits currently installed for access from MapInfo.

Syntax
Server_NumDrivers()

Return Value

Integer

Description

The Server_NumDrivers() function returns the number of database connection toolkits installed for
use by MapInfo Professional.

Example
Print ”Number of drivers = ” + Server_NumDrivers()

See Also

Server_DriverInfo() function

Server Refresh statement
Purpose

Resynchronizes the linked table with the remote database data. This command can only be run when
no edits are pending against the linked table.

Syntax
Server Refresh TableName

TableName is the name of an open MapInfo linked table.

Description

If the connection to the database is currently open then the refresh simply occurs. If the connection is
not currently open, then the connection will be made. If there is any information needed, such as a
password, the user will be prompted for it.

Refreshing the table involves:

1. If the table contains records, delete all the records and objects from the linked table. Not by
using the MapBasic delete statement, but by erasing the files and recreating.

2. If a connection handle is stored with the TABLE structure, use it. Otherwise, reconnect using
the connection string stored in the linked table metadata.

3. Convert SQL query stored in metadata to RDBMS-specific query.
4. Execute SQL query on RDBMS.
5. Fetch rows from the RDBMS cursor, filling the table. Put up a MapInfo Professional progress

bar during this operation.
6. Close RDBMS cursor.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 462 MB_Ref.pdf

Reference Guide Chapter 8: Server Remove Workspace statement
Example
Server Refresh ”City_1k”

See Also

Commit Table statement, Server Link Table statement, Unlink statement

Server Remove Workspace statement
Purpose

Discards all row versions associated with a workspace and deletes the workspace in the database
(Oracle 9i or later).

Syntax
Server ConnectionNumber Remove

Workspace WorkspaceName

ConnectionNumber is an integer value that identifies the specific connection.

WorkspaceName is the name of the workspace. The name is case sensitive.

Description

This statement only applies to Oracle9i or later. This operation can only be performed on leaf
workspaces (the bottom-most workspaces in a branch in the hierarchy). There must be no other users
in the workspace being removed.

Examples

The following example removes the MIUSER workspace in the database.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Remove Workspace "MIUSER"

See also

Server Create Workspace statement

Server Rollback statement
Purpose

Discards changes made on the remote data server during the current unit of work.

Syntax
Server ConnectionNumber Rollback

ConnectionNumber is an integer value that identifies the specific connection.

Description

The Server Rollback statement discards the effects of all SQL statements on the connection back to
the Server Begin Transaction function. You must have an open transaction initiated by Server Begin
Transaction before you can use this command.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 463 MB_Ref.pdf

Reference Guide Chapter 8: Server Set Map statement
Example
hdbc = Server_Connect(”ODBC”, ”DLG=1”)
Server hdbc Begin Transaction

...

’ All changes since begin_transaction are about ’ to be discarded
Server hdbc Rollback

See Also

Server Begin Transaction statement, Server Commit statement

Server Set Map statement
Purpose

This statement allows you to change the object styles for a mappable ODBC table. This updates the
map catalog.

Syntax
Server ConnectionNumber Set Map linked_table

[ObjectType { Point | Line | Region }]
[Symbol (...)]
[Linestyle Pen(...)]
[Regionstyle Pen(...) Brush(...)]

ConnectionNumber is an integer value that identifies the specific connection

linked_table is the name of an open linked DBMS table

ObjectType clause specifies the type of object in the table and allows you to specify objects as
regions, lines, or all objects, see Server Create Map statement for details

Symbol (...) clause specifies the symbol style to be used for a point object type.

Linestyle Pen (...) clause specifies the line style to be used for a line object type

Regionstyle Pen (...) Brush(...) clause specifies the line style and fill style to be used for a region
object type

Description

The Server Set Map statement changes the object styles of an open mappable ODBC table. An ODBC
table is made mappable with the Server Create Map statement.

Example
Declare Sub Main
Sub Main

Dim ConnNum As Integer
ConnNum = Server_Connect("ODBC", "DSN=SQS;PWD=sys;SRVR=seneca")
Server ConnNum Set Map "Cities"

ObjectType Point
Symbol (35,0,12)

Server ConnNum Disconnect
End Sub

See Also

Server Create Map statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 464 MB_Ref.pdf

Reference Guide Chapter 8: Server Versioning statement
Server Versioning statement
Purpose

Version-enable or disable a table on Oracle 9i or later, which creates or deletes all the necessary
structures to support multiple versions of rows to take advantage of Oracle Workspace Manager.

Syntax
Server ConnectionNumber Versioning
{
ON

[History {SRV_WM_HIST_NONE|SRV_WM_HIST_OVERWRITE|SRV_WM_HIST_NO_OVERWRITE}]
| OFF

[Force {OFF | ON }]
}
Table ServerTableName

ON | OFF indicates to enable (when it is ON) a table versioning or disable (when it is OFF) a table
versioning.

ConnectionNumber is an integer value that identifies the specific connection.

ServerTableName is the name of the table on Oracle server to be version-enabled/disabled. The length
of a table name must not exceed 25 characters. The name is not case sensitive.

When version-enabling a table (ON), History is an optional parameter.

History clause specifies how to track modifications to ServerTableName, i.e., lets you timestamp
changes made to all rows in a version-enabled table and to save a copy of either all changes or only
the most recent changes to each row. Must be one of the following constant values:

• SRV_WM_HIST_NONE (0): No modifications to the table are tracked. (This is the default.)
• SRV_WM_HIST_OVERWRITE (1): The with overwrite (W_OVERWRITE) option. A view named

ServerTableName_HIST is created to contain history information, but it will show only the most
recent modifications to the same version of the table. A history of modifications to the version
is not maintained; that is, subsequent changes to a row in the same version overwrite earlier
changes. (The CREATETIME column of the TableName_HIST view contains only the time of
the most recent update.)

• SRV_WM_HIST_NO_OVERWRITE (2): The without overwrite (WO_OVERWRITE) option. A view
named ServerTableName_HIST is created to contain history information, and it will show all
modifications to the same version of the table. A history of modifications to the version is
maintained; that is, subsequent changes to a row in the same version do not overwrite earlier
changes.
However, there are many restrictions on tables to use this option. Please refer the Oracle9i
Application Developer’s Guide - Workspace Manager for more information.

When disabling a version-enabled table (OFF), Force is an optional parameter.

If Force is set ON, all data in workspaces other than LIVE to be discarded before versioning is
disabled. OFF (the default) prevents versioning from being disabled if ServerTableName was modified
in any workspace other than LIVE and if the workspace that modified ServerTableName still exists.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 465 MB_Ref.pdf

Reference Guide Chapter 8: Server Workspace Merge statement
Description

This statement only applies to Oracle9i or later. The table, ServerTableName, that is being version-
enabled must have a primary key defined. Only the owner of a table or a user with the WM_ADMIN role
can enable or disable versioning on the table. Tables that are version-enabled and users that own
version-enabled tables cannot be deleted. You must first disable versioning on the relevant table or
tables. Tables owned by SYS cannot be version-enabled. Refer to the Oracle9i Application
Developer’s Guide - Workspace Manager for more information.

Examples

The following example enables versioning on the MIUUSA3 table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Versioning ON Table "MIUUSA3"

or

Server hdbc Versioning ON History 1 Table "MIUUSA3"

The following example disables versioning on the MIUUSA3 table.

Dim hdbc As Integer
hdbc = Server_Connect("ORAINET", "SRVR=TROYNY;UID=MIUSER;PWD=MIUSER")
Server hdbc Versioning OFF Force ON Table "MIUUSA3"

See also

Server Create Workspace statement

Server Workspace Merge statement
Purpose

Applies changes to a table (all rows or as specified in the Where clause) in a workspace to its parent
workspace in the database (Oracle 9i or later).

Syntax
Server Workspace Merge

Table TableName
[Where WhereClause]
[RemoveData {OFF | ON }]
[{Interactive | Automatic merge_keyword}]

TableName is the name (alias) of an open MapInfo table from an Oracle9i or later server. The table
contains rows to be merged into its parent workspace.

WhereClause identifies the rows to be merged into the parent workspace. The clause itself should omit
the WHERE keyword.

Example:

’MI_PRINX = 20’. Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are merged.

If RemoveData is set ON, the data in the table (as specified by WhereClause) in the child workspace
will be removed. This option is permitted only if workspace has no child workspaces (that is, it is a leaf
workspace). OFF (the default) does not remove the data in the table in the child workspace.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 466 MB_Ref.pdf

Reference Guide Chapter 8: Server Workspace Merge statement
If there are conflicts between the workspace being merged and its parent workspace, the user must
resolve conflicts first in order for merging to succeed. MapInfo Professional allows the user to resolve
the conflicts first and then to perform the merging within the process. The following clauses let you
control what happens when there is a conflict. These clauses have no effect if there is no conflict
between the workspace being merged and its parent workspace.

Interactive
In the event of a conflict, MapInfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one or all together based on user choices. After all the conflicts are resolved, the table
is merged into its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict
In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase
In the event of a conflict, MapInfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged, the base rows are copied to the parent workspace
too.) Note that BASE is ignored for insert-insert conflicts where a base row does not exist; in this case
the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, MapInfo uses the parent workspace values.

Description

This statement only applies to Oracle9i or later. All data that satisfies the WhereClause in TableName
is applied to the parent workspace. Any locks that are held by rows being merged are released. If there
are conflicts between the workspace being merged and its parent workspace, this operation provides
user options on how to solve the conflict. The merge operation was executed only after all the conflicts
were resolved. A table cannot be merged in the LIVE workspace (because that workspace has no
parent workspace). A table cannot be merged or refreshed if there is an open database transaction
affecting the table.

Refer to Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples

The following example merge changes to USA where MI_PRINX=5 in MIUSER to its parent
workspace.

Server Workspace Merge
Table "GWMUSA2"
Where "MI_PRINX = 60"
Automatic UseCurrent

See Also

Server Workspace Refresh statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 467 MB_Ref.pdf

Reference Guide Chapter 8: Server Workspace Refresh statement
Server Workspace Refresh statement
Purpose

Applies all changes made to a table (all rows or as specified in the Where clause) in its parent
workspace to a workspace in the database (Oracle 9i or later).

Syntax
Server Workspace Refresh

Table TableName
[Where WhereClause]
[{Interactive | Automatic merge_keyword}]

TableName is the name (alias) of an open MapInfo table from an Oracle9i or later server. The table
contains rows to be refreshed using values from its parent workspace.

WhereClause identifies the rows to be refreshed from the parent workspace. The clause itself should
omit the WHERE keyword.

Example:

’MI_PRINX = 20’. Only primary key columns can be specified in the Where clause. The Where clause
cannot contain a subquery. If WhereClause is not specified, all rows in TableName are refreshed.

If there are conflicts between the workspace being refreshed and its parent workspace, the user must
resolve conflicts first in order for refreshing to succeed. MapInfo Professional allows the user to resolve
the conflicts first and then to perform the refreshing within the process. The following clauses let you
control what happens when there is a conflict. These clauses has no effect if there is no conflict
between the workspace being refreshed and its parent workspace.

Interactive
In the event of a conflict, MapInfo displays the Conflict Resolution dialog box. The conflicts will be
resolved one by one based on user choices. After all the conflicts are resolved, the table is refreshed
from its parent based on the user's choices.

Note: Due to a system limitation, this option is not available if the server is Oracle9i.

Automatic StopOnConflict
In the event of a conflict, MapInfo will stop here. (This is also the default behavior if the statement does
not include an Interactive clause or an Automatic clause.)

Automatic RevertToBase
In the event of a conflict, MapInfo reverts to the original (base) values. (it causes the base rows to be
copied to the child workspace but not to the parent workspace. However, the conflict is considered
resolved; and when the child workspace is merged to it parent, the base rows will be copied to the
parent workspace.) Note that BASE is ignored for insert-insert conflicts where a base row does not
exist; in this case the Automatic parameter must be followed by UseParent or UseCurrent.)

Automatic UseCurrent
In the event of a conflict, MapInfo uses the child workspace values.

Automatic UseParent
In the event of a conflict, MapInfo uses the parent workspace values.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 468 MB_Ref.pdf

Reference Guide Chapter 8: SessionInfo () function
Description

This statement only applies to Oracle9i or later. It applies to workspace all changes in rows that satisfy
the WhereClause in the table in the parent workspace from the time the workspace was created or last
refreshed. If there are conflicts between the workspace being refreshed and its parent workspace, this
operation provides user options on how to solve the conflict. The refresh operation is executed only
after all the conflicts are resolved. A table cannot be refreshed in the LIVE workspace (because that
workspace has no parent workspace). A table cannot be merged or refreshed if there is an open
database transaction affecting the table.

Refer to the Oracle9i Application Developer’s Guide - Workspace Manager for more information.

Examples

The following example refreshes MIUSER by applying changes made to USA where MI_PRINX=5 in
its parent workspace.

Server Workspace Refresh
Table "GWMUSA2"
Where "MI_PRINX = 60"
Automatic UseParent

See also

Server Workspace Merge statement

SessionInfo () function
Purpose

Returns various pieces of information about a running session of MapInfo Professional.

Syntax
SessionInfo(attribute)

attribute is an Integer code indicating which session attribute to query

Return Value

String

Description

The SessionInfo() function returns information about MapInfo Professional's session status. The

attribute can be any of the codes listed in the table below. The codes are defined in MAPBASIC.DEF.

attribute code Return Value

SESSION_INFO_COORDSYS_CLAUSE String result that indicates a session's CoordSys
clause.

SESSION_INFO_DISTANCE_UNITS String result that indicates a session's distance units.

SESSION_INFO_AREA_UNITS String result that indicates a session's area units.

SESSION_INFO_PAPER_UNITS String result that indicates a session's paper units.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 469 MB_Ref.pdf

Reference Guide Chapter 8: Set Application Window statement
Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Example
Include "mapbasic.def"
print SessionInfo(SESSION_INFO_COORDSYS_CLAUSE)

Set Application Window statement
Purpose

Sets which window will be the parent of dialogs that are yet to be created.

Syntax
Set Application Window HWND

HWND is an Integer window handle, which identifies a window

Description

This statement sets which window is the application window. Once you set the application window, all
MapInfo Professional dialog boxes have the application window as their parent. This statement is
useful in “integrated mapping” applications, where MapInfo Professional windows are integrated into
another application, such as a Visual Basic application.

In your Visual Basic program, after you create a MapInfo Object, send MapInfo Professional a Set
Application Window statement, so that the Visual Basic application becomes the parent of MapInfo
Professional dialog boxes. If you do not issue the Set Application Window statement, you may find it
difficult to coordinate whether MapInfo Professional or your Visual Basic program has the focus.

Issuing the command “Set Application Window 0” will return MapInfo Professional to its default state.
This statement re-parents dialog box windows. To re-parent document windows, such as a Map
window, use the Set Next Document statement.

Note: If you specify the HWND as an explicit hexadecimal value, you must place the characters &H
at the start of the HWND; otherwise, MapInfo Professional will try to interpret the expression as
a decimal value. (This situation can arise, for example, when a Visual Basic program builds a
command string that includes a Set Application Window statement.)

For more information on integrated mapping, see the MapBasic User Guide.

See Also

Set Next Document statement

Set Area Units statement
Purpose

Sets MapBasic’s default area unit.

Syntax
Set Area Units area_name

area_name is a string representing the name of an area unit (for example, “acre”)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 470 MB_Ref.pdf

Reference Guide Chapter 8: Set Area Units statement
Description

The Set Area Units statement sets MapInfo Professional’s default area unit of measure. This dictates
the area unit used within MapInfo Professional’s SQL Select dialog. By default, MapBasic uses square
miles as an area unit; this unit remains in effect unless a Set Area Units statement is issued. The
area_name parameter must be one of the String values listed in the table below:

Example
Set Area Units ”acre”

See Also

Area() function, Set Distance Units statement

Unit Name Unit Represented

“acre” acres

“hectare” hectares

“perch” perches

“rood” roods

“sq ch” square chains

“sq cm” square centimeters

“sq ft” square feet

“sq in” square inches

“sq km” square kilometers

“sq li” square links

“sq m” square meters

“sq mi” square miles

“sq mm” square millimeters

“sq rd” square rods

“sq survey ft” square survey feet

“sq yd” square yards
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 471 MB_Ref.pdf

Reference Guide Chapter 8: Set Browse statement
Set Browse statement
Purpose

Modifies an existing Browser window.

Syntax
Set Browse

[Window window_id]
[Grid { On | Off }]
[Row row_num]
[Column column_num]

window_id is the Integer window identifier of a Browser window

row_num is a SmallInt value, one or larger; one represents the first row in the table

column_num is a SmallInt value, zero or larger; zero represent the table’s first column

Description

The Set Browse statement controls the settings of an existing Browser window. If no window_id is
specified, the statement affects the topmost Browser window.

The optional Row and Column clauses let you specify which row should be the topmost row in the
Browser, and which column should be the leftmost column in the Browser.

To change the width, height, or position of a Browser window, use the Set Window statement.

Example
Dim i_browser_id As Integer
Open Table ”world”
Browse * From world
i_browser_id = FrontWindow()
Set Browse Window i_browser_id Row 47

See Also

Browse statement, Set Window statement

Set Cartographic Legend statement
Purpose

The Set Cartographic Legend statement allows you to set redraw functionality on or off, refresh, set
the orientation to portrait or landscape, select small or large sample legend sizes, or change the frame
order of an existing cartographic legend created with the Create Cartographic Legend statement. (To
change the size, position or title of the legend window, use the Set Window statement.)

Syntax
Set Cartographic Legend

[Window legend_window_id]
Redraw { On | Off }
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 472 MB_Ref.pdf

Reference Guide Chapter 8: Set Command Info statement
or

Set Cartographic Legend
[Window legend_window_id]
[Refresh]
[Portrait | Landscape]

[Columns number_of_columns | Lines number_of_lines]
[Align]
[Style Size {Small | Large}]
[Frame Order { frame_id, frame_id, frame_id, ... }]

legend_window_id is an Integer window identifier which you can obtain by calling the FrontWindow()
and WindowId() functions.

frame_id is the ID of the frame on the legend. You cannot use a layer name. For example, three frames
on a legend would have the successive ID’s 1, 2, and 3.

number_of-columns specifies the width of the legend.

number_of_lines specifies the height of the legend.

Description

If a Window clause is not specified MapInfo Professional will use the topmost legend window.

Other clauses to are not allowed if Redraw is used.

The Refresh keyword causes the legend window to refresh. Tables for refreshable frames will be
re-scanned for styles.The Portrait or Landscape keywords cause frames in the legend window to be
laid out in the appropriate order.

Align causes styles and text across all frames, regardless of whether the legend window is in portrait,
landscape or custom layout, to be re-aligned.

The Frame Order clause reorders the frames in the legend.

Example

If you used Create Cartographic Legend statement to select large sample legend sizes, the following
example will refresh the foreground legend window to show large legend sizes:

Set Cartographic Legend Window WindowID(0) Refresh Portrait Align Style Size
Large

See Also

Add Cartographic Frame statement, Alter Cartographic Frame statement, Create Cartographic
Legend statement, Remove Cartographic Frame statement

Set Command Info statement
Purpose

Stores values in memory; other procedures can call CommandInfo() to retrieve the values.

Syntax
Set Command Info attribute To new_value

attribute is one of the codes used by CommandInfo(), such as CMD_INFO_ROWID.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 473 MB_Ref.pdf

Reference Guide Chapter 8: Set CoordSys statement
new_value is a new value; its data type must match the data type that is associated with the attribute
code (for example, if you use CMD_INFO_ROWID, specify a positive Integer for new_value).

Description

Ordinarily, the CommandInfo() function returns values that describe recent system events. The Set
Command Info statement stores a value in memory, so that subsequent calls to CommandInfo() will
return the value that you specified, instead of returning information about system events.

Example

Suppose your program has a SelChangedHandler procedure.

Within the procedure, the following function call determines the ID number of the row that was selected
or de-selected:

CommandInfo(CMD_INFO_ROWID)

When MapInfo Professional calls the SelChangedHandler procedure automatically, MapInfo
Professional initializes the data values read by CommandInfo(). Now suppose you want to call the
SelChangedHandler procedure explicitly, using the Call statement - perhaps for debugging purposes.
Before you issue the Call statement, issue the following statement to “feed” a value to
CommandInfo():

Set Command Info CMD_INFO_ROWID To 1

See Also

CommandInfo() function, Set Handler statement

Set CoordSys statement
Purpose

Sets the coordinate system used by MapBasic.

Syntax
Set CoordSys...

CoordSys... is a coordinate system clause

Description

The Set CoordSys statement sets MapBasic’s coordinate system. By default, MapBasic uses a
longitude, latitude coordinate system. This means that when geographic functions (such as
CentroidX() and ObjectNodeX()) return x- or y-coordinate values, the values represent longitude or
latitude degree measurements by default. A MapBasic program can issue a Set CoordSys statement
to specify a different coordinate system; thereafter, values returned by geographic functions will
automatically reflect the new coordinate system.

The Set CoordSys statement does not affect a Map window. To set a Map window’s projection or
coordinate system, you must issue a Set Map ... CoordSys statement.

The CoordSys clause has optional Table and Window sub-clauses that allow you to reference the
coordinate system of an existing table or window. See the discussion of the CoordSys clause for more
information.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 474 MB_Ref.pdf

Reference Guide Chapter 8: Set Date Window statement
Example

The following Set CoordSys statement would set the coordinate system to an un-projected, Earth-
based system.

Set CoordSys Earth

The next Set CoordSys statement would set the coordinate system to an Albers equal-area projection.

Set CoordSys Earth
Projection 9,7,”m”,-96.0,23.0,20.0, 60.0, 0.0, 0.0

The Set CoordSys statement below prepares MapBasic to work with objects from a Layout window.
You must use a Layout coordinate system before querying or creating Layout objects.

 Set CoordSys Layout Units ”in”

Note: Once you have issued the Set CoordSys Layout statement, the MapBasic program will
continue to use the Layout coordinate system until you explicitly change the coordinate system
back. Subsequently, you should issue a Set CoordSys Earth statement before attempting to
query or create any objects on Earth maps.

See Also

CoordSys clause, Set Area Units statement, Set Distance Units statement, Set Paper Units
statement

Set Date Window statement
Purpose

Displays a date window that converts two-digit input into four digit years. It also allows you to change
the default to one that best suits your data.

Syntax
Set Date Window { nYear | Off }

nYear a SmallInt from 0 to 99 that specifies the year equal to and above which is the current century
(20th) and below which is the next century (21st).

Off turns date windowing off. Two digit years will be converted to the current century (based on system
time/calendar settings).

Description

From the MapBasic window, the session setting will be initialized from the Preference setting and
updated when the preference is changed. Running the Set Date Window command from the
MapBasic window will change the behavior of input, but will not update the System Preference that is
saved when Mapinfo Pro exits.

The session setting is affected by running Set Date Window in the MapBasic window, in any
workspace file including Startup.WOR, and any Integrated Mapping application that runs the command
via the MapInfo Application interface.

When the Set Date Window command is run from within a MapBasic program (also as Run
Command) only the program’s local context will be updated with the new setting. The session and
preference settings will remain unchanged. The program’s local context will be initialized from the
session setting. This is similar to how number and date formatting works. They are set/accessed per
program if a program is running, otherwise they set/access global settings.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 475 MB_Ref.pdf

Reference Guide Chapter 8: Set Digitizer statement
MBX’s compiled before v5.5 will still convert 2-digit years to the current century (5.0 and earlier
behavior). To get the new behavior, they must be recompiled with MapBasic v5.5 or later.

Example

In the following example the variable Date1 = 19890120, Date2 = 20101203 and MyYear = 1990.

DIM Date1, Date2 as Date
DIM MyYear As Integer

Set Format Date ”US”
Set Date Window 75

Date1 = StringToDate(”1/20/89”)
Date2 = StringToDate(”12/3/10”)
MyYear = Year(”12/30/90”)

See Also

DateWindow() function

Set Digitizer statement
Purpose

Establishes the coordinates of a paper map on a digitizing tablet; also turns Digitizer Mode on or off.

Syntax 1
Set Digitizer

(mapx1 , mapy1) (tabletx1 , tablety1) [Label name] ,
(mapx2 , mapy2) (tabletx2 , tablety2) [Label name]
[, ...]
CoordSys ...
[Units ...]
[Width tabletwidth]
[Height tabletheight]
[Resolution xresolution, yresolution]
[Button click_button_num, double_click_button_num]
[Mode { On | Off }]

Syntax 2
Set Digitizer Mode { On | Off }

mapx# parameters specify East-West Earth positions on the paper map

mapy# parameters specify North-South Earth positions on the paper map

tabletx# parameters specify tablet right-left positions corresponding to the mapx# values

tablety# parameters specify tablet up-down positions corresponding to the mapy# values

names are optional labels for the control points

The CoordSys clause specifies the coordinate system used by the paper map

click_button_num is the number of the puck button that simulates a click action

double_click_button_num is the number of the puck button that simulates a double-click
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 476 MB_Ref.pdf

Reference Guide Chapter 8: Set Distance Units statement
Description

The Set Digitizer statement controls the same settings as the Digitizer Setup dialog in MapInfo
Professional’s Map menu. These settings relate to a specific paper map that the user has attached to
the tablet. The Set Digitizer statement does not relate to other digitizer setup options, such as
communications port or baud rate settings; those settings must be configured outside of a MapBasic
application.

The Set Digitizer statement tells MapInfo Professional the coordinate system used by the paper map,
and specifies two or more control points. Each control point consists of a map coordinate pair (for
example, longitude, latitude) followed by a tablet coordinate pair. The tablet coordinate pair represents
the position on the tablet corresponding to the specified map coordinates. Tablet coordinates represent
the distance, in native digitizer units (such as thousandths of an inch), from the point on the tablet to
the tablet’s upper left corner.

The CoordSys clause specifies the coordinate system used by the paper map. For more details, see
the CoordSys clause discussion.

Note: The Set Digitizer statement ignores the Bounds portion of the CoordSys clause.

The Width, Height, and Resolution clauses are for MapInfo Professional internal use only. MapInfo
Professional stores these clauses, when necessary, in workspaces. MapBasic programs do not need
to specify these clauses.

Turning Digitizer Mode On or Off
Once the digitizer is configured, the user can toggle Digitizer Mode on or off by pressing the D key. To
toggle Digitizer Mode from a MapBasic program, specify

Set Digitizer Mode On

or

Set Digitizer Mode Off

To determine whether Digitizer Mode is currently on or off, call SystemInfo(SYS_INFO_DIG_MODE),
which returns TRUE if Digitizer Mode is on.

When Digitizer Mode is on and the active window is a Map window, the digitizer cursor (a large
crosshair) appears in the window; the digitizer and the mouse have separate cursors.

If Digitizer Mode is off, or if the active window is not a Map window, the digitizer cursor does not display
and the digitizer controls the mouse cursor (if your digitizer driver provides mouse emulation).

See Also

CoordSys clause, SystemInfo() function

Set Distance Units statement
Purpose

Sets the distance unit used for subsequent geographic operations, such as Create Object.

Syntax
Set Distance Units unit_name
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 477 MB_Ref.pdf

Reference Guide Chapter 8: Set Distance Units statement
unit_name is the name of a distance unit (for example, “m” for meters)

Description

The Set Distance Units statement sets MapBasic’s linear unit of measure. By default, MapBasic uses
a distance unit of “mi” (miles); this distance unit remains in effect unless a Set Distance Units
statement is issued. Some MapBasic statements take parameters representing distances. For
example, the Create Object statement’s Width clause may or may not specify a distance unit. If the
Width clause does not specify a distance unit, Create Object uses the distance units currently in use
(either miles or whatever units were set by the latest Set Distance Units statement).

The unit_name parameter must be one of the values from the table below:

Example
 Set Distance Units ”km”

See Also

Distance() function, ObjectLen() function, Set Area Units statement, Set Paper Units statement

Unit Name Unit Represented

“ch” chains

“cm” centimeters

“ft” feet (also called International Feet; one International Foot equals exactly 30.48
cm)

“in” inches

“km” kilometers

“li” links

“m” meters

“mi” miles

“mm” millimeters

“nmi” nautical miles (1 nautical mile represents 1852 meters)

“rd” rods

“survey ft” U.S. survey feet (used for 1927 State Plane coordinates; one U.S. Survey Foot
equals exactly 12/39.37 meters, or approximately 30.48006 cm)

“yd” yards
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 478 MB_Ref.pdf

Reference Guide Chapter 8: Set Drag Threshold statement
Set Drag Threshold statement
Purpose

Sets the length of the delay that the user experiences when dragging graphical objects.

Syntax
Set Drag Threshold pause

pause is a floating-point number representing a delay, in seconds; default value is 1.0

Description

When a user clicks on a map object to drag the object, MapInfo Professional makes the user wait. This
delay prevents the user from dragging objects accidentally. The Set Drag Threshold statement sets
the duration of the delay.

Example
Set Drag Threshold 0.25

Set Event Processing statement
Purpose

Temporarily turns event processing on or off, to avoid unnecessary screen updates.

Syntax
Set Event Processing { On | Off }

Description

The Set Event Processing statement lets you suspend, then resume, processing of system events.

If several successive statements modify a window, MapInfo Professional may redraw that window once
for each MapBasic statement. Such multiple window redraws are undesirable because they make the
user wait. To eliminate unnecessary window redraws, you can issue the statement:

Set Event Processing Off

Then issue all statements that apply to window maintenance (for example, Set Map), and then issue
the statement:

Set Event Processing On

Every Set Event Processing Off statement should have a corresponding Set Event Processing On
statement to restore event processing. In environments which perform cooperative multi-tasking (such
as Windows or System 7), leaving event processing off can prevent other software applications from
multi-tasking.

You also can suppress the redrawing of a Map window by issuing a Set Map...Redraw Off statement,
which has an effect similar to the Set Event Processing Off statement. However, the Set Map
statement only affects the redrawing of one Map window, while the Set Event Processing statement
affects the redrawing of all MapInfo Professional windows.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 479 MB_Ref.pdf

Reference Guide Chapter 8: Set File Timeout statement
Set File Timeout statement
Purpose

Causes MapInfo Professional to retry file i/o operations when file-sharing conflicts occur.

Syntax
Set File Timeout n

n is a positive Integer, zero or greater, representing a duration in seconds

Description

Ordinarily, if an operation cannot proceed due to a file-sharing conflict, MapInfo Professional displays a
Retry/Cancel dialog box. If a MapBasic program issues a Set File Timeout statement, MapInfo
Professional automatically retries the operation instead of displaying the Retry/Cancel dialog.

If n is greater than zero, retry processing is enabled. Thereafter, whenever the user attempts to read a
table that is busy (for example, a table that is being saved by another user), MapInfo Professional
repeatedly tries to access the table. If, after n seconds, the table is still unavailable, MapInfo
Professional displays a Retry/Cancel dialog. Note that the Retry/Cancel dialog is not trappable; the
dialog appears regardless of whether an error handler has been enabled.

If n is zero, retry processing is disabled. Thereafter, if MapInfo Professional attempts to access a table
that is busy, the Retry/Cancel dialog appears immediately.

Do not use the Set File Timeout statement and the OnError error-trapping feature at the same time.
In places where an error handler is enabled, the file-timeout value should be zero.

In places where the file-timeout value is greater than zero, error trapping should be disabled. For more
information on file-sharing issues, see the MapBasic User Guide.

Example
Set File Timeout 100

Set Format statement
Purpose

Affects how MapBasic processes strings that represent dates or numbers.

Syntax 1
Set Format Date { “US” | “Local” }

Syntax 2
Set Format Number { “9,999.9” | “Local” }

Description

Users can configure various date and number formatting options by using control panels that are
provided with the operating system. For example, a Windows user can change system date formatting
by using the control panel provided with Windows.

Some MapBasic functions, such as Str$(), are affected by these system settings. In other words,
some functions are unpredictable, because they produce different results under different system
configurations.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 480 MB_Ref.pdf

Reference Guide Chapter 8: Set Format statement
The Set Format statement lets you force MapBasic to ignore the user’s formatting options, so that
functions such as Str$() behave in a predictable manner.

Syntax 1 (Set Format Date) affects the output produced under the following circumstances: Calling
the StringToDate() function; passing a date to the Str$() function; or performing an operation that
causes MapBasic to perform automatic conversion between dates and strings (for example, issuing a
Print statement to print a date, or assigning a date value to a String variable).

Syntax 2 (Set Format Number) affects the output produced by the Format$() function and the
FormatNumber$() function.

Applications compiled with MapBasic 3.0 or earlier default to U.S. formatting. Applications compiled
with MapBasic 4.0 or later default to “Local” formatting.

To determine the formatting options currently in effect, call SystemInfo(). Each MapBasic application
can issue Set Format statements without interfering with other applications.

Example

Suppose a date variable (date_var) contains the date June 11, 1995. The function call:

Str$(date_var)

may return “06/11/95” or “95/11/06” depending on the date formatting options set up on the user’s
computer. If you use the Set Format Date “US” statement before calling Str$(), you force the Str$()
function to follow U.S. formatting (Month/Day/Year), which makes the results predictable.

See Also

Format$() function, FormatNumber$() function, Str$() function, StringToDate() function,
SystemInfo() function

Statement Effect on your MapBasic application

Set Format Date ”US” MapBasic uses Month/Day/Year date formatting regardless of
how the user’s computer is set up.

Set Format Date ”Local” MapBasic uses whatever date-formatting options are configured
on the user’s computer.

Set Format Number
”9,999.9”

The Format$() function uses U.S. number formatting options
(decimal separator is a period; thousands separator is a comma),
regardless of how the user’s computer is configured.

Set Format Number ”Local” The Format$() function uses the number formatting options set
up on the user’s computer.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 481 MB_Ref.pdf

Reference Guide Chapter 8: Set Graph statement
Set Graph statement
Purpose

Modifies an existing Graph window.

Syntax 1 (5.5 and Later Graphs)
Set Graph

[Window window_id]
[Title title_text]
[SubTitle subtitle_text]
[Footnote footnote_text]
[TitleSeries titleseries_text]
[TitleGroup titlegroup_text]
[TitleAxisY1 titleaxisy1_text]
[TitleAxisY2 titleaxisy2_text]

window_id is the window identifier of a Grapher window

title_text is the title that appears at the top of the Grapher window

subtitle_text is the graph subtitle text.

footnote is the graph footnote text.

titleseries_text is the graph titleseries text.

titlegroup_text is the graph title group text.

titleaxisY1_text is the text for Y axis title.

titleaxisY2 is the text for Y2.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 482 MB_Ref.pdf

Reference Guide Chapter 8: Set Graph statement
Syntax (Pre-5.5 Graphs)
Set Graph

[Window window_id]
[Type { Area | Bar | Line | Pie | XY }]
[Stacked { On | Off }]
[Overlapped { On | Off }]
[Droplines { On | Off }]
[Rotated { On | Off }]
[Show3d { On | Off }]
[Overlap overlap_percent]
[Gutter gutter_percent]
[Angle angle]
[Title graph_title [Font . . .]]
[Series series_num

[Pen . . .]
[Brush . . .]
[Line . . .]
[Symbol . . .]
[Title series_title]]
[Wedge wedge_num

[Pen . . .]
[Brush . . .]]]

[{ Label | Value } Axis
[{ Major | Minor } Tick { Cross | Inside | None | Outside }]
[{ Major | Minor } Grid { On | Off } Pen . . .]
[Labels { None | At Axis } [Font . . .]]
[Min { min_value | Auto }]
[Max { max_value | Auto}]
[Cross { cross_value | Auto }]
[{ Major | Minor } Unit { unit_value | Auto }]
[Pen . . .]
[Title axis_title [Font . . .]]]

[Legend
[Title legend_title [Font . . .]]
[Subtitle legend_subtitle [Font . . .]]
[Range [Font . . .]]

]

window_id is the window identifier of a Grapher window

overlap_percent is the percentage value, from zero to 100, dictating bar overlap

gutter_percent is a percentage value, from zero to 100, dictating space between bars

angle is a number from zero to 360, representing the starting angle of a pie chart

graph_title is the title that appears at the top of the Grapher window

axis_title is a title that appears on one of the axes of the Grapher window

min_value is the minimum value to show along the appropriate axis

max_value is the maximum value to show along the appropriate axis

cross_value is the value at which the axes should cross

unit_value is the unit increment between labels on an axis

series_num is an integer identifying which series of a graph to modify (for example, 2, 3, ...)

series_title is the name of a series; this appears next to the pen/brush sample in the Legend
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 483 MB_Ref.pdf

Reference Guide Chapter 8: Set Graph statement
legend_title and legend_subtitle are text strings which appear in the Legend

The Line clause specifies a line style

The Brush clause specifies a fill style, and the Pen clause specifies the fill’s border

The Symbol clause specifies a symbol style

The Font clause specifies a text style

Description

The Set Graph statement alters the settings of an existing Graph window. If no window_id is specified,
the statement affects the topmost Graph. This statement allows a MapBasic program to control those
options which an end-user would set through MapInfo Professional’s Graph menu, as well as some
options which a user would set through the Customize Legend dialog.

Between sessions, MapInfo Professional preserves Graph settings by storing a Set Graph statement
in the workspace file. Thus, to see an example of the Set Graph statement, you could create a Graph,
save the workspace (for example, GRAPHER.WOR), and examine the workspace in a MapBasic text
edit window. You could then cut/copy and paste to put the Set Graph statement in your MapBasic
program file. To change the width, height, or position of a Graph window, use the Set Window
statement.

Graph commands in workspaces or programs that were created prior to version 5.5 will still create a
5.0 graph window. When a 5.0 graph window is active in MapInfo Professional 5.5 and later, the 5.0
graph menu will be also be active, so the user can modify the graph using the 5.0 editing dialogs. The
Create Graph wizard will always created a 5.5 graph window.

Example

5.5 and later graphs

include ’mapbasic.def’
graph_id = WindowId(4) ’ window code for a graph is 4
Set Graph

Window graph_id
Title ”United States”
SubTitle ”1990 Population”
Footnote ”Values from 1990 Census”
TitleGroup ”States”

TitleAxisY1 ”Population”

(pre 5.5 graphs)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 484 MB_Ref.pdf

Reference Guide Chapter 8: Set Graph statement
The following example illustrates how the Set Graph statement can customize a Grapher, as well as
customizing the Grapher-related items that appear in the Legend window. The Graph statement
creates a graph window which graphs two columns (orders_rcvd and orders_shipped) from the
Selection table. Note that the Graph statement actually specifies three columns; data from the first
column (sales_rep) is used to label the graph.

