LAMMPS Users Manual

Large-scale Atomic/Molecular Massively Parallel Simulator

http://lammps.sandia.gov - Sandia National Laboratories
Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

LAMMPS Users Manual

Table of Contents

LAMMPS DOCUMENEALION. . ..cuvitieereientenieetenteeteeitete sttt et sttt ste bt et ete st ebe et stesetestentesbeessensesbesbeensensene 1
VETSION IOttt ettt b e s bt eae et st e bt et e naesueeaeennenre e 1
L INEEOAUCHION. ...ttt sttt st ettt st et a e bt et sb e sbe et e b s b eaeenae b 4

1.1 What is LAMMPS ..ottt ettt st s nae e 4
1.2 LAMMPS fEATUTES.vevieieeiieiintieitetesit ettt ettt sttt sttt ettt sttt sae st sbesbe st enenae e 5
GENETAL fEALUTES. ... ettt ettt ettt st ettt st e be s bt et et eae e e naenaes 5
Particle and MOAE] Y PES......ccuiiiiiieiiieie ettt ettt ettt ettt et b e bbb 5
FOTCE FIRLAS. ... ettt ettt ettt sttt s b e ettt enaenaes 5
ATOIMN CTEALION ...ttt ettt ettt ettt ettt sb sttt b et e e sb e bt et e bt sheestebesbeebeente bt eaeennenaenaes 6
Ensembles, constraints, and boundary CONitions............cc.eerueerieerienieniienieieenie e 6
TEEZTALOTS. ..ottt ettt sttt e ettt et esbb e sab e e sabeeeabeeenbaeenbbeenabeenateas 7
DEAGNOSTICS -ttt ettt ettt ettt ettt et e bt e bt et e e bt e bt e bt e bt e bt e bt e bt e b e enbeenbeebeenee 7
OULPUL. ..ttt ettt et e et e ettt e bt e e bt e e sb bt e sbbeesbbeesabeeeabeeebbe e bbeenbbeesabeesabeesabeeans 7
MUlti-replica MOAEISoiiiiiiiie ettt ettt e b e bt e b et ebeeee e 7
Pre- and POSt-PrOCESSINZeeuvteieeieite ettt ettt ettt ettt ettt et e bt et et e e bt e bt e bt e bt e bt enbeeteeseenee 7
SPECIAlIZEA TERALUTES. ... ettt ettt ettt ettt et ettt e et e eabeeateenees 7
1.3 LAMMPS NON-{EALUTEScvventiiieiteieniiritetetesteeiteteste ettt ettt sttt et st sbe et naesre e 8
1.4 Open Source diStrIDULION........ccuirutrtirtiririetetenieeetee ettt ettt et bbbt enaesae e 9
1.5 Acknowledgments and CItAtIONS........ccueeueruieiieie ettt ettt et sttt st s tesaee s e 10
2. GOING STATTEA ...ttt ettt ettt ettt et e e et e s ateea e e eatesabesatesatesatesateeasesaeesaeesnnens 12
2.1 What's in the LAMMPS diStriDUtION.c..coueeiiriiniiieiiniiniietccnetece e e 12
2.2 Making LAMMPSoiiee ettt sttt st st 13
2.3 Making LAMMPS with optional packages...........ccceeueriririerininieieneneneeiene e 19
2.4 Building LAMMPS via the MaKe.pY SCIIPL.....cccuiiiiriiiiieieeie ettt 21
2.5 Building LAMMPS a8 @ IIDTATY.......coiouiiiiiiieiieee e 22
2.6 Running LAMMPS ...ttt ettt st 23
2.7 CommMANd-1INE OPLIONS .. .eeiuiieuiiiiiiiiie ettt ettt ettt et et e et ea e et e st e st e eatesatesateeseesaaesanesneenas 24
2.8 LAMMPS SCIEEIN OULPUL......teeuiiieiiieniiieiiiteette et ettt ettt e st e st e sabeeebeeesbteesateesabeesateesabeeenbeeenaees 28
2.9 Tips for users of previous LAMMPS VEISIONS.......cccccueriririenieninieienienienieeienre et 29
3 COMIMANGS ...ttt ettt ettt st s e et e et e st e saeesanesaneeaeesanesaeesanesane e 31
3.1 LAMMPS I0PULE SCIIPL.wtutieuiteiiteiie ittt ettt ettt ettt ettt et st st e sate st e et e eseesiaesaaesneeeas 31
3.2 ParSING TUIBS ...ttt ettt ettt st e e et et e it e sateeatesate et e eseesanesanesaeeeas 32
3.3 TNPUL SCTIPE SEITUCTUTR. ...ttt ettt ettt ettt ettt ettt e it e seteeateeateeatesatesaeeeateeaeesaeessaesanesanesnnenas 32
3.4 Commands [iStEd DY CAtBZOTY......ueiuuiriiriieiieie ettt ettt et ettt saae s 34
3.5 Individual COMMANAS.....c..erueriiriirieiieiene ettt ettt sttt ettt b e s be b e ene 34
X SEY @Sttt ettt ettt et ettt et et et e be et et et s 35
COMPULE SEYLES .ttt ettt ettt et et ettt et e este et e emb e e et eabeeneeenbeenbeenbeenbeenneensean 36
Pair_SEYLE POLENTIALS.....ceueiiiiieieie ettt ettt ettt ettt ettt et e ae e s 36
BoONd_StYIe POtENTIALSeetiiieiie ettt et ettt e n 38
ANGLE_STYIE POLENTIALSeeutiieiiiie ettt ettt ettt ettt e n 38
Dihedral_Style POLENLIAlS.ceouiiiieiieieeie ettt ettt ettt et ettt ettt et n 38
ImpProper_style POLENTIALS.cc.eviriiriiririt ettt ettt s 39
KISPACE SOLVETS. ...t 39
A PaACKAZES. ¢ttt st e b e s bt e s bt e et e e b et ebaeenbbeesabee s 40
4.1 Standard PACKAESveeieiieeie ettt et ettt ettt ettt et eane s 40
4.2 USET PACKAZES. ... uteeuteeite ettt ettt ettt ettt et et e et et e e bt e bt enbeenbeebeentean 41
USER-MISC PACKAZE. ...ttt ettt et ettt ettt ettt ettt eaeenee s 42

USER-ATC PACKAZE. ...ttt ettt sttt sttt et e st esabee e 42

LAMMPS Users Manual

Table of Contents

USER-AWPMD PACKAZE.eeeitieiiieiiiiiiieete ettt ettt et ettt ettt sttt e bt e e sateesabeeeane 43
USER-CG-CMM PACKAZE.eeueeeuieeieeieete ettt ettt ettt ettt ettt ettt e ee ettt et enbeeaeeneean 43
USER-CUDA PACKAZE. ... et euteeiteeite ettt ettt ettt ettt et ettt ettt ente e bt ebeenbeenbeenneeneean 44
USER-EFF PACKAZE. ...ttt ettt et ettt ettt ettt ettt e e et s 44
USER-EWALDN PACKAZE.cciutiiiiiiiiiiiiiieeite ettt ettt sttt sttt e st esabee e 44
USER-OMP DACKAZE. ...c.uueeiiiiiiiieiiiie ettt ettt ettt st sttt et enbteesabeesabeeeane 45
USER-REAXC PACKAZE. ...ceuvteeiteeiiieiiieeite ettt ettt ettt ettt et ettt sttt et e bt e e sabeesabeeeane 45
USER-SPH PACKAZE. ...ttt et ettt ettt et ettt ettt eae et s 46
5. Accelerating LAMMPS Performance.cocueoiiiiiiiieiiieiieieee ettt et 47
5.1 OPT PACKAZE. ...ttt ettt ettt et ettt et et enbe e e et s 48
5.2 USER-OMP PACKAZE.....cueeeuteeuiieiieitee ettt ettt ettt ettt ettt enee s 48
5.3 GPU PACKAZE. ...ttt ettt ettt ettt et ettt et e be et enae et s 50
5.4 USER-CUDA PACKAZE......cotiimiiiiieiieie ettt ettt ettt ettt ettt et an 52
5.5 Comparison of GPU and USER-CUDA packages..........ccceoeeruieiiieiiiesiiiieeeeiceeeeeeeieeee 54
6. HOW-L0 QISCUSSIONS ..uvetiiieiieienieettetente ettt ettt et et ettt et sa st e et sbeebe et e bt sbeesa et e ebeeaeenbenaeeueennen 57
6.1 Restarting @ SIMUIATION.eoiiiiiiii ittt ettt ettt siaesaee s eae 57
6.2 2d SIMUIALIONS. c..c.enviiteiietirieetee ettt ettt ettt et et sa s bt et b st et et sbeebe et e nbeeaeene 59
6.3 CHARMM, AMBER, and DREIDING force fields..........cccceeerimirnienininienincnecicienceeene 59
6.4 Running multiple simulations from one iNPUt SCIIPL........ceoviriiiiiriiiieeie et 60
6.5 Multi-replica STMUIATIONS.cc..iiiiiiiiie ettt ettt st s sae s 62
6.6 Granular MOAEIScoveiiririeiere ettt sttt et bt b e sbe et e b eaeene 62
6.7 TIP3P Water MOUEL.....c.eiuiriiiiiiiriiiietee ettt sttt st sb e st be e ene 63
6.8 TIPAP Watel MOUEL.....ceiiuiriiiiiiiriiitetee ettt ettt st b e st be e ene 64
6.9 SPC Water MOAEL......c.cooiiiiiiiiiiiiiiiieeee ettt ettt 65
6.10 Coupling LAMMPS t0 Other COAES.couiriiiiiiiiiiiiie ettt 66
6.11 Visualizing LAMMPS SNaPShOLS........ooiiiiiiiiiieieet et 67
6.12 Triclinic (non-orthogonal) siMulation DOXES..........cecuiriiiiiiiiiiiiieeieee e 68
6.13 NEMD SIMUIALONS. ...c.vetiriieiieienieniteiente ettt ettt sttt et st st sbe b eseebe b eaeene 70
6.14 Extended spherical and aspherical partiCles...........occcooiiiiiiiiiiiiiiie e 71
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)...........ccccceeuervueriennne 73
6.16 Thermostatting, barostatting, and computing teMPETAtUIe.............ceouerueruerreerierierieeeeseenns 77
0. 17 WALLS...oeiiiiieiteitet ettt et ettt ettt ettt bt et e bbbt b e eae e 79
6.18 ElaStiC COMSLANLScuteutitirtieiieierteeitetente sttt ettt sttt et et saesbeeas et st bt et e b e sbeebeenbenbeebeenee 80
6.19 Library interface to LAMMPS.........cccooiiiiiiiiietecsteee et 81
6.20 Calculating thermal CONAUCHIVIEY........eeuiriiiiieieiie ettt 82
6.21 CalCUlating VISCOSILY...cuveeuiieuiiiitiite ettt ettt ettt sttt ettt s ittt esate st e st e eseesiaesanesaeeeas 83
7. EXaMPIE PIODICINS......couiiiiiiiiii ittt ettt et ettt et e bt et e et enbeeateentean 86
8. Performance & SCalabilify........cccueiiiiiiiiiiiiieee ettt 88
9. AddItIONAL TOOIS...c..eveeiiiiiitieiieteteet ettt sttt sttt sttt st s 89
AMDET2IMP LOOL...ceeiiiiiieiiiiite ettt sttt bbb bbbt 89
DINATY2EXE EOOL. . ctiiiiiiiiiiteet ettt ettt sttt et et sttt et eanen 90
Ch2IMIP EOOL ...ttt sttt b e ettt b e bt eaesbesbe s entesbeeaeens 90
CRAII EOOL. ... vttt sttt sttt b e s bbbt ebe e b e st e sbe et entesbeeneens 90
CTEALEALOINS LOOL...e.uteutiiiriieititi ettt ettt ettt ettt et st ebt et e beeb e s et e bt ebe e b e nbesbeeanentesaeeneens 90
data2XMOVIE TOOL..c..eiuiiiiriiiiiiiiteetetete ettt ettt sttt ettt eb et b e eae et sbesbe et saeebeens 91
€am database LOOL.....cc.couiiiiiiiiiiiiiet ettt e 91
€AIM ZENETALE LOOL. ..ottt ettt ettt et e 91
BEF LOOL. ettt b e sa et saeeaeen 91