Open Window Legend
Set Window Legend

Position (3.0, 1.6) Width 3.3 Height 0.750000
Graph sales_rep,orders_rcvd,orders_shipped

From selection
Position (0.2, 0.1) Width 4.5 Height 3.9

’
’ The 1st Set Graph statement customizes the type of
’ graph and the main title of the graph
’
Set Graph

Type Bar Stacked Off Overlapped Off
Droplines Off Rotated Off Show3d Off
Overlap 30 Gutter 10 Angle 0
Title ”Orders Received vs. Orders Shipped”
Font (”Helv”,1,18,0)

’
’ the next Set Graph sets all of the attributes of
’ the Label axis (since we earlier chose Rotated
’ off, this is the x axis).
’

Set Graph Label Axis
Major Tick Outside
Major Grid Off Pen (1,2,117440512)
Minor Tick None
Minor Grid Off Pen (1,2,117440512)
Min 1.0 Max 5.0

Cross 1.0 Major unit 1.0 Minor unit 0.5
Labels At Axis Font (”Helv”,0,8,0)
Pen (1,2,117440512)
Title ”Salesperson” Font (”Helv”,0,8,0)
’
’ the above title (”Salesperson”) appears
’ along the grapher’s x-axis
’

’
’ next Set Graph sets attributes of value (y) axis
’

MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 485 MB_Ref.pdf

Reference Guide Chapter 8: Set Graph statement
Set Graph Value Axis
Major Tick Outside
Major Grid Off Pen (1,2,117440512)
Minor Tick None
Minor Grid Off Pen (1,2,117440512)
Min 0.0 Max 300000.0

Cross 0.0 Major unit 50000.0 minor unit 25000.0
Labels At Axis Font (”Helv”,0,8,0)
Pen (1,2,117440512)
Title ”Order amounts ($)” Font (”Helv”,0,8,0)

’
’ the above title (”Order amounts...”) appears
’ along the grapher’s y-axis
’
’
’ The next set graph customizes graphical styles
’ for series 2. This dictates what color bars will
’ appear to represent the orders_rcvd column data.
’ Also controls what description will appear in the
’ legend
’
’ Since this is a bar graph, the Brush is the style
’ of prime importance; if this was a line graph,
’ the Line and Symbol clauses would be important).
’
Set Graph Series 2

Brush (8,255,16777215)
Line (1,2,0,255) Symbol (32,255,12)
Title ”Orders Received ($)”
 ’
’the above title will appear in the legend...
’

’
’ The next set graph customizes the styles
’ used by series 3 (orders_shipped).
’
Set Graph Series 3

Brush (2,12632256,201326591)
Line (1,2,0,0) Symbol (34,12632256,12)
Title ”Orders Shipped ($)’
’
’ the above title will appear in the legend...
’

’
’ the last Set Graph statement dictates what
’ Grapher-related title and subtitle will appear
’ in the Legend window, as well as what fonts will
’ be used in the legend.
’
Set Graph Legend

Title ”Orders Received vs. Orders Shipped”
Font (”Helv”,0,10,0) ’set the title font
Subtitle ”(by salesperson)”
Font (”Helv”,0,8,0) ’set subtitle font
Range font (”Helv”,2,8,0) ’set the font used for

’range descriptions

See Also

Graph statement, Set Window statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 486 MB_Ref.pdf

Reference Guide Chapter 8: Set Handler statement
Set Handler statement
Purpose

Enables or disables the automatic calling of system handler procedures, such as SelChangedHandler.

Restrictions

You cannot issue this statement through the MapBasic window.

Syntax
Set Handler handler_name { On | Off }

handler_name is the name of a system handler procedure, such as SelChangedHandler.

Description

Ordinarily, if you include a system handler procedure in your program, MapInfo Professional calls the
handler procedure automatically, whenever a related system event occurs. For example, if your
program contains a SelChangedHandler procedure, MapInfo Professional calls the procedure
automatically, every time the Selection changes.

Use the Set Handler statement to disable the automatic calling of system handler procedures within
your MapBasic program.

The Set Handler ... Off statement does not have any effect on explicit procedure calls (using the Call
statement).

Example

The following example shows how a Set Handler statement can help to avoid infinite loops.

Sub SelChangedHandler
Set Handler SelChangedHandler Off

’ Issuing a Select statement here
’ will not cause an infinite loop.

Set Handler SelChangedHandler On
End Sub

See Also

SelChangedHandler procedure, ToolHandler procedure

Set Layout statement
Purpose

Modifies an existing Layout window.

Syntax
Set Layout

[Window window_id]
[Center (center_x, center_y)]
[Extents { To Fit | (pages_across , pages_down) }]
[Pagebreaks { On | Off }]
[Frame Contents { Active | On | Off }]
[Ruler { On | Off }]
[Zoom { To Fit | zoom_percent }]
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 487 MB_Ref.pdf

Reference Guide Chapter 8: Set Layout statement
window_id is the window identifier of a Layout window

center_x is the horizontal layout position currently at the middle of the Layout window

center_y is the vertical layout position currently at the middle of the Layout window

pages_across is the number of pages (one or more) horizontally that the layout should span

pages_down is the number of pages (one or more) vertically that the layout should span

zoom_percent is a percentage indicating the Layout window’s size relative to the actual page

Description

The Set Layout statement controls the settings of an existing Layout window. If no window_id is
specified, the statement affects the topmost Layout window. This statement allows a MapBasic
program to control those options which a user would set through MapInfo Professional’s Layout menu.

The Center clause specifies the location on the layout which is currently at the center of the Layout
window.

The Extents clause controls how many pages (i.e. how many sheets of paper) will constitute the page
layout. The following clause:

Set Layout Extents To Fit

configures the layout to include however many pages are needed to ensure that all objects on the
layout will print. Alternately, the Extents clause can specify how many pages wide or tall the page
layout should be. For example, the following statement would make the page layout three pages wide
by two pages tall:

Set Layout Extents (3, 2)

If the layout consists of more than one sheet of paper, the Pagebreaks clause controls whether the
Layout window displays page breaks. When page breaks are on (the default), MapInfo Professional
displays dotted lines to indicate the edges of the pages.

The Frame Contents clause controls when and whether MapInfo Professional refreshes the contents
of the layout frames. A page layout typically contains one or more frame objects; each frame can
display the contents of an existing MapInfo Professional window (for example, a frame can display a
Map window). As you change the window(s) on which the layout is based, you may or may not want
MapInfo Professional to take the time to redraw the Layout window. Some users want the Layout
window to constantly show the current contents of the client window(s); however, since Layout window
redraws take time, some users might want the Layout window to redraw only when it is the active
window.

The following statement tells MapInfo Professional to always redraw the Layout window, when
necessary, to reflect changes in the client window(s):

Set Layout Frame Contents On

The following statement tells MapInfo Professional to only redraw the Layout window when it is the
active window:

Set Layout Frame Contents Active

The following statement tells MapInfo Professional to never redraw the Layout window:

Set Layout Frame Contents Off
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 488 MB_Ref.pdf

Reference Guide Chapter 8: Set Layout statement
When Frame Contents are set Off, each frame appears as a plain rectangle with a simple description
(for example, “World Map”).

The Ruler clause controls whether MapInfo Professional displays a ruler along the top and left edges
of the Layout window. By default, the Ruler is On.

The Zoom clause specifies the magnification factor of the page layout; in other words, it enlarges or
reduces the window’s view of the layout. For example, the following statement specifies a zoom setting
of fifty percent:

Set Layout Zoom 50.0

When a page layout is displayed at fifty percent, that means that an actual sheet of paper is twice as
wide and twice as high as it is represented on-screen (in the Layout window). Note that the page layout
can show extreme close-ups, for the sake of allowing accurate detail work. Accordingly, a Layout
window displayed at 200 percent will show a magnification of the page. The Zoom clause can specify
a zoom value anywhere from 6.25% to 800 %, inclusive. The Zoom clause does not need to specify a
specific percentage. The following statement tells MapInfo Professional to set the zoom level so that
the entire page layout will appear in the Layout window at one time:

Set Layout Zoom To Fit

Note: Once a Layout window’s frame object has been selected, a MapBasic program could issue a
Run Menu Command statement to perform a Move to back or Move to front operation. Also,
since frame objects are (in some senses) conventional MapInfo Professional graphical objects,
MapBasic’s Alter Object statement lets an application reset the pen and brush styles
associated with frame objects.

To change the width, height, or position of a Layout window, use the Set Window statement.

Example
Set Layout

Zoom To Fit Extents To Fit
Ruler Off
Frame Contents On

See Also

Alter Object statement, Create Frame statement, Layout statement, Run Menu Command
statement, Set Window statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 489 MB_Ref.pdf

Reference Guide Chapter 8: Set Legend statement
Set Legend statement
Purpose

Modifies the Theme Legend window.

Syntax
Set Legend

[Window window_id]
[Layer { layer_id | layer_name | Prev }

[Display { On | Off }]
[Shades { On | Off }]
[Symbols { On | Off }]
[Lines { On | Off }]
[Count { On | Off }]
[Title { Auto | layer_title [Font . . .] }]
[SubTitle { Auto | layer_subtitle [Font . . .] }]
[Style Size {Large | Small | Fontsize}]
[Columns number_of_columns]
[Ascending { On | Off } | Order { Ascending | Descending |

Custom }]
[Ranges { Auto | [Font . . .]

[Range { range_identifier | default }]
range_title [Display { On | Off }] }
[, . . .]

]
]
[, . . .]

window_id is the Integer window identifier of a Map window

layer_id is a SmallInt that identifies a layer of the map

layer_name is a String that identifies a map layer

layer_title, layer_subtitle are character strings which will appear in the theme legend

range_title is a text string describing one range in a layer that is shaded by value

Description

The Set Legend statement controls the appearance of the contents in MapInfo Professional’s theme
legend window. To change the width, height, or position of the legend window, use the Set Window
statement.

Between sessions, MapInfo Professional preserves theme legend settings by storing a Set Legend
statement in the workspace file. To see an example of the Set Legend statement, you could create a
Map, create a theme legend, save the workspace (for example, LEGEND.WOR), and examine the
workspace in a MapBasic text editor window. You could then cut/copy and paste to put the Set Legend
statement in your MapBasic program file.

Although MapInfo Professional can maintain a large number of Map windows, only one theme legend
window exists at any given time. The theme legend window displays information about the active Map.
Thus, the Set Legend statement’s window_id clause identifies one of the Map windows in use, not the
legend window. If no window_id is specified, the statement affects the legend settings for the topmost
Map window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 490 MB_Ref.pdf

Reference Guide Chapter 8: Set Legend statement
The Layer clause specifies which layer’s theme legend should be modified. The Layer clause can
identify a layer by its specific number (for example, specify 2 to control the theme legend of the second
map layer), by its name, or by specifying Layer Prev. The Layer Prev clause tells MapBasic to modify
whatever map layer was last created or modified through a Shade or Set Shade statement.

If a Map window contains two or more thematic layers, the Set Legend statement can include one
Layer clause for each thematic layer.

The remainder of the options for the Set Legend statement all pertain to the Layer clause; that is, all of
the clauses described below are actually sub-clauses within the Layer clause.

The Count clause dictates whether each line of the theme legend should include a count, in
parentheses, of how many of the table’s records belong to that range. The Shades, Symbols and
Lines clauses dictate which types of graphic objects appear in each line of the theme legend. If the
statement includes the Shades On clause, each line of the theme legend will include a sample fill
pattern. If the statement includes the Symbols On clause, each line of the theme legend will include a
sample symbol marker. If the statement includes the Lines On clause, each line of the theme legend
will include a sample line style.

The Title clause specifies what title, if any, will appear above the range information in the theme
legend. Similarly, the Subtitle clause specifies a subtitle. The title and the subtitle are each limited to
thirty-two characters. If a theme legend includes a title, a subtitle, and range information, the objects
will appear in that order - the title first, then the subtitle below it, then the range information below the
subtitle. If the optional Auto clause is used, the text is automatically generated for each theme.

The Font clause specifies a text style.

The Ascending On clause arranges the range descriptions in ascending order. If this optional clause
is omitted, the default order of the ranges is descending.

The Ranges clause describes the text that will accompany each line in the theme legend. Each
range’s description consists of a text string (range_title) followed by a Display clause. The Display
clause (Display On or Display Off) dictates whether that range will be displayed in the theme legend.
Note If the Auto clause is not used, the Ranges clause must include a range_title Display clause for
each range in the thematic map, even if some of the ranges are not to be displayed.

If a map layer is a graduated symbols theme, there should be exactly two range_title Display clauses.
If a map layer is shaded as a dot density theme, there should be exactly one range_title Display
clause. Otherwise, there should be one more range_title Display clause than there are ranges; this is
because the theme legend reserves one line for an artificial range known as “all others”. The all-others
range represents any and all objects which do not belong to any of the other ranges.

The Order and Range clauses will increase the workspace version to 8.0. Old workspaces will still
parse correctly as there is still support for the original Ascending clause. If the order is not custom,
Mapinfo Professional will write out the original Ascending clause and NOT increase the workspace
version.

The Order clause is a new way to specify legend label order of ascending or descending as well as
new custom order. However, the original Ascending { On | Off } clause is still available for backwards
compatibility. You can use either the new Order clause, or the old Ascending clause, but not both (both
clauses cannot be included in the same MapBasic statement or you will get a syntax error).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 491 MB_Ref.pdf

Reference Guide Chapter 8: Set Legend statement
The Custom option for the Order clause is allowed only for Individual Value themes. An error will occur
if you try to custom order other theme types. The error is “Custom legend label order is only
allowed for Individual Value themes.”

When the Order is Custom, each range in the Ranges clause must include a range identifier, otherwise
a syntax error will occur. The range identifier must come before the range title and Display clause. The
range identifier is the same const string or value used by the Values clause in the Shade statement that
creates the Individual Value theme. The range identifier for the "all others" category is 'default'.

Every category in the theme must be included, including the default or "all others" category, otherwise
an error will occur. The error is "Incorrect number of ranges specified for custom order."

The default or "all others" category may also be reordered, although the best place to place this
argument is at the end or beginning of the Ranges clause.

If the range identifier does not refer to a valid category an error will occur. The error is "Invalid range
value for custom order."

The Style Size clause facilitates thematic swatches to appear in different sizes.

The Columns clause allows you to specify the width of the legend. number_of-columns indicates the
column width.

See Also

Map statement, Open Window statement, Set Map statement, Set Window statement, Shade
statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 492 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Set Map statement
Purpose

Modifies an existing Map window.

Syntax

The main part of a Set Map statement has the following syntax:

Set Map
[Window window_id]
[Center (longitude, latitude) [Smart Redraw]]
[Clipping { Object clipper | Off | On } | Using

[Display {All | PolyObj} | Overlay] }]]
[Zoom { zoom_distance [Units dist_unit] | Entire [Layer layer_id] }]
[Preserve { Scale | Zoom }]
[Display { Scale | Position | Zoom }]
[Order layer_id, layer_id [, layer_id ...]]
[Pan pan_distance [Units dist_unit]

{ North | South | East | West } [Smart Redraw]]
[CoordSys...]
[Area Units area_unit]
[Distance Units dist_unit]
[Distance Type { Spherical | Cartesian }]
[XY Units xy_unit]
[Display Decimal {On | Off | [Display Grid]
[Scale screen_dist [Units dist_unit] For map_dist [Units dist_unit]]
[Redraw { On | Off }]
[Inflect num_inflections [by percent]

Contrast contrast_value]
[Brightness brightness_value]
[{ALPHA <alpha_value> }|{TRANSLUCENCY <translucency_percent>}]

[TRANSPARENCY {OFF|ON]
[COLOR <transparent_color_value>]

[GrayScale { On | Off }
[Round rounding_factor]
[Relief { On | Off }]
[Move Nodes { value | Default }]
[
 LAYERCLAUSE
 LAYERCLAUSE . . .

window_id is the Integer window identifier of a Map window.

longitude, latitude is the new center point of the map.

clipper is an Object expression; only the portion of the map within the object will display. See the
description in the Clipping section for more information.

zoom_distance is a numeric expression dictating how wide an area to display.

layer_id identifies a map layer; can be a Smallint (for example, use 1 to specify the top map layer other
than Cosmetic) or a String representing the name of a table displayed in the map.

pan_distance is a distance to pan the map.

The CoordSys clause specifies a coordinate system; for details, see separate discussion.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 493 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
area_unit is a string representing the name of an area unit (for example, “sq mi” for square miles, “sq
km” for square kilometers; see Set Area Units for a list of unit names).

distance is either be Spherical or Cartesian. All distance, length, perimeter, and area calculations for
objects contained in the Map Window will be performed using one of these calculation methods. Note
that if the Coordsys of the Map Window is NonEarth, then the calculations will be performed using
Cartesian methods regardless of the option chosen, and if the Coordsys of the Map Window is
Latitude/Longitude, then calculations will be performed using Spherical methods regardless of the
option chosen.

xy_unit is a string representing the name of an x/y coordinate unit (for example, ”m” for meters,
”degree” for degrees). If the XY Units are in degrees, the Display Decimal clause specifies whether to
display in decimal degrees. Set to On to display in decimal degrees or Off to set in degrees, minutes or
seconds. Set Display Grid to display in Military grid reference Format.

Relief turns relief shading for a grid on or off. The grid must have relief shade information calculated for
it for it for this clause to have any effect. Relief shade information can be calculated for a grid with the
Relief Shade command

Move Node can be 0 or 1. If the value is 0, duplicate nodes are not moved. If the value is 1, any
duplicate nodes within the same layer will be moved. If a Move Node value is specified, that window is
considered to be using a custom value. To return to using the default (from the mapper preference),
Move Nodes Default can be specified.

screen_dist and map_dist specify a map scale (for example, screen_dist = 1 inch, map_dist = 1 mile).

num_inflections is a numeric expression, specifying the number of color:value inflection pairs.

alpha_value is an integer value representing the alpha channel value for translucency. Values range
from 0-255. 0 is completely transparent. 255 is completely opaque. Values between 0-255 make the
image layer display translucent.

translucency_percent is an integer value representing the percentage of translucency for a raster or
grid image. Values range between 0-100. 0 is completely opaque. 100 is completely transparent.

Either ALPHA or TRANSLUCENCY should be specified, not both since they are different ways of
specifying the same thing. If multiple tokens are specified, the last value will be used.

The ALPHA and TRANSLUCENCY tokens are new for Set Map. They apply to raster and grid layers.

The CONTRAST, BRIGHTNESS and GRAYSCALE tokens are supported for raster layers. They apply
to both raster and grid layers.

The TRANSPARENCY and COLOR tokens are new for Set Map and only apply to raster layers.

The TRANSPARENCY token determines whether and individual color is transparent for a raster layer.

The COLOR token specifies which color is transparent in a raster layer.

color:expr is a color expression of, part of a color:value inflection pair.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 494 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
In the syntax above, LAYERCLAUSE is a shorthand notation, not a MapBasic keyword. Each
LAYERCLAUSE has the syntax described below.

[Layer layer_id
[Activate { [Using launch_expr] | [On { [Labels] | [Objects]] |

[Relative Path { On | Off }] }
[Editable { On | Off }]
[Selectable { On | Off }]
[Zoom (min_zoom, max_zoom) [Units dist_unit] [{ On | Off }]]
[Arrows { On | Off }]
[Centroids { On | Off }]
[Default Zoom]
[Nodes { On | Off }]
LABELCLAUSE

[Display { Off | Graphic | Global }]
[Global Line ...]
[Global Pen ...]
[Global Brush ...]
[Global Symbol ...]
[Global Font ...]
]

layer_id identifies which layer to modify; can be a Smallint (for example, use 1 to specify the top map
layer other than Cosmetic) or a String representing the name of a table displayed in the map.

min_zoom is a numeric expression, identifying the minimum zoom at which the layer will display.

max_zoom is a numeric expression, identifying the maximum zoom at which the layer will display.

launch_expr is an expression that will resolve to the name of the file to launch when the object is
activated.

The Using clause sets the filename expression and the On clause sets the activation mode. At least
one of these clauses is required. If the Using clause is included, then filename_expr is required.

If the On clause is included, then one or both of the Labels and Objects clauses are required. If just
Labels is included, then activation occurs on labels only. If just Objects is included, then activation
occurs on objects only. If both keywords are included, then activation occurs on both labels and
objects. By default activation occurs on labels only.

Use Relative Path On when the files to be launched are stored in a location relative to the table in
which the links are defined. Use Relative Path Off when the HotLinks are URLs or full path files
descriptions; this is the default.

The Line clause specifies a line style used to draw lines and polylines; identical to a Pen clause,
except that the keyword Pen is replaced by the keyword Line.

The Pen clause specifies a line style used to draw frames around filled objects.

The Brush clause specifies a fill style.

The Symbol clause specifies a symbol style.

The Font clause specifies a text style.

In the syntax above, LABELCLAUSE is a shorthand notation, not a MapBasic keyword.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 495 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Each LABELCLAUSE has the syntax described below:

[Label [Line { Simple | Arrow | None }]
[Position [Center] [Above | Below] [Left | Right]]
[Font ...] [Pen ...]
[With label_expr]
[Parallel { On | Off }]
[Visibility { On | Off | Zoom(min_vis , max_vis) [Units dist_unit] }]
[Auto [{ On | Off }]]
[Overlap [{ On | Off }]]
[PartialSegments { On | Off }]
[Duplicates [{ On | Off }]]
[Max [number_of_labels]]
[Offset offset_amount]
[Default]
[Object ID

[Table alias]
[Visibility { On | Off }]
[Anchor (anchor_x , anchor_y)]
Text text_string
[Position [Center] [Above | Below] [Left | Right]]
[Font ...] [Pen ...]
[Line { Simple | Arrow | None }]
[Angle text_angle]
[Offset offset_amount]
[Callout (callout_x, callout_y)] }
[Object ...]

]

label_expr is the expression to use for creating labels.

min_vis , max_vis are numbers specifying the minimum and maximum zoom distances within which
the labels will display.

dist_unit is a string representing the name of a distance unit (for example, “mi” for miles, “m” for
meters; see Set Distance Units for a list of available unit names).

number_of_labels is an Integer representing the maximum number of labels MapInfo Professional will
display for the layer. If you omit the number_of_labels argument, there is no limit.

offset_amount is a number from zero to 50 (representing a distance in points), causing the label to be
offset from its anchor point.

ID is an Integer that identifies an edited label; generated automatically when the user saves a
workspace. A label’s ID equals the row ID of the object that owns the label.

alias is the name of a table that is part of a seamless map. The Table alias clause generates an error if
this layer is not a seamless map.

anchor_x , anchor_y are map coordinates, specifying the anchor position for the label.

text_string is a string that will become the text of the label.

text_angle is an angle, in degrees, indicating the rotation of the text.

callout_x , callout_y are map coordinates, specifying the end of the label call-out line.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 496 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Description

The Set Map statement controls the settings of a Map window. If no window_id is specified, the
statement affects the topmost Map window. This statement allows a MapBasic program to control
options a user would set through MapInfo Professional’s Map > Layer Control, Map > Change View
and Map > Options menu items. For example, the Set Map statement lets you configure which map
layer is editable, and lets you set the map’s zoom distance or scale.

Note: Set Map controls the contents of a Map window, not the size or position of the window’s frame.
To change the size or position of a Map window, use the Set Window statement.

Between sessions, MapInfo Professional preserves Map settings by storing a Set Map statement in a
workspace file. To see an example of the Set Map statement, create a map, save the workspace (for
example, MAPPER.WOR), and examine the workspace in a MapBasic text edit window.

The order of the clauses in a Set Map statement is very important. Entering the clauses in an incorrect
order can generate a syntax error.

Changing the Current View of the Map
The following clauses affect the current view-in other words, where the map is centered, and how large
an area is displayed in the Map window.

Center

Controls where the map will be centered within the Map window. For example: New York City is located
(approximately) at 74 degrees West, 41 degrees North. The following Set Map statement centers the
map in the vicinity of New York City. Coordinates are specified in decimal degrees, not Degrees/
Minutes/Seconds.

Set Map Center (-74.0, 41.0)

A Set Map...Center statement causes the entire window to redraw, unless you include the optional
Smart Redraw clause. For details on Smart Redraw, see below (under Pan).

Pan

Moves the Map window’s view of the map. For example, the following statement moves the map view
100 kilometers North:

Set Map Pan 100 Units ”km” North

Ordinarily, the Set Map ... Pan statement redraws the entire Map window. If you include the optional
Smart Redraw clause, MapInfo Professional only redraws the portion of the map that needs to be
redrawn (as if the user had re-centered the map using the window scrollbars or the Grabber tool).

Set Map Pan 100 Units ”km” North Smart Redraw

Caution: if you include the Smart Redraw clause, the Map window always moves in multiples of eight
pixels. Because of this behavior, the map might not move as far as you requested. For example, if you
try to pan North by 100 km, the map might actually pan some other distance- perhaps 79.5 kilometers-
because that other distance represents a multiple of eight-pixel increments.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 497 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Scale

Zooms in or out so that the map has the scale you specify. For example, the following statement zooms
the map so that one inch on the screen shows an area ten miles across.

Set Map Scale 1 Units ”in” For 10 Units ”mi”

Zoom

Dictates how wide an area should be displayed in the Map. For example, the following statement
adjusts the Zoom level, to display an area 100 kilometers wide.

Set Map Zoom 100 Units ”km”

If the Zoom clause includes the keyword Entire, MapInfo Professional zooms the map to show all
objects in a Map layer (or all objects in all map layers):

Set Map Zoom Entire Layer 2 ’show all of layer 2
Set Map Zoom Entire ’show the whole map

Changing the Behavior of the Entire Map

The following clauses affect how the Map window behaves.

Area Units

Specifies the unit of measure used to display area calculations. For a list of area unit names, see the
Set Area Units statement.

Set Map Area Units ”sq km”

Clipping

Sets a clipping object for the Map window; corresponds to MapInfo Professional’s Map > Set Clip
Region command. Once a clipping region is set, you can enable or disable clipping by specifying
Clipping On or Clipping Off.

Set Map Clipping Object obj_variable_name

Set Map Statement for Clip Region
Sets a clipping object for the Map window; corresponds to MapInfo Professional’s Map, Set Clip
Region command. Once a clipping region is set, you can enable or disable clipping by specifying
Clipping On or Clipping Off.

There are three modes that can be used for Clipping. Using the Overlay mode will use the MapInfo
Professional Overlay (Erase Outside) functionality to produce the clipping. Polylines and Regions will
be clipped at the Region boundary. Points and Labels will be completely displayed only if the point or
label point lie inside the Region. Text is always displayed and never clipped. Styles for all objects are
never clipped. (This method is used in ALL versions prior to MapInfo Professional 6.0.)
Using the Display All mode, the Windows Display will provide the clip region functionality. All objects
(including points, labels, and text) will be clipped at the Region boundary. All styles will be clipped at
the region boundary. This is the default mode.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 498 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Using the Display PolyObj mode the Windows Display will provide the clip region functionality for
Polylines and Regions only. Styles for Polylines and Regions will be clipped at the region boundary.
Points and Labels will be completely displayed only if the point or label point lie inside the Region. Text
is always displayed and never clipped. Styles for points, labels and text are never clipped. This mode
approximates the Overlay functionality found in MapInfo Professional prior to version 6.0.

In general, the Windows Display functionality found in Display All and Display PolyObj provides better
performance than the Overlay functionality. For example:

Set Map Clipping Object obj_variable_name Using Display All

CoordSys... clause

Assigns the Map window a different coordinate system and projection. For details on the syntax of a
CoordSys clause, see the separate CoordSys discussion.

The MapBasic CoordSys must be set explicitly with a Set CoordSys statement and can be retrieved
with the SessionInfo() function

Note: When a Set Map statement includes a CoordSys clause, the MapBasic application’s
coordinate system is automatically set to match the map’s coordinate system.

In versions prior to 7.x, the following example would set both the map's Coordsys to this UTM system
as well as set the underlying MapBasic CoordSys to this system:

Set Map XY Units "m" CoordSys Earth Projection 8, 33, "m", -55.5, 0, 0.9999, 304800, 0

In versions 7.x and later, this example would only alter the map's Coordsys and Units; the MapBasic
Coordsys is unaffected.

Display

Dictates what type of information should appear on the status bar when the Map window is active.
Display Zoom displays the current zoom (the width of the area displayed). Display Scale displays the
current scale. Display Position displays the position of the cursor (for example, decimal degrees of
longitude / latitude).

 Set Map Display Position
Distance Units

Specifies the unit of measure used to display distance calculations (for example, in the Ruler Tool
window). For a list of area unit names, see the Set Distance Units statement.

 Set Map Distance Units ”km”

Preserve

Controls how the Map window behaves when the user re-sizes the window. If you specify Preserve
Zoom then MapInfo Professional redraws the entire Map window whenever the user re-sizes the
window. If you specify Preserve Scale then MapInfo Professional only redraws the portion of the
window that needs to be redrawn. These options correspond to settings in MapInfo Professional’s
Change View dialog box (Map menu > Change View).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 499 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Redraw

Disables or enables the automatic redrawing of the Map window. If you issue a Set Map Redraw Off
statement, subsequent statements can affect the map (for example, Set Map, Add Map Layer,
Remove Map Layer) without causing MapInfo Professional to redraw the Map window. After making
all necessary changes to the Map window, issue a Set Map Redraw On statement to restore
automatic redrawing (at which time, MapInfo Professional will redraw the map once to show all
changes).

Note: Some actions, such as panning and zooming, can cause MapInfo Professional to redraw a
Map window even after you specify Redraw Off. If you find that the Redraw Off syntax does
not prevent window redraws, you may want to use the Set Event Processing Off statement.

XY Units

Specifies the type of coordinate unit used to display x, y coordinates (for example, when the user has
specified that the map should display the cursor position on the status bar). The unit name can be
“degree” (for degrees longitude/latitude) or a distance unit such as “m” for meters.

If the XY Units are in degrees, the Display Decimal clause specifies whether to display in decimal
degrees (On) or in degrees, minutes, seconds (Off). Display Grid will display coordinates in Military
Grid reference system format no matter how the XY Units are specified.

Set Map XY Units "m" Display Grid
Set Map XY Units "degree" Display Grid
Set Map XY Units "degree" Display Decimal On
Set Map XY Units "degree" Display Decimal Off

The following statement specifies meters as the coordinate unit:

Set Map XY Units ”m”

Changing the Order of Layers
The Order clause resets the order in which map layers are drawn. Each layer_num is a number
identifying a map layer, according to that layer’s original position in the map, where 1 (one) is the top-
most layer number (the layer which draws last, and therefore always appears on top).

The Cosmetic layer is a special layer, with a layer number of zero. The Cosmetic layer is always drawn
last; thus, a zero should not appear in an order clause. For example: given a Map window with four
layers (not including the Cosmetic layer), the following Set Map statement will reverse the order of the
topmost two layers:

Set Map Order 2, 1, 3, 4

Changing the Behavior of Individual Layers

Editable

Sets the Editable attribute for the appropriate Layer. At any given time, only one of the mapper’s layers
may have the Editable attribute turned on. Note that turning on a layer’s Editable attribute automatically
turns on that layer’s Selectable attribute. The following Set Map statement turns on the Editable
attribute for first non-cosmetic layer:

 Set Map
 Layer 1 Editable On
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 500 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Selectable

Sets whether the given layer should be selectable through operations such as Radius-Search. Any or
all of the Map layers can have the Selectable attribute on. The following Set Map statement turns on
the Selectable attribute for the first non-cosmetic map layer, and turns off the Selectable attribute for
the second and third map layers:

Set Map
Layer 1 Selectable On
Layer 2 Selectable Off
Layer 3 Selectable Off

Zoom

Configures the zoom-layering of the specified layer. Each layer can have a zoom-layering range; this
range, when enabled, tells MapInfo Professional to only display the Map layer when the map’s zoom
distance is within the layering range. The following statement sets a range of 0 to 10 miles for the first
non-Cosmetic layer.

 Set Map
 Layer 1 Zoom (0, 10) Units ”km” On

The On keyword activates zoom layering for the layer. To turn off zoom layer, specify Off instead.

Set Map Clause for HotLinks
An active object is an object in a map window that has a URL or filename associated with it. Clicking on
an active object with the new HotLink Tool will launch the associated URL or file. For example, if the
string http://www.boston.com is associated with a point object on the map, then clicking the point, or it’s
label, will result in the default browser being started with the site http://www.boston.com. You can
associated other types of files with map objects; MapInfo workspace (.wor), table (.tab) or application
(.mbx) files, Word documents (.doc), executable files (.exe), etc. Any type of file that the system knows
how to ”launch” can be associated with a map object.

About Relative Path Settings

The Relative Path setting allows you to define links to files stored in locations relative to the tables. For
example: if the table c:\data\states.tab contains HotLinks to workspace files that are stored in
directories under c:\data. The workspace file for New York, newyork.wor, is stored in c:\data\ny and the
HotLink associated with New York is “ny\newyork.wor”. Setting Relative Path to On tells MapInfo
Professional to prefix the HotLink string with the location of the .tab file, in this case resulting in the
launch string “c:\data\ny\newyork.wor”.

Note: HotLinks identified as URLs are not modified before launch, regardless of the Relative Path
setting. The ShellAPI function path’s URL is used to determine if a HotLink is a URL.

Changing the Appearance of Individual Layers

Arrows

Turns the display of direction arrows on or off.

Centroids

Turns the display of centroids on or off.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 501 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Inflect

Overrides the inflection color:value pairs that are stored in the grid (.MIG) file.

Nodes

Turns the display of nodes on or off.

The following statement turns on the display of arrows, centroids, and nodes for layer 1:

 Set Map
 Layer 1 Arrows On Centroids On Nodes On

Display

This clause controls how the objects in the layer are displayed.

When you specify Display Off, the layer does not appear in the Map.

When you specify Display Graphic, the layer’s objects appear in their default style, as saved in the
table.

When you specify Display Global, all objects appear in the global styles assigned to the layer. These
global styles can be assigned through the optional Global sub-clauses:

The Global Line clause specifies the style used to display line and polyline objects. A Line clause is
identical to a Pen clause, except for the use of the keyword Line instead of Pen.

The Global Pen clause specifies the style used to display the borders of filled objects.

The Global Brush clause specifies the style used to display filled objects.

The Global Symbol clause specifies the style used to display point objects.

The Global Font clause specifies the font used to display text objects.

The following statement displays layer 1 in its default style:

Set Map
Layer 1 Display Graphic

The following statement displays layer 1 with green line and fill styles:

Set Map
Layer 1 Display Global
Global Line(1, 2, GREEN)
Global Pen (1, 2, GREEN)
Global Brush (2, GREEN, WHITE)

Changing Labeling Options for Individual Layers
The Label clause controls a map layer’s labeling options. The Label clause has the following sub-
clauses:

Line

Sets the type of call-out line, if any, that should appear when a label is dragged from its original
location. You can specify Line Simple, Line Arrow, or Line None. For example:

Set Map Layer 1
Label Line Arrow
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 502 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Position

Controls label positions with respect to the positions of object centroids. For example, the following
statement sets labels above and to the right of object centroids.

Set Map Layer 1
Label Position Above Right

Font

Specifies the font used in labels.

Pen

Specifies the line style to use for call-out lines. Call-out lines only appear if you specify Line Simple or
Line Arrow, and if the user drags a label from its original location.

Set Map Layer 1
Label Line Arrow

Pen(2, 1, 255)

With

Specifies the expression used to construct the text for the labels. For example, the following statement
specifies a labeling expression which uses the Proper$() function to control capitalization in the label.

Set Map Layer 1
Label With Proper$(Cityname)

Parallel

Controls whether labels for line objects are rotated, so that the labels are parallel to the lines.

Set Map Layer 1
Label Parallel On

Visibility

Controls whether labels are visible for this layer. Specify Visibility Off to turn off label display for both
default labels and user-edited labels. Specify Visibility Zoom ... to set the labels to display only when
the map is within a certain zoom distance. The following example sets labels to display when the map
is zoomed to 2 km or less.

Set Map Layer 1
Label Visibility Zoom (0, 2) Units ”km”

Auto

Controls whether automatic labels display. If you specify Auto Off, automatic labels will not display,
although user-edited labels will still display.

Overlap

Controls whether MapInfo Professional draws labels that would overlap existing labels. To prevent
overlapping labels, specify Overlap Off.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 503 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
PartialSegments

Controls whether MapInfo Professional labels an object when the object's centroid is not in the visible
portion of the map. If you specify PartialSegments On (which corresponds to selecting the Label
Partial Objects check box in MapInfo Professional), MapInfo Professional labels the visible portion of
the object. If you specify PartialSegments Off, an object will only be labeled if its centroid appears in
the Map window. In version 7.0, this feature was expanded to all object types. For versions previous to
7.0, only linear objects where affected.

 Duplicates

Controls whether MapInfo Professional allows two or more labels that have the same text. To prevent
duplicate labels, specify Duplicates Off.

Max number_of_labels

Sets the maximum number of labels that MapInfo Professional will display for this layer. If you omit the
number_of_labels argument, MapInfo Professional places no limit on the number of labels.

Offset offset_amount

Specifies an offset distance, so that MapInfo Professional automatically places each label away from
the object’s centroid. The offset_amount argument is an integer from zero to 50, representing a
distance in points. If you specify Offset 0 labels appear immediately adjacent to centroids. If you
specify Offset 10 labels appear 10 points away. The offset setting is ignored when the Position clause
specifies centered text.

The following statement allows overlapping labels, placed to the right of object centroids, with a
horizontal offset of 10 points:

Set Map Layer 1
Label Overlap On Position Right Offset 10

Default

Resets all of the labels for this layer to their default values. The following statement deletes all edited
labels from the top layer in the Map window, restoring the layer’s default labels:

Set Map Layer 1 Label Default

Object

The Object clause allows you to edit labels. For example, if you edit labels in MapInfo Professional
and then save a workspace, the workspace contains Object clauses to represent the edited labels.
The Set Map statement contains one Object clause for each edited label.

To see examples of the Object clause, edit a map’s labels, save a workspace, and examine the
workspace in a text editor.

Settings That Have a Permanent Effect on a Map Layer
The Default Zoom clause is a special clause that modifies a table, rather than a Map window. Use the
Default Zoom clause to reset a table’s default zoom distance and center position settings to the
window’s current zoom and center point.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 504 MB_Ref.pdf

Reference Guide Chapter 8: Set Map statement
Every mappable table has a default zoom distance and center position. When the user first opens a
Map window, MapInfo Professional sets the window’s initial zoom distance and center position
according to the zoom and center settings stored in the table.

If a Set Map...Layer statement includes the Default Zoom clause, MapInfo Professional stores the
Map window’s current zoom distance and center point in the named table. For example, the following
statement stores the Map window’s zoom and center settings in the table that comprises the first map
layer:

 Set Map Layer 1 Default Zoom

The Default Zoom clause takes effect immediately; no Save operation is required.

Setting Move Duplicate Nodes
Once Set Map Move Nodes value has been used, that map has a custom setting. If a Map window has
a custom setting, the Map window preference will not be used. The Map window preference will apply
to new Map windows and any non-customized Map windows. The setting for an existing Map window
can be customized by using the Set Map Move Nodes value MapBasic statement.

Example

The following program opens two tables, opens a Map window to show both tables, and then performs
a Set Map statement to make changes to the Map window:

Open Table ”world”
Open Table ”cust1993” As customers
Map From customers, world

Set Map
Center (100, 40) ’center map over mid-USA
Zoom 4000 Units ”mi” ’show entire USA
Preserve Zoom ’preserve zoom when resizing
Display Position ’show lat/long on status bar
Layer 1

Editable On
Layer 2

Selectable Off
Display Global
Global Brush (2, 255, 65535)

See Also

Add Map statement, LayerInfo() function, Map statement, MapperInfo() function, Remove Map
statement, Set Window statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 505 MB_Ref.pdf

Reference Guide Chapter 8: Set Map3D statement
Set Map3D statement
Purpose

Change the settings of an existing 3DMap window.

Syntax
Set Map3D

[Window window_id]
[Camera [Zoom factor | Pitch angle | Roll angle | Yaw angle |

Elevation angle Position (x,y,z) | FocalPoint (x,y,z)]]
[Light [Position (x,y,z) | Color lightcolor]]
[Resolution (res_x, res_y)]
[Scale grid_scale]
[Background backgroundcolor]
[Refresh]

mapper_creation_string specifies a command string that creates the mapper textured on the grid.

factor specifies the amount to set the zoom.

angle is an angle measurement in degrees. The horizontal angle in the dialog ranges from 0-360
degrees and rotates the maps around the center point of the grid. The vertical angle in the dialog
ranges from 0-90 and measures the rotation in elevation from the start point directly over the map.

res_x, res_y is the number of samples to take in the X and Y directions. These values can increase to
a maximum of the grid resolution. The resolution values can increase to a maximum of the grid x,y
dimension. If the grid is 200x200 then the resolution values will be clamped to a maximum of 200x200.
You can't increase the grid resolution, only specify a subsample value.

grid_scale is the amount to scale the grid in the Z direction. A value >1 will exaggerate the topology in
the Z direction, a value <1 will scale down the topological features in the Z direction.

backgroundcolor is a color to be used to set the background and is specified using the RGB function.

Description

Changes the settings of an already created 3D Map. If the original tables from which the 3D Map was
created were modified either by adding labels or by modifying geometry, Refresh will capture the
changes in the mapper and recreate the 3D map based on those changes.

Camera specifies the camera position and orientation.

Pitch adjusts the camera’s current rotation about the X Axis centered at the camera’s origin

Roll adjusts the camera’s current rotation about the Z Axis centered at the camera’s origin

Yaw adjusts the camera’s current rotation about the Y Axis centered at the camera’s origin

Elevation adjusts the current camera’s rotation about the X Axis centered at the camera’s focal point

Position indicates the camera/light position

FocalPoint indicates the camera/light focal point

Orientation specifies the cameras ViewUp, ViewPlane Normal and Clipping Range (used specifically
for persistence of view).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 506 MB_Ref.pdf

Reference Guide Chapter 8: Set Next Document statement
Resolution is the number of samples to take in the X and Y directions. These values can increase to a
maximum of the grid resolution. The resolution values can increase to a maximum of the grid x,y
dimension. If the grid is 200x200 then the resolution values will be clamped to a maximum of 200x200.
You can’t increase the grid resolution, only specify a subsample value.

Units specifies the units the grid values are in. Do not specify this for unitless grids (i.e. grids
generated using temperature or density). This option needs to be specified at creation time. If there are
units associated with your grid values, they have to specified when you create the 3Dmap. You cannot
change them later with Set Map3D or the Properties dialog.

Refresh regenerates the texture from the original tables.

Example
Dim win3D as Integer
Create Map3D Resolution(75,75) Resolution(100,100) Scale 2 Background
RGB(255,0,0)
win3D = FrontWindow()
Set Map3D Window win3D Resolution(150,100) Scale 0.75 Background RGB(255,255,0)
Changes the original 3DMap window’s resolution in the X and Y, the scale to de-
emphasize the grid in the Z direction (< 1) and change the background color to
yellow.

See Also

Create Map3D statement, Map3dInfo() function

Set Next Document statement
Purpose

Re-parents a MapInfo Professional document window (for example, so that a Map window becomes a
child window of a Visual Basic application).

Restrictions

This statement is only available under Microsoft Windows.

Syntax
Set Next Document

{ Parent HWND | Style style_flag | Parent HWND Style style_flag }

HWND is an Integer Windows window handle, identifying a parent window

style_flag is an Integer code (see table below), indicating the window style

Description

This statement is used in Integrated Mapping applications. For an introduction to Integrated Mapping,
see Chapter 13 of the MapBasic User Guide.

To re-parent an MapInfo Professional window, issue a Set Next Document statement, and then issue
one of these window-creation statements: Map, Browse, Graph, Layout, or Create Legend.

Include the Parent clause to identify an existing window, which will become the parent of the MapInfo
Professional window you are about to create. Include the Style clause to specify a window style. If you
are creating a document window, such as a Map window, include both clauses.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 507 MB_Ref.pdf

Reference Guide Chapter 8: Set Next Document statement
The style_flag argument must be one of the codes from the following table; codes are defined in
MAPBASIC.DEF.

The parent and style settings remain in effect until you create a new window. The new window adopts
the parent and style settings you specified; then MapInfo Professional reverts to its default parent and
style settings for any subsequent windows. To re-parent more than one window, issue a separate Set
Next Document statement for each window you will create.

Note: The Create ButtonPad statement resets the parent and style settings, although the new
ButtonPad is not re-parented.

This statement re-parents document windows. To re-parent dialog box windows, use the Set
Application Window statement. To re-parent special windows such as the Info window, use the Set
Window statement.

Example

The sample program Legends.mb uses the following statements to create a Theme Legend window
inside of a Map window.

Dim win As Integer
win = FrontWindow()
...
Set Next Document

Parent WindowInfo(win, WIN_INFO_WND)
Style 1

Create Legend From Window win

See Also

Set Application Window statement, Set Window statement

style_flag code Effect on the next document window:

WIN_STYLE_CHILD Next window is created as a child window. (Code has a
value of 1.)

WIN_STYLE_POPUP Next window is created as a popup window with a half-
height title bar caption. (Code has a value of 3.)

WIN_STYLE_POPUP_FULLCAPTION Next window is created as a popup window, but with a
full-height title bar caption. (Code has a value of 2.)

WIN_STYLE_STANDARD This code resets the style flag to its default value.
(Code has a value of 0.) If you issue a Set Next Docu-
ment Style 1 statement, but then you change your
mind and do not want to use the child window style,
issue a Set Next Document Style 0 statement to reset
the style.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 508 MB_Ref.pdf

Reference Guide Chapter 8: Set Paper Units statement
Set Paper Units statement
Purpose

Sets the paper unit of measure that describes screen window sizes and positions.

Syntax
Set Paper Units unit

unit is a String representing the name of a paper unit (for example, “cm” for centimeters)

Description

The Set Paper Units statement changes MapBasic’s paper unit of measure.

Paper units are small units of linear measure, such as “mm” (millimeters). MapBasic’s uses “in”
(inches) as the default paper unit; this remains MapBasic’s paper unit unless a Set Paper Units
statement is issued.

Some MapBasic statements (for example, Set Window) include Position, Width, and Height clauses,
through which a MapBasic program can reset the size or the position of windows on the screen.

The numbers that you specify in Position, Width, and Height clauses use MapBasic’s paper units. For
example, the following Set Window statement:

Set Window Width 5

resets the width of a window. The window’s new width depends on the paper unit in use; if MapBasic is
currently using “in” as the paper unit, the Set Window statement makes the Map five inches wide.

If MapBasic is currently using “cm” as the paper unit, the Set Map statement makes the Map five
centimeters wide.

MapBasic’s paper unit is internal, and invisible to the end-user. When a user performs an operation
which displays a paper measurement, the unit of measure displayed on the screen is independent of
MapBasic’s internal paper unit.

The unit parameter must be one of the values listed in the following table:

See Also

Set Area Units statement, Set Distance Units statement

Unit name Paper unit represented

“cm” Centimeters

“in” Inches

“mm” Millimeters

“pt” Points

“pica” Picas
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 509 MB_Ref.pdf

Reference Guide Chapter 8: Set PrismMap statement
Set PrismMap statement
Purpose

Change the settings of an existing Prism Map window.

Syntax
Set PrismMap

[Window window_id]
[Camera [Zoom factor | Pitch angle | Roll angle | Yaw angle |

Elevation angle Position (x,y,z) | FocalPoint (x,y,z)]]
[Light [Position (x,y,z) | Color lightcolor]]
[Scale grid_scale]
[Background backgroundcolor]
[Label With infotips_expr]
[Refresh]

window_id is a window identifier a for a mapper window which contains a Grid layer. An error message
is displayed if a Grid layer is not found.

mapper_creation_string specifies a command string that creates the mapper textured on the grid.

Camera specifies the camera position and orientation.

angle is an angle measurement in degrees. The horizontal angle in the dialog ranges from 0-360
degrees and rotates the maps around the center point of the grid. The vertical angle in the dialog
ranges from 0-90 and measures the rotation in elevation from the start point directly over the map.

Pitch adjusts the camera's current rotation about the X-Axis centered at the camera's origin

Roll adjusts the camera's current rotation about the Z-Axis centered at the camera's origin

Yaw adjusts the camera's current rotation about the Y-Axis centered at the camera's origin

Elevation adjusts the current camera's rotation about the X-Axis centered at the camera's focal point

Position indicates the camera or light position

FocalPoint indicates the camera or light focal point

Orientation specifies the cameras ViewUp, ViewPlane Normal and Clipping Range (used specifically
for persistence of view).

backgroundcolor is a color to be used to set the background and is specified using the RGB function.

infotips_expr is the expression to use for InfoTips.

Refresh regenerates the texture from the original tables.

Description

Changes the settings of an already created Prism Map.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 510 MB_Ref.pdf

Reference Guide Chapter 8: Set ProgressBars statement
Example

Changes the original PrismMap window's resolution in the X and Y, the scale to de-emphasize the grid
in the Z direction (< 1) and change the background color to yellow.

Dim win3D as Integer
Create PrismMap Resolution(75,75) Resolution(100,100) Scale 2 Background
RGB(255,0,0)
win3D = FrontWindow()
Set PrismMap Window win3D Resolution(150,100) Scale 0.75 Background
RGB(255,255,0)

See Also

Create PrismMap statement, PrismMapInfo() function

Set ProgressBars statement
Purpose

Disables or enables the display of progress-bar dialogs.

Syntax
Set ProgressBars { On | Off }

Description

Some MapBasic statements, such as the Create Object As Buffer statement, automatically display a
progress-bar dialog (a “percent complete” dialog showing a horizontal bar and a Cancel button). To
suppress progress-bar dialogs, use the Set ProgressBars Off statement. By suppressing these
dialogs, you guarantee that the user will not interrupt the operation by clicking the Cancel button. To
resume displaying progress-bar dialogs, use the Set ProgressBars On statement.

If you issue a Set ProgressBars Off statement from within a compiled MapBasic application (MBX
file), the statement only disables progress-bar dialogs caused by the MBX file. Actions taken by the
user can still cause progress bars to display. Also, Run Menu Command statements can still cause
progress bars to display, because Run Menu Command simulates the user selecting a menu
command.

To disable progress-bar dialogs that are caused by user actions or Run Menu Command statements,
type a Set ProgressBars Off statement into the MapBasic window (or send the command to MapInfo
Professional through OLE Automation or DDE).

If your application minimizes MapInfo Professional (using the statement Set Window MapInfo Min),
you should suppress progress bars. When a progress bar displays while MapInfo Professional is
minimized, the progress bar is frozen for as long as MapInfo Professional is minimized. If you suppress
the display of progress bars, the operation can proceed, even if MapInfo Professional is minimized.

See Also

ProgressBar statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 511 MB_Ref.pdf

Reference Guide Chapter 8: Set Redistricter statement
Set Redistricter statement
Purpose

Changes the characteristics of a districts table during a redistricting session.

Syntax 1
Set Redistricter districts_table

[Change district_name
[To new_district_name] [Pen ...] [Brush ...] [Symbol ...]]

[Add new_district_name [Pen ...] [Brush ...] [Symbol ...]]
[Remove district_name]

Syntax 2
Set Redistricter districts_table

Order { “Alpha” | “MRU” | “Unordered” }

districts_table is the name of the districts table (for example, Districts)

district_name is a String: the name of an existing district

new_district_name is a String: new district name, used when adding a district or renaming an existing
district

Pen... is a Pen clause, for example, Pen MakePen (width , pattern , color)

Brush... is a Brush clause, for example, Brush MakeBrush (pattern , forecolor , backcolor)

Symbol... is a Symbol clause, for example, Symbol MakeSymbol (shape , color , size)

Description

Set Redistricter modifies the set of districts that are in use during a redistricting session. To begin a
redistricting session, use the Create Redistricter statement. For an introduction to redistricting, see
the MapInfo Professional documentation.

To add, delete, or modify a district or districts, use Syntax 1. Use the Change clause to change the
name and/or the graphical style associated with a district. Use the Add clause to add a new district.
Use the Remove clause to remove an existing district; when you remove a district, map objects which
had been assigned to that district are re-assigned to the “all others” district.

The district_name and new_district_name parameters must always be String expressions, even if the
district column is numerical. For example, to refer to the district representing the number 33, specify
the String expression “33”.

To affect the ordering of the rows in the Districts Browser, use Syntax 2. Specify Alpha to use
alphabetical ordering. Specify MRU if you want the most recently used district to appear on the top row
of the Districts Browser. Specify Unordered if you want districts to be added to the bottom row of the
Districts Browser as they are added.

Examples

Once a redistricting session is in effect, the following statement creates a new district.

Set Redistricter Districts
Add ”NorthWest” Brush MakeBrush(2, 255, 0)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 512 MB_Ref.pdf

Reference Guide Chapter 8: Set Resolution statement
The following statement renames the “NE” district to “NorthEast.” Note that this type of change can
affect the table that is being redistricted. Initially, any rows belonging to the “NE” district have “NE”
stored in the district column. After the Set Redistricter... Change statement, each of those rows has
“NorthEast” stored in that column.

Set Redistricter Districts
Change ”NE” To ”NorthEast”

The following statement removes the “NorthWest” district from the Districts table:

Set Redistricter Districts
Remove ”NorthWest”

The following statement sets the ordering of rows in the Districts Browser, so that the most recently
used districts appear at the top:

Set Redistricter Districts
Order ”MRU”

See Also

Create Redistricter statement

Set Resolution statement
Purpose

Sets the object-editing resolution setting; this controls the number of nodes assigned to an object when
an object is converted to another object type.

Syntax
Set Resolution node_limit

node_limit is a SmallInt value between 2 and 1,048,570 (inclusive); default is 100.

Description

By default, MapInfo Professional assigns 100 nodes per circle when converting a circle or arc into a
region or polyline. Use the Set Resolution statement to alter the number of nodes per circle. By
increasing the resolution setting, you can produce smoother result objects.

The Set Resolution statement affects subsequent operations performed by the user, such as the
Objects > Convert to Regions command and the Objects > Convert to Polylines command. The
resolution setting also affects some MapBasic statements and functions, such as the
ConvertToRegion() and ConvertToPline() functions. The resolution setting also affects operations
where MapInfo Professional performs automatic conversion (for example, Split, Combine).

Buffering operations are not affected by the Set Resolution statement. The Create Object As Buffer
statement and the Buffer() function both have resolution parameters which allow you to specify buffer
resolution explicitly.

See Also

ConvertToPline() function, ConvertToRegion() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 513 MB_Ref.pdf

Reference Guide Chapter 8: Set Shade statement
Set Shade statement
Purpose

Modifies a thematic map layer.

Syntax
Set Shade

[Window window_id]
{ map_layer_id | “table (theme_layer_id)” }

[Style Replace { On | Off }]
. . .

window_id is an Integer window identifier

map_layer_id is a SmallInt value, representing the layer number of a thematic layer

table is the name of the table on which a thematic layer is based

theme_layer_id is a SmallInt value, one or larger, representing which thematic layer to modify (for
example, one represents the first thematic layer created)

Description

After you use the Shade statement to create a thematic map layer, you can use the Set Shade
statement to modify the settings for that thematic layer. Issuing a Set Shade statement is analogous to
choosing Map > Modify Thematic Map. The syntax of the Set Shade statement is identical to the
syntax of the Shade statement, except for the way that the Set Shade statement identifies a map layer.
A Set Shade statement can identify a layer by its layer number, as shown below:

Set Shade
Window i_map_winid
2
With Num_Hh_90
Graduated 0.0:0 11000000:24 Vary Size By ”SQRT”

Or a Set Shade statement can identify a map layer by referring to the name of a table (the base table
on which the layer was based), followed by a number in parentheses:

Set Shade
Window i_map_winid
”States(1)”
With Num_Hh_90
Graduated 0.0:0 11000000:24 Vary Size By ”SQRT”

The number in parentheses represents the number of the thematic layer. To modify the first thematic
layer that was based on the States table, specify States(1), etc.

Style Replace On (default) specifies the layers under the theme are not drawn.

Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

See Also

Shade statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 514 MB_Ref.pdf

Reference Guide Chapter 8: Set Style statement
Set Style statement
Purpose

Resets the current Pen, Brush, Symbol, or Font style.

Syntax
Set Style

{ Brush ... |
Font ... |
Pen ... |
BorderPen |
LinePen |
Symbol ... }

Brush clause specifies a fill style

Font clause specifies a text style

Pen clause specifies a line style

Symbol clause specifies a point style

BorderPen takes a Pen clause which specifies a border line style

LinePen takes a Pen clause which specifies a line style

Description

The Set Style statement resets the Pen, Brush, Symbol, or Font style currently in use.

The Pen clause sets both the line and border pen. To set them individually, use the LinePen clause to
set the line and the BorderPen clause to set the border. When the user draws a new graphical object to
a Map or Layout window, MapInfo Professional creates the object using whatever Font, Pen, Brush,
and/or Symbol styles are currently in use. For more information about Pen, Brush, Symbol, and Font
parameters, see the discussions of the Pen, Brush, Font, and Symbol clauses.

Example

Example of Brush, Symbol and Font:

Include "mapbasic.def"
Set Style Brush MakeBrush(64, CYAN, BLUE)
Set Style Symbol MakeSymbol(9, BLUE, 14)
Set Style Font MakeFont("Helv", 1, 14, BLACK,WHITE)

Example of Pen:

In this example, the line pen and the border pen are red.

Include "mapbasic.def"
Set Style Pen MakePen(3, 9, RED)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 515 MB_Ref.pdf

Reference Guide Chapter 8: Set Table statement
Example of LinePen and BorderPen:

In this example, the line pen is red and the border pen is green.

Include "mapbasic.def"
Set Style LinePen MakePen(6, 77, RED)
Set Style BorderPen MakePen(6, 77, GREEN)

See Also

CurrentBrush() function, CurrentFont() function, CurrentPen() function, CurrentSymbol()
function, MakeBrush() function, MakeFont() function, MakePen() function, MakeSymbol()
function, RGB() function

Set Table statement
Purpose

Configures various settings of an open table.

Syntax
Set Table tablename

[FastEdit { On | Off }]
[Undo { On | Off }]
[ReadOnly]
[Seamless { On | Off } [Preserve]]
[UserMap { On | Off }]
[UserBrowse { On | Off }]
[UserClose { On | Off }]
[UserEdit { On | Off }]
[UserRemoveMap { On | Off }]
[UserDisplayMap { On | Off }]

Description

The Set Table statement controls settings that affect how and whether a table can be edited. You can
use Set Table to flag a table as read-only (so that the user will not be allowed to make changes to the
table). You can also use Set Table to activate or de-activate special editing modes which disable safety
mechanisms for the sake of improving editing performance.

Setting FastEdit Mode
Ordinarily, whenever a table is edited (either by the user or by a MapBasic application), MapInfo
Professional does not immediately write the edit to the affected table. Instead, MapInfo Professional
stores information about the edit to a temporary file known as a transaction file. By writing to a
transaction file instead of writing directly to a table, MapInfo Professional gives the user the opportunity
to later discard the edits (for example, by choosing File > Revert).

If you use the Set Table statement to set FastEdit mode to On, MapInfo Professional writes edit
information directly to the table, instead of performing the intermediate step of writing the edit
information to a transaction file. Turning on FastEdit mode can make subsequent editing operations
substantially faster.

While FastEdit mode is on, table edits take effect immediately, even if you do not issue a Commit
statement. Use FastEdit mode with caution; there is no opportunity to discard edits by choosing File >
Close or File > Revert.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 516 MB_Ref.pdf

Reference Guide Chapter 8: Set Table statement
You can only turn FastEdit mode on for normal, base tables; you cannot turn on FastEdit for a
temporary, query table such as Query1. You cannot turn on FastEdit mode for a table that already has
unsaved changes. You cannot turn on FastEdit mode for a linked table.

Caution: While a table is open in FastEdit mode, other network users cannot open that table. After you
have completed all edits to be made in FastEdit mode, issue a Commit statement or a Rollback
statement. By issuing a Commit or Rollback statement, you reset the file so that other network users
can access it.

Setting Read-Only Mode
If you include the optional ReadOnly clause, the table is set to read-only, so that the user cannot edit
the table for the remainder of the MapInfo Professional session. The Set Table statement does not
allow you to turn read-only mode off. You can also activate read-only mode by adding the ReadOnly
keyword to the Open Table statement.

Setting Undo Mode
Ordinarily, whenever an edit is made, MapInfo Professional stores information about the edit in
memory, so that the user has the option of choosing Edit > Undo. If you use the Set Table statement to
set Undo mode to Off, MapInfo Professional does not save undo information for each edit; this can
make subsequent editing operations substantially faster.

Managing Seamless Tables
MapInfo Professional versions 4.0 and later support a table type known as seamless tables. A
seamless table defines a list of other tables that you can treat as a group. See the MapInfo
Professional documentation for an introduction to seamless tables.

The Seamless clause enables or disables the seamless behavior for a table. Specify Seamless Off to
disable seamless behavior, so that you can access the individual rows that define a seamless table.
Specify Seamless On to restore seamless behavior. If you include the Preserve keyword, the effect is
permanent; MapInfo Professional writes a change to the table. If you omit the Preserve keyword, the
effect is temporary, only lasting for the remainder of the session.

Preventing the User from Accessing Tables
The User... clauses allow you to limit the actions that the user can perform on a table. These clauses
are useful if you want to prevent the user from accidentally opening, closing, or changing tables or
windows.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 517 MB_Ref.pdf

Reference Guide Chapter 8: Set Target statement
These clauses limit the user-interface only; in other words, UserMap Off prevents the user from
opening the table in a Map window, but does not prevent a MapBasic program from doing so.

Note: You cannot use these clauses on Cosmetic layers.

Example

The following statement prevents the World table from appearing in the Close Table dialog.

Set Table World UserClose Off

See Also

TableInfo() function

Set Target statement
Purpose

Sets or clears the map editing target object(s).

Syntax
Set Target { On | Off }

Description

Use the Set Target statement to set or clear the editing target object(s); this corresponds to choosing
MapInfo Professional’s Objects > Set Target and Objects > Clear Target menu items. Some of MapInfo
Professional’s advanced editing operations require that an editing target be designated; for example,
you must designate an editing target before calling the Objects Split statement. For an introduction to
using the editing target, see the MapInfo Professional documentation.

Using the Set Target On statement corresponds to choosing Objects > Set Target. The current set of
selected objects becomes the editing target (or an error is generated if no objects are selected).

Using the Set Target Off statement corresponds to choosing Objects > Clear Target.

See Also

Objects Combine statement, Objects Erase statement, Objects Intersect statement, Objects
Overlay statement, Objects Split statement

Example Effect

UserMap Off Table will not appear in the New Map Window or Add Layer dialog
boxes.

UserBrowse Off Table will not appear in the New Browser Window dialog box.

UserClose Off Table will not appear in the Close Table dialog.

UserEdit Off Table will not be editable through the user interface: Browser and Info
windows are not editable, and the map layer cannot be made editable.

UserRemoveMap Off If this table appears in a Map window, the Remove button (in the Layer
Control dialog box) is disabled for this table.

UserDisplayMap Off If this table appears in a Map window, the Display check box (in the
Layer
Control dialog box) is disabled for this table.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 518 MB_Ref.pdf

Reference Guide Chapter 8: Set Window statement
Set Window statement
Purpose

Change the size, position, title, or status of a window, and control the printer, paper size and margins
used by MapInfo Professional

Syntax
Set Window window_id

[Position (x , y) [Units paper_units]]
[Width win_width [Units paper_units]]
[Height win_height [Units paper_units]]
[Font ...]
[Min | Max | Restore]
[Front]
[Title { new_title | Default }]
[Help [{ File help_file | File Default | Off } [Permanent]]

[Contents] [ID context_ID] [{ Show | Hide }]
[Printer { Default | Name printer_name }

[Orientation { Portrait | Landscape }]
[Copies number]
[Papersize number]
[Border { On | Off }]
[TrueColor { On | Off }]
[Dither { Halftone | ErrorDiffusion }]
[Method { Device | Emf }]
[Transparency

[Raster { Device | ROP }]
[Vector { Device | ROP }]]
[Margins

[Left d1]
[Right d2]
[Top d3]
[Bottom d4]
Units <units>] }]

[Export { Default |
[Border { On | Off }]
[TrueColor { On | Off }]
[Dither { Halftone | ErrorDiffusion }]
[Transparency

[Raster { Device | ROP }]
[Vector { Device | ROP }]]

}]
[ScrollBars { On | Off }]
[Autoscroll { On | Off }]
[Parent HWND]
[ReadOnly | Default Access]
[Table table_name Rec record_number]
[Show | Hide]
[Smart Pan { On | Off }]
[SysMenuClose { On | Off }]
[Snap [Mode { On | Off }] [Threshold { pixel_tolerance | Default }]

window_id is an Integer window identifier or a special window name (for example, Help)

x states the desired distance from the top of MapInfo Professional’s workspace to the top edge of the
window
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 519 MB_Ref.pdf

Reference Guide Chapter 8: Set Window statement
y states the desired distance from the left of MapInfo Professional’s workspace to the left edge of the
window

paper_units is a string representing a paper unit name (for example, “cm” for centimeters)

The Font clause specifies a text style

win_width is the desired width of the window

win_height is the desired height of the window

new_title is a String expression representing a new title for the window

help_file is the name of a help file (for example, “FILENAME.HLP” on Windows)

context_ID is an Integer help file context ID which identifies a specific help topic

printer_name identifies a printer. The printer can be local or networked to the computer on which
MapInfo Professional is running.

number is the number of copies of a print job that should be sent to the printer.

HWND is an Integer window handle. The window specified by HWND will become the parent of the
window specified by window_id; however, only Legend, Statistics, Info, Ruler, and Message windows
may be re-parented in this manner.

table_name is the name of an open table to use with the Info window

record_number is an Integer: specify 1 or larger to display a record in the Info window, or specify 0 to
display a “No Record” message

Printer will specify window-specific overrides for printing.

Export will specify window-specific overrides for exporting.

Default will use the default values found in the output preferences corresponding to printing and/or
exporting.

Name printer_name specifies the name of the printer to use.

Orientation Portrait prints the document using portrait orientation.

Orientation Landscape prints the document using landscape orientation.

Copies number specifies how many copies of the document to print.

Papersize number is the papersize information for the window. These numbers are universal for all
printers under the Windows operating system. For example, 1 corresponds to Letter size, and 5
corresponds to Legal papersize. This number can be found in the MapBasic file PaperSize.def. Some
printer drivers (for example big size plotters) can use their own numbering for identifying papersize.
These numbers could be different from numbers that are provided in MapBasic definition file
“PaperSize.def”. Because of this, users with different printer drivers may not identify papersize
information stored in a workspace correctly. In that case, papersize will be reset to the printer default
value.

Border determines whether an additional black edged rectangle will be drawn around the extents of
the window being printed or exported.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 520 MB_Ref.pdf

Reference Guide Chapter 8: Set Window statement
Truecolor determines whether to generate 24-bit true color output if it is possible to do so. If truecolor
is turned off, the output will be generated using 256 colors.

Dither determines which dithering method to use when it is necessary to convert a 24-bit image to 256
colors. This option is used when outputting raster and grid images. Dithering will occur if truecolor is
turned off or if the output device is not capable of supporting 24-bit color.

Method is a new keyword and determines whether printing will go directly to the device driver or if
MapInfo Professional will generate a Windows Enhanced Metafile first and then send that file to the
printer. Previous to this release, MapInfo Professional always drew directly to the device. The new
method enables the printing of maps with raster images that may not have printed at all in earlier
versions, and that use substantially smaller spool files.

Transparency RasterInternal Removed for version 7.0; however, if present, the token will still be parsed
without error to allow for compatibility with previous versions.

Transparency Raster determines how transparent pixels should be rendered. Select Device or ROP
dependent upon your printer driver or export file format. You may need to determine your selection
after trying each and determining which option produces the best output for you.

Transparency Raster ROP corresponds to the "Use ROP Method to Display Transparent Raster"
option in the MapInfo Professional user interface (Preferences > Output, File > Print > Advanced
button, and File > Save Window As > Advanced button). If ROP is selected, the transparent image is
rendered using a raster operation (ROP) to handle the transparent pixels. This method is used to draw
transparent (non-translucent) images onscreen; however, it does not always work well when printing.
You will need to experiment to determine if your printer driver handles ROP correctly. If you are
exporting an image using the Save Window As command, this option is beneficial if the output format is
a metafile (EMF or WMF). Using the ROP method allows any underlying data to be rendered in the
original form. For example, vector data that is under transparent pixels will not be rasterized. In
metafiles, the ROP method will not draw any data in the areas of the raster pixels and allow the
background

Transparency Raster Device prevents MapInfo Professional from performing any special handling
when printing raster or grid images that contain transparency. The image will be generated using the
same method that is used to display the image(s) on screen, but there may be some problems with the
output.

Transparency Vector Internal causes MapInfo Professional to perform special handling when
outputting transparent fill patterns or transparent bitmap symbols.

Transparency Vector Device prevents MapInfo Professional performing special handling when
outputting transparent fill patterns or transparent bitmap symbols. This may cause problems with the
output.

Margins User can set printer margins as floating point values in desired units. These values may be
increased by the printer driver if the printer margins are smaller than physically possible on a particular
printer.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 521 MB_Ref.pdf

Reference Guide Chapter 8: Set Window statement
Description

The Set Window statement customizes an open window, setting such options as the window’s size,
position, status, font or title.

The window_id parameter can be an Integer window identifier, which you can obtain by calling the
FrontWindow() and WindowId() functions. Alternately, when you use the Set Window statement to
affect a special MapInfo Professional window, such as the Statistics window, you can identify the
window by its name (for example, Statistics) or by its code (for example, WIN_STATISTICS); codes are
defined in MAPBASIC.DEF.

The table below lists the window names and window codes which you can use as the window_id
parameter.

The optional Position clause controls the window’s position in the MapInfo Professional workspace.
The upper left corner of the workspace has the position 0, 0. The optional Width and Height clauses
control the window’s size. Window position and size values use paper units settings, such as “in”
(inches) or “cm” (centimeters). MapBasic has a current paper units setting, which defaults to inches; a
MapBasic program can change this setting through the Set Paper Units statement. A Set Window
statement can override the current paper units by including the optional Units subclause within the
Position, Width, and/or Height clauses.

If the statement includes the optional Max keyword, the window will be maximized (it will occupy all of
MapInfo Professional’s work space). If the statement includes the optional Min keyword, the window
will be minimized (it will be reduced, appearing only as a small icon in the lower part of the screen). If a
window is already minimized or maximized, and if the statement includes the optional Restore
keyword, the window is restored to its previous size.

Window name Window description

MapInfo The frame window of the entire MapInfo Professional application. You can also
refer to this window by its define: WIN_MAPINFO.

MapBasic The MapBasic window. You can also refer to this window by the Define code:
WIN_MAPBASIC.

Help The Help window. You can also refer to this window by the Define code:
WIN_HELP.

Statistics The Statistics window. You can also refer to this window by the Define code:
WIN_STATISTICS.

Legend The Theme Legend window. You can also refer to this window by the Define
code: WIN_LEGEND.

Info The Info tool window (which appears when the user uses the Info tool). You
also can refer to this window by the Define code: WIN_INFO.

Ruler The window displayed when the user uses the Ruler tool. You can also refer to
this window by the Define code: WIN_RULER.

Message The Message window (which appears when you issue a Print statement). You
can also refer to this window by the Define code: WIN_MESSAGE.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 522 MB_Ref.pdf

Reference Guide Chapter 8: Set Window statement
If the statement includes the optional Front keyword, MapBasic makes the window the active window;
this is also known as setting the focus on the window. The window comes to the front, as if the user
had clicked on the window’s title bar.

The statement may always specify a Position clause or a Front clause, regardless of the type of
window specified. However, some of the clauses in the Set Window statement apply only to certain
types of windows. For example, the Ruler Tool window may not be re-sized, maximized or minimized.

To change the window’s title, include the optional Title clause. The Application window title (the main
“MapInfo” title bar) cannot be changed unless the user is running a runtime version of MapInfo
Professional.

The SysMenuClose clause lets you disable the Close command in the window’s system menu (the
menu that appears when a user clicks the box in the upper-left corner of a window). Disabling the
Close command only affects the user interface; MapBasic programs can still close the window by
issuing Close Window statements. The following example disables the Close command of the active
window:

Set Window FrontWindow() SysMenuClose Off

Help Window Syntax
To control the online Help window, specify the Help keyword instead of the Integer window_id
argument. For example, the following statement displays topic 23 from a custom help file:

Set Window Help File ”custom.hlp” ID 23

The File help_file clause sets which help file is active. On Windows, this action automatically displays
the help window (unless you also include the Hide keyword). Specifying File Default resets MapInfo
Professional to use the standard MapInfo Professional help, but does not display the help file. MapInfo
Professional has only one help file setting, which applies to all MapBasic applications that are running.
If one application sets the current help file, other applications may be affected.

The Off clause turns off MapInfo Professional’s help, so that pressing F1 on an MapInfo Professional
dialog has no effect. Use the Off clause if you are integrating MapInfo Professional functionality into
another application (for example, a Visual Basic program), if you want to prevent the user from seeing
MapInfo Professional help. (MapInfo Professional help contains references to MapInfo Professional’s
menu names, which may not be available in your Visual Basic program.)

The Permanent clause sets MapInfo Professional to always use the help file specified by help_file,
even when the user presses F1 on an MapInfo Professional dialog box. (On Windows, if you omit the
Permanent keyword, MapInfo Professional resets the help system to use MAPINFOW.HLP whenever
the user presses F1 on an MapInfo Professional dialog box.) The permanent setting lasts for the
remainder of the MapInfo Professional session, or until you specify a Set Window Help File ...
statement.

To control which help topic appears in the help window, include the Contents keyword (to display the
Contents screen) or the ID clause (to display a specific topic).

MapBasic does not include a help compiler. For more information on working with online help, see the
MapBasic User Guide.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 523 MB_Ref.pdf

Reference Guide Chapter 8: Set Window statement
Map or Layout Window Syntax
The ScrollBars clause only applies to Map windows. Use the ScrollBars clause to show or hide scroll-
bars on a Map window.

The Autoscroll clause applies to Map and Layout windows. By default, the autoscroll feature is on for
every Map and Layout window. In other words, users can scroll a Map or Layout by selecting a
draggable tool (such as the Zoom In tool), clicking and dragging to the edge of the window. To prevent
users from autoscrolling, specify Autoscroll Off. To determine whether a window has autoscroll turned
on, call WindowInfo().

Smart Pan changes the status of the window’s panning. When Smart Pan is turned on for a Map
window or a Layout window, panning and scrolling use off-screen bitmaps to reduce the number of
white flashes. The default for Smart Pan is off.

When Smart Pan is activated for a Layout window, redraw is only affected when the Grabber tool is
used.

When Smart Pan is activated for a Map window, there will be different effects depending on the
method of moving the map. The Grabber tool automatically paints the exposed area as you grab and
move the map. The map will move more slowly than when Smart Pan is off. A more complex map will
move more slowly. Scrollbars and autoscrolling perform similarly to the Grabber tool, but the speed of
the scrolling is not affected by smart panning. When the MapBasic command Set Map is used to center
or pan with Smart Redraw on, the Map window changes without white flashes unless the map is
repositioned in such a way that a complete redraw is required.

Note: If off-screen bitmaps have been turned off, then Smart Pan in a Map window behaves like a
Layout window.

Floating Window (Legend, Ruler, etc.) Syntax
The Parent clause allows you to specify a new parent window for a Legend, Statistics, Info, Ruler, or
Message window; this clause is only supported on Windows. The window specified by window_id
becomes a popup window, attached to the window specified by HWND.

Note: Re-parenting a window in this manner changes the window’s Integer ID value. To return a
window to its original parent (MapInfo Professional), specify zero as the HWND.

The ReadOnly / Default Access clause applies to the Info, Browser, and Legend windows. This clause
controls whether the window is read-only. If you specify ReadOnly, the window does not allow editing.
If you specify Default Access, the window reflects the read/write state of the table it’s displaying. This
works for the main legend and cartographic legends created with the Create Legend or Create
Cartographic Legend MapBasic statements.

The Table clause allows you to display a specific row in the Info window; this clause is only valid when
window_id refers to the Info window. Using the Table clause displays the Info window, if it was not
already visible.

The Show or Hide clause allows you to show or hide any window that supports show/hide operations
(for example, the Ruler window). It can also be used in the MapInfo Professional application window.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 524 MB_Ref.pdf

Reference Guide Chapter 8: Set Window statement
Controlling the Printer
By default, windows are printed using the global printer device. This is initialized to the default
Windows printer or the MapInfo Professional preferred printer, depending on how the user has set
preferences. Using the Name clause an application, workspace, or the MapBasic window can override
the printer preferences for an individual document. Several settings for the printer can also be
controlled by using additional command clauses. Also, when the printer settings are changed through
the user interface, appropriate MapBasic commands are generated internally. These overrides are
saved with the workspace commands for the affected windows, so they will be reapplied when the
workspace is reopened. An override can be removed from a window by running a Set Window Printer
Default command.

Attribute codes, WIN_INFO_PRINTER_NAME, WIN_INFO_PRINTER_ORIENT or
WIN_INFO_PRINTER_COPIES, are also returned with WindowInfo() function.

Example
Set Window frontwindow()

Printer Name ”\\Discovery\HP 2500CP”
Orientation Portrait
Copies 10

Note: To find out the window’s printer name, start MapInfo Professional, go to File > Page Setup.
Click the Printer button. Use the printer name found in that dialog.

Controlling Snap Tolerance
You can set snap to a particular pixel tolerance for a given window, set snap back to the default snap
tolerance for a given window, or retrieve the current snap tolerance for a given window. You can also
turn snap on/off for a given window, or retrieve information about whether snap is on/off for a window.

Snap mode settings for a particular window can be queried using new attribute parameters in the
WindowInfo() function. Snap mode and tolerance can be set for each Map and Layout window. These
settings are saved in the workspace for each window.

Example
Dim win_id As Integer
Open Table ”world”
Map From world
win_id = FrontWindow()
Set Window win_id Width 5 Height 3

See Also

Browse statement, Graph statement, Layout statement, Map statement, Set Paper Units
statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 525 MB_Ref.pdf

Reference Guide Chapter 8: Sgn() function
Sgn() function
Purpose

Returns -1, 0, or 1, to indicate that a specified number is negative, zero, or positive (respectively).

Syntax
Sgn(num_expr)

num_expr is a numeric expression

Return Value

Float (-1, 0, or 1)

Description

The Sgn() function returns a value of -1 if the num_expr is less than zero, a value of 0 (zero) if
num_expr is equal to zero, or a value of 1 (one) if num_expr is greater than zero.

Example
Dim x As Integer
x = Sgn(-0.5)

’ x now has a value of -1

See Also

Abs() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 526 MB_Ref.pdf

Reference Guide Chapter 9: Shade statement
Shade statement
Purpose

Creates a thematic map layer and adds it to an existing Map window.

Syntax 1 (shading by ranges of values)
Shade [Window window_id]

{ layer_id | layer_name }
With expr
[Ignore value_to_ignore]
Ranges
[Apply { Color | Size | All }]
[Use { Color | Size | All } [Pen...] [Line...] [Brush...]
[Symbol...]]
{ [From Variable float_array
Style Variable style_array] |
 minimum : maximum [Pen...] [Line...] [Brush...]