LAMMPS Users Manual

Table of Contents

EINACS TOOL. .ttt ettt et ettt b ettt b et sh e ebt et e bt e bt s e et bt e bttt a et e tesheeaeens 91
PP TOOL .ttt et b e e bbbt h ettt saeebeens 91
IMP2AIC TOOL....ceiiiiieiii ettt et ettt et et 92
IMP2CEZ LOOL ettt bttt ettt e 92
IMP2VINA EOOL...ctiitiiiiieiteei ettt sttt sttt et b e e bttt b e bbb e sbe et sreeaeens 92
INALIAD TOOL. .. ettt ettt sttt bbbttt saeeneens 92
MECEILE2A LOOL....c.iiieiiiierieec ettt sttt ettt b e bbbt st et sreebeens 92
MSIZIMP LOOL ...ttt sttt ettt et b et a e st sbe et saeebeens 92
PYMOI_ASPhere t00L......coc.iiiiiiiii e 93
PYTRON TOOL ...ttt ettt 93
TEAX TOOL .ttt ettt ettt b et e b ettt b bbbt bt et b e e bbbt bt b a b eanen 93
TESLATt2AALA TOOL..c..itiiiiiiiitieitetete ettt ettt sttt sttt eanen 93
ThETINO_EXITACE TOOL..ciiiiiiiiiiiiei et e et e e e et e e e e e e eeeeeeeeeeeeaaeeeeeeeeeeees 94
VAL BOOL .ttt ettt ettt b e e bt ettt bt et b ettt saeebeent 94
XIMIOVIE TOOL ... ettt ettt ettt ettt ettt et st ebe et e bt e bt esa et bt ebe e b e nbesbeesnentesaeeneens 94
10. Modifying & extending LAMMPS.......ccooiiiiiiieee ettt 95
TO.T ATOM SEYIES....eiiiiiieie ettt st sttt st e s sane s 96
10.2 Bond, angle, dihedral, improper potentials..........c.ccecvevierererrienineneenienene et 97
10.3 COMPULE SEYIES ...evtiniiiieiietintietet ettt ettt ettt sttt et bbb st bt esne et st ean e tesaeeaeens 98
1O.4 DUMP SEYLES. ..ttt sttt st st e st e saaesanesane e 98
10.5 Dump custom OULPUL OPLIOMNS......c..erverueeureriirieeitetenteeieetentenieeetentesreebeestentesbeesnenaesueeasensesaeeseens 99
0.6 FIX SEYLES. ettt ettt ettt sttt bbbt sbe et a ettt naeeieens 99
10.7 Input SCIiPt COMMANGS......veeutientieteetteteet ettt et et e st e bt e bt esbeesteesbeesbeesbeenbeesbeesbeesbeenneens 101
10.8 KSPACE COMPULALIONS.eeutieitietietietienteettetterteeste e bt e st esbeesbee bt e steesbeesbeesbeenbeesbeesbeesseesneenns 101
10.9 MINIMIZAION SEYIES ...cuvirveiiiiiiiiiiietetese ettt et sr ettt eenen 101
10.10 PairwiSe POEITIALS. ...cc.veeutietieiieteett ettt ettt ettt e st e bt e b e bt e bt e bt e sbeesbeesaeennis 102
TO.TT REZION SEYLES ...eeutieiietietiete ettt ettt ettt sb e bt et e b e s bt e b e b e nbeesbeesbeesbeenneenis 102
10.12 Thermodynamic OULPUL OPLIOMS. ...ceveeteetiertiertierteestienteenteenteesteesteesteesseesseesbeesbeesbeesseesneennes 103
10.13 Variable OPLIONS....cc.eetieiieiieitete ettt ettt ettt et esbe e bt e sbeesbe e s bt e bt esbeesbeesbeesbeenneennis 103
10.14 Submitting new features for inclusion in LAMMPS........ccccoiiiiiiiiieeeeee 104
11. Python interface to LAMMPS ...t 106
11.1 Extending Python with a serial version of LAMMPS..........ccooiiiiiiieeeeee 107
11.2 Creating a shared MPI IIDrary..........ccooiioiiiiiiiiiieeeeteee et 108
11.3 Extending Python with a parallel version of LAMMPS.........ccccoiiiiiiiiiineeeee 108
11.4 Extending Python with MPL........ccccooiiiiiiice e 109
11.5 Testing the Python-LAMMPS Interface..........cccceveeiiiiienieiienienieseee e 110
11.6 Using LAMMPS from Python........cooooiiiiiiiieeeeeeeee e 111
11.7 Example Python scripts that use LAMMPS........cocoiiieeeee e 114
L2 BITOTS. c. ettt ettt ettt ettt b e e bbb et bt s bt ettt e bt et e b nae bt et e st nheeaeen 116
12.1 COMMON PIODIEIMSteutieniieiiettett ettt ettt ettt et e st e bt e bt e sbeesbeesbeesbeenbeenbeesbeesbeesbeenneenis 116
12.2 REPOTTING DUZS. .. ettt ettt ettt ettt e sb e sbe e bt e bt et e e sbe e bt e bt e bt e bt e nbeesbeesbeenneenis 117
12.3 EITOT & WAITNEZ NMNIESSAZES . uveeuvtenteentienteetianteenteesteenteesueesseesseesseesseesseesseesseenseesseesseesseesseenses 117
EITOTS ettt st s 118
VTS ettt ettt et a e a e e et e et e e et e e et e st e e st e eateeabeeabeeabeeateenteeabeeateeas 182
13, FULUIe ANd RISTOTY ... eeutieiiitietiet ettt ettt ettt e b e b e b e e bt e s bt e bt e bt e bt e bt e sbeesbeesaeenbeenns 187
13.1 COMING AtITACTIONS. .nteeuteeutienteetteteeteente et ee bt e bt e bt esbee bt e bt esbeesbeesbeesbeesbeenseenbeenbeesseesseenneennes 187
13.2 PaSE VETSIOMNS ..ttt ettt ettt ettt et et ettt s be et et e bt sbe et et bt easentenaeeaeennen 187
angle_style charmm COMMAN..........ccccoiiiiiiiiiniiiiee ettt s 189

LAMMPS Users Manual

Table of Contents

angle_style charmm/omp cOmMmMAand............ccecueriririeriininieiee ettt s 189
angle_style class2 COMMANA.........cocceouiriiririeiiiriiet ettt s sae e eaeens 191
angle_style class2/0mp COMMANG........cc.coirieriiriiniiieieneteee ettt sae e eaeens 191
angle_Coeff COMMANA........cc.oiiiii ettt et e bt e b e b et e bt e et e sbe e b eas 193
angle_style coSINE COMMANG........coeeiiriiririetiniieieet ettt ettt ettt ettt sbe e nestesaeeaeens 195
angle_style cosine/omp COMMAN.cc.coerteriiriinirterienertetente ettt ettt sae s nesaesaeeaeens 195
angle_style cosine/delta CoOmMmAand............coceevuiriririeriininieeeseet ettt 197
angle_style cosine/delta/omp cOMMANd........c..coiririeriiririeienieneetcese ettt 197
angle_style cosine/periodic COMMANA.ocueriririeriinirieiene ettt ettt et sae e eaeens 199
angle_style cosine/periodic/omp COMMANA..........cceecveriiririeienineneenene ettt ettt ere e saeeaeens 199
angle_style cosine/shift COMMAN............cooeiiiiiiiiiieeee ettt 201
angle_style cosine/shift/omp cOMMANA............coiiiiiiiiiiieiiie et 201
angle_style cosine/shift/exp cOmMMAand.............coiieiuieriiinienieiieie ettt 203
angle_style cosine/shift/exp/omp cOMMANA..........cc.eeruiiriiriiiienieeeeee et 203
angle_style cosine/squared COMMANA........c..eeiuieiiiiiiieniiiiieeee ettt ettt ettt e e e e e 205
angle_style cosine/squared/omp COMMANC...........eeiuiirtiiriieniiiietie ettt e e 205
angle_style dipole COMMAN..........cc.oiiuiiiiiiiei ettt et ettt et e e e b e e 207
angle_style dipole/omp COMMANC........cocuiiiiiiiiiieiee ettt seeeaes 207
angle_style harmonic COMMANG...........coueririeiiininirieieneeteese ettt ettt sa et sae e eaeens 209
angle_style harmonic/omp COMMANG........coceeruiriirirteriininieiene ettt ettt st sae e eaeens 209
angle_style hybrid cOmmMand............cocueiiiiiiiiiiee ettt 211
angle_Style NONE COMMEANC........ccuiiitiiiiiiiee ettt ettt ettt e bt e bt e b e e bt et e sbeesbeesbeesbeenseeaes 213
angle_style SdK COMMEANG.........coouiiiiiiiie ettt ettt sb ettt e bt e b e e as 214
ANZle_SEYLE COMMEANC.......eiiiiiiieii ettt et e bt e bt e bt e bt e bt enbeesbeesaeesbeenseenas 215
angle_style table COMMANG...........coiuiiiiiiie ettt ettt sb e bt e e bt e b e e es 217
angle_style table/omp COMMANC.........c.eiitiiiiiiieiieie ettt ettt e bt sb e b e b e e e s 217
atom_mOdify COMMEAN........eiiiiiiiiiiitiee ettt ettt b et e bt e bt e bt e bt e bt e sbeesbeesbeenseeas 220
ALOM_SEYIE COMMEAN.......eiiiiiiieit ettt ettt et e bt e bt e bt e bt e bt e nbeesbeesbeenseenas 222
balance COMMANG........cc.eiiiiiiiiiiiiiicrtet ettt sttt et sa sttt sae e eae b saeene 225
bond_style class2 COMMEANA..........cueoiiiiiiiiiii ettt ettt ettt ettt et eeesaeesaeeeas 228
bond_style class2/0mp COMMANA.......c.c.eeiiiiiiiiiii ettt sttt et tesaee e eas 228
DONA_COETT COMMEANG. ... oo et eeraeaaaaaaaes 230
bond_style fene COmMMANd..........cocuiiiiiiiiiiiii ettt s 232
bond_style fene/omp COMMANA..........coouiiiiiiiiii ettt e 232
bond_style fene/expand COMMANA..........cocuiiiiiiiiiiii et 234
bond_style fene/expand/omp COMMANC..........ooouiiiiiiiiiiiee ittt 234
bond_style harmonic COMMANA..........cocuiiiiiiiiii et ettt et 236
bond_style harmonic/omp COMMANG..........coouiiiiiiiiiiieieeie ettt ettt 236
bond_style harmonic/shift COMMANd..........cccuoiiiiiiiiiiiiiiie e 238
bond_style harmonic/shift/omp command.............ccociiiiiiiiiiiiii e 238
bond_style harmonic/shift/cut command............ccccoooiiiiiiiiiii e 240
bond_style harmonic/shift/cut/omp cOmMmMAaNnd............cccueiuiiiiiiiiiiiiiieeeeeee e 240
bond_style hybrid COMMAN...........coouiiiiiiiiii ettt 242
bond_style MOrse COMMEANA.........ccuieiiiiiiiiiii ettt ettt st sttt e ateeaeesaee e eas 244
bond_style morse/0mp COMMANA.........c.eeuiiiiiiteie ettt ettt sttt eateeaeesaee e eas 244
bond_style NONE COMMANT..........oiiiiiiiiiiiii ittt ettt st ettt e ateeaae e eas 246
bond_style nonlinear COMMANA..........cocueiiiiiiiiiiie ettt ettt et ete s eas 247
bond_style nonlinear/omp COMMANG..........cccuiiiiiiiiiiieieeie ettt ettt et see s 247