[Symbol...]
[, minimum : maximum [Pen...] [Line...] [Brush...]
[Symbol...] ...] }

[Style Replace { On | Off }]
[Default [Pen...] [Line...] [Brush...] [Symbol...]]

Syntax 2 (shading by individual values)
Shade [Window window_id]

{ layer_id | layer_name }
With expr
[Ignore value_to_ignore]
Values const [Pen...] [Line...] [Brush...] [Symbol...]

[, const [Pen...] [Line...] [Brush...] [Symbol...] ...]
[Vary { Color | All }]

[Style Replace { On | Off }]
[Default [Pen...] [Brush...] [Symbol...]]

Syntax 3 (dot density)
Shade [Window window_id]

{ layer_id | layer_name }
With expr
Density dot_value {Circle | Square}
Width dot_size
[Color color]

Note: For backwards compatibility, the older MapBasic syntax (version 7.5 or earlier) is still
supported.

Syntax 4 (graduated symbols)
Shade [Window window_id]

{ layer_id | layer_name }
With expr
Graduated min_value : symbol_size max_value : symbol_size

Symbol . . .
[Inflect Symbol . . .]
[Vary Size By { “LOG” | “SQRT” | “CONST” }]
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 527 MB_Ref.pdf

Reference Guide Chapter 9: Shade statement
Syntax 5 (pie charts)
Shade [Window window_id]

 { layer_id | layer_name | Selection }
 With expr [, expr . . .]
[Half] Pie [Angle angle] [Counter]
[Fixed] [Max Size chart_size [Units unitname]

[At Value max_value [Vary Size By {“LOG” | “SQRT” | “CONST” }]]]
[Border Pen . . .]
[Position [{ Left | Right | Center }] [{ Above | Below | Center }]]
[Style Brush . . . [, Brush . . .]]

Syntax 6 (bar charts)
Shade [Window window_id]

{ layer_id | layer_name | Selection }
With expr [, expr . . .]
Bar [Normalized] | Stacked Bar [Fixed] }f
Max Size chart_size [Units unitname]

[At Value max_value [Vary Size By {“LOG” | “SQRT” | “CONST” }]]]
[Border Pen . . .]
[Frame Brush . . .]
[Width value [Units unitname]]
[Position [{ Left | Right | Center }] [{ Above | Below | Center }]]
[Style Brush . . . [, Brush . . .]]

symbol_size is the point size to use for symbols having the appropriate value

window_id is the Integer window identifier of a Map window

layer_id is the layer identifier of a layer in the Map (one or larger)

layer_name is the name of a layer in the Map

expr is the expression by which the table will be shaded, such as a column name

value_to_ignore is a value to be ignored; this is usually zero (when using numerical expressions) or a
blank string (when using string expressions); no thematic object will be created for a row if the row’s
value matches the value to be ignored

float_array is an array of Float values initialized by a Create Ranges statement

style_array is an array of Pen, Brush or Symbol values initialized by a Create Styles statement

const is a constant numeric expression or a constant string expression

The Pen clause specifies a line style (for example, Pen(width, pattern, color)) to use for the borders
of filled objects (for example, regions)

The Line clause specifies a line style to use for lines, polylines and arcs. The syntax of the Line clause
is identical to the Pen clause, except for the keyword Line appearing in place of Pen

The Brush clause specifies a fill style (for example, Brush(pattern, forecolor, backcolor))

The Symbol clause specifies a symbol style (for example, Symbol(shape, color, size))

minimum is the minimum numeric value for a range

maximum is the maximum numeric value for a range

dot_value is the numeric value associated with each dot in a dot density map
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 528 MB_Ref.pdf

Reference Guide Chapter 9: Shade statement
dot_size is the size, in pixels, of each dot on a dot density map

color is the RGB value for the color of the dots in a dot density map.

angle is the starting angle, in degrees, of the first wedge in a pie chart

chart_size is a Float size, representing the maximum height of each pie or bar chart

unitname is a paper unit name (for example, “in” for inches, “cm” for centimeters)

max_value is a number, used in the At Value clause to control the heights of Pie and Bar charts. For
each record, if the sum of the column expressions equals the max_value, that record’s Pie or Bar chart
will be drawn at the chart_size height; the charts are smaller for rows with smaller sums.

Description

The Shade statement creates a thematic map layer and adds the layer to an existing Map window. The
Shade statement corresponds to MapInfo Professional’s Map > Create Thematic Map menu item. For
an introduction to thematic mapping and the Create Thematic Map menu item, see the MapInfo
Professional documentation.

Between sessions, MapInfo Professional preserves thematic settings by storing a Shade statement in
the workspace file. Thus, to see an example of the Shade statement, you could create a Map, choose
the Map > Create Thematic Map command, save the workspace (for example, THEME.WOR), and
examine the workspace in a MapBasic text edit window. You could then copy the Shade statement in
your MapBasic program. Similarly, you can see examples of the Shade statement by opening MapInfo
Professional’s MapBasic Window before you choose Map > Create Thematic Map.

The optional window_id clause identifies which Map is to be shaded; if no window_id is provided,
MapBasic shades the topmost Map window.

The Shade statement must specify which layer to shade thematically, even if the Map window has only
one layer. The layer may be identified by number (layer_id), where the topmost map layer has a
layer_id value of one, the next layer has a layer_id value of two, etc. Alternately, the Shade statement
can identify the map layer by name (for example, “world”).

Each Shade statement must specify an expr expression clause. MapInfo Professional evaluates this
expression for each object in the table being shaded; following the Shade statement, MapInfo
Professional chooses each object’s display style based on that record’s expr value. The expression
typically includes the names of one or more columns from the table being shaded.

The keywords following the expr clause dictate which type of shading MapInfo Professional will
perform. The Ranges keyword results in a shaded map where each object falls into a range of values;
the Values keyword creates a map where each unique value has its own display style; the Density
keyword creates a dot density map; the Graduated keyword results in a graduated symbols map; and
the Pie and Bar keywords specify thematically constructed charts.

Ranges of Values
For the specific syntax of a Ranges map, see Syntax 1 (shading by ranges of values) on page 527.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 529 MB_Ref.pdf

Reference Guide Chapter 9: Shade statement
In a Ranges map you can use the From Variable and Style Variable clauses to read pre-calculated
sets of range information from array variables. The array variables must have been initialized using the
Create Ranges and Create Styles statements. For an example of using arrays in Shade statements,
see Create Ranges.

If you specify either the Ranges or Values keyword, the statement can include the optional Default
clause. This clause lets you specify the graphic styles used by the “all others” range. If a row does not
fall into any of the specified ranges, MapInfo Professional assigns the row to the all-others range. If the
Shade statement does not read range settings from array variables, then the Ranges keyword is
followed by from one to sixteen explicit range descriptions. Each range description consists of a pair of
numeric values (separated by a colon), followed by the graphic styles that MapInfo Professional should
use to display objects belonging to that range. If a record’s expr value is greater than or equal to the
minimum value, and less than the maximum value, then that record belongs to that range. The range
descriptions are separated by commas.

Open Table ”states”
Map From states
Shade states With Pop_1990 Ranges

4827000:29280000 Brush (2,0,201326591) ,
1783000: 4827000 Brush (8,0,16777215) ,
449000: 1783000 Brush (5,0,16777215)

If you are shading regions, specify Brush() clauses to control the region fill styles. If you are shading
points, specify Symbol() clauses. If you are shading linear objects (lines, polylines, or arcs) specify
Line() clauses, not Pen() clauses; the syntax is identical, except that you substitute the keyword Line
instead of the keyword Pen. (In a Shade statement, the Pen clause controls the style for the borders of
filled objects, such as regions.)

Style Replace On (default) specifies the layers under the theme are not drawn.

Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

You can use the Apply clause to control which display attributes MapInfo Professional applies to the
shaded objects.

Apply clause Effect

Apply Color The shading only changes the colors of objects in the map. Point objects appear in their
original shape and size, but the thematic shading controls the point colors. Line objects
appear in their original pattern and thickness, but the thematic shading controls the line
colors. Filled objects appear in their original fill pattern, but the thematic shading controls
the foreground color.

Apply Size The shading only changes the sizes of point objects and the thickness of linear objects.
Point objects appear in their original shape and color, but the thematic shading controls
the symbol sizes. Line objects appear in their original pattern and color, but the shading
controls the line thickness.

Apply All The shading controls all display attributes - symbol shape, symbol size, line pattern, line
thickness, and color.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 530 MB_Ref.pdf

Reference Guide Chapter 9: Shade statement
If you omit the Apply clause, Apply All is the default.

The Use clause lets you control whether MapInfo Professional applies all of the style elements from
the range styles, or only some of the style elements. This is best illustrated by example. The following
example shades the table WorldCap, which contains points. This example does not include a Use
clause.

Shade WorldCap With Cap_Pop Ranges
Apply All
0 : 300000 Symbol(35,YELLOW,9) ,
300000 : 900000 Symbol(35,GREEN,18) ,
900000 : 20000000 Symbol(35,BLUE,27)

In this thematic map, each range appears exactly as its Symbol() clause dictates: Points in the low
range appear as 9-point, yellow stars (code 35 is a star shape); points in the medium range appear as
18-point, green stars; points in the high range appear as 27-point, blue stars.

The following example shows the same statement with the addition of a Use Size clause.

Shade WorldCap With Cap_Pop Ranges
Apply All

Use Size Symbol(34, RED, 24) ’ <<<<< Note!

0 : 300000 Symbol(35,YELLOW,9) ,
300000 : 900000 Symbol(35,GREEN,18) ,
900000 : 20000000 Symbol(35,BLUE,27)

Note: The Use Size clause provides its own Symbol style: Shape 34 (circle), in red.

Because of the Use Size clause, MapInfo Professional uses only the size values from the latter
Symbol clauses (9, 18, 27 point); MapInfo Professional ignores the other display attributes (i.e.
YELLOW, GREEN, BLUE). The thematic map shows red circles, because the Use Size Symbol
clause specifies red circles. The end result: Points in the low range appear as 9-point, red circles;
points in the medium range appear as 18-point, red circles; points in the high range appear as 27-point,
red circles.

If you specify Use Color instead of Use Size, MapInfo Professional uses only the colors from the latter
Symbol clauses. The map will show yellow, green, and blue circles, all at 24-point size.

Specifying Use All has the same effect as leaving out the Use clause.

The Use clause is only valid if you specify Apply All (or if you omit the Apply clause entirely).

Individual Values
For the specific syntax of an Individual Values map, see Syntax 2 (shading by individual values) on
page 527.

In a Values map, the keyword Values is followed by from one to 255 value descriptions. Each value
description consists of a unique value (string or numeric), followed by the graphic styles that MapInfo
Professional should use to display objects having that exact value. If a record’s expr value is exactly
equal to one of the Shade statement’s value descriptions, then that record’s object will be displayed
with the appropriate graphic style. The value descriptions are separated by commas.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 531 MB_Ref.pdf

Reference Guide Chapter 9: Shade statement
If the Shade statement specifies either the Ranges or Values keyword, the statement can include the
optional Default clause. This clause lets you specify the graphic styles used by the “all others” range. If
a row does not fall into any of the specified ranges, MapInfo Professional assigns the row to the all-
others range. The Vary clause sets how the objects will vary in appearance. The default is Vary All. If
Vary All is specified, all of the display tools for each range are applied in the theme. If Vary Color is
specified, only the color for the specified for each range is applied.

Style Replace On (default) specifies the layers under the theme are not drawn.

Style Replace Off specifies the layers under the theme are drawn, allowing for multi-variate
transparent themes.

Style Replace On is the default and provides backwards compatibility with the existing behavior so
that the underlying layers are not drawn.

The following example assumes that the UK_Sales table has a column called Sales_Rep; this column
contains the name of the sales representative who handles the accounts for a sales territory in the
United Kingdom. The Shade statement will display each region in a shade which depends upon that
region’s salesperson. Thus, all regions assigned to Bob will appear in one color, while all regions
assigned to Jan will appear in another color, etc.

Open Table ”uk_sales”
Map From uk_sales

Shade 1 With Proper$(Sales_Rep)
Ignore ””
Values

”Alan” ,
”Amanda” ,
”Bob” ,
”Jan”

Dot Density Maps
For the specific syntax of a Dot Density map, see Syntax 3 (dot density) on page 527.

In a Density map, the keyword Density is followed by a dot_value clause. You can specify either a
Circle or Square thematic style. Note that a map layer must include regions in order to provide the
basis for a meaningful dot density map; this is because the number of dots displayed in each region
represent some sort of density value for that region. For example, each dot might represent one
thousand households.

In a dot density map, a numeric expr value is calculated for each region; the dot_value represents a
numeric value as well. MapInfo Professional decides how many dots to draw in a given region by
dividing that region’s expr value by the map’s dot_value setting. Thus, if a region has an expr value of
100, and the Shade statement specifies a dot_value of 5, then MapInfo Professional draws 20 dots in
that region, because each dot represents a quantity of 5.

The keyword Width is followed by dot_size. This specifies how large the dots should be, in terms of
pixels. For Circle dot style, the dot_size can be 2 to 25 pixels in width. For Square dot style, the
dot_size can be 1 to 25 pixels. The optional color clause is used to set the color of the dots.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 532 MB_Ref.pdf

Reference Guide Chapter 9: Shade statement
The following example creates a dot density map using the States table’s Pop_1990 column, (which in
this case indicates the number of households per state, circa 1990). The resultant dot density map will
show many 4-pixel dots; each dot representing 60,000 households.

Open Table "states"
Map From states

shade window 176942288 7
with Pop_1990
density 600000 circle width 4
color 255

Note: For backwards compatibility, the older MapBasic syntax (version 7.5 or earlier) is still
supported.

Graduated Symbols Maps
For the specific syntax of a Graduated map, see Syntax 4 (graduated symbols) on page 527.

In a Graduated map, the keyword Graduated is followed by a pair of value : symbol_size clauses. The
first of the value : symbol_size clauses specifies what size symbol corresponds to the minimum value,
and the second of the value : symbol_size clauses specifies what size symbol corresponds to the
maximum value. MapInfo Professional uses intermediate symbol sizes for rows having values between
the extremes.

A Symbol clause dictates what type of symbol should appear (circle, star, etc.). If you include the
optional Inflect clause, which specifies a second Symbol style, MapInfo Professional uses the
secondary symbol style to draw symbols for rows having negative values.

The following example creates a graduated symbols map showing profits and losses. Stores showing a
profit are represented as green triangles, pointing up. The Shade statement also includes an
Inflection clause, so that stores showing a net loss appear as red triangles, pointing down.

Shade stores With Net_Profit
Graduated
0.0:0 15000:24
Symbol(36, GREEN, 24)
Inflect Symbol(37, RED, 24)
Vary Size By ”SQRT”

The optional Vary Size By clause controls how differences in numerical values correspond to
differences in symbol sizes. If you omit the Vary Size By clause, MapInfo Professional varies the
symbol size using the “SQRT” (square root) method, which assigns increasingly larger point sizes as
the square roots of the values increase. When you vary by square root, each symbol’s area is
proportionate to the row’s value; thus, if one row has a value twice as large as another row, the row
with the larger value will have a symbol that occupies twice as much area on the map.

Note: Having twice the area is not the same as having twice the point size. When you double an
object’s point size, its area quadruples, because you are increasing both height and width.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 533 MB_Ref.pdf

Reference Guide Chapter 9: Shade statement
Pie Chart Maps
For the specific syntax of a Pie map, see Syntax 5 (pie charts) on page 528.

In a Pie map, MapInfo Professional creates a small pie chart for each map object to be shaded. The
With clause specifies a comma-separated list of two or more expressions to comprise each thematic
pie.

If you place the optional keyword Half before the keyword Pie, MapInfo Professional draws half-pies;
otherwise, MapInfo Professional draws whole pies.

The optional Angle clause specifies the starting angle of the first pie wedge, specified in degrees. The
default start angle is 180.

The optional Counter keyword specifies that wedges are drawn in counter-clockwise order, starting at
the start angle.

The Max Size clause controls the sizes of the pie charts, in terms of paper units (for example, “in” for
inches). If you include the Fixed keyword, all charts are the same size.

For example, the following statement produces pie charts, all of the same size:

Shade sales_95 With phone_sales, retail_sales
Pie Fixed
Max Size 0.25 Units ”in”

To vary the sizes of Pie charts, omit the Fixed keyword and include the At Value clause. For example,
the following statement produces a theme where the size of the Pie charts varies. If a record has a sum
of 85,000 its Pie chart will be 0.25 inches tall; records having smaller values are shown as smaller Pie
charts.

Shade sales_95 With phone_sales, retail_sales
Pie
Max Size 0.25 Units ”in” At Value 85000

The optional Vary Size By clause controls how MapInfo Professional varies the Pie chart size. This
clause is discussed above (see Graduated Symbols).

Each chart is placed on the original map object’s centroid, unless a Position clause is used.

The Style clause specifies a comma-separated list of Brush styles; specify one Brush style for each
expression specified in the With clause. Brush style settings are optional; if you omit these settings,
MapInfo Professional uses any Brush preferences saved by the user.

The following example creates a thematic map layer which positions each pie chart directly above
each map object’s centroid.

Shade sales_95 With phone_sales, retail_sales
Pie Angle 180
Max Size 0.5 Units ”in” At Value 85000

Vary Size By ”SQRT”
Border Pen (1, 2, 0)
Position Center Above
Style Brush(2, RED, 0), Brush(2, BLUE, 0)
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 534 MB_Ref.pdf

Reference Guide Chapter 9: Sin() function
Bar Chart Maps
For the specific syntax of a Bar map, see Syntax 6 (bar charts) on page 528.

In a Bar map, MapInfo Professional creates a small bar chart for each map object. The With clause
specifies a comma-separated list of expressions to comprise each thematic chart.

If you place the optional keyword Stacked before the keyword Bar, MapInfo Professional draws a
stacked bar chart; otherwise, MapInfo Professional draws bars side-by-side. If you omit the keyword
Stacked, you can include the keyword Normalized to specify that the bars have independent scales.

When you create a Stacked bar chart map, you can include the optional Fixed keyword to specify that
all bar charts in the thematic layer should appear in the same size (for example, half an inch tall)
regardless of the numeric values for that map object. If you omit the Fixed keyword, MapInfo
Professional sizes each object’s bar chart according to the net sum of the values in the chart.

The Frame Brush... clause specifies a fill style used for the background behind the bars.

The Position clause controls both the orientation of the bar charts (horizontal or vertical bars) and the
position of the charts relative to object centroids. If the Position clause specifies Left or Right, the bars
are horizontal, otherwise the bars are vertical.

The Style clause specifies a comma-separated list of Brush styles. Specify one Brush style for each
expression specified in the With clause.

The following example creates a thematic map layer which positions each bar chart directly above
each map object’s centroid.

Shade sales_93
With phone_sales, retail_sales
Bar
Max Size 0.4 Units ”in” At Value 1245000
Vary Size By ”CONST”
Border Pen (1, 2, 0)
Position Center Above
Style Brush(2, RED, 0), Brush(2, BLUE, 0)

See Also

Create Ranges statement, Create Styles statement, Map statement, Set Legend statement, Set
Map statement, Set Shade statement

Sin() function
Purpose

Returns the sine of a number.

Syntax
Sin(num_expr)

num_expr is a numeric expression representing an angle in radians

Return Value

Float
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 535 MB_Ref.pdf

Reference Guide Chapter 9: Space$() function
Description

The Sin() function returns the sine of the numeric num_expr value, which represents an angle in
radians. The result returned from Sin() will be between one and minus one. To convert a degree value
to radians, multiply that value by DEG_2_RAD. To convert a radian value into degrees, multiply that
value by RAD_2_DEG. The codes DEG_2_RAD and RAD_2_DEG are defined in MAPBASIC.DEF.

Example
Include ”mapbasic.def”
Dim x, y As Float
x = 30 * DEG_2_RAD
y = Sin(x)
’ y will now be equal to 0.5
’ since the sine of 30 degrees is 0.5

See Also

Acos() function, Asin() function, Atn() function, Cos() function, Tan() function

Space$() function
Purpose

Returns a string consisting only of spaces.

Syntax
Space$(num_expr)

num_expr is a SmallInt numeric expression

Return Value

String

Description

The Space$() function returns a string num_expr characters long, consisting entirely of space
characters. If the num_expr value is less than or equal to zero, the Space$() function returns a null
string.

Example
Dim filler As String
filler = Space$(7)
’ filler is now equal to the string ” ”
’ (7 spaces)
Note ”Hello” + filler + ”world!”
’this displays the message ”Hello world!”

See Also

String$() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 536 MB_Ref.pdf

Reference Guide Chapter 9: SphericalArea() function
SphericalArea() function
Purpose

Returns the area using as calculated in a Latitude/Longitude non-projected coordinate system using
great circle based algorithms.

Syntax
SphericalArea(expr, unit_name)

expr is an object expression
unit_name is a string representing the name of an area unit (for example, ”sq km”)

Return Value

Float

Description

The SphericalArea() function returns the area of the geographical object specified by obj_expr. The
function returns the area measurement in the units specified by the unit_name parameter; for example,
to obtain an area in acres, specify ”acre” as the unit_name parameter. See the Set Area Units
statement for the list of available unit names.

The SphericalArea() function will always return the area as calculated in a Latitude/Longitude non-
projected coordinate system using spherical algorithms. A value of -1 will be returned for data that is in
a NonEarth coordinate system since this data can’t be converted into a Latitude/longitude coordinate
system.

Only regions, ellipses, rectangles, and rounded rectangles have any area. By definition, the
SphericalArea() of a point, arc, text, line, or polyline object is zero. The SphericalArea() function
returns approximate results when used on rounded rectangles. MapBasic calculates the area of a
rounded rectangle as if the object were a conventional rectangle.

Examples

The following example shows how the SphericalArea() function can calculate the area of a single
geographic object. Note that the expression tablename.obj (as in states.obj) represents the
geographical object of the current row in the specified table.

Dim f_sq_miles As Float
Open Table ”states”
Fetch First From states
f_sq_miles = Area(states.obj, ”sq mi”)

You can also use the SphericalArea() function within the SQL Select statement, as shown in the
following example.

Select state, SphericalArea(obj, ”sq km”)
From states Into results

See Also

CartesianArea() function, SphericalArea() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 537 MB_Ref.pdf

Reference Guide Chapter 9: SphericalConnectObjects() function
SphericalConnectObjects() function
Purpose

Returns an object representing the shortest or longest distance between two objects.

Syntax
SphericalConnectObjects(object1, object2, min)

object1 and object2 are object expressions.

min is a logical expression where TRUE calculates the minimum distance between the objects, and
FALSE calculates the maximum distance between objects.

Returns

This statement returns a single section, two-point Polyline object representing either the closest
distance (min == TRUE) or farthest distance (min == FALSE) between object1 and object2.

Description

One point of the resulting Polyline object is on object1 and the other point is on object2. Note that the
distance between the two input objects can be calculated using the ObjectLen() function. If there are
multiple instances where the minimum or maximum distance exists (e.g., the two points returned are
not uniquely the shortest distance and there are other points representing "ties") then these functions
return one of the instances. There is no way to determine if the object returned is uniquely the shortest
distance.

SphericalConnectObjects() returns a Polyline object connecting object1 and object2 in the shortest
(min == TRUE) or longest (min == FALSE) way using a spherical calculation method. If the calculation
cannot be done using a spherical distance method (e.g., if the MapBasic Coordinate System is
NonEarth), then this function will produce an error.

SphericalDistance() function
Purpose

Returns the distance between two locations.

Syntax
SphericalDistance(x1, y1, x2, y2, unit_name)

x1 and x2 are x-coordinates (for example, longitude)
y1 and y2 are y-coordinates (for example, latitude)
unit_name is a string representing the name of a distance unit (for example,”km”)

Return Value

Float

Description

The SphericalDistance() function calculates the distance between two locations.

The function returns the distance measurement in the units specified by the unit_name parameter; for
example, to obtain a distance in miles, specify ”mi” as the unit_name parameter. See the Set Distance
Units statement for the list of available unit names.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 538 MB_Ref.pdf

Reference Guide Chapter 9: SphericalObjectDistance() function
The x- and y-coordinate parameters must use MapBasic’s current coordinate system. By default,
MapInfo Professional expects coordinates to use a longitude, latitude coordinate system. You can
reset MapBasic’s coordinate system through the Set CoordSys statement.

The SphericalDistance() function always returns a value as calculated in a Latitude/Longitude non-
projected coordinate system using great circle based algorithms. A value of -1 will be returned for data
that is in a NonEarth coordinate system since this data can’t be converted into a Latitude/longitude
coordinate system.

Example
Dim dist, start_x, start_y, end_x, end_y As Float
Open Table ”cities”
Fetch First From cities
start_x = CentroidX(cities.obj)
start_y = CentroidY(cities.obj)
Fetch Next From cities
end_x = CentroidX(cities.obj)
end_y = CentroidY(cities.obj)
dist = SphericalDistance(start_x,start_y,end_x,end_y,”mi”)

See Also

CartesianDistance() function, Distance() function

SphericalObjectDistance() function
Purpose

Returns the distance between two objects.

Syntax
SphericalObjectDistance(object1, object2, unit_name)

object1 and object2 are object expressions.

unit_name is a string representing the name of a distance unit.

Returns

Float

Description

SphericalObjectDistance() returns the minimum distance between object1 and object2 using a
spherical calculation method with the return value in unit_name. If the calculation cannot be done using
a spherical distance method (e.g., if the MapBasic Coordinate System is NonEarth), then this function
will produce an error.

SphericalObjectLen() function
Purpose

Returns the geographic length of a line or polyline object.

Syntax
SphericalObjectLen(expr , unit_name)

obj_expr is an object expression
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 539 MB_Ref.pdf

Reference Guide Chapter 9: SphericalOffset() function
unit_name is a string representing the name of a distance unit (for example, ”km”)

Return Value

Float

Description

The SphericalObjectLen() function returns the length of an object expression. Note that only line and
polyline objects have length values greater than zero; to measure the circumference of a rectangle,
ellipse, or region, use the Perimeter() function.

The SphericalObjectLen() function always returns a value as calculated in a Latitude/Longitude non-
projected coordinate system using spherical algorithms. A value of -1 will be returned for data that is in
a NonEarth coordinate system since this data can’t be converted into a Latitude/longitude coordinate
system.

The SphericalObjectLen() function returns a length measurement in the units specified by the
unit_name parameter; for example, to obtain a length in miles, specify ”mi” as the unit_name
parameter. See the Set Distance Units statement for the list of valid unit names.

Example
Dim geogr_length As Float
Open Table ”streets”
Fetch First From streets
geogr_length = SphericalObjectLen(streets.obj, ”mi”)
’ geogr_length now represents the length of the
’ street segment, in miles

See Also

CartesianObjectLen() function, SphericalObjectLen() function

SphericalOffset() function
Purpose

Returns a copy of the input object offset by the specified distance and angle using a spherical
DistanceType.

Syntax
SphericalOffset(object, angle, distance, units)

object is the object being offset,

angle is the angle to offset the object,

distance is the distance to offset the object, and

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

This function produces a new object that is a copy of the input object offset by distance along angle (in
degrees with horizontal in the positive X-axis being 0 and positive being counterclockwise). The unit
string, similar to that used for ObjectLen or Perimeter, is the unit for the distance value. The
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 540 MB_Ref.pdf

Reference Guide Chapter 9: SphericalOffsetXY() function
DistanceType used is Spherical. If the Coordinate System of the input object is NonEarth, an error will
occur, since Spherical DistanceTypes are not valid for NonEarth. This is signified by returning a NULL
object. The coordinate system used is the coordinate system of the input object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.

For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into the
Coordinate System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the
fixed point. The actual converted distance measurement could vary at different locations on the object.
The distance from the input object and the new offset object is only guaranteed to be exact at the
single fixed point used.

Example
SphericalOffset(Rect, 45, 100, “mi”)

See Also

SphericalOffsetXY() function

SphericalOffsetXY() function
Purpose

Returns a copy of the input object offset by the specified X and Y offset values using a spherical
DistanceType.

Syntax
SphericalOffsetXY(object, xoffset, yoffset, units)

object is the object being offset,

xoffset and yoffset are the distance along the x and y axes to offset the object, and

units is a string representing the unit in which to measure distance.

Return Value

Object

Description

This function produces a new object that is a copy of the input object offset by xoffset along the X-axis
and yoffset along the Y-axis. The unit string, similar to that used for ObjectLen or Perimeter, is the unit
for the distance values. The DistanceType used is Spherical. If the Coordinate System of the input
object is NonEarth, an error will occur, since Spherical DistanceTypes are not valid for NonEarth. This
is signified by returning a NULL object. The coordinate system used is the coordinate system of the
input object.

There are some considerations for Spherical measurements that do not hold for Cartesian
measurements. If you move an object that is in Lat/Long, the shape of the object remains the same,
but the area of the object will change. This is because you are picking one offset delta in degrees, and
the actual measured distance for a degree is different at different locations.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 541 MB_Ref.pdf

Reference Guide Chapter 9: SphericalPerimeter() function
For the Offset functions, the actual offset delta is calculated at some fixed point on the object (for
example, the center of the bounding box), and then that value is converted from the input units into the
Coordinate System's units. If the coordinate system is Lat/Long, the conversion to degrees uses the
fixed point. The actual converted distance measurement could vary at different locations on the object.
The distance from the input object and the new offset object is only guaranteed to be exact at the
single fixed point used.

Example
SphericalOffsetXY(Rect, 92, -22, “mi”)

See Also

SphericalOffset() function

SphericalPerimeter() function
Purpose

Returns the perimeter of a graphical object.

Syntax
SphericalPerimeter(obj_expr , unit_name)

obj_expr is an object expression
unit_name is a string representing the name of a distance unit (for example, ”km”)

Return Value

Float

Description

The SphericalPerimeter() function calculates the perimeter of the obj_expr object. The Perimeter()
function is defined for the following object types: ellipses, rectangles, rounded rectangles, and
polygons. Other types of objects have perimeter measurements of zero. The SphericalPerimeter()
function returns a length measurement in the units specified by the unit_name parameter; for example,
to obtain a length in miles, specify ”mi” as the unit_name parameter. See the Set Distance Units
statement for the list of valid unit names.

The SphericalPerimeter() function always returns a value as calculated in a Latitude/Longitude non-
projected coordinate system using spherical algorithms. A value of -1 will be returned for data that is in
a NonEarth coordinate system since this data can’t be converted into a Latitude/longitude coordinate
system. The SphericalPerimeter() function returns approximate results when used on rounded
rectangles. MapBasic calculates the perimeter of a rounded rectangle as if the object were a
conventional rectangle.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 542 MB_Ref.pdf

Reference Guide Chapter 9: Sqr() function
Example

The following example shows how you can use the SphericalPerimeter() function to determine the
perimeter of a particular geographic object.

Dim perim As Float
Open Table ”world”
Fetch First From world
perim = SphericalPerimeter(world.obj, ”km”)
’ The variable perim now contains
’ the perimeter of the polygon that’s attached to
’ the first record in the World table.

You can also use the SphericalPerimeter() function within the SQL Select statement. The following
Select statement extracts information from the States table, and stores the results in a temporary table
called Results. Because the Select statement includes the SphericalPerimeter() function, the
Results table will include a column showing each state’s perimeter.

Open Table ”states”
Select state, Perimeter(obj, ”mi”)

From states
Into results

See Also

CartesianPerimeter() function, Perimeter() function

Sqr() function
Purpose

Returns the square root of a number.

Syntax
Sqr(num_expr)

num_expr is a positive numeric expression

Return Value

Float

Description

The Sqr() function returns the square root of the numeric expression specified by num_expr. Since the
square root operation is undefined for negative real numbers, num_expr should represent a value
greater than or equal to zero.

Taking the square root of a number is equivalent to raising that number to the power 0.5. Accordingly,
the expression Sqr(n) is equivalent to the expression n ^ 0.5; the Sqr() function, however, provides
the fastest calculation of square roots.

Example
Dim n As Float
n = Sqr(25)

See Also

Cos() function, Sin() function, Tan() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 543 MB_Ref.pdf

Reference Guide Chapter 9: StatusBar statement
StatusBar statement
Purpose

Displays or hides the status bar, or displays a brief message on it.

Syntax
StatusBar { Show | Hide }

[Message message]
[ViewDisplayPopup { On | Off }]
[EditLayerPopup { On | Off }]

message is a message to display on the status bar.

Description

Use the StatusBar statement to show or hide the status bar, or to display a brief message on the
status bar.

To print a message to the status bar, use the optional Message clause.

StatusBar Message ”Calculating coordinates...”

MapInfo Professional automatically updates the status bar as the user selects various buttons and
menu items. Therefore, a message displayed on the status bar may disappear quickly. Therefore, you
should not rely on status bar messages to display important prompts.

To display a message that does not disappear, use the Print statement to print a message to the
Message window.

Use the ViewDisplayPopup parameter to allow the user to change view from the status bar. If this
parameter is set to yes, the user will be able to change the zoom level, scale, and cursor location
settings from the status bar.

Use the EditLayerPopup parameter to allow the user to set the editable layer of a Map window from the
status bar. If this parameter is set to yes, the user will be able to select the editable layer from the
status bar.

Stop statement
Purpose

Suspends a running MapBasic application, for debugging purposes.

Syntax
Stop

Restrictions

You cannot issue a Stop statement from within a user-defined function or within a dialog’s handler
procedure; therefore you cannot issue a Stop statement to debug a Dialog statement while the dialog
is still on the screen.

Description

The Stop statement is a debugging aid. It suspends the application which is running, and returns
control to the user; presumably, the user in this case is a MapBasic programmer who is debugging a
program.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 544 MB_Ref.pdf

Reference Guide Chapter 9: Str$() function
When the Stop occurs, a message appears in the MapBasic window identifying the program line
number of the Stop.

Following a Stop, you can use the MapBasic window to investigate the current status of the program. If
you type:

? Dim

into the MapBasic window, MapInfo Professional displays a list of the local variables in use by the
suspended program. Similarly, if you type:

? Global

into the MapBasic window, MapInfo Professional displays a list of the global variables in use.

To display the contents of a variable, type a question mark followed by the variable name. To modify
the contents of the variable, type a statement of this form:

 variable_name = new_value

where variable_name is the name of a local or global variable, and new_value is an expression
representing the new value to assign to the variable.

To resume the execution of the application, choose File > Continue; note that, while a program is
stopped, Continue appears on the File menu instead of Run. You can also restart a program by typing
a Continue statement into the MapBasic window.

During a Stop, MapInfo Professional keeps the application file open. As long as this file remains open,
the application cannot be recompiled. If you use a Stop statement, and you then wish to recompile
your application, choose File > Continue before attempting to recompile.

Str$() function
Purpose

Returns a string representing an expression (for example, a printout of a number).

Syntax
Str$(expression)

expression is a numeric, Date, Pen, Brush, Symbol, Font, Logical or Object expression

Return Value

String

Description

The Str$() function returns a string which represents the value of the specified expression.

If the expression is a negative number, the first character in the returned string is the minus sign
(-). If the expression is a positive number, the first character in the string is a space.

Depending on the number of digits of accuracy in the expression you specify, and depending on how
many of the digits are to the left of the decimal point, the Str$() function may return a string which
represents a rounded value. If you need to control the number of digits of accuracy displayed in a
string, use the Format$() function.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 545 MB_Ref.pdf

Reference Guide Chapter 9: String$() function
If the expression is an Object expression, the Str$() function returns a string, indicating the object
type: Arc, Ellipse, Frame, Line, Point, Polyline, Rectangle, Region, Rounded Rectangle, or Text.

If the expression is an Object expression of the form tablename.obj and if the current row from that
table has no graphic object attached, Str$() returns a null string.

Note: Passing an uninitialized Object variable to the Str$() function generates an error.

If the expression is a Date, the output from Str$() depends on how the user’s computer is configured.
For example, the following expression:

 Str$(NumberToDate(19951231))

might return “12/31/1995” or “1995/12/31” (etc.) depending on the date formatting in use on the user’s
computer. To control how Str$() formats dates, use the Set Format statement.

If the expression is a number, the Str$() function uses a period as the decimal separator, even if the
user’s computer is set up to use another character as decimal separator. The Str$() function never
includes thousands separators in the return string. To produce a string that uses the thousands
separator and decimal separator specified by the user, use the FormatNumber$() function.

Example
 Dim s_spelled_out As String, f_profits As Float
 f_profits = 123456
 s_spelled_out = ”Annual profits: $” + Str$(f_profits)

See Also

Format$() function, FormatNumber$() function, Set Format statement, Val() function

String$() function
Purpose

Returns a string built by repeating a specified character some number of times.

Syntax
String$(num_expr, string_expr)

num_expr is a positive integer numeric expression

string_expr is a string expression

Return Value

String

Description

The String$() function returns a string num_expr characters long; this result string consists of
num_expr occurrences of the first character from the string_expr string. Thus, the num_expr
expression should be a positive integer value, indicating the desired length of the result (in characters).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 546 MB_Ref.pdf

Reference Guide Chapter 9: StringCompare() function
Example
Dim filler As String
filler = String$(5, ”ABCDEFGH”)
’ at this point, filler contains the string ”AAAAA”
’ (5 copies of the 1st character from the string)

See Also

Space$() function

StringCompare() function
Purpose

Performs case-sensitive string comparisons.

Syntax
StringCompare(string1, string2)

string1 and string2 are String expressions

Return Value

SmallInt: -1 if first string precedes second; 1 if first string follows second; zero if strings are equal

Description

The StringCompare() function performs case-sensitive string comparisons. MapBasic string
comparisons which use the “=” operator are case-insensitive. Thus, a comparison expression such as
the following:

If ”ABC” = ”abc” Then

evaluates as TRUE, because string comparisons are case-insensitive.

The StringCompare() function performs a case-sensitive string comparison and returns an indication
of how the strings compare.

Example

The function call:

StringCompare(”ABC”, ”abc”)

returns a value of -1, since “A” precedes “a” in the set of character codes.

See Also

Like() function, StringCompareIntl() function

Return value: When:

-1 first string precedes the second string, alphabetically

 0 the two strings are equal

 1 first string follows the second string, alphabetically
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 547 MB_Ref.pdf

Reference Guide Chapter 9: StringCompareIntl() function
StringCompareIntl() function
Purpose

Performs language-sensitive string comparisons.

Syntax
StringCompareIntl(string1 , string2)

string1 and string2 are the string expressions being compared

Return Value

SmallInt: -1 if first string precedes second; 1 if first string follows second; zero if strings are equal.

Description

The StringCompareIntl() function performs language-sensitive string comparisons. Call this function
if you need to determine the alphabetical order of two strings, and the strings contain characters that
are outside the ordinary U.S. character set (for example, umlauts).

The comparison uses whatever language settings are in use on the user’s computer. For example, a
Windows user can control language settings through the Control Panel.

See Also

Like() function, StringCompare() function

StringToDate() function
Purpose

Returns a Date value, given a String.

Syntax
StringToDate(datestring)

datestring is a String expression representing a date

Return Value

Date

Description

The StringToDate() function returns a Date value, given a string that represents a date. MapBasic
interprets the date string according to the date-formatting options that are set up on the user’s
computer. Computers within the U.S. are usually configured to format dates as Month/Day/Year, but

Return value: When:

-1 first string precedes the second string, using the current language setting

 0 the two strings are equal

 1 first string follows the second string, using the current language setting
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 548 MB_Ref.pdf

Reference Guide Chapter 9: StyleAttr() function
computers in other countries are often configured with a different order (for example, Day/Month/Year)
or a different separator character (for example, a period instead of a /). To force the StringToDate()
function to apply U.S. formatting conventions, use the Set Format statement.

Note: To avoid the entire issue of how the user’s computer is set up, call NumberToDate() instead
of StringToDate(). The NumberToDate() function is not affected by how the user’s computer
is set up.

The datestring argument must indicate the month (1 - 12, represented as one or two digits) and the day
of the month (1 - 31, represented as one or two digits). You can specify the year as a four-digit number
or as a two-digit number, or you can omit the year entirely. If you do not specify a year, MapInfo
Professional uses the current year. If you specify the year as a two-digit number(for example, 96),
MapInfo Professional uses the current century or the century as determined by the Set Date Window
statement

Example

The following example specifies date strings with U.S. formatting: Month/Day/Year. Before calling
StringToDate(), this program calls Set Format to guarantee that the U.S. date strings are interpreted
correctly, regardless of how the system is configured.

Dim d_start, d_end As Date

Set Format Date ”US”
d_start = StringToDate(”12/17/92”)
d_end = StringToDate(”01/02/1995”)
Set Format Date ”Local”

In this example, the variable Date1 = 19890120, Date2 = 20101203 and MyYear = 1990.

DIM Date1, Date2 as Date
DIM MyYear As Integer

Set Format Date ”US”
Set Date Window 75
Date1 = StringToDate(”1/20/89”)
Date2 = StringToDate(”12/3/10”)
MyYear = Year(”12/30/90”)

These results are due to the Set Date Window statement which allows you to control the century value
when given a two-digit year.

See Also

NumberToDate() function, Set Format statement, Str$() function

StyleAttr() function
Purpose

Returns one attribute of a Pen, Brush, Font, or Symbol style.

Syntax
StyleAttr(style , attribute)

style is a Pen, Brush, Font, or Symbol style value

attribute is an Integer code specifying which component of the style should be returned
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 549 MB_Ref.pdf

Reference Guide Chapter 9: StyleAttr() function
Return Value

String or Integer, depending on the attribute parameter

Description

The StyleAttr() function returns information about a Pen, Brush, Symbol, or Font style.

Each style type consists of several components. For example, a Brush style definition consists of three
components: pattern, foreground color, and background color. When you call the StyleAttr() function,
the attribute parameter controls which style attribute is returned.

The attribute parameter must be one of the codes in the table below. Codes in the left column (for
example, PEN_WIDTH) are defined in MAPBASIC.DEF.

attribute setting StyleAttr() returns:

BRUSH_PATTERN Integer, indicating the Brush style’s pattern.

BRUSH_FORECOLOR Integer, indicating the Brush style’s foreground color, as an RGB
value.

BRUSH_BACKCOLOR Integer, indicating the Brush style’s background color as an RGB
value, or -1 if the brush has a transparent background.

FONT_NAME String, indicating the Font name.

FONT_STYLE Integer value, indicating the Font style (0 = Plain, 1 = Bold, etc.);
see Font clause for details.

FONT_POINTSIZE Integer indicating the Font size, in points.
 Note: If the Text object is in a mappable table (as opposed to

a Layout window), the point size is returned as zero,
and the text height is dictated by the Map window’s
current zoom.

FONT_FORECOLOR Integer value representing the RGB color of the Font foreground.

FONT_BACKCOLOR Integer value representing the RGB color of the Font back-
ground, or -1 if the font has a transparent background. If the font
style includes a halo, the RGB color represents the halo color.

PEN_WIDTH Integer, indicating the Pen style’s line width, in pixels or points.

PEN_PATTERN Integer, indicating the Pen style’s pattern.

PEN_COLOR Integer, indicating the Pen style’s RGB color value.

PEN_INTERLEAVED Logical, TRUE if line style is interleaved.

PEN_INDEX Integer, representing the pen index number from the pen pattern.

SYMBOL_KIND Integer, indicating the type of symbol: 2 for TrueType symbols; 3
for bitmap file symbols.

SYMBOL_CODE Integer, indicating the Symbol style’s shape code. Applies to Tru-
eType symbols.

SYMBOL_COLOR Integer, indicating the Symbol style’s color as an RGB value.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 550 MB_Ref.pdf

Reference Guide Chapter 9: Sub...End Sub statement
Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range.

Example

The following example uses the CurrentPen() function to determine the pen style currently in use by
MapInfo Professional, then uses the StyleAttr() function to determine the thickness of the pen, in
pixels.

Include ”mapbasic.def”
Dim cur_width As Integer
cur_width = StyleAttr(CurrentPen(), PEN_WIDTH)

See Also

Brush clause, Font clause, Pen clause, Symbol clause, MakeBrush() function, MakeFont()
function, MakePen() function, MakeSymbol() function

Sub...End Sub statement
Purpose

Defines a procedure, which can then be called through the Call statement.

Syntax
Sub proc_name [([ByVal] parameter As var_type [, ...])]

 statement_list
End Sub

proc_name is the name of the procedure

parameter is the name of a procedure parameter

var_type is a standard MapBasic variable type (for example, Integer) or a custom variable Type

statement_list is a list of zero or more statements comprising the body of the procedure

Restrictions

You cannot issue a Sub...End Sub statement through the MapBasic window.

SYMBOL_POINTSIZE Integer from 1 to 48, indicating the Symbol’s size, in points.

SYMBOL_FONT_NAME String, indicating the name of the font used by a TrueType sym-
bol.

SYMBOL_FONT_STYLE Integer, indicating the style attributes of a TrueType symbol (0 =
plain, 1 = Bold, etc.). See Symbol clause for a listing of possible
values.

SYMBOL_ANGLE Float number, indicating the rotation angle of a TrueType symbol.

SYMBOL_CUSTOM_NAME String, indicating the file name used by a bitmap file symbol.

SYMBOL_CUSTOM_STYLE Integer, indicating the style attributes of a bitmap file symbol (0 =
plain, 1 = show background, etc.). See Symbol clause for a list-
ing of possible values.

attribute setting StyleAttr() returns:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 551 MB_Ref.pdf

Reference Guide Chapter 9: Sub...End Sub statement
Description

The Sub ... End Sub statement defines a sub procedure (often, simply called a procedure). Once a
procedure is defined, other parts of the program can call the procedure through the Call statement.

Every Sub ... End Sub definition must be preceded by a Declare Sub statement.

A procedure may have zero or more parameters. Each parameter is defined with the following syntax:

[ByVal] parameter As var_type

parameter is the name of the parameter; each of a procedure’s parameters must be unique. If a sub
procedure has two or more parameters, they must be separated by commas.

By default, each sub procedure parameter is defined “by reference.” When a sub procedure has a by-
reference parameter, the caller must specify the name of a variable as the parameter. Subsequently, if
the sub procedure alters the contents of the by-reference parameter, the caller’s variable will reflect the
change. This allows the caller to examine the results returned by the sub procedure. Alternately, any or
all sub procedure parameters may be passed “by value” if the keyword ByVal appears before the
parameter name in the Sub statement. When a parameter is passed by value, the sub procedure
receives a copy of the value of the caller’s parameter expression; thus, the caller can pass any
expression, rather than having to pass the name of a variable. A sub procedure can alter the contents
of a ByVal parameter without having any impact on the status of the caller’s variables.

A procedure can take an array as a parameter. To declare a procedure parameter as an array, place
parentheses after the parameter name in the Sub...End Sub statement (as well as in the Declare Sub
statement). The following example defines a procedure which takes an array of Integers as a
parameter.

Sub ListProcessor(items() As Integer)

When a sub procedure expects an array as a parameter, the procedure’s caller must specify the name
of an array variable, without the parentheses.

If a sub procedure’s local variable has the same name as an existing global variable, all of the sub
procedure’s references to that variable name will access the local variable.

A sub procedure terminates if it encounters an Exit Sub statement.

You cannot pass arrays, custom Type variables, or Alias variables as ByVal (by-value) parameters to
sub procedures. However, you can pass any of those data types as by-reference parameters.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 552 MB_Ref.pdf

Reference Guide Chapter 9: Symbol clause
Example

In the following example, the sub procedure Cube cubes a number (raises the number to the power of
three), and returns the result. The sub procedure takes two parameters; the first parameter contains
the number to be cubed, and the second parameter passes the results back to the caller.

Declare Sub Main
Declare Sub Cube(ByVal original As Float, cubed As Float)

Sub Main
Dim x, result As Float
Call Cube(2, result)
’ result now contains the value: 8 (2 x 2 x 2)
x = 1
Call Cube(x + 2, result)
’ result now contains the value: 27 (3 x 3 x 3)

End Sub

Sub Cube (ByVal original As Float, cubed As Float)
’ Cube the ”original” parameter value, and store
’ the result in the ”cubed” parameter.
cubed = original ^ 3

End Sub

See Also

Call statement, Declare Sub statement, Dim statement, Exit Sub statement, Function... End
Function statement, Global statement

Symbol clause
Purpose

Specifies a symbol style for point objects.

Syntax 1 (MapInfo 3.0 Symbol Syntax)
Symbol (shape, color, size)

shape is an Integer, 31 or larger, specifying which character to use from MapInfo Professional’s
standard symbol set. To create an invisible symbol, use 31; see table below. The standard set of
symbols includes symbols 31 through 67, but the user can customize the symbol set by using the
Symbol application.

color is an Integer RGB color value; see the RGB() function.

size is an Integer point size, from 1 to 48.

Syntax 2 (TrueType Font Syntax)
Symbol (shape, color, size, fontname, fontstyle, rotation)

shape is an Integer, 32 or larger, specifying which character to use from a TrueType font. To create an
invisible symbol, use 32.

color is an Integer RGB color value; see the RGB() function.

size is an Integer point size, from 1 to 48.

fontname is a string representing a TrueType font name (for example, “WingDings”).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 553 MB_Ref.pdf

Reference Guide Chapter 9: Symbol clause
fontstyle is an Integer code controlling attributes such as bold; see table below.

rotation is a floating-point number representing a rotation angle, in degrees.

Syntax 3 (Custom Bitmap File Syntax)
Symbol (filename, color, size, customstyle)

filename is a string up to 31 characters long, representing the name of a bitmap file. The file must be in
the CustSymb directory.

color is an Integer RGB color value; see the RGB() function.

size is an Integer point size, from 1 to 48.

customstyle is an Integer code controlling color and background attributes. See table below.

Syntax 4
Symbol symbol_expr

symbol_expr is a Symbol expression, which can either be the name of a Symbol variable, or a function
call that returns a Symbol value, for example, MakeSymbol(shape, color, size).

Description

Note: The Symbol clause specifies the settings that dictate the appearance of a point object. Note
that Symbol is a clause, not a complete MapBasic statement. Various object-related
statements, such as Create Point, allow you to specify a Symbol clause; this lets you specify
the symbol style of the new object.

Some MapBasic statements (for example, Alter Object...Info OBJ_INFO_SYMBOL) take a Symbol
expression as a parameter (for example, the name of a Symbol variable), rather than a full Symbol
clause (the keyword Symbol followed by the name of a Symbol variable).

MapInfo 3.0 Symbol Syntax
The following table lists the standard symbol shapes that are available when you use syntax 1.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 554 MB_Ref.pdf

Reference Guide Chapter 9: Symbol clause
TrueType Font Syntax
When you specify a TrueType font symbol, the fontstyle argument controls attributes such as Bold. The
following table lists the fontstyle values you can specify:

To specify two or more style attributes, add the values from the left column. For example, to specify
both the Bold and the Drop Shadow attributes, use a fontstyle value of 33. Styles 16 and 256 are
mutually exclusive.

Custom Symbol (Bitmap File) Syntax
When you specify a custom symbol, the customstyle argument controls background and color settings,
as described in the following table.

To specify both Show Background and Apply Color, use a value of 3.

Example

The following example shows how a Set Map statement can incorporate a Symbol clause. The Set
Map statement below specifies that symbol objects in the mapper’s first layer should be displayed
using symbol 34 (a filled circle), filled in red, at a size of eighteen points.

Include ”mapbasic.def”

Set Map
Layer 1 Display Global
Global Symbol MakeSymbol(34,RED,18)

See Also

MakeCustomSymbol() function, MakeFontSymbol() function, MakeSymbol() function,
StyleAttr() function

fontstyle value Symbol Style

0 Plain

1 Bold

16 Border (black outline)

32 Drop Shadow

256 Halo (white outline)

customstyle value Symbol Style

0 Both the Show Background setting and the Apply Color setting are off; the
symbol appears in its default state. White pixels in the bitmap are dis-
played as transparent, allowing whatever is behind the symbol to show
through.

1 The Show Background setting is on; white pixels in the bitmap are opaque.

2 The Apply Color setting is on; non-white pixels in the bitmap are replaced
with the symbol’s color setting.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 555 MB_Ref.pdf

Reference Guide Chapter 9: SystemInfo() function
SystemInfo() function
Purpose

Returns information about the operating system or software version.

Syntax
SystemInfo(attribute)

attribute is an Integer code indicating which system attribute to query

Return Value

SmallInt, Logical, or String

Description

The SystemInfo() function returns information about MapInfo Professional’s system status. The
attribute can be any of the codes listed in the table below. The codes are defined in MAPBASIC.DEF

.

attribute code SystemInfo() Return Value

SYS_INFO_APPLICATIONWND Integer, representing the Windows HWND specified
by the Set Application Window statement (or zero if
no such HWND has been set).

SYS_INFO_APPVERSION Integer value: the version number with which the
application was compiled, multiplied by 100.

SYS_INFO_CHARSET String value: the name of the native character set.

SYS_INFO_COPYPROTECTED Logical value: TRUE means the user is running a
copy-protected version of MapInfo Professional.

SYS_INFO_DATE_FORMAT String: “US” or “Local” depending on the date format-
ting in effect; for details, see Set Format.

SYS_INFO_DDESTATUS Integer value, representing the number of elements
in the DDE execute queue. If the queue is empty,
SystemInfo() returns zero (if an incoming execute
would be enqueued) or -1 (if an execute would be
executed immediately).

SYS_INFO_DIG_INSTALLED Logical value: TRUE if a digitizer is installed, along
with a compatible driver.

SYS_INFO_DIG_MODE Logical value: TRUE if Digitizer Mode is on.

SYS_INFO_MAPINFOWND Integer, representing a Windows HWND of the Map-
Info Professional frame window, or zero on non-Win-
dows platforms.

SYS_INFO_MDICLIENTWND Integer, representing a Windows HWND of the Map-
Info Professional MDICLIENT window, or 0 on non-
Windows platforms.

SYS_INFO_MIPLATFORM Integer value, indicating the type of MapInfo Profes-
sional software that is running.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 556 MB_Ref.pdf

Reference Guide Chapter 9: TableInfo() function
Error Conditions

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Example

The following example uses the SystemInfo() function to determine what type of MapInfo software is
running. The program only calls a DDE-related procedure if the program is running some version of
MapInfo Professional.

Declare Sub DDE_Setup

If SystemInfo(SYS_INFO_PLATFORM) = PLATFORM_WIN Then
Call DDE_Setup

End If

TableInfo() function
Purpose

Returns information about an open table.

Syntax
TableInfo(table_id , attribute)

table_id is a String representing a table name, a positive Integer table number, or 0 (zero)

attribute is an Integer code indicating which aspect of the table to return

Return Value

String, SmallInt, or Logical, depending on the attribute parameter specified

Description

The TableInfo() function returns one piece of information about an open table.

 SYS_INFO_MIVERSION Integer value, indicating the version of MapInfo Pro-
fessional that is currently running, multiplied by 100.

SYS_INFO_NUMBER_FORMAT String: “9,999.9” or “Local” depending on the number
formatting in effect; for details, see Set Format.

SYS_INFO_PLATFORM Integer value, indicating the hardware platform on
which the application is running. The return value will
be PLATFORM_WIN.

SYS_INFO_PRODUCTLEVEL Integer value, indicating the product level of the ver-
sion of MapInfo Professional that is running (for
example, 200 for MapInfo Professional).

SYS_INFO_RUNTIME Logical value: TRUE if invoked within a run-time ver-
sion of MapInfo Professional, FALSE otherwise.

SYS_INFO_APPIDISPATCH (value=17) Integer, representing the IDispatch OLE Automation
pointer for the MapInfo Application.

attribute code SystemInfo() Return Value
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 557 MB_Ref.pdf

Reference Guide Chapter 9: TableInfo() function
The table_id can be a String representing the name of the open table. Alternately, table_id can be a
table number. If table_id is 0 (zero), the TableInfo() function returns information about the most
recently opened, most recently created table; or a table that has just been renamed. This allows a
MapBasic program to determine the working name of a table in cases where the Open Table
statement did not include an As clause. If there are no open tables, or if the most recently-opened table
has already been closed, the TableInfo() function generates an error.

The attribute parameter can be any value from the table below. Codes in the left column (for example,
TAB_INFO_NAME) are defined in MAPBASIC.DEF.

attribute code TableInfo() returns

TAB_INFO_COORDSYS_CLAUSE String result, indicating the table’s CoordSys clause, such
as “CoordSys Earth Projection 1, 0”. Returns empty string
if table is not mappable.

TAB_INFO_COORDSYS_MINX,
TAB_INFO_COORDSYS_MINY,
TAB_INFO_COORDSYS_MAXX,
TAB_INFO_COORDSYS_MAXY

Float results, indicating the minimum or maximum x or y
map coordinates that the table is able to store; if table is
not mappable, returns zero.

TAB_INFO_COORDSYS_NAME String result, representing the name of the CoordSys as
listed in MAPINFOW.PRJ (but without the optional “\p...”
suffix that appears in MAPINFOW.PRJ). Returns empty
string if table is not mappable, or if CoordSys is not found
in MAPINFOW.PRJ.

TAB_INFO_EDITED Logical result; TRUE if table has unsaved edits.

TAB_INFO_FASTEDIT Logical result; TRUE if the table has FastEdit mode turned
on, FALSE otherwise. (See Set Table for information on
FastEdit mode.)

TAB_INFO_MAPPABLE Logical result; TRUE if the table is mappable.

TAB_INFO_MAPPABLE_TABLE String result indicating the name of the table containing
graphical objects. Use this code when you are working
with a table that is actually a relational join of two other
tables, and you need to know the name of the base table
that contains the graphical objects.

TAB_INFO_MINX,
TAB_INFO_MINY,
TAB_INFO_MAXX,
TAB_INFO_MAXY

Float results, indicating the minimum and maximum x-
and y-coordinates of all objects in the table.

TAB_INFO_NAME String result, indicating the name of the table.

TAB_INFO_NCOLS SmallInt, indicating the number of columns.

TAB_INFO_NREFS SmallInt, indicating the number of other base tables that
reference this table. (Returns zero for most tables, or non-
zero in cases where a table is defined as a join of two
other tables, such as a StreetInfo table.) May only be used
with base tables (TAB_TYPE_BASE

TAB_INFO_NROWS SmallInt, indicating the number of rows.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 558 MB_Ref.pdf

Reference Guide Chapter 9: TableInfo() function
Error Conditions

ERR_TABLE_NOT_FOUND error generated if the specified table was not available

ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

TAB_INFO_NUM SmallInt result, indicating the number of the table.

TAB_INFO_READONLY Logical result; TRUE if the table is read-only.

TAB_INFO_SEAMLESS Logical result; TRUE if seamless behavior is on for this
table.

TAB_INFO_TABFILE String result, representing the table’s full directory path.
Returns an empty string if the table is a query table.

TAB_INFO_TEMP Logical result; TRUE if the table is temporary (for exam-
ple, QUERY1).

TAB_INFO_TYPE SmallInt result, indicating the type of table. The returned
value will match one of these values:
TAB_TYPE_BASE (if a normal or seamless table)
TAB_TYPE_RESULT (if results of a query)
TAB_TYPE_IMAGE (if table is a raster image)
TAB_TYPE_VIEW (if table is actually a view; for example,
StreetInfo tables are actually views)
TAB_TYPE_LINKED (if this table is linked).
TAB_TYPE_WMS (if table is from a Web Map Service)
TAB_TYPE_WFS (if table is from a Web Feature Service)

TAB_INFO_UNDO Logical result; TRUE if the undo system is being used with
the specified table, or FALSE if the undo system has been
turned off for the table through the Set Table statement.

TAB_INFO_USERBROWSE Logical result: FALSE if a Set Table statement has set the
UserBrowse option to Off.

TAB_INFO_USERCLOSE Logical result: FALSE if a Set Table statement has set the
UserClose option to Off.

TAB_INFO_USERDISPLAYMAP Logical result: FALSE if a Set Table statement has set the
UserDisplayMap option to Off.

TAB_INFO_USEREDITABLE Logical result: FALSE if a Set Table statement has set the
UserEdit option to Off.

TAB_INFO_USERMAP Logical result: FALSE if a Set Table statement has set the
UserMap option to Off.

TAB_INFO_USERREMOVEMAP Logical result: FALSE if a Set Table statement has set the
UserRemoveMap option to Off.

TAB_INFO_SUPPORT_MZ Logical result: TRUE if table supports M and Z-values.

TAB_INFO_Z_UNIT_SET Logical result: TRUE is unit is set for Z-values.

TAB_INFO_Z_UNIT String result: indicates distance units used for Z-values.
Return empty string if units are not specified.

attribute code TableInfo() returns
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 559 MB_Ref.pdf

Reference Guide Chapter 9: Tan() function
Example
Include ”mapbasic.def”
Dim i_numcols As SmallInt, L_mappable As Logical
Open Table ”world”
i_numcols = TableInfo(”world”, TAB_INFO_NCOLS)
L_mappable = TableInfo(”world”, TAB_INFO_MAPPABLE)

See Also

Open Table statement

Tan() function
Purpose

Returns the tangent of a number.

Syntax
Tan(num_expr)

num_expr is a numeric expression representing an angle in radians

Return Value

Float

Description

The Tan() function returns the tangent of the numeric num_expr value, which represents an angle in
radians.

To convert a degree value to radians, multiply that value by DEG_2_RAD. To convert a radian value
into degrees, multiply that value by RAD_2_DEG. (Note that your program will need to Include
“MAPBASIC.DEF” in order to reference DEG_2_RAD or RAD_2_DEG).

Example
Include ”mapbasic.def”

Dim x, y As Float

x = 45 * DEG_2_RAD
y = Tan(x)
’ y will now be equal to 1,
’ since the tangent of 45 degrees is 1

See Also

Acos() function, Asin() function, Atn() function, Cos() function, Sin() function

TempFileName$() function
Purpose

Returns a name that can be used when creating a temporary file.

Syntax
TempFileName$(dir)

dir is the string that specifies the directory that will store the file; “” specifies the system temporary
storage directory.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 560 MB_Ref.pdf

Reference Guide Chapter 9: Terminate Application statement
Return Value

Returns a string that specifies a unique file name, including its path.

Description

Use the TempFileName$() function when you need to create a temporary file, but you do not know
what file name to use.

When you call TempFileName$(), MapBasic returns a string representing a file name. The
TempFileName$() function does not actually create the file. To create the file, issue an Open File
statement.

If the dir parameter is an empty string (“”), the returned file name will represent a file in the system’s
temporary storage directory, such as “G:\TEMP\~MAP0023.TMP”.

In a networked environment, it is possible that two users could attempt to create the same file at the
same time. If you try to create a file using a filename returned by TempFileName$(), and an error
occurs because that file already exists, it is likely that another network user created the file moments
after your program called TempFileName$(). To reduce the likelihood of such file conflicts, issue the
Open File statement immediately after calling TempFileName$(). To eliminate all chances of file
sharing conflicts, create an error handler, and enable the error handler (by issuing an OnError
statement) before issuing the Open File statement.

See Also

FileExists() function

Terminate Application statement
Purpose

Halts execution of a running or sleeping MapBasic application.

Syntax
Terminate Application app_name

app_name is a String representing the name of the running application (for example, “scalebar.mbx”)

Description

If a MapBasic program creates custom menu items or ButtonPad buttons, that MapBasic program can
remain in memory, “sleeping,” until the user exits MapInfo Professional. To force a sleeping application
to halt, issue a Terminate Application statement. For example, if you need to halt an application for
debugging purposes, you can issue the Terminate Application statement from the MapBasic Window.

If your application launches another MapBasic application (using the Run Application statement), you
can use the Terminate Application statement to halt the other MapBasic application.

Note: Terminate Application allows one program to halt another program. The easiest way for a
program to halt itself is to issue an End Program statement.

See Also

End Program statement, Run Application statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 561 MB_Ref.pdf

Reference Guide Chapter 9: TextSize() function
TextSize() function
Purpose

Returns the point size of a text object in a window.

Syntax
TextSize(window_id , text_obj)

window_id is the Integer window identifier of a Map or Layout window. Call FrontWindow() or
WindowID() to obtain window identifiers.

text_obj is a text object.

Note: If the text object is from a Map window, the window ID must be the ID of a Map window. If the
text object is from a Layout, the window ID must be the ID of a Layout window.

Return Value

Float

Description

The TextSize() function will return the point size of a text object in a window at its current zoom level.
This function correlates to selecting a text object and selecting Edit > Get Info or pressing F7.

Example

If the active window is a map and a text object is selected:

print TextSize(FrontWindow(), selection.obj)

See Also

Font clause

Time() Function
Purpose

The time function returns the current system time in string format. The time may be returned in 12- or
24-hour time format.

Syntax
StringVar = Time(Format)

Description

StringVar is a string variable which will be given the system time in HH:MM:SS format. Format is an
integer value indicating the format of the string to return. The time will be returned in 24-hour format if
Format is 24. Any other value will return the time in 12-hour format.

Timer() function
Purpose

Returns the number of elapsed seconds.

Syntax
Timer()
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 562 MB_Ref.pdf

Reference Guide Chapter 9: ToolHandler procedure
Return Value

Integer

Description

The Timer() function returns the number of seconds that have elapsed since Midnight, January 1,
1970. By calling the Timer() function before and after a particular operation, you can time how long the
operation took (in seconds).

Example
Declare Sub Ubi

Dim start, elapsed As Integer

start = Timer()
Call Ubi
elapsed = Timer() - start

’
’ elapsed now contains the number of seconds
’ that it took to execute the procedure Ubi
’

ToolHandler procedure
Purpose

A reserved procedure name; works in conjunction with a special ToolButton (the MapBasic tool).

Syntax
Declare Sub ToolHandler
Sub ToolHandler

 statement_list
End Sub

statement_list is a list of statements to execute when the user clicks with the MapBasic tool

Description

ToolHandler is a special-purpose MapBasic procedure name, which operates in conjunction with the
MapBasic tool.

Defining a ToolHandler procedure is a simple way to add a custom button to MapInfo Professional’s
Main ButtonPad. However, the button associated with a ToolHandler procedure is restricted; you
cannot use custom icons or drawing modes with the ToolHandler’s button. To create a custom button
which has no restrictions, use the Alter ButtonPad and Create ButtonPad statements.

If the user runs an application which contains a procedure named ToolHandler, a plus-shaped tool (the
MapBasic tool) appears on the Main ButtonPad. The MapBasic tool is enabled whenever a Browser,
Map, or Layout window is the active window. If the user selects the MapBasic tool and clicks in the
Browser, Map, or Layout window, MapBasic automatically calls the ToolHandler procedure.

A ToolHandler procedure can use the CommandInfo() function to determine where the user clicked. If
the user clicked in a Browser, CommandInfo() returns the row and column where the user clicked. If
the user clicked in a Map, CommandInfo() returns the map coordinates of the location where the user
clicked; these coordinates are in MapBasic’s current coordinate system (see the Set CoordSys
statement).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 563 MB_Ref.pdf

Reference Guide Chapter 9: ToolHandler procedure
If the user clicked in a Layout window, CommandInfo() returns the layout coordinates (for example,
distance from the upper left corner of the page) where the user clicked; these coordinates are in
MapBasic’s current paper units (see the Set Paper Units statement).

By calling CommandInfo(), you can also detect whether the user held down the shift key and/or the
Control key while clicking. This allows you to write applications which react differently to click events
than to shift-click events.

To make the MapBasic tool the active tool, issue the statement:

Run Menu Command M_TOOLS_MAPBASIC

For a ToolHandler procedure to take effect, the user must run the application. If an application contains
a special procedure name - such as ToolHandler - the application “goes to sleep” when the Main
procedure runs out of statements to execute.

The Main procedure may be explicit or implied. The application is said to be “sleeping” because the
ToolHandler procedure is still in memory, although it may be inactive. If the user selects the MapBasic
tool and clicks with it, MapBasic automatically calls the ToolHandler procedure, so that the procedure
may react to the click event.

When any procedure in an application executes the End Program statement, the application is
completely removed from memory. That is, a program which executes an End Program statement is
no longer sleeping - it is terminated altogether. So, you can use the End Program statement to
terminate a ToolHandler procedure once it is no longer wanted. Conversely, you should be careful not
to issue an End Program statement while the ToolHandler procedure is still needed.

Depending on the circumstances, a ToolHandler procedure may need to issue a Set CoordSys
statement before determining the coordinates of where the user clicked. If the ToolHandler procedure
is called because the user clicked in a Browser, no Set CoordSys statement is necessary. If the user
clicks in a Layout window, the ToolHandler procedure may need to issue a Set CoordSys Layout
statement before determining where the user clicked in the layout. If the user clicks in a Map window,
and the application’s current coordinate system does not match the coordinate system of the Map
(because the application has issued a Set CoordSys statement), the ToolHandler procedure may
need to issue a Set CoordSys statement before determining where the user clicked in the map.

Example

The following program sets up a ToolHandler procedure that will be called if the user selects the
MapBasic tool, then clicks on a Map, Browser, or Layout window. In this example, the ToolHandler
simply displays the location where the user clicked.

Include ”mapbasic.def”
Declare Sub ToolHandler
Note ”Ready to test the MapBasic tool.”

Sub ToolHandler
Note ”x:” + Round(CommandInfo(CMD_INFO_X), 0.1) + Chr$(10) +

” y:” + Round(CommandInfo(CMD_INFO_Y), 0.1)
End Sub

See Also

CommandInfo() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 564 MB_Ref.pdf

Reference Guide Chapter 9: TriggerControl() function
TriggerControl() function
Purpose

Returns the ID of the last dialog control chosen by the user.

Syntax
TriggerControl()

Return Value

Integer

Description

Within a Dialog statement’s handler procedure, the TriggerControl() function returns the control ID of
the last control which the user operated.

Each control in a Dialog can have its own dedicated handler procedure; alternately, one procedure can
act as the handler for two or more controls. A procedure which handles multiple controls can use the
TriggerControl() function to detect which control the user clicked.

Error Conditions

ERR_INVALID_TRIG_CONTROL error generated if the TriggerControl() function is called when no
dialog is active

See Also

Alter Control statement, Dialog statement, Dialog Preserve statement, Dialog Remove
statement, ReadControlValue() function

TrueFileName$() function
Purpose

Returns a full file specification, given a partial specification.

Syntax
TrueFileName$(file_spec)

file_spec is a String representing a partial file specification (for example, “C:parcels.tab”)

Description

This function returns a full file specification (including full drive name and full directory name), given a
partial specification.

In some circumstances, you may need to process a partial file specification. For example, on a DOS
system, the following file specification is partial (it includes a drive letter, C:, but it omits the current
directory name):

”C:parcels.tab”

If the current directory on drive C: is “\mapinfo\data” then the following function call:

TrueFileName$(”C:parcels.tab”)

returns the string:

”C:\mapinfo\data\parcels.tab”
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 565 MB_Ref.pdf

Reference Guide Chapter 9: Type statement
If your application prompts the user to type in the name of a hard drive or file path, you may want to use
TrueFileName$() to expand the path entered by the user into a full path.

The TrueFileName$() function does not verify the existence of the named file; it merely expands the
partial drive letter and directory path. To determine whether a file exists, use the FileExists() function.

See Also

ProgramDirectory$() function

Type statement
Purpose

Defines a custom variable type which can be used in later Dim and Global statements.

Syntax
Type type_name

 element_name As var_type
[...]

End Type

type name is the name you define for the data type

element_name is the name you define for each element of the type

var_type is the data type of that element

Restrictions

Any Type statements must appear at the “global” level in a program file (i.e. outside of any sub
procedure). You cannot issue a Type statement through the MapBasic window. You cannot pass a
Type variable as a by-value parameter to a procedure or function. You cannot write a Type variable to
a file using a Put statement.

Description

The Type statement creates a new data type composed of elements of existing data types. You can
address each element of a variable of a custom type using an expression structured as
variable_name.element_name. A Type can contain elements of other custom types.and elements
which are arrays. You can also declare arrays of variables of a custom Type. You cannot copy the
entire contents of a Type variable to another Type variable using an assignment of the form var_name
= var_name.

Example
Type Person

fullname As String
 age As Integer
dateofbirth As Date

End Type

Dim sales_mgr, sales_people(10) As Person

sales_mgr.fullname = ”Otto Carto”
sales_people(1).fullname = ”Melinda Robertson”

See Also

Dim statement, Global statement, ReDim statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 566 MB_Ref.pdf

Reference Guide Chapter 9: UBound() function
UBound() function
Purpose

Returns the current size of an array.

Syntax
UBound(array)

array is the name of an array variable

Return Value

Integer

Description

The UBound() function returns an integer value indicating the current size (or “upper bound”) of an
array variable.

Every array variable has an initial size, which can be zero or larger. This initial size is specified in the
variable’s Dim or Global statement. However, an array’s size can be reset through the ReDim
statement. The UBound() function returns an array’s current size, as an Integer value indicating how
many elements can currently be stored in the array. A MapBasic array can have up to 32,767 items.

Example
Dim matrix(10) As Float
Dim depth As Integer

depth = UBound(matrix)
’ depth now has a value of 10

ReDim matrix(20)
depth = UBound(matrix)
’ depth now has a value of 20

See Also

Dim statement, Global statement, ReDim statement

UCase$() function
Purpose

Returns a string, converted to upper-case.

Syntax
UCase$(string_expr)

string_expr is a string expression

Return Value

String

Description

The UCase$() function returns the string which is the upper-case equivalent of the string expression
string_expr.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 567 MB_Ref.pdf

Reference Guide Chapter 9: UnDim statement
Conversion from lower to upper case only affects alphabetic characters (A through Z); numeric digits
and punctuation marks are not affected. Thus, the function call:

 UCase$(”A#12a”)

returns the string value “A#12A”.

Example
Dim regular, upper_case As String

regular = ”Los Angeles”
upper_case = UCase$(regular)
’ upper_case now contains the value ”LOS ANGELES”

See Also

LCase$() function, Proper$() function

UnDim statement
Purpose

Undefines a variable.

Syntax
UnDim variable_name

variable_name is the name of a variable that was declared through the MapBasic window or through a
workspace.

Restrictions

The UnDim statement cannot be used in a compiled MapBasic program; it may only be used within a
workspace or entered through the MapBasic window.

Description

After you use the Dim statement to create a variable, you can use the UnDim statement to destroy that
variable definition. For example, suppose you type a Dim statement into the MapBasic window to
declare the variable X:

Dim X As Integer

Now suppose you want to redefine X to be a Float. The following statements redefine X:

UnDim X
Dim X As Float

See Also

Dim statement, ReDim statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 568 MB_Ref.pdf

Reference Guide Chapter 9: UnitAbbr$() function
UnitAbbr$() function
Purpose

Returns a string representing the abbreviated version of a standard MapInfo Professional unit name.

Syntax
UnitAbbr$ (unit_name)

unit_name is a String representing a standard MapInfo Professional unit name (for example, “km”)

Return Value

String expression, representing an abbreviated unit name (for example, “km”)

Description

The unit_name parameter must be one of MapInfo Professional’s standard, English-language unit
names, such as “km” (for kilometers) or “sq km” (for square kilometers).

The UnitAbbr$() function returns an abbreviated version of the unit name. The exact string returned
depends on whether the user is running the English-language version of MapInfo Professional or a
translated version. For example, if a user is running the German-language version of MapInfo
Professional, the following function call returns the German translation of “sq km”:

UnitAbbr$(”sq km”)

For a listing of MapInfo Professional’s standard distance unit names (for example, “km”), see the Set
Distance Units statement. For a listing of area unit names (for example, “sq km”), see the Set Area
Units statement. For a listing of paper unit names (for example, “in” for inches on a page layout), see
the Set Paper Units statement.

The unit_name parameter can also be “degree” (in which case, UnitAbbr$() returns “deg”).

See Also

Set Area Units statement, Set Distance Units statement, Set Paper Units statement,
UnitName$() function

UnitName$() function
Purpose

Returns a string representing the full version of a standard MapInfo Professional unit name.

Syntax
UnitName$ (unit_name)

unit_name is a String representing a standard MapInfo Professional unit name (for example, “km”)

Return Value

String expression, representing a full unit name (for example, “kilometers”)

Description

The unit_name parameter must be one of MapInfo Professional’s standard, English-language unit
names, such as “km” (for kilometers) or “sq km” (for square kilometers).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 569 MB_Ref.pdf

Reference Guide Chapter 9: Unlink statement
The UnitName$() function returns a string representing the full version of the unit name. The exact
string returned depends on whether the user is running the English-language version of MapInfo
Professional or a translated version. For example, if a user is running the French-language version of
MapInfo Professional, the following function call returns the French translation of “square kilometers”:

UnitName$(”sq km”)

For a listing of MapInfo Professional’s standard distance unit names (for example, “km”), see the Set
Distance Units statement. For a listing of area unit names (for example, “sq km”), see the Set Area
Units statement. For a listing of paper unit names (for example, “in” for inches on a page layout), see
the Set Paper Units statement.

The unit_name parameter can also be “degree” (in which case, UnitName$() returns “degrees”).

See Also

Set Area Units statement, Set Distance Units statement, Set Paper Units statement, UnitAbbr$()
function

Unlink statement
Purpose

Use the Unlink statement to unlink a table which was downloaded and linked from a remote database
with the Server Link Table statement.

Syntax
Unlink TableName

TableName is the name of an open MapInfo linked table.

Description

Unlinking a table removes the link to the remote database. This statement doesn’t work if edits are
pending (in other words, the user must first commit or rollback). All metadata associated with the table
linkage is removed. Fields that were marked non-editable are now editable. The end product is a
normal MapInfo base table.

Example
Unlink ”City_1k”

See Also

Commit Table statement, Server Link Table statement

Update statement
Purpose

Modifies one or more rows in a table.

Syntax
Update table Set column = expr [, column = expr, ...]

[Where RowID = idnum]

table is the name of an open table

column is the name of a column
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 570 MB_Ref.pdf

Reference Guide Chapter 9: Update Window statement
expr is an expression to assign to a column

idnum is the number of a row in the table

Description

The Update statement modifies one or more columns in a table. By default, the Update statement will
affect all rows in the specified table. However, if the statement includes a Where Rowid clause, only
one particular row will be updated. The Set clause specifies what sort of changes should be made to
the affected row or rows.

To update the map object that is attached to a row, specify the column name Obj in the Set clause; see
example below.

Examples

In the following example, we have a table of employee data; each record states the employee’s
department and salary. Let’s say we wish to give a seven percent raise to all employees of the
marketing department currently earning less than $20,000. The example below uses a Select
statement to select the appropriate employee records, and then uses an Update statement to modify
the salary column accordingly.