LAMMPS Users Manual

Table of Contents

bond_style qUartic COMMANG...........coereeiiririeietitet ettt sttt et sa et sae e eeeebesbeeaeene 249
bond_style quartic/omp COMMANT.........cceriririiriinirieienereet ettt ettt sttt s eeeenesbe e ene 249
bond_Style COMMANG......couiiiiiii ittt ettt ettt et et e et e et eateeaeeeaeeeaneeas 251
bond_style table COMMANT..........cooiiiiiiiiii ettt sttt et et eas 253
bond_style table/omp COMMAN...........cueeiiiiiiiiiieeie ettt et ettt s 253
DOUNAArY COMMANC. ...ttt ettt et ettt ettt et e s ate et eeateeateeaeeentesaneeas 256
Cchange_bDOX COMMEANA........couiiiiiiiiii ettt st shtesaeesbe e s bt e sbeesbeesaeesaeenaeees 258
ClEAT COMIMAN.....c.eeitirieiiiitiett ettt ettt ettt et ettt eet et bt ebe et e bt sbe e st ebe s bt ebeentenaeeaeeanen 262
COMMUNICALE COMMAN....cuvitteuietintieitetenterttet et sttt ete et et sbe et et e sbeebeessenbesbeeseebenbeebeensenseeueennen 263
COMPULE COMIMEAN.....etttiiieeiieeie ettt ettt eh e e e et e e s atesbee e bt e sbeesheesbeesaeesbeesbeesbeesbeesbeesaeenneennes 265
compute ackland/atom COMMEAN..........ccccoiriiiiriniiieiieeetee ettt 269
compute angle/10cal COMMANC...........oiiiiiiiiiiiie ettt st 271
compute atom/molecule COMMEAN........cocuiiiiiiiiiiiie ettt 273
compute bond/local COMMEANA...........ooiiiiiiiiiiie ettt sttt e i e e es 275
compute centro/atom COMMEANG.........couiriirieiiiiieite ittt ettt et et e sttesttesttesatesbeesbeesbeesbeesaeesaeenaeennes 277
compute cluster/atom COMMANG........c..eoueriririerereetetene ettt ettt ettt sttt sbeeste st sbeeseenaenaeeaeennen 279
compute cna/atom COMMEANC.........iiiiiiiiiiiie ettt st e st esbeesaeesaeesb e e sbeesbeesaeesaeenaeenis 280
COMPULE COM COMIMANT ...ttt ettt ettt ettt ettt e et e satesatesseesbtesaeesbeesaeesbeesbeesbeesbeesbeesseenneenns 282
compute com/molecule COMMEANC.........cocuiiiiiiiiiiiii ettt 283
compute cOOTd/atomM COMMANT.eiitiriiiieiieiie ittt e et e satesaeesaeesbeesbeesbeesaeesaeenaeeas 285
compute damage/atom COMMANC...........oiiiiiiiiiiie ettt sttt e bt e saee i e e e es 286
compute dihedral/local cOMMANA..........cocueiiiiiiiiiiiii e e e 287
compute displace/atom COMMANC.oouiiiiiiiiieiie ettt sttt sttt e st e et e e e seeeas 288
compute erotate/asphere COMMAN..........coereeiiriiririiniinineetenere ettt eaesae s eanes 290
compute erotate/Sphere COMMANG.........ccerireriiriririiiene ettt ettt sttt et sbe et beeaeesaenaeeaeeanes 291
compute event/displace COMMANA........cc.erirerriiriririeiene ettt sttt st sae e eanes 292
compute group/group COMMEAN........coiiriiiiiriiiieiieeie ettt s aee 293
compute gyration COMMEANC.ccueruirierieriririirte ettt ettt ettt et ettt sbe et esbesbeeseesbesbeeaeenaenaeeaeennen 294
compute gyration/molecule COMMANd...........cecveriririiiiiniiieieetee et 295
compute heat/flux COMMAN.......c..cceeiiviiriiiiiietce ettt 297
compute improper/local COMMAN.........c.c.ooiiiiiiiiiiie ettt 301
COMPULE K& COMMEANT.......eiiiiiiiiiiiiie ettt st e bt sbe e b e bt e sbeesaeesaeenaeeas 302
compute Ke/atom COMMEAN...........ciiiiiiiiiiie ettt sttt b e bt e bt e sbeesaeesaeeas 303
compute ke/atom/eff COMMAN.............ccooiiiiiiiiii e 304
compute ke/eff COMMAN...........ccciiiiiiiii ettt 306
compute Mmeso_e/atom COMMEANG........eeerurrerieeriieiiieeiteeniteenteestee et e ebeeesbeee sttt esibeesabeessbeesabeeenbeeenaees 308
compute meso_rho/atom COMMEAN...........iviiiiiiiiiiiiie ettt st e e 309
compute MeSO_t/atom COMMANGcouutruiirierieeiieeiteetteeiteette et e sttesteesbtesatesteesaeesbtesbeesbeesbeesaeesaeesneeas 310
compute_mMOdify COMMEAN..........c.eiiiiiiiiiiie ettt ettt st s ee bt e s e e ais 311
comPUte MSA COMMEANT.....couiiiiiiiiiii ittt ettt she e sbeesaeesbeesbeesbeesbeesaeesaeenaeenes 312
compute msd/molecule COMMAN..........c.cuoiiiiiiiiiiie ettt 314
COMPULE PAIT COMIMANA.etiiiieiiie ettt ettt e st et esbee s bt e sbtesatesbeesbeesbeesbeesbeesbeesbeesaeenneenns 316
compute pair/10cal COMMEAN.........cccuiiiiiiiiiiiiie ettt sttt e bt e e es 318
COMPULE PE COMIMANAeeitiiiiiiieiie ettt ettt ettt ettt ettt e sttt e sabeesabeeeabeeebeeesbbeesbbeesabeesabeesabeeebeeensees 320
compute pe/cuda COMMEANC........cccuiiiiiiiiii ettt st et e st sbe e bt e sbeesbeesaeesaeenaeees 320
COMPULE PE/ALOM COMMEANTeiiuiiiiiiienitienitee ettt ettt ettt e sttt e et e ebeeesbteesbbeesabeesabeesabeeenbeeenaees 322
COMPULE PreSSUIe COMIMANC.eiiuiiiiiiieriiieriite ettt ettt ettt stt et e et e et eeebeeesbbeesbbeesabeessbeesabeeenbeeenanes 324
compute pressure/cuda COMMEAN.eeiiiiiiiiiiieiie ettt et te bt e s e saee b e neeeas 324

LAMMPS Users Manual

Table of Contents

compute property/atom COMMANC........cooueeriiiriiiiiiiieitt ettt ettt et e et esibeesateesbeesbeeenbeeenanes 326
compute property/local COMMAN..........cocuiiiiiiiiiiiiiiie ettt st 328
compute property/molecule COmMMAN.............c.oiuiiiiiiiiiiiiieiee et 330
COMPULE TAE COMIMANG.......eeiiieiiieiie ettt sb e shtesbeesae e s bt e sb e e sbeesbeesaeesaeeneeeais 331
cOMPULE TEAUCE COMMEANT.....euiiiuiiiiiiiiii ittt ettt e st esbtesaeesbeesbeesbeesbeesaeesbeenseeais 333
compute reduce/region COMMEAN.oiiiiiiiiiiieiie ittt e st e st et e b eesbeesbeesaeesaeesaeeas 333
COMPULE SIICE COMMIANT. ...ttt ettt st sbeesatesbeesb e e sbeesbeesbeesaeesaeees 336
compute Stress/atom COMMANT.coiutieriieriiiiiie ettt ettt ettt et e e st e sibeesateesabeesabeeenbeeenaees 338
COMPULE LEMP COMIMANA. ¢ .eiiiiiiiiiieitteritee ettt ettt ettt e st e st e st e e beeebeeesbbeesbbeesateesabeesabeeenbeeenanes 340
compute temp/cuda COMMANG........cc.eiiiiiiiiieeieete ettt e st esbtesatesbeesbeesbeesbeesbeesaeenaeees 340
compute temp/asphere COMMAN...........couiriiiiiiiiiie ettt sttt e st e s e seeees 342
COMPULE LEMP/COM COMMEANG. ...euerieniiieritieritieeiie ettt ettt sit e st e et e ebeeebeeesbbeesbbeesateesabeesabeeenbeeenaees 345
compute temp/deform COMMANG...........coouiiiiiiiiiiiie ettt st 347
compute temp/deform/eff command...........coccecveviiiiiiiiiniii e 349
compute temp/eff COMMANC...........cooiiiiiiii ettt 350
compute temp/partial COMMANC.........cocuiiiiiiiiiiie ettt st e e 352
compute temp/partial/cuda COMMANG.cccuiriiiiiiiiiii ettt 352
compute temp/profile COMMANA..........ceiiiiiiiiiiei et 354
compute temMp/ramp COMIMEAN..........eerutriirieeieeieeiteette st te st eeettesttesttesstesttesttesseesbeesseesbeesseesneesseenseenes 356
compute temMp/reZion COMMANC.oouiiiiiieiiiiie ettt st e st e st esbee bt e sbeesbeesaeesaeeseeees 358
compute temp/region/eff COMMANA...........coouiiiiiiiiiii e 360
compute temMp/rotate COMMANT.eiiiiiiiieiieeie ettt ettt et e st e stee st e sbeesbeesbeesbeesaeesaeesaeenes 361
compute temp/SPhere COMMAN.........couiiiiiiiiiiiie ettt ettt ettt esbee bt e b e neeees 363
COMPULE Tl COMIMANT.euteiiieiii ettt ettt e bt e sb e e shtesbeesbeesbeesbeesbeesbeesaeesbeenneenes 365
Create_atomMS COMIMANT........eieeeee ettt e et e e e et e e e et e e e et e e e e ea e e e e eaaeeeeaanaeeeeaneeeeeaneeeeeanaeeeeanns 367
CTEALE_DOX COMIMANG .ottt e e e e e e e e et e e e e e e e e e e ee e e e e e e e e e e eeeaaaaas 370
delete _atOmMS COMIMANT........oeeeeeee ettt e et e e e et e e e e e e e e e e e e e e etanaeeeeeaaaeeeeanaaeeenanns 372
delete_ DONAS COMIMANG........ooieeee et e e et e e e e e e e e e e e e e e et e e e e eaaaeeeeeaaeeeeeanns 374
dielectric COMMANG........cc.eiiriiiiiiiiet ettt ettt ettt ettt et ettt sbe e sbe s bt b enaenbeeaeeanen 376
dihedral_style charmm command..............coouiiiiiiiiiiiie e e 377
dihedral_style charmm/omp COMMANA..........cccuiiiiiiiiiiiieeie ettt 377
dihedral_style class2 COMMAN.........cocuiiiiiiiiiiie ettt sttt 379
dihedral_style class2/0mp COMMANG.......c..coceriiriiririiiiieninietentese ettt sttt 379
dihedral COET COMIMANT........cooe e e e et e e e e e e e e e e e e e e eaaeaas 383
dihedral_style cosine/shift/exp COmMMANd............ccooouiiiiiiiiiiiiie e e 385
dihedral_style cosine/shift/exp/omp command..............cocerieriiriinienienie et 385
dihedral_style harmonic COMMANA............couiiiiiiiiiiiie ettt 387
dihedral_style harmonic/omp COMMAN............cccueiiiiiiiieiieiie ettt 387
dihedral_style heliX cOmMMand...........cocooiiiiiiiiiii et 389
dihedral_style helix/omp cOMMANA.........cccoriiiiririiiiiieecc ettt 389
dihedral_style hybrid cOmMmMand............ccccocereiiiriiiiiiiic et 391
dihedral_style multi/harmonic COMMAN...........cccoiiiiiiiiiiieieeee e 393
dihedral_style multi/harmonic/omp cOMMANA.........c.ccoeririeriiniinieieneneneeene et 393
dihedral_style NONE COMMANG.......cc.eiiiiiiiiiieiiieie ettt sttt sttt sbee s esaeesaee e e ees 395
dihedral_style opls COMMANC......c..cceioiiiiiriiiiiiicietcee ettt 396
dihedral_style opls/omp cOMMAN..........ccccoeroiiririiiiiiiieeteetee ettt 396
dihedral_style COMMAN............cocuiiiiiiiiie ettt sttt st e sbee bt e bt e saeees 398
dihedral_style table COMMANA...........cooiiiiiiiiiiie ettt sttt 400

Vi

LAMMPS Users Manual

Table of Contents

dihedral_style table/omp cOmMMAaN...........cocuoiiiiiiiiiiiie e e 400
dIMENSION COMIMANT.......cciiiiiiiiiiiie ittt e e e eeeee e e e e e e et e e e e e eeeaaeeeeeeeeeeaaeeeeeeessesnaaaeeeeessennaaereeesenans 403
displace_atoms COMMANA..........couiiiiiiiiie ettt st e st esae e bt e b eesbeesbeesaeesaeenaeeaes 404
AUMP COMMEANT. ...ttt ettt e et e s b e e bt e s bt e sheesheesaeesbeesbeesbeesaeesaeesbeenneens 406
dUMP IMAZE COMIMEANT.eeeiiiiieiiieite ettt e et e st e st esbtesheesbeesaeesbeesbeesbeesbeesaeesaeenseenns 406
dUMP IMAZE COMIMANT.eeiiiiiieiiieiie ettt ettt et e et e b e sb e e shtesbeesaeesbeesbeesbeesbeesaeesbeenseenns 413
dump_modify COMMANG........cccoiiiiiiiiiiie ettt st sb e st e st esbeesaeeseeeas 420
€CHO COMMEANU. ...ttt e e ettt e e e e e et e e e e s s eataeeeeesseensaaeeeeeseans 429
D e10) 11110 F21 4 ¢ RO PRRRRN 430
fiX adapt COMMANC........eiiiiiiiii ettt st e bt e bt e b e sbeesbeesaeesaeenaeeais 434
fiX addfOrce COMMEANT........ooiieeiiiie e ettt e e e e e e e e eatae e e e e e seeaaaeeeeesenns 438
fix addforce/cuda COMMIANA...........cooiiiiiiiiiie et e e e e e e e e et e e e e s eeenaaaereeeeenns 438
fix addtorque COMMEANC.........oiiiiiiiii ettt sttt sbe e b e sbeesbeesaeesaeenneees 441
fix append/atoms COMMEAN...........oiiiiiiiiiiie ettt sttt e st e bt e bt e sbeesaeesaeenaeees 443
D L1 e o071 111 071 1 Lc AUU OO PRRRRN 445
fiX ave/atom COMMEANT.........ccouveeiiiiiieeiee e e ettt e e e et e e e e e e et e e e e e e s eeataeeeeessennnaareeeesenns 449
fiX ave/Correlate COMMAN............cooiiiiiiiiiiie et e et e e e e et e e e e e e eaaaeeeeeseeennaaeeeeeeenns 451
fiX ave/hiStO COMMIANA.oiiiieiiiiie ettt e e et e e e e e et e e e e e s s eaaaeeeeesseensaaeeeeeeenns 456
fix ave/spatial COMMANC........cocuiiiiiiiiii ettt st et e bt st esaeesaee et eas 461
fiX aVe/timMeE COMIMIANA.........ooiuieeieiee ettt et e e e e ettt e e e e e e e e e e e e eeaaaeeeeeessenaaaeeeeessennnaneeeeesenans 466
fiX aVefOrce COMMIANG.........oiiiieiiiii ettt e e ettt e e e e e et e e e e s e eaaaeeeeessennsaareeeesenns 471
fix aveforce/cuda COMMANG.............oooouiiiiiiiiiiieie et e e e e e e e et e e e e s e eeaaaeeeeeeeens 471
fiX bond/Dreak COMMANG..........uvviiiiiiiiiiiie ettt e et e e e e e et e e e e s e eaaaeeeeesseenaaaeeeeesenns 473
fiX bond/Create COMMAN............ooiiiiiiiiiiiieiee et e e e e et e e e e e et e e e e e s eeaaaeeeeesseensaaereeeeenns 476
fiX boNd/SWap COMMEANG......cc.eetiriiriiiieieniericet ettt et sttt ettt sbe et be b esaenaeeaeeanes 479
fiX DOX/TElaX COMMIANA ... iiiiiiiiiie ittt e e e et e e e e e e e e e e e s e enataeeeeesseennaareeeeeenns 482
fiX defOrm COMIMANG..........coooouieiiiii et e et e e e e e et e e e e e e eaaaeeeeesseenaaaeeeeeseens 487
fiX depOSIt COMIMANT.....cc.eiitiriiiiiiiiiiiiei ettt ettt ettt ettt sbe et be b b e nbe e eanes 495
fiX drag COMMAN......co.cooiiiiiiiiiii ettt ettt ettt sbe et bt et esa e b ennes 498
FIX dt/TESEt COMIMANL.......ciiiiiiiiiiiie ettt e ettt e e e e et e e e e e e e e eeeeeseenataeeeeessennsaaeeeeesenns 499
fIX fi€ld COMMANG.......oooiiiiiiiiiiice ettt e ettt e e e e e et e e e e s s eaaaaeeeeesseenaaaeeeeesenns 501
fiX enforce2d COMIMANT.........c.uvvviiiiiieeieiie et e e e e e e e e et ae e e e e s seenaaaeeeeeseens 502
fix enforce2d/cuda COMMEANG..........coooiuiiiiiii et e e e e e e e et e e e e s s eeaaaeeeeeeenns 502
fiX @VAPOTate COMIMANT.eouiiiiiiiiiiiiii ettt ettt sa e st e s bt e satesbeesb e e sbeesbeesaeesbeenaeeeis 503
fiX eXternal COMIMANG..........ocoouieiiiiii ittt e ettt e e e e e et e e e e e e eaaaeeeeesseenaaaeeeeeseans 505
fIX frEEZE COMMAN........ooiiiiiiiiiiiiie et e ettt e e e e e e e e e e et eeeeeesseaaaaeeeeessennaaareeeeeenns 507
fix freeze/cuda COMMEANG...........ooeiiiiiiiiiiie ettt e e e e e e e e eatae e e e e s seenaaaeeeeeeeens 507
fIX ZCIMNC COMMANG.....c.ueiiiiiieiieitetite ettt ettt ettt eb et sbe bt bbbt e bt e b enaeeaeeanen 509
fiX Gravity COMMEAN.cocuiiiiiiiiiiie ettt st e s he e s bt e s bt e sb e e sbeesbeesbeesaeenaeeees 512
fix gravity/cuda COMMANC.........oooiiiiiiiiiie ettt sttt st e b e bt e bt e e e ais 512
fiX gravity/Omp COMIMANG.c..iiiiiiiiiiieiie ettt st st e st e sat e bt e sb e e sbeesbeesaeesaeenaeeais 512
fIX NEAt COMIMAN.......uvviiiiiiiiiiiiiee ettt e e e et e e e e e e et e e e e e e s senataeeeeessennsaaeeeeeeenans 514
§ D Q0016 10} 1011 0F2Y 4 ¢ FUU PRSP 516
fIX INAENE COMMIAINA.......eiiiiiiiiiieeie et e e ettt e e e e et e e e e e eeaaaeeeeeeseeaaaaeeeeessennnaaeeeeesenans 519
fiX [angeVIN COMMIANC.eiiiiiiiiii ettt st st e st esae e bt e bt e sbeesbeesaeesaee et eeis 522
fix langevin/eff COMMAN..........cocoiiiiiiii et s 526
fiX IINEfOrCE COMMANG........ooiieeiiiiieiectiee et e e e e ettt e e e e e et e e e e e s e eataeeeeesseenaaaeeeeeseens 528
fIX MESO COMIMANG.vviiiiiiiiiiiieiiee ettt eee e e e et e e e e e e e e et e e e e e e e aaaeeeeeessenaaaeeeeesseensaaeeeeesenans 529

Vii

LAMMPS Users Manual

Table of Contents

fiX MesO/StatioNAry COMMANG.eitiriiiriiiiie ettt ettt e sbte bt e sbeesatesbeesbeesbeesbeesbeesaeenaeenas 530
FIX_MOdify COMMANG.....cueiiiiiiiiiii ettt et sbee b e satesaee e eas 531
fiX MOMENtUM COMMEAN.......cocuiiiiiiiiiii ettt sttt e st e bt esb e e sbeesbeesaeesaeenaeenais 532
fIX MOVE COMIMANG.....c..eiiiiiiiiiiii ettt ettt sb e s htesbee s bt e sbeesbeesbeesbeesaeesbeenseenes 534
FIX MSSt COMMAN.......eeutiiiiiiiei ettt ettt ettt ettt e e ate et e eabeeabeeatesneeeneesaneeas 537
FIX NED COMMEANG.......eiiiiiii et sttt ettt e et e b e as 540
FIX NVE COMMEAN. ...ttt st s ht e s bt e s bt e s bt e sb e e sbeesbeesbeesbeenaeees 542
fiX NV/CUdA COMMANC.......eiiiiiiiiie et sttt e b e bt e sbeesaeesbee e eas 542
FIX NP COMMEAN.....eiiiiiiie ettt sa e bt e s bt e s bt e s bt e sbeesaeesaeesaeenaeees 542
fiX NPt/cuda COMMIANC........oiiiiiiiii et sttt e bt et e bt e b e saeesaeeneeeas 542
FIX PN COMIMANG ...ttt st sat e s bt e s bt e s bt e sb e e sbeesbeesaeesbeeneeens 542
fiX NV COMMAN.... ..ottt ettt st e st e s e e as 550
fiX NP/Eff COMMAN.......cociiiiiiii ettt st st e bt e e aes 550
fiX NPh/Eff COMMANC......coiiiiiii ettt st e st e e as 550
fix nph/asphere COMMANA..........cccoiiiiiiiii ettt sttt e st e it e e s 553
fiX NPh/SPhEere COMMEAN.c.oiiiiiiiii et ettt e st e st e e as 555
fIX NPUZ COMMANG ...ttt ettt st e bt e bt e s bt e sb e e sbeesbeesbeesbeenaeees 557
fiX NPt/asphere COMMANC.ooiiiiiiii et sttt st e bt e st bt e saeesaeenaeees 560
fiX NPt/SPhere COMMANA.........cocuiiiiiiiiie et sttt sb et sbee bt et e e e as 563
FIX NIVE COMMANA. ...ttt sttt a e s bt e s bt e s bt e s bt e sbeesbeesaeesbeenaeens 565
fiX NVE/CUAA COMMANG.ottt ettt st e st e bt e s bt e sbeesbeesaeesaee et ens 565
fix nve/asphere COMMANG..........oouiiiiiiiiie ettt sttt s e bt e bt e e e as 566
fix nve/asphere/noforce ComMmMAN.............oouiiiiiiiiiiiie et 567
fiX nve/eff COMMAN........c.oiiiiii ettt st e e as 568
FiX NVE/TIMIE COMMANT.eeiiiiiiiiiii ettt st e bt e bt e sbeesb e e sbeesbeesaeesaeenaeeas 569
fiX NVE/IINE COMIMANG........eiiiiiiiiiiiite ettt a e st s e s bt e bt e sb e e sbeesbeesaeesbeenaeens 571
fiX NVE/NOTOICE COMMANG......eouiiieiiiiiiiiie ettt ettt e bt e bt e b e saeesaeenaeeas 572
fiX NVE/SPhEre COMMANG.ooiiiiiiii ittt sttt sb e st sbeesaeesaeesaeeais 573
fix nve/sphere/omp COMMAN............cocuiiiiiiiiiiiie ettt st e st 573
FIX NVE/IT COMIMANC. ...ttt ettt st e s bt e s bt e saeesb e e sbeesbeesbeesbeenaeees 575
fiX NVE/aSPhere COMMANC.c.iiiiiiiiie ettt ettt bee s esaeesaeesaeees 576
fiX NVE/SIIOd COMMANG.......eiiiiiiiiiie ettt ettt sbt e bt s e sae e b e st eaes 578
fix nvt/sllod/eff COMMANA..........oooiiiiiiii et st 580
fiX NVE/SPhere COMMANA.........cocuiiiiiii ettt sttt sbeesaeesaee e eas 582
fiX OrieNt/fCC COMMEAN.couiiiiiiiiiiiie ettt et e st sbe e b e bt e s b e saeesaee e eais 584
fiXx planeforce COMMAN..........cc.iiiiiiiiii ettt sttt e s e bt e bt e e e as 588
FIX POBIIIS. ..ttt ettt ettt bttt b e e bt sttt b e et e bbbt et e bt bt bt et bt bt ettt aeeanen 589
fIX POUT COMMANT. ..c..eueiiiiiieieeitetittet ettt et ettt eb e et e bbbt et e bt sbe e e e b s bt ebeenbenaeeaeeanen 591
fix press/berendsen COMMANC........cc.eeveviiriririiinineeteee ettt ettt ettt st ebe et eanes 593
IX PriNt COMMAN......coueiiiiiiiiietitiet ettt ettt et et sb e st b e b b e naeeaeeanen 596
fiX 4eq/comb COMMANG........coeeiiriiriiiieteniereet ettt ettt ettt ettt sbe et be bt esaenae i eanen 598
fix qeq/comb/OmpP COMMEANG.......cc.eruiriiriiriirieiete ettt ettt ettt ettt sbe et sbe b enaenaeeaeeanes 598
fiX gEQ/TEAX COMMIANC.eiiiiiiiiiii ettt s b e s h e s bt e s bt e sbeesb e e sbeesaeesbeesaeenaeees 600
fiX reax/bonds COMMEAN..........c.oiiiiiiiiieie ettt ettt sb e b e bt e b e saeesbeeneeeais 602
fix reax/c/bonds COMMEAN.........cccuiiiiiiiiiiiie ettt sttt e bt e bt e bt e saeesaeeseeeas 602
fiX TECENTET COMIMAN.....c..eiiiiiiiiiiiie ittt ettt et esb e shtesbeesbtesbeesb e e sbeesbeesaeesbeenneennis 603
FIX TeSLrain COMMEANC.....co.iiiiiiiiiii ettt sb e st e s bt e s bt e sbeesb e e sbeesbeesaeesaeenaeens 605
FIX TIZIA COMMANC. ...ttt st st sbe e s bt e bt e sb e sb e e sbeesbeesaee et eais 607