Select * From employees
Where department =”marketing” And salary < 20000

Update Selection
Set salary = salary * 1.07

By using a Where RowID clause, you can tell MapBasic to only apply the Set operation to one
particular row of the table. The following example updates the salary column of the tenth record in the
employees table:

Update employees
Set salary = salary * 1.07
Where Rowid = 10

The next example stores a point object in the first row of a table:

Update sites
Set Obj = CreatePoint(x, y)
Where Rowid = 1

See Also

Insert statement

Update Window statement
Purpose

Forces MapInfo Professional to process all pending changes to a window.

Syntax
Update Window window_id

window_id is an Integer window identifier

Description

The Update Window statement forces MapInfo Professional to process any pending window display
changes.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 571 MB_Ref.pdf

Reference Guide Chapter 9: Val() function
Under some circumstances, window operations performed by a MapBasic application do not appear
immediately. For example, if an application issues a Dialog statement immediately after modifying a
Map window, the changes to the Map window may not appear until after the user dismisses the dialog
box. To force MapInfo Professional to process pending display changes, use the Update Window
statement.

See Also

Set Event Processing statement

Val() function
Purpose

Returns the numeric value represented by a string.

Syntax
Val(string_expr)

string_expr is a string expression

Return Value

Float

Description

The Val() function returns a number based on the string_expr string expression. Val() ignores any
white spaces (tabs, spaces, line feeds) at the start of the string_expr string, then tries to interpret the
first character(s) as a numeric value. The Val() function then stops processing the string as soon as it
finds a character that is not part of the number. If the first non-white-space character in the string is not
a period, a digit, a minus sign, or an ampersand character (&), Val() returns zero. (The ampersand is
used in hexadecimal notation; see example below.)

Note: If the string includes a decimal separator, it must be a period, regardless of whether the user’s
computer is set up to use some other character as the decimal separator. Also, the string
cannot contain thousands separators. To remove thousands separators from a numeric string,
call the DeformatNumber$() function.

Example
Dim f_num As Float
f_num = Val(”12 thousand”)
’ f_num is now equal to 12

f_num = Val(”12,345”)
’ f_num is now equal to 12

f_num = Val(” 52 - 62 Brunswick Ave”)
’ f_num is now equal to 52

f_num = Val(”Eighteen”)
’ f_num is now equal to 0 (zero)

f_num = Val(”&H1A”)
’ f_num is now equal to 26 (which equals hexadecimal 1A)

See Also

DeformatNumber$() function, Format$() function, Set Format statement, Str$() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 572 MB_Ref.pdf

Reference Guide Chapter 9: Weekday() function
Weekday() function
Purpose

Returns an integer from 1 to 7, indicating the weekday of a specified date.

Syntax
Weekday(date_expr)

date_expr is a date expression

Return Value

SmallInt value from 1 to 7, inclusive; 1 represents Sunday.

Description

The Weekday() function returns an integer representing the day-of-the-week component (one to
seven) of the specified date.

The Weekday() function only works for dates on or after January 1, in the year 100. If date_expr
specifies a date before the year 100, the Weekday() function returns a value of zero.

Example
If Weekday(CurDate()) = 6 Then

’
’ then the date is a Friday
’

End If

See Also

CurDate() function, Day() function, Month() function, Year() function

WFS Refresh Table statement
Purpose

Refreshes a WFS table from the server

Syntax
WFS Refresh Table alias

alias is the an alias for an open registered WFS table.

Example

The following example refreshes the local table named watershed.

 WFS Refresh Table watershed

See Also

Register Table statement, TableInfo() function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 573 MB_Ref.pdf

Reference Guide Chapter 9: While...Wend statement
While...Wend statement
Purpose

Defines a loop which executes as long as a specified condition evaluates as TRUE.

Syntax
While condition

 statement_list
Wend

condition is a conditional expression which controls when the loop should stop

statement_list is the group of statements to execute with each iteration of the loop

Restrictions

You cannot issue a While...Wend statement through the MapBasic window.

Description

The While...Wend statement provides loop control. MapBasic evaluates the condition; if it is TRUE,
MapBasic will execute the statement_list (and then evaluate the condition again, etc.).

As long as the condition remains TRUE, MapBasic will repeatedly execute the statement_list. When
and if the condition becomes FALSE, MapBasic will skip the statement_list, and continue execution
with the first statement following the Wend keyword.

Note that a statement of this form:

While condition
 statement_list

Wend

is functionally identical to a statement of this form:

Do While condition
 statement_list

Loop

The While...Wend syntax is provided for stylistic reasons (i.e. for the sake of those programmers who
prefer the While...Wend syntax over the Do...Loop syntax).

Example
Dim psum As Float, i As Integer
Open Table ”world”
Fetch First From world
i = 1
While i <= 10

psum = psum + world.population
Fetch Next From world
i = i + 1

Wend

See Also

Do...Loop statement, For...Next statement
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 574 MB_Ref.pdf

Reference Guide Chapter 9: WinChangedHandler procedure
WinChangedHandler procedure
Purpose

A reserved procedure, called automatically when a Map window is panned or zoomed, or whenever a
map layer is added or removed.

Syntax
Declare Sub WinChangedHandler
Sub WinChangedHandler

 statement_list
End Sub

statement_list is a list of statements to execute when the map is panned or zoomed

Description

WinChangedHandler is a special-purpose MapBasic procedure name. If the user runs an application
containing a procedure named WinChangedHandler, the application “goes to sleep” when the Main
procedure runs out of statements to execute. As long as the sleeping application remains in memory,
MapBasic calls WinChangedHandler whenever a Map window’s extents are modified (for example, the
Map is scrolled, zoomed or re-sized). Within the WinChangedHandler procedure, call CommandInfo()
to determine the Integer window ID of the affected window.

Multiple MapBasic applications can be “sleeping” at the same time. When a Map window changes,
MapBasic automatically calls all sleeping WinChangedHandler procedures, one after another.

Under some circumstances, MapBasic may call a WinChangedHandler procedure as a result of an
event which did not affect the map extents. For example, drawing a new object may trigger the
WinChangedHandler procedure. To halt a sleeping application and remove it from memory, use End
Program.

Auto-scrolling Map Windows
MapInfo Professional automatically scrolls the Map window if the user clicks with the mouse and then
drags to the edge of the window. If the user auto-scrolls a Map window, MapInfo Professional calls
WinChangedHandler after the tool action is completed or canceled.

For example, if you use MapInfo Professional’s Ruler tool and you autoscroll the window during each
segment, MapInfo Professional calls WinChangedHandler once, after you double-click to complete the
measurement (or after you press Esc to cancel the Ruler tool). If the user auto-scrolls while using a
custom MapBasic tool, MapInfo Professional calls the tool’s handler procedure, and then calls
WinChangedHandler.

MapInfo Professional will not call WinChangedHandler if the user auto-scrolls but then returns to the
original location before completing the operation or pressing Esc.

To disable the autoscroll feature, use the Set Window statement.

Example

For an example of using a WinChangedHandler procedure, see the OverView sample program.

See Also

CommandInfo() function, WinClosedHandler procedure
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 575 MB_Ref.pdf

Reference Guide Chapter 9: WinClosedHandler procedure
WinClosedHandler procedure
Purpose

A reserved procedure, called automatically when a Map, Browse, Graph, Layout, Redistricting, or
MapBasic window is closed.

Syntax
Declare Sub WinClosedHandler
Sub WinClosedHandler

 statement_list
End Sub

statement_list is a list of statements to execute when a window is closed

Description

WinClosedHandler is a special-purpose MapBasic sub procedure name. If the user runs an
application containing a procedure named WinClosedHandler, the application “goes to sleep” when the
Main procedure runs out of statements to execute. As long as the sleeping application remains in
memory, MapBasic automatically calls the WinClosedHandler procedure whenever a window is closed.

Within the WinClosedHandler procedure, you can use issue the function call:

 CommandInfo(CMD_INFO_WIN)

to determine the window identifier of the closed window.

Note: When any procedure in an application executes the End Program statement, the application
is completely removed from memory. Thus, you can use the End Program statement to
terminate a WinClosedHandler procedure once it is no longer wanted. Conversely, you should
be careful not to issue an End Program statement while the WinClosedHandler procedure is
still needed.

Multiple MapBasic applications can be “sleeping” at the same time. When a window is closed,
MapBasic automatically calls all sleeping WinClosedHandler procedures, one after another.

See Also

CommandInfo() function, EndHandler procedure, RemoteMsgHandler procedure,
SelChangedHandler procedure, ToolHandler procedure, WinChangedHandler procedure

WindowID() function
Purpose

Returns a MapInfo Professional window identifier.

Syntax
WindowID(window_num)

window_num is a number or a numeric code; see table below

Return Value

Integer
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 576 MB_Ref.pdf

Reference Guide Chapter 9: WindowInfo() function
Description

A window identifier is an Integer value which uniquely identifies an existing window. Several MapBasic
statements (for example, Set Map) take window identifiers as parameters.

The following table lists the various ways that you can specify the window_num parameter:

Error Conditions

ERR_BAD_WINDOW_NUM error generated if the window_num parameter is invalid

See Also

FrontWindow() function, NumWindows() function

WindowInfo() function
Purpose

Returns information about a window.

Syntax
WindowInfo(window_spec , attribute)

window_spec is a number or a code that specifies which window you want to query

attribute is an Integer code indicating which information about the window to return

Return Value

Depends on the attribute parameter.

Value of window_num Result

Positive Smallint value (1, 2, ... n) MapInfo Professional returns the window ID of a docu-
ment window, such as a Map or Browse window. For
example, if you specify 1, MapInfo Professional returns
the Integer ID of the first document window. Note that n is
the number of open document windows; call
NumWindows() to determine n.

Negative Smallint value (-1,-2, ...-m) MapInfo Professional returns the window ID of a window,
which may be a document window or a floating window
such as the Info window. Note that m is the total number
of windows owned by MapInfo Professional; call
NumAllWindows() to determine m. Using this syntax,
you could call WindowID() within a loop to build a list of
the ID numbers of all open windows.

Zero (0) MapInfo Professional returns the window ID of the most
recently opened document window, custom legend win-
dow, or ButtonPad; returns zero if no windows are open.

Window code (for example,
WIN_RULER)

If you specify a window code with a value from 1001 to
1013, MapInfo Professional returns the ID of a special
window. Window codes are defined in MAPBASIC.DEF.
For example, the code WIN_RULER (with a value of
1007) represents the window used by MapInfo Profes-
sional’s Ruler tool.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 577 MB_Ref.pdf

Reference Guide Chapter 9: WindowInfo() function
Description

The WindowInfo() function returns one piece of information about an existing window.

Many of the values that you pass as the parameters to WindowInfo() are defined in the standard
MapBasic definitions file, MAPBASIC.DEF. Your program should Include “MAPBASIC.DEF” if you
are going to call WindowInfo().

The following table lists the various ways that you can specify the window_spec parameter:

The attribute parameter dictates which window attribute the function should return. The attribute
parameter must be one of the codes from the table below:

Value of window_spec Description

Integer window ID You can use an Integer window ID (which you can obtain
by calling the WindowID() function or the
FrontWindow() function) to specify which window you
want to query.

Positive Smallint value (1, 2, ... n) The function queries a document window, such as a Map
or Browser window. For example, specify 1 to retrieve
information on the first document window. Note that n is
the number of open document windows; call
NumWindows() to determine n.

Negative Smallint value (-1,-2, ...-m) The function queries a window, which may be a document
window or a floating window such as the Info window.
Note that m is the total number of windows owned by
MapInfo Professional; call NumAllWindows() to deter-
mine m. Using this syntax, you could call WindowInfo()
within a loop to query every open window.

Zero (0) The function queries the most recently-opened window. If
no windows are open, an error occurs.

Window code (for example,
WIN_RULER)

If you specify a window code with a value from 1001 to
1013, the function queries a special system window. Win-
dow codes are defined in MAPBASIC.DEF. For example,
MAPBASIC.DEF contains the code WIN_RULER (with a
value of 1007), which represents the window used by
MapInfo Professional’s Ruler tool.

attribute code WindowInfo(attribute) returns:

WIN_INFO_AUTOSCROLL (17) Logical value: TRUE if the autoscroll feature
is on for this window, allowing the user to
scroll the window by dragging to the win-
dow’s edge. To turn autoscroll on or off, see
Set Window.

WIN_INFO_CLONEWINDOW (15) String value: a string of MapBasic state-
ments that can be used in a Run Command
statement to duplicate a window. See Run
Command.

WIN_INFO_HEIGHT (5) Float value: window height (in paper units).
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 578 MB_Ref.pdf

Reference Guide Chapter 9: WindowInfo() function
WIN_INFO_LEGENDS_MAP (10) Integer value: when you query a Legend
window created using the Create Legend
statement, this code returns the Integer win-
dow ID of the Map or Graph window that
owns the legend. When you query the stan-
dard Legend window, returns 0.

WIN_INFO_NAME (1) String value: the name of the window.

WIN_INFO_OPEN (11) Logical value: TRUE if the window is open
(used with special windows such as the Info
window).

WIN_INFO_SMARTPAN (18) Logical value; TRUE if Smart Pan has been
set on.

WIN_INFO_STATE (9) SmallInt value: WIN_STATE_NORMAL if at
normal size, WIN_STATE_MINIMIZED if
minimized, WIN_STATE_MAXIMIZED if
maximized.

WIN_INFO_SYSMENUCLOSE (16) Logical value: FALSE indicates that a Set
Window statement has disabled the Close
command on the window’s system menu.

 WIN_INFO_TABLE (10) String value: For Map windows, the name of
the window’s “CosmeticN” table. For Layout
windows, the name of the window’s “Lay-
outN” table.For Browser or Graph windows,
the name of the table displayed in the win-
dow.

WIN_INFO_TOPMOST (8) Logical value: TRUE if this is the active win-
dow.

WIN_INFO_TYPE (3) SmallInt value: window type, such as
WIN_LAYOUT. See table below.

WIN_INFO_WIDTH (4) Float value: window width (in paper units).

WIN_INFO_WINDOWID (13) Integer value, representing the window’s ID;
identical to the value returned by
WindowID(). This is useful if you pass zero
as the window_spec.

WIN_INFO_WND (12) Integer value. On Windows, the value repre-
sents a Windows HWND for the window you
are querying.

WIN_INFO_WORKSPACE (14) String value: the string of MapBasic state-
ments that a Save Workspace operation
would write to a workspace to record the set-
tings for this map. Differs from
WIN_INFO_CLONEWINDOW in that the
results include Open Table statements, etc.

attribute code WindowInfo(attribute) returns:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 579 MB_Ref.pdf

Reference Guide Chapter 9: WindowInfo() function
WIN_INFO_X (6) Float value: the window’s distance from the
left edge of the MapInfo Professional work
area (in paper units).

WIN_INFO_Y (7) Float value: the window’s distance from the
top edge of the MapInfo Professional work
area (in paper units).

WIN_INFO_PRINTER_NAME (21) Returns string value with printer identifier
(for example, \\DISCOVERY\HP4_DEVEL)

WIN_INFO_PRINTER_ORIENT (22) Returns WIN_PRINTER_PORTRAIT or
WIN_PRINTER_LANDSCAPE

WIN_INFO_PRINTER_COPIES (23) Returns integer number of copies.

WIN_INFO_SNAPMODE (19) Returns a logical value. TRUE if snap mode
is on. FALSE if snap mode is off.

WIN_INFO_SNAPTHRESHOLD (20) Returns a SmallInt value representing the
pixel tolerance.

WIN_INFO_PRINTER_PAPERSIZE (24) Integer value. Refer to the Papersize.def file
(In the \MapInfo\MapBasic folder) for the
meaning of the return value.

WIN_INFO_PRINTER_LEFTMARGIN (25) Float value: left printer margin value in cur-
rent units.

WIN_INFO_PRINTER_RIGHTMARGIN (26) Float value: right printer margin value in cur-
rent units.

WIN_INFO_PRINTER_TOPMARGIN (27) Float value: top margin value in current
units.

WIN_INFO_PRINTER_BOTTOMMARGIN (28) Float value: bottom printer margin value in
current units.

WIN_INFO_PRINTER_BORDER (29) String value: ON if a black border will be on
the printer output, OFF otherwise.

WIN_INFO_PRINTER_TRUECOLOR (30) String value: ON if use 24-bit true color to
print raster and grid images. This is possible
when the image is 24 bit and the printer sup-
ports more than 256 colors, OFF otherwise.

WIN_INFO_PRINTER_DITHER (31) String value: return dithering method, which
is used when it is necessary to convert a 24-
bit image to 256 colors. Possible return val-
ues are HALFTONE and ERRORDIFFU-
SION. This option is used when printing
raster and grid images. Dithering will occur if
WIN_INFO_PRINTER_TRUECOLOR is dis-
abled or if the printer color depth is 256 col-
ors or less.

attribute code WindowInfo(attribute) returns:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 580 MB_Ref.pdf

Reference Guide Chapter 9: WindowInfo() function
WIN_INFO_PRINTER_METHOD (32) String value: possible return values are
DEVICE and EMF.

WIN_INFO_PRINTER_TRANSPRASTER (33) String value: possible return values are
DEVICE and INTERNAL.

WIN_INFO_PRINTER_TRANSPVECTOR (34) String value: possible return values are
DEVICE and INTERNAL.

WIN_INFO_EXPORT_BORDER (35) String value: possible return values are ON
and OFF.

WIN_INFO_EXPORT_TRUECOLOR (36) String value: possible return values are ON
and OFF.

WIN_INFO_EXPORT_DITHER (37) String value: possible return values are
HALFTONE and ERRORDIFFUSION.

WIN_INFO_EXPORT_TRANSPRASTER (38) String value: possible return values are
DEVICE and INTERNAL.

WIN_INFO_EXPORT_TRANSPVECTOR (39) String value: possible return values are
DEVICE and INTERNAL.

WIN_INFO_PRINTER_SCALE_PATTERNS (40) Logical value. TRUE if window is scaled on
printer output. FALSE if not scaled.

attribute code WindowInfo(attribute) returns:
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 581 MB_Ref.pdf

Reference Guide Chapter 9: WindowInfo() function
If you specify WIN_INFO_TYPE as the attribute, WindowInfo() returns one of these values:

Each Map window has a special, temporary table, which represents the “cosmetic layer” for that map.
These tables (which have names like “Cosmetic1”, “Cosmetic2”, etc.) are invisible to the MapInfo
Professional user. To obtain the name of a Cosmetic table, specify WIN_INFO_TABLE. Similarly, you
can obtain the name of a Layout window’s temporary table (for example, “Layout1”) by calling
WindowInfo() with the WIN_INFO_TABLE attribute.

Error Conditions

ERR_BAD_WINDOW error generated if the window_id parameter is invalid
ERR_FCN_ARG_RANGE error generated if an argument is outside of the valid range

Example

The following example opens the Statistics window if it isn’t open already.

If Not WindowInfo(WIN_STATISTICS,WIN_INFO_OPEN) Then
Open Window WIN_STATISTICS

End If

See Also

Browse statement, Graph statement, Map statement

Window type Window description

WIN_MAPPER Map window

WIN_BROWSER Browse window

WIN_LAYOUT Layout window

WIN_GRAPH Graph window

WIN_HELP The Help window

WIN_MAPBASIC The MapBasic window

WIN_MESSAGE The Message window (used with the MapBasic Print statement)

WIN_RULER The Ruler window (displays the distances measured by the Ruler tool)

WIN_INFO The Info window (displays data when the user clicks with the Info tool)

WIN_LEGEND The Theme Legend window

WIN_STATISTICS The Statistics window

WIN_MAPINFO The MapInfo application window

WIN_BUTTONPAD A ButtonPad window

WIN_TOOLBAR The Toolbar window

WIN_CART_LEGEND The Cartographic Legend window

WIN_3DMAP The 3D Map window
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 582 MB_Ref.pdf

Reference Guide Chapter 9: WinFocusChangedHandler procedure
WinFocusChangedHandler procedure
Purpose

A reserved procedure name, called automatically when the window focus changes.

Description

If a MapBasic application contains a sub procedure called WinFocusChangedHandler, MapInfo
Professional calls the sub procedure automatically, whenever the window focus changes. This
behavior applies to all MapInfo Professional window types (Browsers, Maps, etc.). Within the
WinFocusChangedHandler procedure, you can obtain the Integer window ID of the current window by
calling CommandInfo(CMD_INFO_WIN).

The WinFocusChangedHandler procedure should not use the Note statement and should not open or
close any windows. These restrictions are similar to those for other handlers, such as
SelChangedHandler.

The WinFocusChangedHandler procedure should be as short as possible, to avoid slowing system
performance.

Example

The following example shows how to enable or disable a menu item, depending on whether the active
window is a Map window.

Include ”mapbasic.def”
Include ”menu.def”
Declare Sub Main
Declare sub WinFocusChangedHandler
Sub Main

’ At this point, we could create a custom menu item
’ which should only be enabled if the current window
’ is a Map window...

End Sub

Sub WinFocusChangedHandler
Dim i_win_type As SmallInt

i_win_type=WindowInfo(CommandInfo(CMD_INFO_WIN),WIN_INFO_TYPE)

If i_win_type = WIN_MAPPER Then
’ here, we could enable a map-related menu item

Else
’ here, we could disable a map-related menu item

End If
End Sub

See Also

WinChangedHandler procedure
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 583 MB_Ref.pdf

Reference Guide Chapter 9: Write # statement
Write # statement
Purpose

Writes data to an open file.

Syntax
Write # file_num [, expr ...]

file_num is the number of an open file

expr is an expression to write to the file

Description

The Write # statement writes data to an open file. The file must have been opened in a sequential
mode which allows modification of the file (Output or Append).

The file_num parameter corresponds to the number specified in the As clause of the Open File
statement.

If the statement includes a comma-separated list of expressions, MapInfo Professional automatically
inserts commas into the file to separate the items. If the statement does not include any expressions,
MapInfo Professional writes a blank line to the file.

The Write # statement automatically encloses string expressions in quotation marks within the file. To
write text to a file without quotation marks, use the Print # statement.

Use the Input # statement to read files that were created using Write #.

See Also

Input # statement, Open File statement, Print # statement

Year() function
Purpose

Returns the year component of a date value.

Syntax
Year(date_expr)

date_expr is a date expression

Return Value

SmallInt

Description

If Set Date Window is off then the year also depends on your system clock, If your system clock says
that today is 2/2/1998, then the year function returns, 1993, if your system clock says that today is 1/4/
2004, then the year function returns 2093. MapInfo Professional uses the current century.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 584 MB_Ref.pdf

Reference Guide Chapter 9: Year() function
Examples

The following example shows how you can use the Year() function to extract only the year component
of a particular date value.

If Year(CurDate()) = 1994 Then
’ ...then it is still 1994...

End If

You can also use the Year() function within the SQL Select statement. The following Select statement
selects only particular rows from the Orders table. This example assumes that the Orders table has a
Date column, called OrderDate. The Select statement’s Where clause tells MapInfo Professional to
only select the orders from December of 1993.

Open Table ”orders”
Select * From orders

Where Month(orderdate) = 12 And Year(orderdate) = 1993

See Also

CurDate() function, Day() function, DateWindow() function, Month() function, Weekday()
function
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 585 MB_Ref.pdf

A
Character Code Table

Reference Guide Appendix A: Character Code Table
The following table summarizes the displayable portion of the Windows Latin 1 character set. The range of
characters from 32 (space) to 126 (tilde) are identical in most other character sets as well. Special characters of
interest: 9 is a tab, 10 is a line feed, 12 is a form feed and 13 is a carriage return.
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 587 MB_Ref.pdf

B
Summary of Operators
Operators act on one or more values to produce a result. Operators can
be classified by the data types they use and the type result they produce.

Sections in this Appendix:

Numeric Operators . 589
Comparison Operators. 590
Logical Operators. 590
Geographical Operators . 591
Automatic Type Conversions . 592

Reference Guide Appendix B: Summary of Operators
Numeric Operators

The following numeric operators act on two numeric values, producing a numeric result.

Two of these operators are also used in other contexts. The plus sign acting on a pair of strings
concatenates them into a new string value. The minus sign acting on a single number is a negation
operator, producing a numeric result. The ampersand also performs string concatenation.

Operator Performs Example

+ addition a + b

- subtraction a - b

* multiplication a * b

/ division a / b

\ integer divide (drop remainder) a \ b

Mod remainder from integer division a Mod b

^ exponentiation a ^ b

Operator Performs Example

- numeric negation - a

+ string concatenation a + b

& string concatenation a & b
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 589 MB_Ref.pdf

Reference Guide Appendix B: Summary of Operators
Comparison Operators

The comparison operators compare two items of the same general type to produce a logical value of
TRUE or FALSE. Although you cannot directly compare numeric data with non-numeric data (e.g.,
String expressions), a comparison expression can compare Integer, SmallInt, and Float data types.
Comparison operators are often used in conditional expressions, such as If...Then.

Logical Operators

The logical operators operate on logical values to produce a logical result of TRUE or FALSE:

Operator Returns TRUE if: Example

= a is equal to b a = b

<> a is not equal to b a <> b

< a is less than b a < b

> a is greater than b a > b

<= a is less than or equal to b a <= b

>= a is greater than or equal to b a >= b

Operator Returns TRUE if: Example

And both operands are TRUE a And b

Or either operand is TRUE a Or b

Not the operand is FALSE Not a
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 590 MB_Ref.pdf

Reference Guide Appendix B: Summary of Operators
Geographical Operators

The geographic operators act on objects to produce a logical result of TRUE or FALSE:

Operator Returns TRUE if: Example

Contains first object contains the centroid of the second
object

objectA Contains objectB

Contains Part first object contains part of the second object objectA Contains Part
objectB

Contains Entire first object contains all of the second object objectA Contains Entire
objectB

Within first object’s centroid is within the second
object

objectA Within objectB

Partly Within part of the first object is within the second
object

objectA Partly Within objectB

Entirely Within the first object is entirely inside the second
object

objectA Entirely Within
objectB

Intersects the two objects intersect at some point objectA Intersects objectB
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 591 MB_Ref.pdf

Reference Guide Appendix B: Summary of Operators
Precedence
A special type of operators are parentheses, which enclose expressions within expressions. Proper
use of parentheses can alter the order of processing in an expression, altering the default precedence.
The table below identifies the precedence of MapBasic operators. Operators which appear on a single
row have equal precedence. Operators of higher priority are processed first. Operators of the same
precedence are evaluated left to right in the expression (with the exception of exponentiation, which is
evaluated right to left).

For example, the expression 3 + 4 * 2 produces a result of 11 (multiplication is performed before
addition). The altered expression (3 + 4) * 2 produces 14 (parentheses cause the addition to be
performed first). When in doubt, use parentheses.

Automatic Type Conversions

When you create an expression involving data of different types, MapInfo performs automatic type
conversion in order to produce meaningful results. For example, if your program subtracts a Date value
from another Date value, MapBasic will calculate the result as an Integer value (representing the
number of days between the two dates).

The table below summarizes the rules that dictate MapBasic’s automatic type conversions. Within this
chart, the token Integer represents an integer value, which can be an Integer variable, a SmallInt
variable, or an Integer constant. The token Number represents a numeric expression which is not
necessarily an integer.

Precedence of MapBasic operators Operators

(Highest Priority) parenthesis

exponentiation

negation

multiplication, division, Mod, integer division

addition, subtraction

geographic operators

comparison operators, Like operator

Not

And

(Lowest Priority) Or
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 592 MB_Ref.pdf

Reference Guide Appendix B: Summary of Operators
Operator Combination of Operands Result

 + Date + Number Date

Number + Date Date

Integer + Integer Integer

Number + Number Float

Other + Other String

- Date - Number Date

Date - Date Integer

Integer - Integer Integer

Number - Number Float

* Integer * Integer Integer

Number * Number Float

/ Number / Number Float

\ Number \ Number Integer

MOD Number MOD Number Integer

^ Number ^ Number Float
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 593 MB_Ref.pdf

C
MapBasic Definitions File

Reference Guide Appendix C: MapBasic Definitions File
The following MAPBASIC.DEF file lists definitions and defaults useful when programming in MapBasic.
This file is installed in the MapBasic directory:

'===
' MapInfo version 8.0 - System defines
'---
' This file contains defines useful when programming in the MapBasic
' language. There are three versions of this file:
' MAPBASIC.DEF - MapBasic syntax
' MAPBASIC.BAS - Visual Basic syntax
' MAPBASIC.H - C/C++ syntax
'---
' The defines in this file are organized into the following sections:
' General Purpose defines:
' macros, logical constants, angle conversion, colors, string length
' ButtonPadInfo() defines
' ColumnInfo() and column type defines
' CommandInfo() and task switch defines
' DateWindow() defines
' FileAttr() and file access mode defines
' GetFolderPath$() defines
' IntersectNodes() parameters
' LabelInfo() defines
' LayerInfo(), display mode, label property, layer type, hotlink
defines
' LegendInfo() and legend orientation defines
' LegendFrameInfo() and frame type defines
' LegendStyleInfo() defines
' LocateFile$() defines
' Map3DInfo() defines
' MapperInfo(), display mode, calculation type, and clip type defines
' MenuItemInfoByID() and MenuItemInfoByHandler() defines
' ObjectGeography() defines
' ObjectInfo() and object type defines
' PrismMapInfo() defines
' SearchInfo() defines
' SelectionInfo() defines
' Server statement and function defines
' SessionInfo() defines
' Set Next Document Style defines
' StringCompare() return values
' StyleAttr() defines
' SystemInfo(), platform, and version defines
' TableInfo() and table type defines
' WindowInfo(), window type and state, and print orientation defines
' Abbreviated list of error codes
' Backward Compatibility defines
'==
' MAPBASIC.DEF is converted into MAPBASIC.H by doing the following:
' - concatenate MAPBASIC.DEF and MENU.DEF into MAPBASIC.H
' - search & replace "'" at begining of a line with "//"
' - search & replace "Define" at begining of a line with "#define"
' - delete the following sections:
' * General Purpose defines:
' Macros, Logical Constants, Angle Conversions
' * Abbreviated list of error codes
' * Backward Compatibility defines
' * Menu constants whose names have changed
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 595 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
' * Obsolete menu items
'==
' MAPBASIC.DEF is converted into MAPBASIC.BAS by doing the following:
' - concatenate MAPBASIC.DEF and MENU.DEF into MAPBASIC.BAS
' - search & replace "Define <name>" with "Global Const <name> ="
' e.g. "<Define {[!-z]+} +{[!-z]}" with "Global Const \0 = \1" with Brief
' - delete the following sections:
' * General Purpose defines:
' Macros, Logical Constants, Angle Conversions
' * Abbreviated list of error codes
' * Backward Compatibility defines
' * Menu constants whose names have changed
' * Obsolete menu items
'==
===
' General Purpose defines
'==
'---
' Macros
'--
Define CLS Print Chr$(12)

'--
' Logical constants
'--
Define TRUE 1
Define FALSE 0

'--
' Angle conversion
'--
Define DEG_2_RAD 0.01745329252
Define RAD_2_DEG 57.29577951

'--
' Colors
'--
Define BLACK 0
Define WHITE 16777215
Define RED 16711680
Define GREEN 65280
Define BLUE 255
Define CYAN 65535
Define MAGENTA 16711935
Define YELLOW 16776960

'--
'Maximum length for character string
'--\---------------------------
Define MAX_STRING_LENGTH 32767
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 596 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'==
' ButtonPadInfo() defines
'==
Define BTNPAD_INFO_FLOATING 1
Define BTNPAD_INFO_WIDTH 2
Define BTNPAD_INFO_NBTNS 3
Define BTNPAD_INFO_X 4
Define BTNPAD_INFO_Y 5
Define BTNPAD_INFO_WINID 6

'==
' ColumnInfo() defines
'==
Define COL_INFO_NAME 1
Define COL_INFO_NUM 2
Define COL_INFO_TYPE 3
Define COL_INFO_WIDTH 4
Define COL_INFO_DECPLACES 5
Define COL_INFO_INDEXED 6
Define COL_INFO_EDITABLE 7

'--
' Column type defines, returned by ColumnInfo() for COL_INFO_TYPE
'--
Define COL_TYPE_CHAR 1
Define COL_TYPE_DECIMAL 2
Define COL_TYPE_INTEGER 3
Define COL_TYPE_SMALLINT 4
Define COL_TYPE_DATE 5
Define COL_TYPE_LOGICAL 6
Define COL_TYPE_GRAPHIC 7
Define COL_TYPE_FLOAT 8
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 597 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
===
' CommandInfo() defines
===
Define CMD_INFO_X 1
Define CMD_INFO_Y 2
Define CMD_INFO_SHIFT 3
Define CMD_INFO_CTRL 4
Define CMD_INFO_X2 5
Define CMD_INFO_Y2 6
Define CMD_INFO_TOOLBTN 7
Define CMD_INFO_MENUITEM 8
Define CMD_INFO_WIN 1
Define CMD_INFO_SELTYPE 1
Define CMD_INFO_ROWID 2
Define CMD_INFO_INTERRUPT 3
Define CMD_INFO_STATUS 1
Define CMD_INFO_MSG 1000
Define CMD_INFO_DLG_OK 1
Define CMD_INFO_DLG_DBL 1
Define CMD_INFO_FIND_RC 3
Define CMD_INFO_FIND_ROWID 4
Define CMD_INFO_XCMD 1
Define CMD_INFO_CUSTOM_OBJ 1
Define CMD_INFO_TASK_SWITCH 1
Define CMD_INFO_EDIT_TABLE 1
Define CMD_INFO_EDIT_STATUS 2
Define CMD_INFO_EDIT_ASK 1
Define CMD_INFO_EDIT_SAVE 2
Define CMD_INFO_EDIT_DISCARD 3
Define CMD_INFO_HL_WINDOW_ID 17
Define CMD_INFO_HL_TABLE_NAME 18
Define CMD_INFO_HL_ROWID 19
Define CMD_INFO_HL_LAYER_ID 20
Define CMD_INFO_HL_FILE_NAME 21

'--
' Task Switches, returned by CommandInfo() for CMD_INFO_TASK_SWITCH
'--
Define SWITCHING_OUT_OF_MAPINFO 0
Define SWITCHING_INTO_MAPINFO 1

'==
' DateWindow() defines
'==
Define DATE_WIN_SESSION 1
Define DATE_WIN_CURPROG 2
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 598 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'==
' FileAttr() defines
'==
Define FILE_ATTR_MODE 1
Define FILE_ATTR_FILESIZE 2

'--
' File Access Modes, returned by FileAttr() for FILE_ATTR_MODE
'--
Define MODE_INPUT 0
Define MODE_OUTPUT 1
Define MODE_APPEND 2
Define MODE_RANDOM 3
Define MODE_BINARY 4

'==
' GetFolderPath$() defines
'==

Define FOLDER_MI_APPDATA -1
Define FOLDER_MI_LOCAL_APPDATA -2
Define FOLDER_MI_PREFERENCE -3
Define FOLDER_MI_COMMON_APPDATA -4
Define FOLDER_APPDATA 26
Define FOLDER_LOCAL_APPDATA 28
Define FOLDER_COMMON_APPDATA 35
Define FOLDER_COMMON_DOCS 46
Define FOLDER_MYDOCS 5
Define FOLDER_MYPICS 39

'==
' IntersectNodes() defines
'==
Define INCL_CROSSINGS 1
Define INCL_COMMON 6
Define INCL_ALL 7
'==
' LabelInfo() defines
'==
Define LABEL_INFO_OBJECT 1
Define LABEL_INFO_POSITION 2
Define LABEL_INFO_ANCHORX 3
Define LABEL_INFO_ANCHORY 4
Define LABEL_INFO_OFFSET 5
Define LABEL_INFO_ROWID 6
Define LABEL_INFO_TABLE 7
Define LABEL_INFO_EDIT 8
Define LABEL_INFO_EDIT_VISIBILITY 9
Define LABEL_INFO_EDIT_ANCHOR 10
Define LABEL_INFO_EDIT_OFFSET 11
Define LABEL_INFO_EDIT_FONT 12
Define LABEL_INFO_EDIT_PEN 13
Define LABEL_INFO_EDIT_TEXT 14
Define LABEL_INFO_EDIT_TEXTARROW 15
Define LABEL_INFO_EDIT_ANGLE 16
Define LABEL_INFO_EDIT_POSITION 17
Define LABEL_INFO_EDIT_TEXTLINE 18
Define LABEL_INFO_SELECT 19
Define LABEL_INFO_DRAWN 20
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 599 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'==
' LayerInfo() defines
'==
Define LAYER_INFO_NAME 1
Define LAYER_INFO_EDITABLE 2
Define LAYER_INFO_SELECTABLE 3
Define LAYER_INFO_ZOOM_LAYERED 4
Define LAYER_INFO_ZOOM_MIN 5
Define LAYER_INFO_ZOOM_MAX 6
Define LAYER_INFO_COSMETIC 7
Define LAYER_INFO_PATH 8
Define LAYER_INFO_DISPLAY 9
Define LAYER_INFO_OVR_LINE 10
Define LAYER_INFO_OVR_PEN 11
Define LAYER_INFO_OVR_BRUSH 12
Define LAYER_INFO_OVR_SYMBOL 13
Define LAYER_INFO_OVR_FONT 14
Define LAYER_INFO_LBL_EXPR 15
Define LAYER_INFO_LBL_LT 16
Define LAYER_INFO_LBL_CURFONT 17
Define LAYER_INFO_LBL_FONT 18
Define LAYER_INFO_LBL_PARALLEL 19
Define LAYER_INFO_LBL_POS 20
Define LAYER_INFO_ARROWS 21
Define LAYER_INFO_NODES 22
Define LAYER_INFO_CENTROIDS 23
Define LAYER_INFO_TYPE 24
Define LAYER_INFO_LBL_VISIBILITY 25
Define LAYER_INFO_LBL_ZOOM_MIN 26
Define LAYER_INFO_LBL_ZOOM_MAX 27
Define LAYER_INFO_LBL_AUTODISPLAY 28
Define LAYER_INFO_LBL_OVERLAP 29
Define LAYER_INFO_LBL_DUPLICATES 30
Define LAYER_INFO_LBL_OFFSET 31
Define LAYER_INFO_LBL_MAX 32
Define LAYER_INFO_LBL_PARTIALSEGS 33
Define LAYER_INFO_HOTLINK_EXPR 34
Define LAYER_INFO_HOTLINK_MODE 35
Define LAYER_INFO_HOTLINK_RELATIVE 36

'--
' Display Modes, returned by LayerInfo() for LAYER_INFO_DISPLAY
'--
Define LAYER_INFO_DISPLAY_OFF 0
Define LAYER_INFO_DISPLAY_GRAPHIC 1
Define LAYER_INFO_DISPLAY_GLOBAL 2
Define LAYER_INFO_DISPLAY_VALUE 3

'--
' Label Linetypes, returned by LayerInfo() for LAYER_INFO_LBL_LT
'--
Define LAYER_INFO_LBL_LT_NONE 0
Define LAYER_INFO_LBL_LT_SIMPLE 1
Define LAYER_INFO_LBL_LT_ARROW 2
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 600 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'--
' Label Positions, returned by LayerInfo() for LAYER_INFO_LBL_POS
'--
Define LAYER_INFO_LBL_POS_CC 0
Define LAYER_INFO_LBL_POS_TL 1
Define LAYER_INFO_LBL_POS_TC 2
Define LAYER_INFO_LBL_POS_TR 3
Define LAYER_INFO_LBL_POS_CL 4
Define LAYER_INFO_LBL_POS_CR 5
Define LAYER_INFO_LBL_POS_BL 6
Define LAYER_INFO_LBL_POS_BC 7
Define LAYER_INFO_LBL_POS_BR 8