LAMMPS Users Manual

Table of Contents

fiX T1ZIA/MVE COMMANG.eiiiiiiiiiii ettt sttt e e bt e s bt e sb e e sbeesbeesaeesaeenaeeas 607
FIX T1ZIA/MVE COMMEANC. ...ttt st sht e s bt e bt e s bt e sbeesbeesaeesaeesaeenais 607
fiX SEtfOTCe COMIMEANC........iitiriiiiiiiiitiet ettt sttt ettt st b e et e b eanen 613
fix setforce/cuda COMMANG.........ccuiririeriiririeiee ettt ettt ettt st et eae e eanen 613
fiX Shake COMMANG....c..cociiriiiiiiiiii ettt sttt st st ea bt eanen 615
fix shake/cuda COMMEANC.........cocuiiiiiiiiiie ettt st eanes 615
fIX S COMMANA. ...c.eeieiiiiiieieetct ettt ettt sa ettt sbe et be b enaesbeeaeeanen 617
FIX SPIING COMIMANG.......tiiiiieiiieite ettt ettt ettt et e s bt e satesbeesbeesbeesbeesbeesbeesaeesbeenseenns 620
fiX SPIING/TZ COMMANT.eeiuiiiiiiiiiiiiie ettt ettt sb e sh e sbeesae e s bt e sb e e sbeesbeesaeesbeenaeenns 622
fixX SPring/self COMMAN.........cccuiiiiiiiiii ettt sttt s e st e et e e e as 624
IX STA COMIMANC.......cteiiiiiiiieieet ettt et sttt ettt sbe et be b ena et e e eanen 626
fiX StOre/force COMIMEAN......coueiiiiiiitiiiieterterce ettt ettt ettt st b e e e e nae e eanen 631
fiX StOre/State COMMANM.coueetiriiriieietertereet ettt ettt ettt sttt et bttt ettt sbeeseenbe s bt ebeenaenaeeaeeanen 632
fix temp/berendsen COMMANG.eiiiiiiiieiie ettt sttt st e bt e bt e sbeesaeesaeeseeeas 634
fix temp/berendsen/cuda COMMANG.......c..eieiiiiiiiiiieiie ettt sttt e st e st e i e e es 634
fix temp/rescale COMMANG.........ooouiiiiiiiiie ettt sttt e s esaeesaee e e as 637
fix temp/rescale/cuda COMMAN.........c.uiiiiiiiiiiiie ettt 637
fix temp/rescale/limit/cuda COMMAN............cooiiiiiiiiiiiiie et 637
fix temp/rescale/eff COMMAN............oooiiiiiiii e e s 640
fix thermal/conductivity COMMANG........couiiiiiiiiiiiie ettt st 642
fIX tMA COMMANT.....c..iiiiiiiitiiietcte ettt ettt ettt beeb et sbe bt e e b bt ebeenaenaeeaeennen 645
IX TN COMIMANG.cteiiiiiiiieieet ettt ettt eb et a e ebe et e bt sbe e e esbesbeebeenaenbeeaeeanen 647
fIX VISCOSIEY COMMEANAeiiiiiiiiiiiiiie ettt st sht e s bt e bt e sb e e sbeesbeesbeesbeenaeeeis 650
fiX VISCOUS COMMAN....cutitiiieiiitintieiiete ettt sttt et ettt ettt et saeebe et e st bt e e ebe s bt ebeenaenaeeaeeanen 653
fix viscous/cuda COMMEANT.......c..couiruiriiriiniirietete ettt ettt ettt ettt sbe et be e esaenaeeaeeanen 653
fix Wall/IJ93 COMMAN.......ccuiotiiiiiiriiiieeeree ettt sttt st b e e ae bt eenen 655
fiX Wall/[J126 COMMANG......cc.eiiiiiiiiiii ettt st sbtesat e beesbeesbeesbeesbeesaeenaeeeis 655
fix wall/colloid COMMANG........ccueiiiiiiiiiiriieeice ettt st sae e eanen 655
fix wall/harmonic COMMAN.......c..cceeiirieriiriiieieneetcee ettt ettt enae bt eanes 655
fix wall/gran COMMEANG........coeevtiriiriiieieree ettt ettt sttt sbe et bt e eae bt e e eenen 659
fix Wall/piSton COMMANC........cccuiiiiiiiiie ettt ettt sb e st e s e saeesaee e ens 662
fix wall/reflect COMMAN.........ccueiiiiiiiieii ettt bttt sae e eanen 664
fix wall/region COMMEAN.........c.oiiiiiiiii ettt sttt e st e et e e e as 667
fix Wall/sTd COMMEANT........coviriiiiiiiitieieere ettt sttt ettt sbe et b e et ebenae e eanen 670
GIOUP COMMANC. ...ttt ettt ettt ettt e e e s bt e ehtesh b e sh e e saeesuee e b eesb e e sheesbeesbeesbeesbeesbeesbeesaeesneenneenns 673
T COMMANA. ...ttt ettt b ettt et et sb e sbe e e b bt e bt et enaeeaeeanen 675
improper_style class2 COmMMAN............cocuiiiiiiiiiiiieie ettt 678
improper_style class2/0mp COMMEANC........c.cuoiiiiiiiiiiiiie ettt 678
IMproper_coeff COMMANG..........cocuiiiiiiiiie ettt sttt st e bt e e e e es 681
improper_style cvif COmMMAand...........cocoiiiiiiiii e e 683
improper_style cvif/omp COMMANG.......c.c.ooiiiiiiiiiii et 683
improper_style harmonic COMMANC...........cocuiiiiiiiiiiiie et 685
improper_style harmonic/omp COMMANG..........cccuiiiiiiiiieiieeieee ettt st 685
improper_style hybrid command...........c.coooiiiiiiiii e 687
IMpProper_style NONE COMMANT.oiiiiiiiiiiiiie ettt st ettt saee bt e bt e bt e saeesaeesaeeais 688
IMProper_Style COMMANG........cocuertiriiiiieriireet ettt ettt et sbe et be et eae b eanen 689
improper_style umbrella COMMANA.........coceriiiiriniiiiieeeeee et 691
improper_style umbrella/omp cOmMMANA........c..coeririiriiniiiiienieeee e 691

LAMMPS Users Manual

Table of Contents

INCIUAE COMMEANA.....c..eoiiiiiiiiieeitctt ettt ettt ettt ettt bbb e eaenae e eanen 693
JUIMP COMMAN. ...ttt ettt ettt ettt ettt et et e b et et e bt e bt et e sbeebe et e besbeebeenbesbeebeenaentesueennen 694
kspace_modify COMMANG........ccceeiiiririiiiiiiiieic ettt sttt st 696
kspace_Style COMMANG......c..coiiiiriiriiiiiieeetc ettt sa ettt st e 698
1abel COMMANG........ootiriiiiiiiieetc ettt ettt ettt ettt sbe et bbb e bt eaeeanen 701
JattiCe COMMIANG.coueiieiiiiieieet ettt sttt et ettt ettt ettt eb et e bt sbeeseebe s bt ebeenae bt eaeennen 702
LOZ COMMIEAN....cneiiiiiieiiie ettt sttt ettt ettt e sbt e e s bt e e sateesabeesabeeebeeenaees 705
INASS COMIMANC. ¢...eueterteeititiete ettt ettt et et sb et e eat e s bt ebeeat et e et e esb et e saeebeease bt sbeeseenbenbeeseensensesueennen 706
MIN_MOdify COMIMANG.......ccuiiiiiiiiii ettt st et e st sbe e b e sbeesbeesaeesaeeneeees 708
MNIN_SY1E COMMANG.oiiiiiiiiiiiiii ettt ettt s h e bt e s bt e satesb e e sbeesbeesaeesbeenaeees 710
MINTMIZE COMIMAN. c..c..eiutitiiieitetintt ettt ettt ettt eet et sttt et e nbesbeesaenbesbeebeenaenteeneennen 712
NED COMIMAN. ...ttt sttt s h ettt b e bt et e s bt ebe et e bt sbeeseebesbeebeenbenaeeaeeanen 716
neigh_mMOodify COMMANA........cocuiiiiiiiiie ettt sb e st e bt e i e naeeas 721
NEIZHDOT COMMEANG.....c..eiiiiiiiiii ettt et e st e bt e b e bt e bt e saeesaeenaeees 724
NEWLON COMIMAN. ...ttt ettt et sh ettt e bt est et ebe e bt et e s bt ebeeste bt sbeestebenbeebeentenaeaneennen 726
NEXE COMIMEANT.....uiiiiiiiiiiiii ittt sttt sae e s s b e st et e s aeesaeesaeesaeesaeesaeenae 727
OTIENE COMIMANG. ...c.eteteeititeete ettt ettt ettt et sb et e eate bt e bt eat et e et e ess et e saesbeemte bt sbeeseenbenbeebeentenaeaneennen 729
OTIZIN COMIMANG ...ttt ettt ettt ettt eh e s a e et esat e s bt e e beesb e e sheesbeesbeesbeesbeesbtesbeesaeesaeenneenns 730
PACKAZE COMMAN.......cuiiiiiiiiie ittt ettt et ettt ettt e e ate et e eateeateeatesatesaneeas 731
pair_style adp COMMAN.........cocuiiiiiiiiiiee ettt ettt ettt ettt ea 735
pair_style adp/omp COMMANA.........coouiiiiiiiiiiee ettt ettt sttt st sate e eas 735
pair_style airebo COMMANA.........cocuiiiiiiiie ettt ettt st e saae s eas 738
pair_style airebo/Omp COMMANG.........eoouiriiiiiiie ettt ettt ettt e tesaee e eas 738
PAIr_style r€b0 COMMEANT.oiiiiiiiiiiiieee ettt et ettt e eeeaae s eas 738
pair_style rebo/Omp COMMANG........coouiiiiiiiiiieie ettt ettt ettt et e eessaesaneeas 738
pair_style awpmd/cut COMMAN..........ccueeiiiiiiiiiie ettt et sttt st 741
pair_style beck COMMANA............cooiiiiiiiii ettt 743
Pair_style BOrn COMMANG........cocuiiiiiiiiiee ettt et sttt et e saee s eas 745
pair_style born/omp COMMEANA..........c.oioiiiiiiiiiie ettt st ettt see s 745
pair_style born/coul/long COMMAN............coouiiiiiiiiiiieiiee et 745
pair_style born/coul/long/cuda command.............ccoeoiiiiiiiiiiiie e 745
pair_style born/coul/long/omp COMMANA.........c.eeoiiiiiiiiiieiie ettt 745
pair_style born/coul/wWolf cOmMMANA...........cocoiiiiiiiiiiii e 745
pair_style born/coul/wolf/omp commMand.............cccoouiiiiiiiiiiiiiieie e 745
pair_style brownian COMMANQ............ooouiiiiiiiiie ettt sttt et s eas 748
pair_style brownian/omp COMMANG........cc..eiuiiiiiiiieiieie ettt sttt et saee s e 748
pair_style brownian/poly COMMAN...........oiiiiiiiiiiiieie ettt ettt s 748
pair_style brownian/poly/omp COMMANA............coouieiiiiiiiiiieeie ettt s 748
pair_style buck COMMANA...........oooiiiiiii ettt et s 750
pair_style buck/cuda COMMANG...........oooiiiiiiiiii ettt 750
pair_style buck/gpu commMand............cocoiiiiiiiiiii et 750
pair_style buck/omp COMMANd...........cocoiiiiiiiiii ittt 750
pair_style buck/coul/cut cOmMMANd.............cooueiiiiiiiiiiiiie e 750
pair_style buck/coul/cut/cuda command.............cocoeiiiiiiiiiiiiie e 750
pair_style buck/coul/cut/gpu cOmMmMANA..........cocuiiiiiiiiiiiiii e 750
pair_style buck/coul/cut/omp cOMMANA.........cccueiiiiiiiiiiiii e 750
pair_style buck/coul/long cOmMMAand.............cooiuiiiiiiiiiiiiiie e 750
pair_style buck/coul/long/cuda command............cccocueeiiiiiiiiiiiiie e 750

LAMMPS Users Manual

Table of Contents

pair_style buck/coul/long/gpu cOmMmMAaNnd............cocuiiiiiiiiiiiiiiiie e 750
pair_style buck/coul/long/omp COMMEANA.........cceiiiiiiiiiiiiiii e 750
pair_style buck/coul COMMANA...........ooouiiiiiiiii et 753
pair_style buck/coul/omp cOmMMANd...........c.ceiiiiiiiiiiiiiiie et 753
pair_style lj/charmm/coul/charmm command...............ccoouiiiiiiiiiiiiiiii e 756
pair_style lj/charmm/coul/charmm/cuda command.............cccoceriiiiiiiiiiiiiieee e 756
pair_style lj/charmm/coul/charmm/omp command...............ccoceriiiiiiiiiiiiiiiieie e 756
pair_style lj/charmm/coul/charmm/implicit command...........c.cccocuiriiiriiiiiiiniiiie e 756
pair_style lj/charmm/coul/charmm/implicit/cuda command............cccocervuiriiiiiiiiiiniiiieee e 756
pair_style lj/charmm/coul/charmm/implicit/omp command.............cccecueruiriiiriieiiieniieieee e 756
pair_style lj/charmm/coul/long command............cccecuieiiiiiiiiiiiiiie e 756
pair_style lj/charmm/coul/long/cuda command..............coceeiiiriiiiiiiiiiiiiiie e 756
pair_style lj/charmm/coul/long/gpu command.............cccooueiiiiiiiiiiiiiiieeee e 756
pair_style lj/charmm/coul/long/opt commMand...............ccooueriiiriiiiiiniiiee e 756
pair_style lj/charmm/coul/long/omp command.............ccocueiiiriiiiiiiiiieieeieee e 756
pair_style lj/charmm/coul/pppm/omp command..............cccocuerriiriiiiiiiniiiieee e 756
pair_style 1j/class2 COMMANG..........coouiiiiiiiiiiie ettt ettt ettt s 760
pair_style lj/class2/cuda command.............cooueriiiiiiiiiieie et 760
pair_style 1j/class2/gpu COMMEANC.........c.ooiiiiiiiieie ettt et 760
pair_style 1j/class2/0mp COMMEAN..........coouiiiiiiiiiiiie ettt 760
pair_style lj/class2/coul/cut cOMMAN............coouiiiiiiiiiiiii e 760
pair_style lj/class2/coul/cut/cuda command...........cccoociiiiiiiiiiiiie e 760
pair_style lj/class2/coul/cut/omp cOMMANG..........cueeriiiiiiiiiieiie et 760
pair_style lj/class2/coul/long command............cooouiiiiiiiiiiiieiie e 760
pair_style lj/class2/coul/long/cuda command.............coceiviiiiiiiiiiiiieieeeee e 760
pair_style lj/class2/coul/long/gpu COMMAN...........coouiiiiiiiiiiiiiiie e 760
pair_style lj/class2/coul/long/omp COMMANC..........cocuiiiiiiiiiiiieiie ettt 760
pair_style lj/class2/coul/pppm/omp COMMANG............cocueiiiiiiiiiiieeie et 760
PAIT_COCTE COMIMAN.ottt ettt ettt ettt e et et eeateeaeeeaeeeas 763
pair_style colloid COMMANC........cocuiiiiiiiiiii ettt et ettt et s eae 766
pair_style colloid/omp COMMANG........cccueiiiiiiiiieie ettt ettt et see s 766
pair_style COmMb COMMANT........c.oiiiiiiiiiiie ettt et ettt et saee e eas 771
pair_style comb/Omp COMMANG..........coouiiiiiiiiii ettt et sttt et tesate s eas 771
pair_style coul/cut COMMANA.........c.ooiiiiiiiiiii ettt et sttt et et saee e 775
pair_style coul/cut/omp COMMANG..........ccoutiiiiiiiiieie ettt ettt sttt saee e eas 775
pair_style coul/debye COMMANG..........cocuiiiiiiiiii ettt et s 775
pair_style coul/debye/omp COMMAN...........cueruiiiiiiiiiiiie ettt 775
pair_style coul/Iong COMMEANC.c.oiiiiiiiiiiie ettt et et et 775
pair_style coul/long/omp COMMANG........cccuiiiiiiiiiiieii ettt ettt et saee e 775
pair_style coul/long/gpu COMMANG.........oouiiiiiiiiiieie ettt sttt et et 775
pair_style coul/Wolf COMMANG........cocuiiiiiiiiii ettt et 775
pair_style coul/wolf/omp COMMAN............coouiiiiiiiiiiiieii ettt 775
pair_style coul/diel COMMANA.........cccuiiiiiiiiiiie ettt s 778
pair_style dipole/cut COMMAN...........cocuiiiiiiiiie ettt et sttt et saee s 780
pair_style dipole/cut/omp COMMANC...........coouiiiiiiiiieiieie ettt e 780
pair_style dipole/st COMMANA.........ccc.oiiiiiiiiii ettt 780
pair_style dipole/sf/omp COMMANG.........cccuiiiiiiiiiiei ettt s 780
pair_style dpd COMMANA.........coouiiiiiii ettt et sttt ettt 787

Xi

LAMMPS Users Manual

Table of Contents

pair_style dpd/omp COMMANG.........coouiiiiiiiiii ettt ettt sttt 787
pair_style dpd/tstat COMMAN..........ccueiiiiiiiiiiie ettt ettt s 787
pair_style dpd/tstat/omp COMMANC.........cccuiiiiiiiiiiieie ettt s 787
pair_style dSmC COMMANG........coeeviiririiiirieicetet ettt sttt ettt et et sa sttt sae e aesbesaeene 790
Pair_style eam COMMANT..........cocueriiririeiiniereet ettt ettt ettt ettt et e sae st et e st saeeseeaesbeeaeenee 792
pair_style eam/cuda COMMANC........c..coeeriiriiiiiiiiiiiet ettt st 792
pair_style eam/gpu COMMANC.........coeriiiiririeietitt ettt sttt ettt et sttt et et sae e aesbe e ene 792
pair_style eam/omp COMMANA........coerteiiririeieiiiietet ettt ettt et sb sttt saeeeeeaesbeeaeene 792
pair_style eam/opt COMMANG........cc.coiriiriiririetetitt ettt ettt ettt et sb sttt sae e besbesaeene 792
pair_style eam/alloy COMMAN..........coceevuiririiiiniinieieereree ettt 792
pair_style eam/alloy/cuda COMMANG.........ccceeieieriiririeiinineetee ettt ettt 792
pair_style eam/alloy/gpu COMMAN..........cccerieiiriinirieienieneet ettt ettt st 792
pair_style eam/alloy/omp COMMANd.........ccceririeriiririeieniirieetee ettt sttt et s ae e e 792
pair_style eam/alloy/opt COMMANA.........c..coirieiiriiririeenteree ettt st e 792
pair_style eam/cd COMMEANC.........cceririiiirinieiei ettt ettt sttt 792
pair_style eam/cd/omp COMMANC......c..cccueriririiriiniieieenereet ettt ettt 792
pair_style eam/fs COMMANG..........cceririiiiirinieietee ettt ettt ettt sttt st ae b s ene 792
pair_style eam/fs/cuda cOMMANA.......c..ccceririiiiniiniieeeet ettt 792
pair_style eam/fs/gpu COMMANA........coeecuiriiririiniiriieieenereet ettt sttt s 792
pair_style eam/fS/0mp COMMANT........c..ceouiriririeriiriieie ettt sttt st nesbe e ene 792
pair_style eam/fS/Opt COMMAN.........coeeciiriirieiiiiiieieere ettt a e 792
pair_style edip COMMAN.........ccceeiiiririiiiiineetce ettt ettt ae et a e ene 799
pair_style eff/cut COMMANG.........c.coiiiiii ettt 802
PaIr_style eim COMMEANC.........oiiiiiiiiiiiie ettt ettt ettt et st e et e et e ateesteeaeesaneeas 807
pair_style eim/omp COMMANG.........couiiiieiiiii ittt ettt ettt s ite et eeateeateeseesaeeeaeeeas 807
PaIr_Style auss COMMANM.cccuiiiiiiiiiiiie ettt ettt ettt ettt et e et e et eateeaeesaneeas 811
pair_style gauss/Omp COMMANG.ooouiriiiiiiieeie ettt ettt ettt ettt e et eeabeeateeaeeeneesaeeeas 811
pair_style gauss/Cut COMMAN.c.oiiiiiiiiiiie ettt ettt et sttt e sttt eaeeeaeesaeeeas 811
pair_style gauss/cut/Omp COMMANC........cccuiiiiiiiiiiieie ettt ettt et ettt et et see s eae 811
pair_style gayberne COMMANC........ccc.oiiiiiiiii ittt ettt ettt et eaee s 814
pair_style gayberne/gpu COmMMAnd.............coouiiiiiiiiiiieie ettt st s 814
pair_style gayberne/omp COMMAN............coouiiiiiiiiiiiieie ittt ettt s 814
pair_style gran/hooke COMMANA..........ccoiiiiiiiiiii ettt 818
pair_style gran/cuda COMMANA.........c.oiiiiiiiiiiiie ettt et sttt et et saae s eas 818
pair_style gran/omp COMMANG........cocuiiiiiiiiiiete ettt ettt ettt st e et st eateeateeneesaeeeas 818
pair_style gran/hooke/history COMMANd.........cccueeiiriiiiiiieiie ettt e 818
pair_style gran/hooke/history/omp cOmMmMand.............cocueeueiiiriiiiiiee e 818
pair_style gran/hertz/history COMMANC...........coouieiiiriiiiiiie ettt ettt 818
pair_style gran/hertz/history/omp COMMANd..........cocueeiiiiiiiiinieeie ettt 818
pair_style 1j/gromacs COMMANA..........cocuiiiiiiiiii ettt ettt s 822
pair_style lj/gromacs/cuda COMMANG..........coouiiiiiiiiiiiiie ettt 822
pair_style 1j/gromacs/omp COMMANG..........cccuiiiiiiiiiiiieieee ettt ettt et s 822
pair_style lj/gromacs/coul/gromacs COMMANA.............ccueeueiiiiriiiiiieeie ettt 822
pair_style lj/gromacs/coul/gromacs/cuda command.............cccecueiiiiiiiiiiiiiinieee e 822
pair_style lj/gromacs/coul/gromacs/omp COMMANA...........cooueriiriiiriieniiiieete et 822
pair_style hbond/dreiding/lj COMMANA...........cocuiiiiiiiiiiiii et 825
pair_style hbond/dreiding/lj/omp cOmMMAand.............ceocueiiiiiiiiiinie ettt 825
pair_style hbond/dreiding/morse COMMANC..........c.ceuiriiiiiiiieie ettt 825

Xii

LAMMPS Users Manual

Table of Contents

pair_style hbond/dreiding/morse/omp COMMANA............cccueiiiriiriieiieeie ettt 825
pair_style hybrid COmMMAan...........cooouiiiiiiii et 830
pair_style hybrid/omp cOmMmMAaNA..........c.coouiiiiiiiiiii e 830
pair_style hybrid/overlay command............c.ccooouiiiiiiiiiiiii e 830
pair_style hybrid/overlay/omp cOmmand.............ccoociiiiiiiiiiiie e 830
pair_style Kim COMMANG.........coouiiiiiiiiiie et ettt et sttt et eaee e eas 835
pair_style line/lj COMMANC..........cccoiriiiiiiiiiieici ettt s 839
pair_style line/lj/omp COMMANC.........c.cccciririiiiriiiiieeee ettt st e 839
pair_style 1j/cut COMMEANA.........coiiiiiiiiiie ettt ettt et 841
pair_style lj/cut/cuda COMMANA..........cccuiiiiiiiiii ettt 841
pair_style lj/cut/experimental/cuda command...............ccooueriiiriiiiiiiiiiieeee e 841
pair_style 1j/cut/gpu COMMANG........cocuiiiiiiiiie ettt ettt e 841
pair_style 1j/cut/opt COMMANA.........cccuiiiiiiiiiieie ettt ettt st 841
pair_style 1j/cut/omp COMMANG.........c.oiiiiiiiiieie ettt et ettt 841
pair_style lj/cut/coul/cut COMMANG.........cccuiiiiiiiiiieie ettt ettt st 841
pair_style lj/cut/coul/cut/cuda cOmmMAand..............cceecuiiiiiiiiiiiiie e 841
pair_style lj/cut/coul/cut/gpu cOMMANA..........cocuiiiiiiiiiiiii et 841
pair_style lj/cut/coul/cut/omp COMMANA.........cccueriiiiiiiiiiieiie et 841
pair_style lj/cut/coul/debye command..............cccooiiiiiiiiiiiiiiiie e 841
pair_style lj/cut/coul/debye/cuda command..............cccocueiiiiiiiiiiiiiiiii e 841
pair_style lj/cut/coul/debye/omp command............cocooiiiiiiiiiiiiiiie e 841
pair_style lj/cut/coul/Iong COMMANC...........ooouiiiiiiiiiieie ettt s 841
pair_style lj/cut/coul/long/cuda cOMMANd..........cccueeiiiiiiiiiiiiie ettt 841
pair_style lj/cut/coul/long/gpu COMMANA............eeouiriiiiiiieiie ettt 841
pair_style lj/cut/coul/long/opt COMMANC.........cccuiiiiiriiiiiiieie ettt 841
pair_style lj/cut/coul/long/omp COMMANd..........cocuiriiriiiiiiieeie ettt et 841
pair_style lj/cut/coul/long/tip4p cOmMMANd...........c.eeriiiiiiiiiiieie ettt 841
pair_style lj/cut/coul/long/tip4p/omp COMMANC.........ccceeiiiiiiiiriiiie ettt 841
pair_style lj/cut/coul/long/tip4p/opt COMMAN..........c.eoouiiiiiiiriiiie ettt s 841
pair_style 1j96/cut COMMANC........cc.coiriiiiiiiieictet ettt et st 846
pair_style 1j96/cut/cuda cOmMMANA.........cccovirieiiriiniiieenree ettt 846
pair_style 1j96/cut/Zpu cOMMANC.......c..cocuiriiiiiiiiiieieeee ettt st e 846
pair_style 1j96/cut/omp COMMANC.........ccceririiiiriiniieieienree ettt st 846
pair_style 1j/coul COMMANG.........ccciiiiiiiii ettt 848
pair_style Ij/coul/omp command.............cocooiiiiiiiiiii e 848
pair_style 1j/cubic COMMANd...........coouiiiiiiiiii ettt ettt e 851
pair_style 1j/cubic/omp COMMEANG.........c.oooiiiiiiiiiii ettt 851
pair_style 1j/cut/Smooth COMMANG..........cccuiiiiiiiiiiiiii ettt s 853
pair_style lj/cut/smooth/cuda command.............cccoeoiiiiiiiiiiiie e 853
pair_style lj/cut/smooth/omp COMMANA..........ccciiiiiiiiiiiiiiiie e 853
pair_style lj/expand cOmMMAand..............coouiiiiiiiiiiiee ettt 854
pair_style lj/expand/cuda cOmMmMAnd............c.ceeiuiiiiiiiiiiiiie e 854
pair_style lj/expand/gpu COMMANA...........c.oiiiiiiiiiiii ettt 854
pair_style lj/expand/omp COMMANC............coouiiiiiiiiiiiieie ettt 854
pair_style 1j/sf COMMANG.........cooiiiiiiiii ettt ettt s 857
pair_style 1j/sf/omp COMMANA..........ccoiiiiiiiiiii ettt 857
pair_style 1j/smooth COMMANd........c..coeiriiririiiiiiiie ettt st 859
pair_style lj/smooth/cuda command.........c..coceecueriiniriirininieee ettt 859