'--
' Layer Types, returned by LayerInfo() for LAYER_INFO_TYPE
'--
Define LAYER_INFO_TYPE_NORMAL 0
Define LAYER_INFO_TYPE_COSMETIC 1
Define LAYER_INFO_TYPE_IMAGE 2
Define LAYER_INFO_TYPE_THEMATIC 3
Define LAYER_INFO_TYPE_GRID 4
Define LAYER_INFO_TYPE_WMS 5

'---
' Label visibility modes, from LayerInfo() for LAYER_INFO_LBL_VISIBILITY
'--
Define LAYER_INFO_LBL_VIS_OFF 1
Define LAYER_INFO_LBL_VIS_ZOOM 2
Define LAYER_INFO_LBL_VIS_ON 3

'--
' Hotlink activation modes, from LayerInfo() for LAYER_INFO_HOTLINK_MODE
'--
Define HOTLINK_MODE_LABEL 1
Define HOTLINK_MODE_OBJ 2
Define HOTLINK_MODE_BOTH 3

'==
' LegendInfo() defines
'==
Define LEGEND_INFO_MAP_ID 1
Define LEGEND_INFO_ORIENTATION 2
Define LEGEND_INFO_NUM_FRAMES 3
Define LEGEND_INFO_STYLE_SAMPLE_SIZE 4

'==
' Orientation codes, returned by LegendInfo() for LEGEND_INFO_ORIENTATION
'==
Define ORIENTATION_PORTRAIT 1
Define ORIENTATION_LANDSCAPE 2
Define ORIENTATION_CUSTOM 3

'--
' Style sample codes, from LegendInfo() for LEGEND_INFO_STYLE_SAMPLE_SIZE
'--
Define STYLE_SAMPLE_SIZE_SMALL 0
Define STYLE_SAMPLE_SIZE_LARGE 1
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 601 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'===
' LegendFrameInfo() defines
'==
Define FRAME_INFO_TYPE 1
Define FRAME_INFO_MAP_LAYER_ID 2
Define FRAME_INFO_REFRESHABLE 3
Define FRAME_INFO_POS_X 4
Define FRAME_INFO_POS_Y 5
Define FRAME_INFO_WIDTH 6
Define FRAME_INFO_HEIGHT 7
Define FRAME_INFO_TITLE 8
Define FRAME_INFO_TITLE_FONT 9
Define FRAME_INFO_SUBTITLE 10
Define FRAME_INFO_SUBTITLE_FONT 11
Define FRAME_INFO_BORDER_PEN 12
Define FRAME_INFO_NUM_STYLES 13
Define FRAME_INFO_VISIBLE 14
Define FRAME_INFO_COLUMN 15
Define FRAME_INFO_LABEL 16

'==
' Frame Types, returned by LegendFrameInfo() for FRAME_INFO_TYPE
'==
Define FRAME_TYPE_STYLE 1
Define FRAME_TYPE_THEME 2

'==
' LegendStyleInfo() defines
'==
Define LEGEND_STYLE_INFO_TEXT 1
Define LEGEND_STYLE_INFO_FONT 2
Define LEGEND_STYLE_INFO_OBJ 3

'==
' LocateFile$() defines
'==

Define LOCATE_PREF_FILE 0
Define LOCATE_DEF_WOR 1
Define LOCATE_CLR_FILE 2
Define LOCATE_PEN_FILE 3
Define LOCATE_FNT_FILE 4
Define LOCATE_ABB_FILE 5
Define LOCATE_PRJ_FILE 6
Define LOCATE_MNU_FILE 7
Define LOCATE_CUSTSYMB_DIR 8
Define LOCATE_THMTMPLT_DIR 9
Define LOCATE_GRAPH_DIR 10
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 602 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'==
' Map3DInfo() defines
'===
Define MAP3D_INFO_SCALE 1
Define MAP3D_INFO_RESOLUTION_X 2
Define MAP3D_INFO_RESOLUTION_Y 3
Define MAP3D_INFO_BACKGROUND 4
Define MAP3D_INFO_UNITS 5
Define MAP3D_INFO_LIGHT_X 6
Define MAP3D_INFO_LIGHT_Y 7
Define MAP3D_INFO_LIGHT_Z 8
Define MAP3D_INFO_LIGHT_COLOR 9
Define MAP3D_INFO_CAMERA_X 10
Define MAP3D_INFO_CAMERA_Y 11
Define MAP3D_INFO_CAMERA_Z 12
Define MAP3D_INFO_CAMERA_FOCAL_X 13
Define MAP3D_INFO_CAMERA_FOCAL_Y 14
Define MAP3D_INFO_CAMERA_FOCAL_Z 15
Define MAP3D_INFO_CAMERA_VU_1 16
Define MAP3D_INFO_CAMERA_VU_2 17
Define MAP3D_INFO_CAMERA_VU_3 18
Define MAP3D_INFO_CAMERA_VPN_1 19
Define MAP3D_INFO_CAMERA_VPN_2 20
Define MAP3D_INFO_CAMERA_VPN_3 21
Define MAP3D_INFO_CAMERA_CLIP_NEAR 22
Define MAP3D_INFO_CAMERA_CLIP_FAR 23

'==
' MapperInfo() defines
'==
Define MAPPER_INFO_ZOOM 1
Define MAPPER_INFO_SCALE 2
Define MAPPER_INFO_CENTERX 3
Define MAPPER_INFO_CENTERY 4
Define MAPPER_INFO_MINX 5
Define MAPPER_INFO_MINY 6
Define MAPPER_INFO_MAXX 7
Define MAPPER_INFO_MAXY 8
Define MAPPER_INFO_LAYERS 9
Define MAPPER_INFO_EDIT_LAYER 10
Define MAPPER_INFO_XYUNITS 11
Define MAPPER_INFO_DISTUNITS 12
Define MAPPER_INFO_AREAUNITS 13
Define MAPPER_INFO_SCROLLBARS 14
Define MAPPER_INFO_DISPLAY 15
Define MAPPER_INFO_NUM_THEMATIC 16
Define MAPPER_INFO_COORDSYS_CLAUSE 17
Define MAPPER_INFO_COORDSYS_NAME 18
Define MAPPER_INFO_MOVE_DUPLICATE_NODES 19
Define MAPPER_INFO_DIST_CALC_TYPE 20
Define MAPPER_INFO_DISPLAY_DMS 21
Define MAPPER_INFO_COORDSYS_CLAUSE_WITH_BOUNDS 22
Define MAPPER_INFO_CLIP_TYPE 23
Define MAPPER_INFO_CLIP_REGION 24
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 603 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'--
' Display Modes, returned by MapperInfo() for MAPPER_INFO_DISPLAY_DMS
'--
Define MAPPER_INFO_DISPLAY_DECIMAL 0
Define MAPPER_INFO_DISPLAY_DEGMINSEC 1
Define MAPPER_INFO_DISPLAY_MGRS 2

'---
' Display Modes, returned by MapperInfo() for MAPPER_INFO_DISPLAY
'---
Define MAPPER_INFO_DISPLAY_SCALE 0
Define MAPPER_INFO_DISPLAY_ZOOM 1
Define MAPPER_INFO_DISPLAY_POSITION 2

'--
' Distance Calculation Types from MapperInfo() for MAPPER_INFO_DIST_CALC_TYPE
'--
Define MAPPER_INFO_DIST_SPHERICAL 0
Define MAPPER_INFO_DIST_CARTESIAN 1

'--
' Clip Types, returned by MapperInfo() for MAPPER_INFO_CLIP_TYPE
'---
Define MAPPER_INFO_CLIP_DISPLAY_ALL 0
Define MAPPER_INFO_CLIP_DISPLAY_POLYOBJ 1
Define MAPPER_INFO_CLIP_OVERLAY 2

'==
' MenuItemInfoByID() and MenuItemInfoByHandler() defines
'==
Define MENUITEM_INFO_ENABLED 1
Define MENUITEM_INFO_CHECKED 2
Define MENUITEM_INFO_CHECKABLE 3
Define MENUITEM_INFO_SHOWHIDEABLE 4
Define MENUITEM_INFO_ACCELERATOR 5
Define MENUITEM_INFO_TEXT 6
Define MENUITEM_INFO_HELPMSG 7
Define MENUITEM_INFO_HANDLER 8
Define MENUITEM_INFO_ID 9
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 604 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'==
' ObjectGeography() defines
'==
Define OBJ_GEO_MINX 1
Define OBJ_GEO_LINEBEGX 1
Define OBJ_GEO_POINTX 1
Define OBJ_GEO_MINY 2
Define OBJ_GEO_LINEBEGY 2
Define OBJ_GEO_POINTY 2
Define OBJ_GEO_MAXX 3
Define OBJ_GEO_LINEENDX 3
Define OBJ_GEO_MAXY 4
Define OBJ_GEO_LINEENDY 4
Define OBJ_GEO_ARCBEGANGLE 5
Define OBJ_GEO_TEXTLINEX 5
Define OBJ_GEO_ROUNDRADIUS 5
Define OBJ_GEO_CENTROID 5
Define OBJ_GEO_ARCENDANGLE 6
Define OBJ_GEO_TEXTLINEY 6
Define OBJ_GEO_TEXTANGLE 7
Define OBJ_GEO_POINTZ 8
Define OBJ_GEO_POINTM 9

'==
' ObjectInfo() defines
'==
Define OBJ_INFO_TYPE 1
Define OBJ_INFO_PEN 2
Define OBJ_INFO_SYMBOL 2
Define OBJ_INFO_TEXTFONT 2
Define OBJ_INFO_BRUSH 3
Define OBJ_INFO_NPNTS 20
Define OBJ_INFO_TEXTSTRING 3
Define OBJ_INFO_SMOOTH 4
Define OBJ_INFO_FRAMEWIN 4
Define OBJ_INFO_NPOLYGONS 21
Define OBJ_INFO_TEXTSPACING 4
Define OBJ_INFO_TEXTJUSTIFY 5
Define OBJ_INFO_FRAMETITLE 6
Define OBJ_INFO_TEXTARROW 6
Define OBJ_INFO_FILLFRAME 7
Define OBJ_INFO_REGION 8
Define OBJ_INFO_PLINE 9
Define OBJ_INFO_MPOINT 10
Define OBJ_INFO_NONEMPTY 11
Define OBJ_INFO_Z_UNIT_SET 12
Define OBJ_INFO_Z_UNIT 13
Define OBJ_INFO_HAS_Z 14
Define OBJ_INFO_HAS_M 15
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 605 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'--
' Object types, returned by ObjectInfo() for OBJ_INFO_TYPE
'--
Define OBJ_TYPE_ARC 1
Define OBJ_TYPE_ELLIPSE 2
Define OBJ_TYPE_LINE 3
Define OBJ_TYPE_PLINE 4
Define OBJ_TYPE_POINT 5
Define OBJ_TYPE_FRAME 6
Define OBJ_TYPE_REGION 7
Define OBJ_TYPE_RECT 8
Define OBJ_TYPE_ROUNDRECT 9
Define OBJ_TYPE_TEXT 10
Define OBJ_TYPE_MPOINT 11
Define OBJ_TYPE_COLLECTION 12

'==
' PrismMapInfo() defines
'==

Define PRISMMAP_INFO_SCALE 1
Define PRISMMAP_INFO_BACKGROUND 4
Define PRISMMAP_INFO_LIGHT_X 6
Define PRISMMAP_INFO_LIGHT_Y 7
Define PRISMMAP_INFO_LIGHT_Z 8
Define PRISMMAP_INFO_LIGHT_COLOR 9
Define PRISMMAP_INFO_CAMERA_X 10
Define PRISMMAP_INFO_CAMERA_Y 11
Define PRISMMAP_INFO_CAMERA_Z 12
Define PRISMMAP_INFO_CAMERA_FOCAL_X 13
Define PRISMMAP_INFO_CAMERA_FOCAL_Y 14
Define PRISMMAP_INFO_CAMERA_FOCAL_Z 15
Define PRISMMAP_INFO_CAMERA_VU_1 16
Define PRISMMAP_INFO_CAMERA_VU_2 17
Define PRISMMAP_INFO_CAMERA_VU_3 18
Define PRISMMAP_INFO_CAMERA_VPN_1 19
Define PRISMMAP_INFO_CAMERA_VPN_2 20
Define PRISMMAP_INFO_CAMERA_VPN_3 21
Define PRISMMAP_INFO_CAMERA_CLIP_NEAR 22
Define PRISMMAP_INFO_CAMERA_CLIP_FAR 23
Define PRISMMAP_INFO_INFOTIP_EXPR 24

'==
' SearchInfo() defines
'===
Define SEARCH_INFO_TABLE 1
Define SEARCH_INFO_ROW 2

'===
' SelectionInfo() defines
'===
Define SEL_INFO_TABLENAME 1
Define SEL_INFO_SELNAME 2
Define SEL_INFO_NROWS 3
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 606 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'==
' Server statement and function defines
'==
'--
' Return Codes
'--
Define SRV_SUCCESS 0
Define SRV_SUCCESS_WITH_INFO 1
Define SRV_ERROR -1
Define SRV_INVALID_HANDLE -2
Define SRV_NEED_DATA 99
Define SRV_NO_MORE_DATA 100

'--
' Special values for the status associated with a fetched value
'--
Define SRV_NULL_DATA -1
Define SRV_TRUNCATED_DATA -2

'--
' Server_ColumnInfo() defines
'--
Define SRV_COL_INFO_NAME 1
Define SRV_COL_INFO_TYPE 2
Define SRV_COL_INFO_WIDTH 3
Define SRV_COL_INFO_PRECISION 4
Define SRV_COL_INFO_SCALE 5
Define SRV_COL_INFO_VALUE 6
Define SRV_COL_INFO_STATUS 7
Define SRV_COL_INFO_ALIAS 8

'--
' Column types, returned by Server_ColumnInfo() for SRV_COL_INFO_TYPE
'--
Define SRV_COL_TYPE_NONE 0
Define SRV_COL_TYPE_CHAR 1
Define SRV_COL_TYPE_DECIMAL 2
Define SRV_COL_TYPE_INTEGER 3
Define SRV_COL_TYPE_SMALLINT 4
Define SRV_COL_TYPE_DATE 5
Define SRV_COL_TYPE_LOGICAL 6
Define SRV_COL_TYPE_FLOAT 8
Define SRV_COL_TYPE_FIXED_LEN_STRING 16
Define SRV_COL_TYPE_BIN_STRING 17

'--
' Server_DriverInfo() Attr defines
'--
Define SRV_DRV_INFO_NAME 1
Define SRV_DRV_INFO_NAME_LIST 2
Define SRV_DRV_DATA_SOURCE 3
'--
' Server_ConnectInfo() Attr defines
'--
Define SRV_CONNECT_INFO_DRIVER_NAME 1
Define SRV_CONNECT_INFO_DB_NAME 2
Define SRV_CONNECT_INFO_SQL_USER_ID 3
Define SRV_CONNECT_INFO_DS_NAME 4
Define SRV_CONNECT_INFO_QUOTE_CHAR 5
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 607 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'--
' Fetch Directions (used by ServerFetch function in some code libraries)
'--
Define SRV_FETCH_NEXT -1
Define SRV_FETCH_PREV -2
Define SRV_FETCH_FIRST -3
Define SRV_FETCH_LAST -4

'--
'Oracle workspace manager
'--
Define SRV_WM_HIST_NONE 0
Define SRV_WM_HIST_OVERWRITE 1
Define SRV_WM_HIST_NO_OVERWRITE 2

'===
' SessionInfo() defines
'==

Define SESSION_INFO_COORDSYS_CLAUSE 1
Define SESSION_INFO_DISTANCE_UNITS 2
Define SESSION_INFO_AREA_UNITS 3
Define SESSION_INFO_PAPER_UNITS 4

'===
' Set Next Document Style defines
'===
Define WIN_STYLE_STANDARD 0
Define WIN_STYLE_CHILD 1
Define WIN_STYLE_POPUP_FULLCAPTION 2
Define WIN_STYLE_POPUP 3

'===
' StringCompare() defines
'===
Define STR_LT -1
Define STR_GT 1
Define STR_EQ 0
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 608 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'===
' StyleAttr() defines
'===
Define PEN_WIDTH 1
Define PEN_PATTERN 2
Define PEN_COLOR 4
Define PEN_INDEX 5
Define PEN_INTERLEAVED 6
Define BRUSH_PATTERN 1
Define BRUSH_FORECOLOR 2
Define BRUSH_BACKCOLOR 3
Define FONT_NAME 1
Define FONT_STYLE 2
Define FONT_POINTSIZE 3
Define FONT_FORECOLOR 4
Define FONT_BACKCOLOR 5
Define SYMBOL_CODE 1
Define SYMBOL_COLOR 2
Define SYMBOL_POINTSIZE 3
Define SYMBOL_ANGLE 4
Define SYMBOL_FONT_NAME 5
Define SYMBOL_FONT_STYLE 6
Define SYMBOL_KIND 7
Define SYMBOL_CUSTOM_NAME 8
Define SYMBOL_CUSTOM_STYLE 9

'---
' Symbol kinds returned by StyleAttr() for SYMBOL_KIND
'---
Define SYMBOL_KIND_VECTOR 1
Define SYMBOL_KIND_FONT 2
Define SYMBOL_KIND_CUSTOM 3

'==
' SystemInfo() defines
'==
Define SYS_INFO_PLATFORM 1
Define SYS_INFO_APPVERSION 2
Define SYS_INFO_MIVERSION 3
Define SYS_INFO_RUNTIME 4
Define SYS_INFO_CHARSET 5
Define SYS_INFO_COPYPROTECTED 6
Define SYS_INFO_APPLICATIONWND 7
Define SYS_INFO_DDESTATUS 8
Define SYS_INFO_MAPINFOWND 9
Define SYS_INFO_NUMBER_FORMAT 10
Define SYS_INFO_DATE_FORMAT 11
Define SYS_INFO_DIG_INSTALLED 12
Define SYS_INFO_DIG_MODE 13
Define SYS_INFO_MIPLATFORM 14
Define SYS_INFO_MDICLIENTWND 15
Define SYS_INFO_PRODUCTLEVEL 16
Define SYS_INFO_APPIDISPATCH 17
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 609 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'--
' Platform, returned by SystemInfo() for SYS_INFO_PLATFORM
'---
Define PLATFORM_SPECIAL 0
Define PLATFORM_WIN 1
Define PLATFORM_MAC 2
Define PLATFORM_MOTIF 3
Define PLATFORM_X11 4
Define PLATFORM_XOL 5

'--
' Version, returned by SystemInfo() for SYS_INFO_MIPLATFORM
'--
Define MIPLATFORM_SPECIAL 0
Define MIPLATFORM_WIN16 1
Define MIPLATFORM_WIN32 2
Define MIPLATFORM_POWERMAC 3
Define MIPLATFORM_MAC68K 4
Define MIPLATFORM_HP 5
Define MIPLATFORM_SUN 6

'===
' TableInfo() defines
'===
Define TAB_INFO_NAME 1
Define TAB_INFO_NUM 2
Define TAB_INFO_TYPE 3
Define TAB_INFO_NCOLS 4
Define TAB_INFO_MAPPABLE 5
Define TAB_INFO_READONLY 6
Define TAB_INFO_TEMP 7
Define TAB_INFO_NROWS 8
Define TAB_INFO_EDITED 9
Define TAB_INFO_FASTEDIT 10
Define TAB_INFO_UNDO 11
Define TAB_INFO_MAPPABLE_TABLE 12
Define TAB_INFO_USERMAP 13
Define TAB_INFO_USERBROWSE 14
Define TAB_INFO_USERCLOSE 15
Define TAB_INFO_USEREDITABLE 16
Define TAB_INFO_USERREMOVEMAP 17
Define TAB_INFO_USERDISPLAYMAP 18
Define TAB_INFO_TABFILE 19
Define TAB_INFO_MINX 20
Define TAB_INFO_MINY 21
Define TAB_INFO_MAXX 22
Define TAB_INFO_MAXY 23
Define TAB_INFO_SEAMLESS 24
Define TAB_INFO_COORDSYS_MINX 25
Define TAB_INFO_COORDSYS_MINY 26
Define TAB_INFO_COORDSYS_MAXX 27
Define TAB_INFO_COORDSYS_MAXY 28
Define TAB_INFO_COORDSYS_CLAUSE 29
Define TAB_INFO_COORDSYS_NAME 30
Define TAB_INFO_NREFS 31
Define TAB_INFO_SUPPORT_MZ 32
Define TAB_INFO_Z_UNIT_SET 33
Define TAB_INFO_Z_UNIT 34
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 610 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'--
' Table type defines, returned by TableInfo() for TAB_INFO_TYPE
'--
Define TAB_TYPE_BASE 1
Define TAB_TYPE_RESULT 2
Define TAB_TYPE_VIEW 3
Define TAB_TYPE_IMAGE 4
Define TAB_TYPE_LINKED 5
Define TAB_TYPE_WMS 6
Define TAB_TYPE_WFS 7

'==
' WindowInfo() defines
'===
Define WIN_INFO_NAME 1
Define WIN_INFO_TYPE 3
Define WIN_INFO_WIDTH 4
Define WIN_INFO_HEIGHT 5
Define WIN_INFO_X 6
Define WIN_INFO_Y 7
Define WIN_INFO_TOPMOST 8
Define WIN_INFO_STATE 9
Define WIN_INFO_TABLE 10
Define WIN_INFO_LEGENDS_MAP 10
Define WIN_INFO_OPEN 11
Define WIN_INFO_WND 12
Define WIN_INFO_WINDOWID 13
Define WIN_INFO_WORKSPACE 14
Define WIN_INFO_CLONEWINDOW 15
Define WIN_INFO_SYSMENUCLOSE 16
Define WIN_INFO_AUTOSCROLL 17
Define WIN_INFO_SMARTPAN 18
Define WIN_INFO_SNAPMODE 19
Define WIN_INFO_SNAPTHRESHOLD 20
Define WIN_INFO_PRINTER_NAME 21
Define WIN_INFO_PRINTER_ORIENT 22
Define WIN_INFO_PRINTER_COPIES 23
Define WIN_INFO_PRINTER_PAPERSIZE 24
Define WIN_INFO_PRINTER_LEFTMARGIN 25
Define WIN_INFO_PRINTER_RIGHTMARGIN 26
Define WIN_INFO_PRINTER_TOPMARGIN 27
Define WIN_INFO_PRINTER_BOTTOMMARGIN 28
Define WIN_INFO_PRINTER_BORDER 29
Define WIN_INFO_PRINTER_TRUECOLOR 30
Define WIN_INFO_PRINTER_DITHER 31
Define WIN_INFO_PRINTER_METHOD 32
Define WIN_INFO_PRINTER_TRANSPRASTER 33
Define WIN_INFO_PRINTER_TRANSPVECTOR 34
Define WIN_INFO_EXPORT_BORDER 35
Define WIN_INFO_EXPORT_TRUECOLOR 36
Define WIN_INFO_EXPORT_DITHER 37
Define WIN_INFO_EXPORT_TRANSPRASTER 38
Define WIN_INFO_EXPORT_TRANSPVECTOR 39
Define WIN_INFO_PRINTER_SCALE_PATTERNS 40
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 611 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'--
' Window types, returned by WindowInfo() for WIN_INFO_TYPE
'---
Define WIN_MAPPER 1
Define WIN_BROWSER 2
Define WIN_LAYOUT 3
Define WIN_GRAPH 4
Define WIN_BUTTONPAD 19
Define WIN_TOOLBAR 25
Define WIN_CART_LEGEND 27
Define WIN_3DMAP 28
Define WIN_HELP 1001
Define WIN_MAPBASIC 1002
Define WIN_MESSAGE 1003
Define WIN_RULER 1007
Define WIN_INFO 1008
Define WIN_LEGEND 1009
Define WIN_STATISTICS 1010
Define WIN_MAPINFO 1011
'--
' Version 2 window types no longer used in version 3 or later versions
'--
Define WIN_TOOLPICKER 1004
Define WIN_PENPICKER 1005
Define WIN_SYMBOLPICKER 1006

'---
' Window states, returned by WindowInfo() for WIN_INFO_STATE
'---
Define WIN_STATE_NORMAL 0
Define WIN_STATE_MINIMIZED 1
Define WIN_STATE_MAXIMIZED 2

'---
' Print orientation, returned by WindowInfo() for WIN_INFO_PRINTER_ORIENT
'---
Define WIN_PRINTER_PORTRAIT 1
Define WIN_PRINTER_LANDSCAPE 2
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 612 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
'===
' Abbreviated list of error codes
'
' The following are error codes described in the Reference manual. All
' other errors are listed in ERRORS.DOC.
'===
Define ERR_BAD_WINDOW 590
Define ERR_BAD_WINDOW_NUM 648
Define ERR_CANT_INITIATE_LINK 698
Define ERR_CMD_NOT_SUPPORTED 642
Define ERR_FCN_ARG_RANGE 644
Define ERR_FCN_INVALID_FMT 643
Define ERR_FCN_OBJ_FETCH_FAILED 650
Define ERR_FILEMGR_NOTOPEN 366
Define ERR_FP_MATH_LIB_DOMAIN 911
Define ERR_FP_MATH_LIB_RANGE 912
Define ERR_INVALID_CHANNEL 696
Define ERR_INVALID_READ_CONTROL 842
Define ERR_INVALID_TRIG_CONTROL 843
Define ERR_NO_FIELD 319
Define ERR_NO_RESPONSE_FROM_APP 697
Define ERR_PROCESS_FAILED_IN_APP 699
Define ERR_NULL_SELECTION 589
Define ERR_TABLE_NOT_FOUND 405
Define ERR_WANT_MAPPER_WIN 313
Define ERR_CANT_ACCESS_FILE 825

'==
' Backward Compatibility defines
'
' These defines are provided so that existing MapBasic code will continue
' to compile & run correctly. Please use the new define (on the right)
' when writing new code.
'===
Define OBJ_ARC OBJ_TYPE_ARC
Define OBJ_ELLIPSE OBJ_TYPE_ELLIPSE
Define OBJ_LINE OBJ_TYPE_LINE
Define OBJ_PLINE OBJ_TYPE_PLINE
Define OBJ_POINT OBJ_TYPE_POINT
Define OBJ_FRAME OBJ_TYPE_FRAME
Define OBJ_REGION OBJ_TYPE_REGION
Define OBJ_RECT OBJ_TYPE_RECT
Define OBJ_ROUNDRECT OBJ_TYPE_ROUNDRECT
Define OBJ_TEXT OBJ_TYPE_TEXT

'==
' end of MAPBASIC.DEF
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 613 MB_Ref.pdf

Reference Guide Appendix C: MapBasic Definitions File
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 614 MB_Ref.pdf

Index

Symbols
! (exclamation point) in menus 160
(backslash)

in menus 159
integer division 589

& (ampersand)
dialog hotkeys 210
finding street intersections 247–249
hexadecimal numbers 572
menu hotkeys 161
string concatenation 589

((open parenthesis) in menus 160
* (asterisk)

fixed length strings 217
multiplication 589

+ (plus) 589
/ (slash)

division 589
in menus 159, 161

< (less than) character
in menus 159

^ (caret)
exponentiation 589
show/hide menu text 160

Numerics
3D Maps

changing window settings 506–507
creating 157–158
prism maps 173–174
reading window settings 309–311

A
Absolute value

Abs() function 47
Accelerator keys

in dialogs 210
in menus 161

Access databases
connection string attributes 441

Acos() function 47
Add Cartographic Frame statement 48–50
Add Column statement 50–54
Add Map statement 54–56

Adding
animation layers 55–56
buttons 57–61
columns to a table 50–54, 79–80
map layers 54–56
menu items 67–69
nodes 76, 354, 368

Addresses, finding 247–249
Aggregate functions 429–430
Alias variables 217
All-caps text 252–253
Alter Button statement 56
Alter ButtonPad statement 57–61
Alter Cartographic Frame statement 61
Alter Control statement 62–64
Alter MapInfoDialog statement 64–66
Alter Menu Bar statement 70–71
Alter Menu Item statement 71–73
Alter Menu statement 67–69
Alter Object statement 73–78
Alter Table statement 79–80
Animation layers

adding 55–56
removing 401

ApplicationDirectory$() function 80
Arc objects

creating 137
determining length of 338
modifying 73–76
querying the pen style 334–337
storing in a new row 278–279
storing in an existing row 570

Area
spherical calculation 537

Area units of measure 470
Area() function 81
AreaOverlap() function 82
Arithmetic functions. See Math functions
Array variables

declaring 218
determining size of array 567
resizing 390–391

Asc() function 82
ASCII files

exporting 235–237
using as tables 392–396
See also File input/output

Asin() function 83

Reference Guide Index
Ask() function 83
Assigning local storage

Server Bind Column 436–437
Atn() function 84
AutoCAD files

importing 273–277
AutoLabel statement 85
Automatic type conversions 592
Automation

handling button event 139
handling menu event 161

Autoscroll feature
list of affected draw modes 60
reading current setting 578
turning on or off 524
WinChangedHandler 575

Avg() aggregate function 429–430

B
Background colors

Brush clause 88–89
Font clause 252–253
MakeBrush() function 303
MakeFont() function 305

Bar charts
in graph windows 268–269
in thematic maps 535

Beep statement 86
Beginning a transaction

Server Begin Transaction 435
Binary file i/o

closing files 107
opening files 363
reading data 263–264
writing data 387

BMP files, creating 417–419
Bold text 252–253
Boundaries. See Region objects
Bounding rectangle 316
Branching

Do Case...End Case statement 221–223
If...Then statement 270–272

Breakpoints (debugging) 544
Browse statement 86–87
Browser windows

closing 109
determining the name of the table 579
modifying 472, 519–525
opening 86–87
restricting which columns appear 403

Brush styles
Brush clause defined 87–89
creating 303
modifying an object’s style 74
querying an object’s style 334–337
querying parts of 549–551
reading current style 190
setting current style 515–516

Brush variables 217
BrushPicker controls 127
Buffer regions

Buffer() function 89
CartesianBuffer() function 94
Create Object 168
Create Object statement 166–169

Button controls (in dialogs) 120
ButtonPadInfo() function 90
ButtonPads

adding/removing a button 57–61, 563–564
creating a new pad 138–140
docked vs. floating 59, 139
drawing modes 60–61
enabling/disabling a button 56
querying current settings 90
resetting to defaults 140
responding to user action 115
selecting/deselecting a button 56
setting which button is active 412
showing/hiding a pad 57–61

Byte order in file i/o 364

C
Call statement 91–93
Calling clause 139, 161
Callout lines

map labels 502
text objects 188

CancelButton controls 120
Capitalization

lower case 293
mixed case 386
upper case 567

CartesianArea() function 93
CartesianBuffer() function 94
CartesianDistance() function 95
CartesianObjectLen() function 97
CartesianOffset() function 98
CartesianOffsetXY() function 99
CartesianPerimeter() function 100
Cartographic legends

adding a frame 48–50
changing a frame 61
controlling settings 472
creating 141–144
removing a frame 400

Case statement. See Do Case...End Case statement
Case, converting

LCase$() function 293
Proper$() function 386
UCase$() function 567

Centroid
setting a region’s 77

Centroid() function 101
Centroids, displaying 501
CentroidX() function 101
CentroidY() function 102
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 616 MB_Ref.pdf

Reference Guide Index
Character codes
character sets 103–105
converting codes to strings 106
converting strings to codes 82
listing 586

CharSet clause 103–105
Checkable menu items, creating 160
CheckBox controls 121
Checking

dialog check boxes (custom) 62–64
dialog check boxes (standard) 64–66
menu items 71–73

ChooseProjection$() function 105
Chr$() function 106
Circle objects

creating 144–145, 148
determining area of 81
determining perimeter of 375
modifying 73–76
querying the pen or brush style 334–337
storing in a new row 278–279
storing in an existing row 570

Cleaning objects 343
Clicking and dragging. See ButtonPads
Clipping a map 498
Cloning a map 412
Close All statement 107
Close File statement 107
Close Table statement 108
Close Window statement 109
Closing processing

Server Close 437
Collection objects

combining 111
creating 146
resetting objects within collection 77–78

Color values
RGB 404
See also Brush, Font, Pen, Symbol

ColumnInfo() function 110–111
Columns in a table

adding 50–54, 79–80
deleting 79–80
determining column information 110–111, 330
dynamic columns 54
indexing 153

Combining objects
Combine() function 111
Create Object statement 166–169
Objects Clean statement 343
Objects Combine statement 344–346

CommandInfo() function 112–116
Commit Table statement 116–119
Comparing strings 297, 547–548
Comparison operators 590
Compiler directives

Define statement 205
Include statement 277

Concatenating strings
& operator 589
+ operator 589

Conditional execution
Do Case...End Case statement 221–223
If...Then statement 270–272

Conflict Resolution dialog 118
Connect option

DLG=1 440
Connect_string

defined 440
Connecting to a data source

Server_Connect 440–447
Connection number

returning 440–447
Continue statement 120
Control DocumentWindow clause 122
Control key

detecting control-click 115
entering line feeds in EditText boxes 124
selecting multiple list items 125–127

Control panels
date formatting 480–481
number formatting 480–481

Controls in dialogs
BrushPicker 127
Button 120
CancelButton 120
CheckBox 121
EditText 124
FontPicker 127
GroupBox 125
ListBox 125–127
MultiListBox 125–127
OKButton 120
PenPicker 127
RadioGroup 129–130
StaticText 130
SymbolPicker 127

Converting
character codes to strings 106
numbers to dates 329
numbers to strings 545
objects to polylines 131
objects to regions 131
strings to character codes 82
strings to dates 548–549
strings to numbers 572
text to lower case 293
text to mixed case 386
text to upper case 567
two-digit input into four-digit years 475

ConvertToPline() function 131
ConvertToRegion() function 131
Convex hull objects

Create Object 168
ConvexHull() function 132
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 617 MB_Ref.pdf

Reference Guide Index
CoordSys clause
changing a table’s CoordSys 116–119
changing a window’s projection 499
querying a table’s CoordSys 558
querying a window’s CoordSys 312
setting the current MapBasic CoordSys 474
specifying a coordinate system 133–136

Copying
an object offset from source 353–354
object offset 359–360

Copying a projection
from a table 133–136
from a window 133–136

Copying files 415
copying object

offset by distance 540
offset by XY values 541

copying objects
offset by specified distance 98
offset by XY values 99

Copying tables 116–119
Copyright notice

creating 418
Cos() function 136
Cosmetic layer, accessing as a table 579
Count() aggregate function 429–430
Create Arc statement 137
Create ButtonPad statement 138–140
Create ButtonPads As Default statement 140
Create Cartographic Legend statement 141–144
Create Collection statement 146
Create Cutter statement 147
Create Ellipse statement 148
Create Frame statement 149–150
Create Grid statement 150–152
Create Index statement 153
Create Legend statement 153
Create Line statement 155
Create Map statement 156
Create Map3D statement 157–158
Create Menu Bar statement 163–164
Create Menu statement 158–163
Create Multipoint statement 165–166
Create Object statement 166–169
Create Pline statement 170
Create Point statement 172
Create PrismMap statement 173–174
Create Ranges statement 175–177
Create Rect statement 177
Create Redistricter statement 178
Create Region statement 179–181
Create Report From Table statement 181
Create RoundRect statement 182
Create Styles statement 183–184
Create Table statement 184
Create Text statement 188
CreateCircle() function 144–145
CreateLine() function 154
CreatePoint() function 171–172

CreateText() function 186–187
Cross-reference. See cross-reference in online Help
Crystal Reports

creating 181
loading 364

CurDate() function 189
CurrentBorder Pen() 189
CurrentBrush() function 190
CurrentFont() function 190
CurrentLinePen() function 191
CurrentPen() function 191
CurrentSymbol() function 192
Cursor coordinates, displaying 499
Cursor shapes 59
Cursor, position in table

end-of-table condition 229
positioning the row cursor 241–242

Custom symbols
Reload Symbols statement 397
syntax 553–555

Cutter objects
creating 147

D
Data aggregation

combining objects 343–346
filling a column with data aggregated from another table 52–

54
grouping rows 429–430

Data disaggregation
erasing part of an object 349–352
splitting objects 357–358

Data structures 566
Databases, using as tables 392–396
Date functions

converting numbers to dates 329
converting strings to dates 480–481, 548–549
current date 189
date window setting 193
extracting day-of-month 193
extracting day-of-week 573
extracting the month 324
extracting the year 584
formatting based on locale 480–481

Date variables 217
DateWindow() function 193
Day() function 193
DBF files, exporting 235–237
DDE, acting as client

closing a conversation 201
executing a command 194
initiating a conversation 195–198
reading data from the server 199–200
sending data to the server 198

DDE, acting as server
handling execute event 398
handling peek request 399
retrieving execute string 114
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 618 MB_Ref.pdf

Reference Guide Index
DDEExecute statement 194
DDEInitiate function 195–198
DDEPoke statement 198
DDERequest$() function 199–200
DDETerminate statement 201
DDETerminateAll statement 201
Debugging

Continue statement 120
Stop statement 544

Decimal separators 206, 259, 480–481
Decision-making

Do Case...End Case statement 221–223
If...Then statement 270–272

Declare Function statement 202–203
Declare Sub statement 204–205
Define statement 205
Definitions file 594
DeformatNumber$() function 206
Delaying when user drags mouse 479
Delete statement 207
Deleting

all objects from a table 225
columns from a table 79–80
files 282
nodes from an object 73
rows or objects 207
tables 226

Dialog Preserve statement 214
Dialog Remove statement 215
Dialog statement 208–214
Dialogs, custom

accelerator keys 210
creating 208–214
determining ID of a control 565
determining if user clicked OK 113
determining if user double-clicked 113
modal vs. modeless 209
modifying 62–64
preserving after user clicks OK 214
reading user’s input 210, 388–390
sizes of dialogs and controls 210
tab order 211
terminating 210, 215

Dialogs, standard
altering MapInfo dialogs 64–66
asking OK/Cancel question 83
opening a file 244–245
percent complete 383–385
saving a file 246
simple messages 328
suppressing progress bars 511

Digitizer setup 476–477
Digitizer status 556
Dim statement 216–220
Directory names, extracting from a file name 369

user’s home directory 270
user’s Windows directory 270
where application is installed 80
where MapInfo is installed 383

Disabling
ButtonPad buttons 56
dialog controls (custom) 62–64
dialog controls (standard) 64–66
handler procedures 487
menu items 71–73
progress bar dialogs 511
shortcut menus 163
system menu’s Close command 523

Discarding changes
to a local table 406
to a remote server 463

Distance
spherical calculation 538

Distance units of measure 477
Distance() function 220
DLG=1 connect option 440
DLLs

declaring as functions 203
declaring as procedures 204–205

Do Case...End Case statement 221–223
Do...Loop statement 223–224
Dockable ButtonPads

docking after creation 59
docking at creation 139
querying current status 90

Document conventions 34, 46
DOS commands, executing 414
Dot density thematic maps 532–533
Double byte character sets (DBCS)

extracting part of a DBCS string 323
Double-clicking in dialogs 113, 126
Dragging with the mouse

time threshold 479
turning off autoscroll 524

Drawing modes 60
Drawing objects. See Objects, creating
Drawing tools, custom 57–61
Drop Index statement 224
Drop Map statement 225
Drop Table statement 226
Duplicating a map 412
DXF files

exporting 235–237
importing 273–277

Dynamic columns 54
Dynamic Link Libraries. See DLLs

E
Editable map layers 313, 500
Editing an object. See specific object type

Arc, Ellipse, Frame, Line, Point, Polyline, Rectangle, Re-
gion, Rounded Rectangle, Text