LAMMPS Users Manual

Table of Contents

pair_style 1j/smooth/omp COMMAN..........ccceeiriiriiniiiiiinirieee ettt 859
pair_style lj/smooth/linear COMMANA..........c.cueiiiiiiiiiiiiiiiie ettt 861
pair_style lj/smooth/linear/omp COMMANC..........cccuiriiiiiiiiiieeie ettt et s 861
pair_style lubricate COMMANA.........c.c.iiiiiiiiiiiie ettt et 863
pair_style lubricate/omp COMMANG.........cccuiiiiiiiiiieii ettt ettt et s 863
pair_style lubricate/poly COMMANG.........cccuiiiiiiiiiieie ettt ettt 863
pair_style lubricate/poly/omp COMMANQ..........ccueiiiiiiiiiiiie ettt s 863
pair_style lubricatelU COMMANA..........cociiiiiiiiiiee ettt et e 866
pair_style lubricateU/poly COMMANd..........ccouiiiiiiiiiiieieite ettt e 866
pair_style meam COMMAN..........cciririiiiirinieieit ettt ettt ettt sttt sbe e eae b e ene 869
PAIT_StYle MEAM/SPIINE.......eiiiiiiiiiiiieie ettt ettt ettt e et et e ateeateeaneeas 875
PaIr_MOdIfY COMMANG.eiiiiiiiiiieie ettt ettt ettt et st e et e et e ateesteeneesaneens 877
pair_style MOrse COMMEAN.........cocuiiiiiiiiiiiie ettt ettt ettt ettt st e et e et e e eateeaeeeaeeeas 880
pair_style morse/cuda COMMEANA...........cuoiiiiiiiiiiie ettt ettt s 880
pair_style morse/Zpu COMMANA..........oouiiiiiiieie ettt ettt ettt sttt e et s ateeeeeaaesaeeeas 880
pair_style morse/Omp COMMEANT.........cocuiiiiiiiiii ettt ettt et ettt e st eateeaeeeaeesaeeeas 880
pair_style morse/Opt COMIMANG.oouiiiiiiiiie ettt ettt ettt et st s ate et e eateeateeaeesaeesaeeeas 880
PAIr_Style NONE COMMANA.......oiiiiiiiiiiiieeie ettt ettt et ettt et st e et e et e e ateeateeatesaneens 882
pair_style peri/pmb COMMANA.........cocuiiiiiiiiiieie ettt st ettt st 883
pair_style peri/pmb/omp COMMANC........cccuiiiiiiiiiieii ettt ettt et et see s 883
pair_style peri/Ips COMMANG.c.couiiiiiiiiie ettt ettt ettt sttt st e et e saae e eas 883
pair_style peri/Ips/omp COMMEANC.........c.ooiiiiiiiiiiieeie ettt ettt eaee s 883
PAIr_Style r€aX COMMAN.ooiiiiiiiiiiieeiie ettt ettt ettt et et s ate et e et e eateeateeneesaneeas 886
pair_style reax/C COMMANC..........cciririiiiiiiiiiet ettt sttt ettt sttt s ae b e ene 889
pair_style resquared COMMANG........c..coeeuiririeteriiniiet ettt sttt ettt ettt et sae b eeeenesbesaeene 894
pair_style resquared/Zpu COMMEANC........c..coirieiiriiririetenereet ettt ettt s a e ene 894
pair_style resquared/Omp COMMEANA......c..coueruieteriiriiriertentereetente sttt ete sttt r et saeeeeenenreeaeene 894
pair_style 1j/sdk COMMANA...........cocuiririiiiniiieice ettt st 898
pair_style 1j/sdk/Zpu cOmMMANA.c..coeeriiririiiiiiiei ettt et 898
pair_style 1j/sdk/omp COMMANQ.........coceeoiiriririiiiiie ettt st e 898
pair_style 1j/sdk/coul/long cOMmMANd...........cceecueriiririenieniinieiene ettt 898
pair_style 1j/sdk/coul/long/gpu cOMMANd...........couiruirienieniirieienieneeectente ettt 898
pair_style 1j/sdk/coul/long/omp cOMMAN..........cceririeriiriirieienienieeeetene ettt 898
pair_style SOft COMMEANC.......cc.eiiiiiiriiiiiieee ettt ettt st 901
pair_style soft/omp COMMANC.........cocoeiiiiiiiiiiiiit ettt st e 901
pair_style sph/heatconduction COMMANG.........c.eeoviruirierienirieiene ettt 903
pair_style sph/idealgas cCOmMMANA..........ccccoiririiriiniiiiiene ettt 904
pair_style Sph/lj COMMANA........cccceoiiririiiiienietc ettt ettt et aesbe e 906
pair_style sph/rhosSum COMMANC.......c..cccueiiriiiiriiniiieeee ettt 908
pair_style sph/taitwater COMMANG........cccueruirieieriiniieiertente ettt et ettt et et sreeeeenenreeaeenee 909
pair_style sph/taitwater/morris COMMANG.c..eoviruirierieriirieiene ettt ettt sttt s eeeeae b eaeene 911
PAIT_SEYLE COMIMANT....c..eiiiiiiiiiiiiitiiterieet ettt ettt sttt et sb st e st b et eaesbesaeenee 913
PAIr_StYle SW COMMAN......cuiriiiieiiniiitietete ettt ettt ettt b et sb st e e b eeeebenbeeaeenee 916
pair_style sw/cuda COMMANG..........coceriiiiririiieiie ettt sttt et st ae b 916
pair_style SW/Omp COMMEANC.......cceririiriiriniieitetit ettt ettt ettt sttt sbe e aesbe e ene 916
pair_style table COMMANM........coceeiiiririiiiierietc ettt sttt et s 920
pair_style table/gpu COMMANA........cccoiiiiriiieietiet ettt st 920
pair_style table/omp COMMEANA.......c..coeiiiriiieieiintieiet ettt ettt et st 920

Xiv

LAMMPS Users Manual

Table of Contents

pair_style terSoff COMMEANC..........cciriiiiiiiiiieec ettt st e 924
pair_style tersoff/table command...........cccoiriiiiriiiiiii e 924
PAIT_StYle teTSOFT/CUARA ...ttt ettt st 924
PAIT_StYle teTSOFT/OMIP . c..cutitiiiiieierce ettt sttt st 924
pair_style tersoff/table/omp cOmMMAN.........cccocueriiriiiiiiniiieereeeee e 924
pair_style tersoff/zbl commAn..........c..cccueiuiiiiiiiiiiiiic e 929
pair_style tersoff/zbl/omp command...........cc.cecueririiiiniiniiine e 929
pair_style tri/lj COMMANd.........ccceeiiiriiiiiiriirietct ettt ettt sttt st 935
pair_style tri/[j/omp COMMANd........c.coeeriiriirieieiiiiet ettt ettt et st 935
PAIT_WIILE COMIMANGeiiuiiiiit ittt et ettt ettt et e et e eateeateeaeeeaeeeatesabeeabesateemeeeseesneesaneens 937
pair_style yukawa COMMAN........cc.coceriiiiriinieieitieeeetere ettt ettt s be e 939
pair_style yukawa/gpu COMMANG.......c..cocuiriririiriiniieietenteneet ettt et sttt sae e aesbe e ene 939
pair_style yukawa/omp COMMANG.....c..ccceririeiiriinieietene ettt ettt sttt e b sbeeaeene 939
pair_style yukawa/colloid cOmMmAand...........coceeueriiririeriininieiee ettt 941
pair_style yukawa/colloid/omp cOmMmAnd..........c..coeeierieriirieiinineeieieneee ettt 941
PArtition COMIMANC......cc.eiiiiiriiiieterteet ettt ettt et sttt b e et e s saesbe et et saeeetenenbeeaeenee 944
PIA COMMEANC ...ttt ettt ettt b et bttt be bt e b e sb e sbe et enbesaeesaennenbesaeenee 946
PIINE COMMANA ...ttt ettt ettt sttt ettt et e s et sbe e st e besbeebe et e s bt e bt ensesaesbeeasenbesaeesaennenbesueenee 950
PTOCESSOTS COMIMANI.evteutitiriieitenterteetete ettt ettt et et ettt es e tesbeebe et e s bt ebee s e saesbe et entesaeeseennenbeeueenee 951
QUIL COMIMAN. ..ottt sttt sttt ettt et bt ebe et e bt sbeeseebe s bt ebeenaenaeeaeennen 956
read_data COMMANG..........oooiiiiiiiiii e e et e e e e e e e e e eeeeeseeeeeaeeeeeeeeeeeeaeeeeeeeaes 957
read_reStart COMMANG..........ooooiiiiiiiiiie e ae e e aeeeeeaeeeeeeeeeseeeeeaeeeeeeeeeeeeeeeeeneeaes 968
TEZION COMIMANC.eiutitiiiiitiitieit ettt ettt ettt et ettt sttt et bt bt et e bt e bt e b e saesbe et etesaeeseensenbesueenee 970
TEPLICALE COMMANT.iuiiititiiiiit ettt ettt ettt ettt sb et sb et e bt b e e bt e b e sb e ebe et ebesaeeseennenbeeueenee 974
reset_tiMEeSteP COMIMANC.iiiiiiiiiiiie ettt ettt et et e et et e et e e ateeateeateeaeeeseesneesaneeas 975
TESEATT COMIMANA. ...ttt ettt ettt et e eat e sateea e eateeaeeeaeeeatesabesabeenbeemeeeneesneesaneeas 976
TUN COMIMANCL .1ttt ettt ettt et eat e e it e eateeabeeaeeeaeeeatesateeabeembeemeeeneesneesaneens 978
TUN_SEYI& COMMEAN........eiiiiiiiiii ittt ettt et st et e et e e ateeateeaaesaeeens 981
SEL COTMANA. ..ttt ettt ettt ettt ettt ettt ettt e s bt e su bt e sabeesabeeeab et e bt e e bt e enbbeesabeesabeeeabeeenbaeebaeenabeesabeens 985
Shell COMMANG.......oouiiieiiitiiie ettt sttt ettt et ettt et sb st enaesaeeaeens 990
special_bonds COMMAN...........ooiuiiiiiiiiieee ettt ettt e bt e bt e sb e bt e sbeesbeesbeenseeas 992
SUFEIX COMIMANG.......eeiiiiiiiitiiie ettt ettt st ettt b e e bbb enenaesaeeaeens 995
tad COMIMANG. ..ottt et sttt sae e esaeeae 997
EEIMPET COMIMANT. ...ttt ettt ettt ettt et e bt et e e bt e te e bt enbe e bt enbeenbeenbeebeenbeenbeenseensean 1001
thEeTMNO COMMEAN. ... eeiiiiiiiieit ettt ettt et ettt e bt e bt e bt e bt e bt e beebeebeenbeenbeennean 1003
thermo_modify COMMANG.coiuiiiiiiieii ettt ettt ettt et e b ebeebeeneeas 1004
thermo_Style COMMANG.c.eiiuiiiiiie ettt ettt ettt et et et e bt e beebeebeensean 1007
tIMESLEP COMIMANG.....eueeiutieiiiiieeit ettt et ettt ettt et et e et et e et e este e bt enbeenbeenbeenbeenbeebeenbeenbeenseensean 1012
UNCOMPULE COMIMATIA. c...eiiiiiiiiiieiiie ettt ettt ettt ettt e e sttt e sabeesabeesabeeeabeeebeeenabeenbbeesabeesabeesbeeanne 1013
UNAUMP COMIMAN. ...ttt ettt ettt et et et et e et e es bt eabeenbe e bt enbeenbeenteenbeenbeenbeenseensean 1014
UNTIX COMIMANG.......eiiteeiie ettt ettt ettt et et e et e bt e bt e bt en bt enbeenbeenbeenbeenbeenseensean 1015
UNIES COMIMANA.eeeitteiie ettt ettt ettt ettt et e et e et e et e e bt eabeeabeenteenbeenbeenseenbeenbeenteenbeenbeanbeenseensean 1016
Variable COMIMANG.couiiiiiiiiie ettt ettt ettt e bt e bt e e e bt enbeebe e bt enbeenbeensean 1019

IMAALh OPETALOTS. ...ttt ettt ettt ettt ettt ettt et et e et e et e eabe et e enbeebeenteebeenbeenbeenbeansean 1023

IMAth FUNCHIONS. ...ttt ettt et ettt ettt ettt et e e bt et e ebe e bt ebeenbeensean 1023

Group and Region FUNCHONS.coiuiiiiiiieieeeeee ettt e 1025

SPECIAL FUNCLIONS. ...ttt ettt et ettt et st et et et e e neeenneeaneeas 1025

AtOm Values and VECIOTS.......eoruiiiiiiiiiiiiiieeite ettt ettt et ettt e st eebeeenbaee e 1026

XV

LAMMPS Users Manual

Table of Contents

COMPULE RETEIENCES. ...ttt ettt ettt e e b b eeeas 1026
FIX RETEIEICES. ...vveeiiiiieeeeeeeee et e ettt e e e e et e e e e e s et aeeeeesseenaaneeeeeeeans 1026
Variable REFEIEICES.......uvvviiiiiiiieeeeiee ettt e e e e e et e e e e e e eaaaaeeeeeeeans 1027
VEIOCILY COMIMANG.eeiuiiiiiieiii ettt ettt ettt et e bt e bt e bt e bt e bt enbeebeebeenbeenbeensean 1031
WIILE_TESTATT COMMUANG. ...ttt e et eeaaaeeeeeeeeeeaeaans 1034

XVi

LAMMPS Documentation

Version info:

The LAMMPS "version" is the date when it was released, such as 1 May 2010. LAMMPS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of
the WWW site. Each dated copy of LAMMPS contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile every time you run LAMMPS. It is also in the
file src/version.h and in the LAMMPS directory name created when you unpack a tarball.

¢ If you browse the HTML doc pages on the LAMMPS WWW site, they always describe the most current
version of LAMMPS.