Edits
determining if there are unsaved edits 557–560
discarding 406
saving 116–119

EditText controls 124
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 619 MB_Ref.pdf

Reference Guide Index
Elapsed time 562
Ellipse objects

Cartesian area of 93
Cartesian perimeter of 100
creating 144–145, 148
determining area of 81
determining perimeter of 375
modifying 73–76
querying pen or brush style 334–337
storing in a new row 278–279
storing in an existing row 570

Enabling
ButtonPad buttons 56
dialog controls 62–64
menu items 71–73

End MapInfo statement 226
End Program statement 227
EndHandler procedure 228
Enlarging arrays 390–391
EOF() function 228
EOT() function 229, 242
Erase() function 229
Erasing

entire objects 207
files 282
part of an object 229, 349–352
tables 226

Err() function 230
Error handling

determining error code 230
determining error message 232
enabling an error handler 360–362
generating an error 231
returning from an error handler 403

Error statement 231
Error$() function 232
Escape key

cancelling draw operations 58–61
dismissing a dialog 113
interrupting selection 425

Events, handling
application terminated 228
Automation method used 398
execute string received 114, 398
map window changed 114, 575
MapInfo got or lost focus 114, 255
peek request received 399
selection changed 114
user clicked with custom tool 115, 563–564
user double-clicked in a dialog 113
window closed 114, 576
window focus changed 583
See also Error handling

Excel files, opening 392–396
Executing

interpreted strings 410–412
menu commands 412
Run Application statement 410
Run Program statement 414

Executing an SQL string, Server_Execute() 455
Execution speed

animation layers 55–56
screen updates 479
table editing 516–518

Exit Do statement 232
Exit For statement 233
Exit Function statement 233
Exit Sub statement 234
Exiting from MapInfo 226
Exp() function 234
Expanded text 252–253
Exponentiation 234
Export statement 235–237
Extents of entire table 558
External functions 203
Extracting part of a string

Left$() function 293
Mid$() function 323
MidByte$() function 323
Right$() function 405

ExtractNodes() function 238

F
Fetch statement 241–242
Fields. See Columns
File input/output

closing a file 107
determining if file exists 243
end-of-file condition 228
file attributes, reading 243
length of file 300
opening a file 362–364
reading current position 423
reading data in binary mode 263–264
reading data in random mode 263–264
reading data in sequential mode 277, 298
setting current position 424
writing data in binary mode 387
writing data in random mode 387
writing data in sequential mode 378, 584

File names
determining full file spec 565
determining temporary name 560
extracting directory from 369
extracting from full file spec 370

File sharing conflicts 480
FileAttr() function 243
FileExists() function 243
FileOpenDlg() function 244–245
Files

copying 415
deleting 282
determining if file exists 243
importing 273–277
length 300
locating 299
renaming 402
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 620 MB_Ref.pdf

Reference Guide Index
FileSaveAsDlg() function 246
Fill styles. See Brush styles
Filtering data 427–429
Find statement 247–249
Find Using statement 250–251
Finding

a substring within a string 279
an address in a map 247–249
an intersection of two streets 247–249
objects from map coordinates 419–423

Fix() function 251
Fixed length strings 217
Floating point variables 217
Flow control

exiting a Do loop 232
exiting a For loop 233
exiting a function 233
exiting a procedure 234
exiting an application 227
exiting MapInfo 226
halting another application 561
unconditional jump 267

Focus within a dialog 63
Focus, active window changes 583
Focus, getting or losing 114, 255
Folder names. See Directory names
Font styles

creating 305
Font clause defined 252–253
modifying an object’s style 74
querying an object’s style 334–337
querying parts of 549–551
reading current style 190
setting current style 515–516

Font variables 217
FontPicker controls 127
For...Next statement 254–255
ForegroundTaskSwitchHandler procedure 255
Foreign character sets 103–105
Format$() function 256–258
FormatDate$ function 258
FormatNumber$() function 259
Frame objects

creating 149–150
inserting into a layout 278–279
modifying 73–76, 570
querying the pen or brush style 334–337

Frames, cartographic legend
adding a frame 48–50
controlling settings 472
creating 141–144
modifying 61
removing 400

FrontWindow() function 260
Function...End Function statement 260–262
Functions, creating

Declare Function statement 202–203
Exit Function statement 233
Function...End Function statement 260–262

G
Gaps

checking in regions 342–343
cleaning 343
snapping nodes 355–357

Geocoding 247–249
Geographic calculations

area of object 81
area of overlap 82
distance 220
length of object 338
perimeter of object 375

Geographic calculations. See Objects, querying
Geographic objects. See Objects
Geographic operators 433, 591
Get statement 263–264
GetFolderPath$() function 264
GetMetadata$() function 265
GetSeamlessTable() function 265
Global statement 266
GML files

importing 273–277
Goto statement 267
GPS applications 55–56
Graduated symbol thematic maps 533
Graph statement 268–269
Graph windows

closing 109
determining the name of the table 579
modifying 482–486, 519–525
opening 264, 268–269

Great circle distance 220
Grid surfaces

in thematic maps 150–152
modifying 493–505

Grid tables
adding relief shade information 397

Group By clause 429–432
GroupBox controls 125

H
Halo text 252–253
Halting another application 561
Handlers

assigning to menu items 159
Hardware platform, determining 556–557
Help messages

button tooltips 58, 139
status bar messages 58, 139

Help window
closing 109
modifying 519–525
opening 366, 519–525

Hexadecimal numbers 572
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 621 MB_Ref.pdf

Reference Guide Index
Hiding
ButtonPads 57–61
dialog controls (custom) 62–64
dialog controls (standard) 64–66
menu bar 316
progress bar dialogs 511
screen activity 479

Hierarchical menus
Alter Menu statement 69
Create Menu statement 160

HomeDirectory$() function 270
HotLink tool

querying object attributes 116
Set Map clause 501

HotLinks
querying 288

HWND values, querying
SystemInfo() function 556
WindowInfo() function 579

I
Iconizing MapInfo

Set Window statement 519–525
suppressing progress bars 511

Icons for ButtonPads 59
Identifiers, defining 205
If...Then statement 270–272
Import statement 273–277
Include statement 277
Indexed columns

creating an index 153
deleting an index 224

Individual value thematic maps 531
Infinite loops, avoiding 487
Info tool

closing Info window 109
modifying Info window 519–525
opening Info window 366
setting to read-only 524
setting which data displays 524

Informix databases
connection string attributes 446–447

Initializing variables 220
Input # statement 277
Input/output. See File input/output
Insert statement 278–279
Inserting

columns in a table 50–54, 79–80
nodes in an object 76
rows in a table 278–279

InStr() function 279
Int() function 280
Integer division 589
Integer variables 217
Integrated mapping

managing legends 153
reparenting dialogs 470
reparenting document windows 507–508

International character sets 103–105
International formatting 480–481
Interpreting strings as commands 410–412
Interrupting the selection 425
Intersection of objects

Create Object statement 166–169
Intersects operator 433
Objects Intersect statement 351–352
Overlap() function 367

Intersection of two streets, finding 247–249
IntersectNodes() function 281
IsPenWidthPixels() function 282
Italic text 252–253

J
Joining tables 427–429
JPEG files, creating 417–419

K
Keys

metadata 319–321
Keywords 219, 429
Kill statement 282

L
LabelFindByID() function 283–284
LabelFindFirst() function 284
LabelFindNext() function 285
Labelinfo() function 285–287
Labels

in dialogs 130
in programs 267
on maps 85, 283–287, 502–504
reading label expressions 289

Launching other applications
Run Application statement 410
Run Program statement 414

LayerInfo() function 288–291
Layers

adding 54–56
Cosmetic 579
modifying settings 493–505
reading settings 288–291
removing 401
thematic maps 514, 527–535

Layout statement 292
Layout windows

accessing as tables 579
closing 109
creating frames 149–150
modifying 487–489, 519–525
opening 292
specifying layout coordinates 133–136, 474

LCase$() function 293
Left$() function 293
Legend frames

querying attributes 294–295
querying styles 296
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 622 MB_Ref.pdf

Reference Guide Index
Legend window
closing 109
modifying 490–492, 519–525
opening 153, 366
querying 295

Legend, cartographic
adding a frame 48–50
controlling settings 472
creating 141–144
modifying a frame 61
removing a frame 400

LegendFrameInfo() function 294–295
LegendInfo() function 295
LegendStyleInfo() function 296
Len() function 296
Length

spherical calculation 539
Length of file 300
Length of object 338
Like() function 297
Line feed character

Chr$(10) function 106
used in EditText controls 124
used in text objects 188

Line Input statement 298
Line objects

Cartesian length of 97
creating 154–155
determining length of 338
modifying 73–76
querying the pen style 334–337
storing in a new row 278–279
storing in an existing row 570

Line styles. See Pen styles
Linked tables

creating 459–461
determining if table is linked 559
refreshing 462
saving 118
unlinking 570

ListBox controls 125–127
Locale settings 206, 259, 480–481
LocateFile$() 299
LOF() function 300
Log() function 300
Logical operators 590
Logical variables 217
Looping

Do...Loop statement 223–224
For...Next statement 254–255
While...Wend statement 574

Lotus files, opening 392–396
Lower case, converting to 293
LTrim$() function 301

M
Main procedure 302–303
MakeBrush() function 303

MakeCustomSymbol() function 304
MakeFont() function 305
MakeFontSymbol() function 305
MakePen() function 306
MakeSymbol() function 307
Map layers. See Layers
Map objects. See Objects
Map projections

changing a table’s projection 116–119
changing a window’s projection 499
copying from a table or window 133–136
querying a table’s CoordSys 558
querying a window’s CoordSys 312
setting the current MapBasic CoordSys 474

Map scale
determining in Map windows 313
displaying 498

Map statement 308–309
Map windows

adding map layers 54–56
clipping 498
closing 109
controlling redrawing 54, 479, 500
creating thematic layers 527–535
duplicating 412
handling window-changed event 114, 575
labeling 502
modifying 493–505, 519–525
modifying thematic layers 514
opening 308–309
reading layer settings 288–291
reading window settings 311–315
removing map layers 401

Map3dInfo() function 309–311
MapBasic Definitions file 594

language overview 34–46
MapInfo 3.0 symbols 553–555
MAPINFOW.ABB file 249
MapperInfo() function 311–315
Maps windows, prism 173–174
Math functions

absolute value 47
arc-cosine 47
arc-sine 83
arc-tangent 84
area of object 81
area of overlap 82
converting strings to numbers 572
cosine 136
distance 220
exponentiation 234
logarithms 300
maximum value 315
minimum value 324
rounding off a number 251, 280, 408
sign 526
sine 535
square root 543
tangent 560
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 623 MB_Ref.pdf

Reference Guide Index
Max() aggregate function 429–430
Maximum() function 315
MBR() function 316
Memo fields 79, 116, 118
Menu Bar statement 316
Menu commands, executing 412
MenuitemInfoByHandler() function 317–318
MenuitemInfoByID() function 318
Menus, customizing

adding hierarchical menus 69
adding menu items 67–69
altering menu items 71–73
creating checkable menu items 160
creating new menus 158–163
disabling shortcut menus 163
querying menu item status 317–318
redefining the menu bar 70–71, 163–164
removing menu items 67–69
showing/hiding the menu bar 316

Menus, list of standard names and IDs 68–69
Merging objects. See Combining objects
Messages

displaying in a Note dialog 328
displaying on the status bar 544
opening the Message window 366
printing to the Message window 377

Metadata
code example 321
keys 319–321
managing in tables 319–321
reading keys 265

Metadata statement 319–321
Metric units

area 470
distance 477

Microsoft Access databases
connection string attributes 441

Mid$() function 323
MidByte$() function 323
MIF files

exporting 235–237
importing 273–277

Military grid reference format 313, 500
Min() aggregate function 429–430
Minimizing MapInfo

Set Window statement 519–525
suppressing progress bars 511

Minimum bounding rectangle
of an object 316
of entire table 558

Minimum() function 324
Mixed case, converting to 386
Mod operator 589
Modal dialog boxes 209
Modifying an object. See specific object type

Arc, Ellipse, Frame, Line, Point, Polyline, Rectangle, Re-
gion, Rounded Rectangle, Text

Module-level variables 217
Month() function 324

Most-recently-used list (File menu) 160
Mouse actions 479
Mouse cursor

customizing shape of 59
displaying coordinates of 499

Moving
an object 352–353

MRU list (File menu) 160
MultiListBox controls 125–127
Multipoint objects

combining 111
creating 165–166
inserting nodes 77–78

N
Natural Break thematic ranges 175
Network file sharing 480
Nodes

adding 76, 354, 368
displaying 502
extracting a range of nodes from an object 238
maximum number per object 170, 180
querying number of nodes 335
querying x/y coordinates 339–340
removing 76

Noselect keyword 429
Note statement 328
Null handling 457
NumAllWindows() function 329
Number of characters in a string 296
NumberToDate() function 329
NumCols() function 330
Numeric operators 589
NumTables() function 330
NumWindows() function 331

O
Object model. See User’s Guide or online Help
Object variables 217
ObjectInfo() function 334–337
ObjectLen() function 338
ObjectNodeX() function 339–340
ObjectNodeY() function 340
Objects

copying offset by distance 359–360
Objects Check statement 342–343
Objects Clean statement 343
Objects Combine statement 344–346
Objects Disaggregate statement 346–348
Objects Enclose statement 348
Objects Erase statement 349–350
Objects Intersect statement 351–352
Objects Move statement 352–353
Objects Offset statement 353–354
Objects Overlay statement 354
Objects Snap statement 355–357
Objects Split statement 357–358
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 624 MB_Ref.pdf

Reference Guide Index
Objects, copying
to offset location 353–354

Objects, creating
arcs 137
buffer regions 168
by buffering 89, 166–169
by combining objects 111
by intersecting objects 367
circles 144–145, 148
convex hull 168
ellipses 144–145, 148
frames 149–150
lines 154–155
map labels 85
multipoint 165–166
points 171–172
polylines 170
rectangles 177
regions 179–181
rounded rectangles 182
text 186–188
Voronoi polygons 169

Objects, modifying
adding nodes 76, 354
combining 111, 344–346
converting to polylines 131
converting to regions 131
erasing entire object 207
erasing part of an object 229, 349–352
moving nodes 73–78
removing nodes 76
resolution of converted objects 513
rotating 407
rotating around specified point 408
setting the target object 518
snap setting 355–357
splitting 357–358

Objects, moving
within input table 352–353

Objects, querying
area 81
boundary gaps 342–343
boundary overlap 342–343
centroid 101–102
content of a text object 335
coordinates 332–334, 339–340
HotLink support 116
length 338
minimum bounding rectangle 316
number of nodes 335
number of polygons in a region 335
number of sections in a polyline 335
overlap, area of 82
overlap, proportion of 386
perimeter 375
points of intersection 281
styles 334–337
type of object 335–337

ODBC connection 118

ODBC tables
changing object styles in mappable tables 464

Offset() function 359–360
OKButton controls 120
OLE Automation

handling button event 139
handling menu event 161

OnError statement 360–362
Open File statement 362–364
Open Report statement 364
Open Table statement 364–366
Open Window statement 366
Opening windows

Browse statement 86–87
Create Redistricter statement 178
Graph statement 264, 268–269
Layout statement 292
Map statement 308–309
Open Window statement 366

Operating environment, determining 556–557
Operators

automatic type conversions 592
summary of 588–593

Optimizing performance
animation layers 55–56
screen updates 479
table editing 516–518

Oracle databases
connection string attributes 441–443

Oracle8i databases
connection string attributes 443

Order By clause
sorting rows 432

Overlap() function 367
Overlaps

checking in regions 342–343
cleaning 343
snapping nodes 355–357

OverlayNodes() function 368

P
Pack Table statement 368
Page layout, opening 292
Paper units of measure 509
Papersize attribute 580
Parallel labels 503
Parent windows

reparenting dialogs 470
reparenting document windows 507–508

Partialsegments option 504
PathToDirectory$() function 369
PathToFileName$() function 370
PathToTableName$() function 371
Pattern matching 297
Peek requests 399
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 625 MB_Ref.pdf

Reference Guide Index
Pen styles
creating 306
modifying an object’s style 74
Pen clause defined 372–373
querying an object’s style 334–337
querying parts of 549–551
reading current border style 189
reading current line style 191
reading current style 191
setting current style 515–516

Pen variables 217
PenPicker controls 127
PenWidthToPoints() function 373
Percent complete dialog 383–385
Performance, improving

animation layers 55–56
screen updates 479
table editing 516–518

Perimeter
spherical calculation 542

Perimeter() function 375
Per-object styles 450
PICT files

creating 417–419
importing 273–277

Pie chart thematic maps 534
Pie charts

in graph windows 264, 268–269
in thematic maps 534

Platform, determining 556–557
Pline. See Polyline
PNG files, creating 417–419
Point objects

creating 171–172
modifying 73–76
querying the symbol style 334–337
storing in a new row 278–279
storing in an existing row 570

Point styles. See Symbol styles
PointsToPenWidth() function 374
Polygon draw mode 60
Polygons. See Region objects
Polyline draw mode 60
Polyline objects

adding/removing nodes 76
Cartesian length of 97
converting objects to polylines 131
creating 170
creating cutter objects 147
determining length of 338
extracting a range of nodes from 238
modifying the pen style 74
querying the pen style 334–337
storing in a new row 278–279
storing in an existing row 570

PopupMenu controls 128–129
Positioning the row cursor 241–242
Precedence of operators 592
Preferences dialog(s) 413

Preventing user from closing windows 523
Print # statement 378
Print statement 377
Printer settings 519–525

overriding default printer 525
Printing attributes 580
PrintWin statement 379
Prism maps

creating 173–174
properties 380–382
setting 510–511

PrismMapInfo() function 380–382
Procedures, creating

Call statement 91–93
Declare Sub statement 204–205
Exit Sub statement 234
Sub...End Sub statement 551–553

Procedures, special
EndHandler 228
ForegroundTaskSwitchHandler 255
Main 302–303
RemoteMapGenHandler 398
RemoteMsgHandler 398
SelChangedHandler 424
ToolHandler 563–564
WinChangedHandler 575
WinClosedHandler 576
WinFocusChangedHandler 583

ProgramDirectory$() function 383
Progress bars, hiding 511
ProgressBar statement 383–385
Projections

changing a table’s projection 116–119
changing a window’s projection 499
copying from a table or window 133–136
querying a table’s CoordSys 558
querying a window’s CoordSys 312
setting the current MapBasic CoordSys 474
setting within an application 105

Proper$() function 386
Proportionate aggregates

Proportion Avg() 52–54
Proportion Sum() 52–54
Proportion WtAvg() 52–54

ProportionOverlap() function 386
PSD files, creating 417–419
Put statement 387

Q
Quantiled ranges 176
Querying. See Tables, querying

R
RadioGroup controls 129–130
Random file i/o, closing files 107

opening files 363
reading data 263–264
writing data 387
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 626 MB_Ref.pdf

Reference Guide Index
Random numbers
Randomize statement 388
Rnd() function 406

Ranged thematic maps 175–177, 529–531
ReadControlValue() function 388–390
Realtime applications 55–56
Records. See Rows
Rectangle objects

Cartesian area of 93
Cartesian perimeter of 100
creating 177, 182
determining area of 81
determining perimeter of 375
modifying 73–76
querying the pen or brush style 334–337
storing in a new row 278–279
storing in an existing row 570

ReDim statement 390–391
Redistricting windows

closing 109
modifying 512–513, 519–525
opening 178

Region
setting a centroid 77

Region objects
adding/removing nodes 76
Cartesian area of 93
Cartesian perimeter of 100
checking for data errors 342–343
converting objects to regions 131
creating 179–181
creating convex hull objects 132
determining area of 81
determining perimeter of 375
extracting a range of nodes from 238
modifying the pen or brush style 74
querying the pen or brush style 334–337
returning a buffer region 94
storing in a new row 278–279
storing in an existing row 570

Regional settings 480–481
Register Table statement 392–396
Relational joins 427–429
Relief Shade statement 397
Reload Symbols statement 397
Remote databases

creating new tables 450–452
refreshing linked tables 462
retrieving active database connection information 447
shutting down server connection 453

RemoteMapGenHandler procedure 398
RemoteMsgHandler procedure 398
RemoteQueryHandler function 399
Remove Cartographic Frame statement 400
Remove Map statement 401
Removing

buttons 57–61
menu items 67–69
nodes 76

Rename File statement 402
Rename Table statement 402
Reports

creating 181
loading 364

Reserved words 219
Resizing arrays 390–391
Responding to system events. See Events, handling
Resume statement 403
Retrieving column information

Server_ColumnInfo() 438–439
Retrieving data source information

Server_DriverInfo() 454
Retrieving number of columns in a results set

Server_NumCols() 461
Retrieving number of toolkits

Server_NumDrivers() 462
Retrieving records from an open table

Fetch statement 241–242
Retrieving rows from a results set, Server Fetch 456–457
Retrying on file access 480
Returning a connection number

Server_Connect 440–447
Returning a coordinate system

ChooseProjection$() function 105
Returning a date

FormatDate$ function 258
Returning a pen width for a point size

PointsToPenWidth() function 374
Returning a point size for a pen width

PenWidthToPoints() function 373
Returning ODBC connection handle

Server_GetodbcHConn() function 458
Returning ODBC statement handle

Server_GetodbcHStmt() function 458
Returning pen width units

IsPenWidthPixels() function 282
RGB() function 404
Right$() function 405
Right-click menus 68–69
Rnd() function 406
Rollback statement 406
Rotate() function 407
RotateAtPoint() function 408
Rotated map labels 503
Rotated symbols 305, 553
Rounded Rectangle objects, Cartesian area of 93
Rounded rectangle objects

Cartesian perimeter of 100
creating 182
modifying 73–76
querying the pen or brush style 334–337
storing in a new row 278–279
storing in an existing row 570

Rounding off a number
Fix() function 251
Format$() function 256–258
Int() function 280
Round() function 408
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 627 MB_Ref.pdf

Reference Guide Index
RowID
after Find operations 115
with SelChangedHandler 114

RowID column. See online Help
Rows in a Browser, positioning 472
Rows in a table

deleting rows 207
end-of-table condition 229
inserting new rows 278–279
packing (purging deleted rows) 368
positioning the row cursor 241–242
selecting rows that satisfy criteria 427–429
updating existing rows 570

RPC (Remote Procedure Calls) 204–205
RTrim$() function 409
Ruler tool

closing Ruler window 109
modifying Ruler window 519–525
opening Ruler window 366

Run Application statement 410
Run Command statement 410–412
Run Menu Command statement 412
Run Program statement 414
Runtime errors, trapping. See Error handling

S
Save Window statement 417–419
Save Workspace statement 419
Saving changes to a table 116–119
Saving linked tables 118
Saving work to the database

Server Commit 439
Scale of a map

determining 313
displaying 498

Scope of variables
global 266
local 216–220
module-level 217

Scroll bars, showing/hiding 524
Scrolling automatically 524
Seamless tables

determine if table is seamless 559
prompt user to choose a sheet 265
turn seamless behavior on/off 517

SearchInfo() function 419–421
Searching for map objects

at a point 422
processing search results 419–421
within a rectangle 423

SearchPoint() function 422
SearchRect() function 423
Seconds, elapsed 562
Seek statement 424
Seek() function 423
SelChangedHandler procedure 424
Select Case. See Do Case...End Case statement
Select statement 425–434

Selectable map layers 501
Selection

handling selection-changed event 114, 424
interrupted by Esc key 425
querying current selection 434
Select statement 425–434

SelectionInfo() function 434
Self-intersections

checking in regions 342–343
Sequential file i/o

closing files 107
opening files 363
reading data 277, 298
writing data 378, 584

Server Begin Transaction statement 435
Server Bind Column statement 436–437
Server Close statement 437
Server Commit statement 439
Server Create Map statement 448–449
Server Create Style statement 450
Server Create Table statement 450–452
Server Disconnect statement 453
Server DriverInfo() function 454
Server Fetch statement 456–457
Server Link Table statement 459–461
Server Refresh statement 462
Server Rollback statement 463
Server Set Map statement 464
Server_ColumnInfo() function 438–439
Server_Connect() function 440–447
Server_ConnectInfo() function 447
Server_EOT() function 455
Server_Execute function 455
Server_GetodbcHConn() function 458
Server_GetodbcHStmt() function 458
Server_NumCols() function 461
Server_NumDrivers() function 462
server_string

defined 455
SessionInfo() function 469
Set Application Window statement 470
Set Area Units statement 470
Set Browse statement 472
Set Cartographic Legend statement 472
Set Command Info statement 473
Set CoordSys statement 474
Set Date Window statement 475
Set Digitizer statement 476–477
Set Distance Units statement 477
Set Drag Threshold statement 479
Set Event Processing statement 479
Set File Timeout statement 480
Set Format statement 480–481
Set Graph statement 482–486
Set Handler statement 487
Set Layout statement 487–489
Set Legend statement 490–492
Set Map statement 493–505
Set Map3D statement 506–507
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 628 MB_Ref.pdf

Reference Guide Index
Set Next Document statement 507–508
Set Paper Units statement 509
Set PrismMap statement 510–511
Set ProgressBars statement 511
Set Resolution statement 513
Set Shade statement 514
Set Style statement 515–516
Set Table statement 516–518
Set Target statement 518
Set Window statement 519–525
Sgn() function 526
Shadow text 252–253
Shapefiles 395
Shift key

detecting shift-click 115
effect on drawing tools 60
selecting multiple list items 125–127

Shortcut menus
defined 68–69
disabling 163
example 69
list of menu names and IDs 68–69

Show/Hide menu commands 160
Showing

ButtonPads 57–61
dialog controls 62–64
menu bar 316

Shutting down the connection
Server Disconnect 453

Simulating a menu selection 412
Sin() function 535
Small integer variables 217
Smart redraw 497
Snap tolerance

controlling 525
Snapping nodes 355–357
Sorting rows in a table 432
Sounds, beeping 86
Space$() function 536
Spaces, trimming from a string 301, 409
Speed, improving

animation layers 55–56
screen updates 479
table editing 516–518

SphericalArea() function 537
SphericalDistance() function 538
SphericalObjectLen() function 539
SphericalOffset() function 540–541
SphericalPerimeter() function 542
Splitting objects 357–358
Spreadsheets, using as tables 392–396
SQL Select 425–434
SQL Server databases

connection string attributes 443–446
Sqr() function 543
Starting other applications

Run Application statement 410
Run Program statement 414

StaticText controls 130

Statistical calculations
average 52, 429–430
count 52, 429–430
min/max 52, 429–430
quantile 176
standard deviation 175
sum 52, 429–430
weighted average 52, 431

Statistics window, closing 109
modifying 519–525
opening 366

Status bar help 58, 139
StatusBar, statement 544
Stop statement 544
Str$() function 545
Street addresses, finding 247–249
String concatenation

& operator 589
+ operator 589

String functions
capitalization 293, 386, 567
comparison 547–548
converting codes to strings 106
converting strings to codes 82
converting strings to dates 480–481, 548–549
converting strings to numbers 480–481, 572
converting values to strings 545
extracting part of a string 293, 323, 405
finding a substring within a string 279
formatting a number 206, 256–259, 480–481
formatting based on locale 480–481
length of string 296
locale settings 480–481
pattern matching 297
repeated strings 546
spaces 536
trimming spaces from end 409
trimming spaces from start 301

String variables 217
String$() function 546
StringCompare() function 547
StringCompareIntl() function 548
StringToDate() function 548–549
Structures 566
StyleAttr() function 549–551
Styles. See specific type, Pen, Brush, Font, Symbol
Sub procedures. See Procedures
Sub...End Sub statement 551–553
Subtotals, calculating 429–430
Sum() aggregate function 429–430
Symbol styles

creating 304–305, 307
modifying an object’s style 74
querying an object’s style 334–337
querying parts of 549–551
reading current style 192
reloading symbol sets 397
setting current style 515–516
Symbol clause defined 553–555
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 629 MB_Ref.pdf

Reference Guide Index
Symbol variables 217
SYMBOL.MBX utility

custom symbols 397
SymbolPicker controls 127
SystemInfo() function 556–557

T
TAB files

storing metadata in 319–321
Tab order 211
Table names

determining from file 371
determining name of table in Browse or Graph window 579
determining table name from number 557–560
special names for Cosmetic layers 579
special names for Layout windows 579

Table structure
3DMap 157–158
adding/removing columns 79–80
determining how many columns 330, 557–560
making a table mappable 156
making an ODBC table mappable 448–449

TableInfo() function 557–560
Tables, closing

Close All statement 107
Close Table statement 108

Tables, copying 116–119
Tables, creating

creating a new table 184
importing a file 273–277
on remote databases 450–452
using a spreadsheet or database 392–396

Tables, deleting 226
Tables, importing 273–277
Tables, modifying

adding columns 50–54, 79–80
adding metadata 319–321
adding rows 278–279
creating an index 153
deleting a table’s objects 225
deleting an index 224
deleting columns 79–80
deleting rows or objects 207
discarding changes 406
optimizing edit operations 516–518
packing 368
renaming 402
saving changes 116–119
setting a map’s default view 504
setting a map’s projection 116–119
setting to read-only 516–518
sorting rows 432
updating existing rows 570

Tables, opening 364–366
Tables, querying

column information 110–111
directory path 559
end-of-table condition 229

Tables, querying (continued)
finding a map address 247–249
joining 427–429
metadata 265, 319–321
number of open tables 330
objects at a point 422
objects in a rectangle 423
positioning the row cursor 229, 241–242
SQL Select 425–434
table information 557–560

Tan() function 560
TempFileName$() function 560
Temporary columns 50
Terminate Application statement 561
Text files

using as tables 392–396
See also File input/output, Files

Text objects
creating 186–188
modifying 73–76
querying the font style or string 335
storing in a new row 278–279
storing in an existing row 570

Text styles. See Font styles
TextSize() function 562
Thematic maps

bar chart maps 535
counting number of themes in a 3D Map window 309–311
counting number of themes in a Map window 311–315
creating arrays of ranges 175–177
creating arrays of styles 183–184
dot density maps 532–533
graduated symbol maps 533
grid surface maps 150–152
individual value maps 531
modifying 514
pie chart maps 534
quantiled ranges 176
ranged maps 529–531

Thinning objects 355–357
Thousands separators 206, 259, 480–481
TIFF files, creating 417–419
Time delay when user drags mouse 479
Timer() function 562
Toolbars. See ButtonPads
ToolHandler procedure 563–564
Tooltip help 58, 139
Totals, calculating 429–430
Transparent fill patterns 88
Trapping errors. See Error handling
TriggerControl() function 565
Trigonometric functions

arc-cosine 47
arc-sine 83
arc-tangent 84
cosine 136
sine 535
tangent 560
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 630 MB_Ref.pdf

Reference Guide Index
Trimming spaces
from end of string 409
from start of string 301

TrueFileName$() function 565
TrueType fonts, using as symbols 305
TrueType symbols 553–555
Type statement 566

U
UBound() function 567
UCase$() function 567
Unchecking

dialog check boxes (custom) 62–64
dialog check boxes (standard) 64–66
menu items 71–73

Underlined text 252–253
UnDim statement 568
Undo system, disabling 516–518
UnitAbbr$() function 569
UnitName$() function 569
Units of measure

abbreviated names 569
area 470
distance 477
full names 569
paper 509

Unlink statement 570
Unselecting 108
Update statement 570
Update Window statement 571
Upper case, converting to 567
User interface. See ButtonPads, Dialogs, Menus, Windows

V
Val() function 572
Variable length strings 217
Variables

arrays 218, 390–391, 567
custom types 566
global variables 266
initializing 220
list of types 216–217
local variables 216–220
module-level variables 217
reading another application’s variables 266
restrictions on names 219
strings variables 218
undefining 568

Version number
.MBX version 556
MapInfo version 557

Vertices. See Nodes
Voronoi polygons

Create Object 169

W
Weekday() function 573
Weighted averages 52, 431

While...Wend statement 574
Wildcards, matching 297
WinChangedHandler procedure 575
WinClosedHandler procedure 576
WindowID() function 576
WindowInfo() function 577–582
Windows Latin 1 character set 586
Windows operating system

16- v. 32-bit 556
Windows, closing

Close Window statement 109
preventing user from closing windows 523

Windows, modifying
adding map layers 54–56
browser windows 472
forcing windows to redraw 571
general window settings 519–525
graph windows 482–486
layout windows 487–489
legend window 490–492
map windows 493–505
redistrict windows 512–513
removing map layers 401

Windows, opening
Browse statement 86–87
Create Redistricter statement 178
Graph statement 268–269
Layout statement 292
Map statement 308–309
Open Window statement 366

Windows, printing
to a file 417–419
to an output device 379

Windows, querying
3D Map window settings 309–311
general window settings 577–582
ID of a window 576
ID of front window 260
map window settings 288–291, 311–315
number of document windows 331
total number of windows 329

WinFocusChangedHandler procedure 583
WKS files, opening 392–396
WMF files, creating 417–419
Workspaces

loading 410
saving 419

Write # statement 584
WtAvg() aggregate function 431

X
XCMDs 204–205
XFCNs 203
XLS files, opening 392–396

Y
Year() function 584
MapBasic 8.0

© 2005 MapInfo Corporation. All rights reserved. 631 MB_Ref.pdf

	New and Enhanced MapBasic Statements and Functions
	Enhanced MapBasic Functions and Statements
	Workspace Behavior
	Enabling Transparent Patterns on Same Layer
	Export Windows to Additional Formats

	Introduction
	Language Overview
	MapBasic Fundamentals
	Variables
	Looping and Branching
	Output and Printing
	Procedures (Main and Subs)
	Error Handling

	Functions
	Custom Functions
	Data-Conversion Functions
	Date and Time Functions
	Math Functions
	String Functions

	Working With Tables
	Creating and Modifying Tables
	Querying Tables
	Working With Remote Data

	Working With Files (Other Than Tables)
	File Input/Output
	File and Directory Names

	Working With Maps and Graphical Objects
	Creating Map Objects
	Modifying Map Objects
	Querying Map Objects
	Working With Object Styles
	Working With Map Windows

	Creating the User Interface
	ButtonPads (ToolBars)
	Dialog Boxes
	Menus
	Windows
	System Event Handlers

	Communicating With Other Applications
	DDE (Dynamic Data Exchange; Windows Only)
	Integrated Mapping

	Special Statements and Functions
	A - Z Reference
	Filling The New Column With Explicit Values
	Filling The New Column With Values From Another Table
	Filling An Existing Column With Values From Another Table
	Filling The New Column With Aggregate Data
	Using Proportion... Functions With Non-Region Objects
	Dynamic Columns
	Adding Layers of Different Projections
	Using Animation Layers to Speed Up Map Redraws
	Custom Icons and Cursors
	Custom Drawing Modes
	Types of Changes Allowed
	Info clause
	Geography clause
	Node clause
	Region Centroids
	Multipoint Objects and Collections
	Parameter Passing
	Calling External Routines
	MapBasic 2.x CharSet Syntax
	After Displaying a Dialog Box
	Within a Custom Menu or Dialog Handler
	Within a Standard Handler Procedure
	After a Find Operation
	Hotlink Support
	Saving Linked Tables
	Automatic DiscardUpdates
	ODBC Connection
	Calling Clause Options
	Assigning Handlers to Custom Menu Items
	Creating Hierarchical Menus
	Properties of a Menu Item
	Defining Keyboard Shortcuts
	Convex Hull Geographic Operation for the Create Object statement
	Buffering
	Voronoi
	Example
	Quantiled Ranges
	Calling External Functions
	Restrictions on Windows DLL parameters
	Calling External Routines
	Sizes and Positions of Dialogs and Dialog Controls
	Terminating a Dialog
	Reading the User’s Input
	Specifying Hotkeys for Controls
	Specifying the Tab Order
	Location of Dim Statements and Scope of Variables
	Specifying the File Format
	Exporting ASCII Text Files
	Exporting DXF Files
	Preserve AttributeData
	Preserve MultiPolygonRgns As Blocks
	Binary or ASCII [DecimalPlaces decimal_places]
	Version 12 or Version 13
	Transform
	Reading Past the End of the Table
	Determining Whether the Address Was Found
	Restrictions on Parameter Passing
	Availability of Custom Functions
	Function Names
	Import Options for DXF Files
	Warnings On or Warnings Off
	Preserve AttributeData
	Preserve Blocks As MultiPolygonRgns
	CoordSys
	Autoflip
	Transform
	Read Integer As Decimal
	Read Float As Decimal
	Store [Handles] [Elevation] [VisibleOnly]
	Layer . . .
	Importing GML Files
	Importing GML Files

	Coordinate Value Returns
	Clip Region Information
	Modifying a Table’s Metadata
	SetKey
	DropKey
	Reading a Table’s Metadata
	SetTraverse
	Next Into Key ... Into Value ...
	Destroy
	Into Target clause
	Data clause
	Sequential File I/O
	Random File I/O
	Binary File I/O
	Controlling How the File Is Interpreted
	Packing Access Tables
	Registering Access Tables
	Registering ODBC Tables
	Registering Shapefiles
	Select clause
	From clause
	Where clause
	Into clause
	Group By clause
	Calculating Weighted Averages
	Column Expressions in the Group By clause
	Grouping By Multiple Columns
	Order By clause
	Selection Performance
	Microsoft ACCESS Attributes
	ORACLE ODBC Connection
	Oracle8i Spatial Attributes
	SQL SERVER Attributes
	Informix Attributes
	Null Handling
	SQL Query Syntax
	MapInfo Professional Spatial Query
	Turning Digitizer Mode On or Off
	Changing the Current View of the Map
	Center
	Pan
	Scale
	Zoom
	Changing the Behavior of the Entire Map
	Area Units
	Clipping

	Set Map Statement for Clip Region
	CoordSys... clause
	Display
	Preserve
	Redraw
	XY Units

	Changing the Order of Layers
	Changing the Behavior of Individual Layers
	Editable
	Selectable
	Zoom

	Set Map Clause for HotLinks
	Changing the Appearance of Individual Layers
	Arrows
	Centroids
	Inflect
	Nodes
	Display

	Changing Labeling Options for Individual Layers
	Line
	Position
	Font
	Pen
	With
	Parallel
	Visibility
	Auto
	Overlap
	PartialSegments
	Duplicates
	Max number_of_labels
	Offset offset_amount
	Default
	Object

	Settings That Have a Permanent Effect on a Map Layer
	Setting Move Duplicate Nodes
	Setting FastEdit Mode
	Setting Read-Only Mode
	Setting Undo Mode
	Managing Seamless Tables
	Preventing the User from Accessing Tables
	Help Window Syntax
	Map or Layout Window Syntax
	Floating Window (Legend, Ruler, etc.) Syntax
	Controlling the Printer
	Controlling Snap Tolerance
	Ranges of Values
	Individual Values
	Dot Density Maps
	Graduated Symbols Maps
	Pie Chart Maps
	Bar Chart Maps
	MapInfo 3.0 Symbol Syntax
	TrueType Font Syntax
	Custom Symbol (Bitmap File) Syntax
	Auto-scrolling Map Windows

	Character Code Table
	Summary of Operators
	Numeric Operators
	Comparison Operators
	Logical Operators
	Geographical Operators
	Precedence

	Automatic Type Conversions

	MapBasic Definitions File

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