¢ If you browse the HTML doc pages included in your tarball, they describe the version you have.

¢ The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of very patch.

¢ There is also a Developer.pdf file in the doc directory, which describes the internal structure and
algorithms of LAMMPS.

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel computers. It
was developed at Sandia National Laboratories, a US Department of Energy facility, with funding from the DOE.
It is an open-source code, distributed freely under the terms of the GNU Public License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul Crozier who can be
contacted at sjplimp,athomps,pscrozi at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov has
more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all LAMMPS commands.

PDF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features
1.4 Open source distribution
1.5 Acknowledgments and citations
2. Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library
2.6 Running LAMMPS
2.7 Command-line options
2.8 Screen output

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html
http://www.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc

S O o0

2.9 Tips for users of previous versions
. Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
. Packages
4.1 Standard packages
4.2 User packages
. Accelerating LAMMPS performance
5.1 OPT package
5.2 USER-OMP package
5.3 GPU package
5.4 USER-CUDA package
5.5 Comparison of GPU and USER-CUDA packages
. How-to discussions
6.1 Restarting a simulation
6.2 2d simulations
6.3 CHARMM and AMBER force fields
6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations
6.6 Granular models
6.7 TIP3P water model
6.8 TIP4P water model
6.9 SPC water model
6.10 Coupling LAMMPS to other codes
6.11 Visualizing LAMMPS snapshots
6.12 Triclinic (non-orthogonal) simulation boxes
6.13 NEMD simulations
6.14 Extended spherical and aspherical particles
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting, and compute temperature
6.17 Walls
6.18 Elastic constants
6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity
. Example problems
. Performance & scalability
. Additional tools
. Modifying & extending LAMMPS
10.1 Atom styles
10.2 Bond, angle, dihedral, improper potentials
10.3 Compute styles
10.4 Dump styles
10.5 Dump custom output options
10.6 Fix styles
10.7 Input script commands
10.8 Kspace computations
10.9 Minimization styles
10.10 Pairwise potentials

10.11 Region styles
10.12 Thermodynamic output options
10.13 Variable options
10.14 Submitting new features for inclusion in LAMMPS
11. Python interface
11.1 Extending Python with a serial version of LAMMPS
11.2 Creating a shared MPI library
11.3 Extending Python with a parallel version of LAMMPS
11.4 Extending Python with MPI
11.5 Testing the Python-LAMMPS interface
11.6 Using LAMMPS from Python
11.7 Example Python scripts that use LAMMPS
12. Errors
12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages
13. Future and history
13.1 Coming attractions
13.2 Past versions

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

1. Introduction

This section provides an overview of what LAMMPS can and can't do, describes what it means for LAMMPS to
be an open-source code, and acknowledges the funding and people who have contributed to LAMMPS over the
years.

1.1 What is LAMMPS

1.2 LAMMPS features

1.3 LAMMPS non-features

1.4 Open source distribution

1.5 Acknowledgments and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using a
variety of force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page of the LAMMPS WWW Site.

LAMMPS runs efficiently on single-processor desktop or laptop machines, but is designed for parallel computers.
It will run on any parallel machine that compiles C++ and supports the MPI message-passing library. This
includes distributed- or shared-memory parallel machines and Beowulf-style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See Section_perf for
information on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW Site.

LAMMPS is a freely-available open-source code, distributed under the terms of the GNU Public License, which
means you can use or modify the code however you wish. See this section for a brief discussion of the
open-source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom types,
boundary conditions, or diagnostics. See Section_modify for more details.

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See
Section_history for more information on different versions. All versions can be downloaded from the LAMMPS
WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Labs. See
this section for more information on LAMMPS funding and individuals who have contributed to LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms, molecules,
or macroscopic particles that interact via short- or long-range forces with a variety of initial and/or boundary
conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of nearby particles. The lists
are optimized for systems with particles that are repulsive at short distances, so that the local density of particles
never becomes too large. On parallel machines, LAMMPS uses spatial-decomposition techniques to partition the
simulation domain into small 3d sub-domains, one of which is assigned to each processor. Processors

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.sandia.gov

communicate and store "ghost" atom information for atoms that border their sub-domain. LAMMPS is most
efficient (in a parallel sense) for systems whose particles fill a 3d rectangular box with roughly uniform density.
Papers with technical details of the algorithms used in LAMMPS are listed in this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type, see
Section_modify, which describes how you can add it to LAMMPS.

General features

® runs on a single processor or in parallel

e distributed-memory message-passing parallelism (MPI)

e spatial-decomposition of simulation domain for parallelism

¢ open-source distribution

¢ highly portable C++

e optional libraries used: MPI and single-processor FFT

¢ GPU (CUDA and OpenCL) and OpenMP support for many code features

¢ cagsy to extend with new features and functionality

¢ runs from an input script

¢ syntax for defining and using variables and formulas

¢ syntax for looping over runs and breaking out of loops

¢ run one or multiple simulations simultaneously (in parallel) from one script

¢ build as library, invoke LAMMPS thru library interface or provided Python wrapper
e couple with other codes: LAMMPS calls other code, other code calls LAMMPS, umbrella code calls both

Particle and model types
(atom style command)

® atoms

e coarse-grained particles (e.g. bead-spring polymers)

¢ united-atom polymers or organic molecules

¢ all-atom polymers, organic molecules, proteins, DNA
® metals

¢ granular materials

e coarse-grained mesoscale models

¢ finite-size spherical and ellipsoidal particles

¢ finite-size line segment (2d) and triangle (3d) particles
® point dipolar particles

¢ rigid collections of particles

¢ hybrid combinations of these

Force fields
(pair style, bond style, angle style, dihedral style, improper style, kspace style commands)
® pairwise potentials: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, Yukawa, soft, class 2

(COMPASS), hydrogen bond, tabulated
¢ charged pairwise potentials: Coulombic, point-dipole

¢ manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), embedded ion method
(EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, AIREBO, ReaxFF, COMB

¢ electron force field (eFF, AWPMD)

¢ coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO

® mesoscopic potentials: granular, Peridynamics, SPH

¢ bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)

¢ angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, class 2 (COMPASS)

¢ dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS

¢ improper potentials: harmonic, cvff, umbrella, class 2 (COMPASS)

¢ polymer potentials: all-atom, united-atom, bead-spring, breakable

¢ water potentials: TIP3P, TIP4P, SPC

¢ implicit solvent potentials: hydrodynamic lubrication, Debye

¢ KIM archive of potentials

¢ Jong-range Coulombics and dispersion: Ewald, Wolf, PPPM (similar to particle-mesh Ewald), Ewald/N
for long-range Lennard-Jones

¢ force-field compatibility with common CHARMM, AMBER, DREIDING, OPLS, GROMACS,
COMPASS options

¢ handful of GPU-enabled pair styles

¢ hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one simulation

¢ overlaid potentials: superposition of multiple pair potentials

Atom creation
(read_data, lattice, create_atoms, delete_atoms, displace_atoms, replicate commands)

¢ read in atom coords from files

e create atoms on one or more lattices (e.g. grain boundaries)
¢ delete geometric or logical groups of atoms (e.g. voids)

¢ replicate existing atoms multiple times

¢ displace atoms

Ensembles, constraints, and boundary conditions
(fix command)

¢ 2d or 3d systems

¢ orthogonal or non-orthogonal (triclinic symmetry) simulation domains
¢ constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators

¢ thermostatting options for groups and geometric regions of atoms

¢ pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions
¢ simulation box deformation (tensile and shear)

¢ harmonic (umbrella) constraint forces

¢ rigid body constraints

¢ SHAKE bond and angle constraints

¢ bond breaking, formation, swapping

¢ walls of various kinds

¢ non-equilibrium molecular dynamics (NEMD)

¢ variety of additional boundary conditions and constraints

http://openkim.org

Integrators
(run, run_style, minimize commands)

¢ velocity-Verlet integrator

¢ Brownian dynamics

¢ rigid body integration

® energy minimization via conjugate gradient or steepest descent relaxation
¢ rRESPA hierarchical timestepping

Diagnostics

e see the various flavors of the fix and compute commands
Output
(dump, restart commands)

¢]og file of thermodynamic info

¢ text dump files of atom coords, velocities, other per-atom quantities

® binary restart files

e parallel I/O of dump and restart files

® per-atom quantities (energy, stress, centro-symmetry parameter, CNA, etc)
e user-defined system-wide (log file) or per-atom (dump file) calculations

e spatial and time averaging of per-atom quantities

¢ time averaging of system-wide quantities

¢ atom snapshots in native, XYZ, XTC, DCD, CFG formats

Multi-replica models
nudged elastic band parallel replica dynamics temperature accelerated dynamics parallel tempering
Pre- and post-processing

¢ Various pre- and post-processing serial tools are packaged with LAMMPS; see these doc pages.

¢ Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Specialized features
These are LAMMPS capabilities which you may not think of as typical molecular dynamics options:

¢ stochastic rotation dynamics (SRD)

¢ real-time visualization and interactive MD

¢ atom-to-continuum coupling with finite elements

¢ coupled rigid body integration via the POEMS library
¢ grand canonical Monte Carlo insertions/deletions

e Direct Simulation Monte Carlo for low-density fluids
¢ Peridynamics mesoscale modeling

¢ targeted and steered molecular dynamics

¢ two-temperature electron model

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

1.3 LAMMPS non-features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting particles.
Many of the tools needed to pre- and post-process the data for such simulations are not included in the LAMMPS
kernel for several reasons:

¢ the desire to keep LAMMPS simple
¢ they are not parallel operations

¢ other codes already do them

¢ limited development resources

Specifically, LAMMPS itself does not:

¢ run thru a GUI

¢ build molecular systems

¢ assign force-field coefficients automagically

¢ perform sophisticated analyses of your MD simulation
¢ visualize your MD simulation

¢ plot your output data

A few tools for pre- and post-processing tasks are provided as part of the LAMMPS package; they are described
in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses some
of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force-field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and assign
force-field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid-state lattices (fcc,
bec, user-defined, etc). Assigning small numbers of force field coefficients can be done via the pair coeff, bond
coeff, angle coeff, etc commands. For molecular systems or more complicated simulation geometries, users
typically use another code as a builder and convert its output to LAMMPS input format, or write their own code
to generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force-field coefficients must typically be specified. We suggest you use a program like CHARMM or AMBER or
other molecular builders to setup such problems and dump its information to a file. You can then reformat the file
as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post-process these files with their own
analysis tools or re-format them for input into other programs, including visualization packages. If you are
convinced you need to compute something on-the-fly as LAMMPS runs, see Section_modify for a discussion of
how you can use the dump and compute and fix commands to print out data of your choosing. Keep in mind that
complicated computations can slow down the molecular dynamics timestepping, particularly if the computations
are not parallel, so it is often better to leave such analysis to post-processing codes.

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu

A very simple (yet fast) visualizer is provided with the LAMMPS package - see the xmovie tool in this section. It
creates xyz projection views of atomic coordinates and animates them. We find it very useful for debugging
purposes. For high-quality visualization we recommend the following packages:

e VMD

¢ AtomEye
¢ PyMol

® Raster3d
® RasMol

Other features that LAMMPS does not yet (and may never) support are discussed in Section_history.

Finally, these are freely-available molecular dynamics codes, most of them parallel, which may be well-suited to
the problems you want to model. They can also be used in conjunction with LAMMPS to perform complementary
modeling tasks.

e CHARMM
e AMBER

e NAMD

e NWCHEM
e DL_POLY
¢ Tinker

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological molecules.
CHARMM and AMBER use atom-decomposition (replicated-data) strategies for parallelism; NAMD and
NWCHEM use spatial-decomposition approaches, similar to LAMMPS. Tinker is a serial code. DL_POLY
includes potentials for a variety of biological and non-biological materials; both a replicated-data and
spatial-decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL). This is often referred to as
open-source distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL is
in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open-source, meaning you distribute it under
the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

(3) If you release any code that includes LAMMPS source code, then it must also be open-sourced, meaning you
distribute it under the terms of the GPL.

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

http://www.ks.uiuc.edu/Research/vmd
http://mt.seas.upenn.edu/Archive/Graphics/A
http://pymol.sourceforge.net
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.openrasmol.org
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

In the spirit of an open-source code, these are various ways you can contribute to making LAMMPS better. You
can send email to the developers on any of these items.

¢ Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your WWW
site.

¢ [f you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion for
something to clarify or include, send an email to the developers.

¢ If you find a bug, Section_errors 2 describes how to report it.

¢ If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if you
like) to add to the Publications, Pictures, and Movies pages of the LAMMPS WWW Site, with links and
attributions back to you.

¢ Create a new Makefile.machine that can be added to the src/MAKE directory.

® The tools sub-directory of the LAMMPS distribution has various stand-alone codes for pre- and
post-processing of LAMMPS data. More details are given in Section_tools. If you write a new tool that
users will find useful, it can be added to the LAMMPS distribution.

e LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general
interest, it can be added to the LAMMPS distribution.

¢ The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

® You can send feedback for the User Comments page of the LAMMPS WWW Site. It might be added to
the page. No promises.

¢ Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

1.5 Acknowledgments and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA, LDRD,
ASCI, and Genomes-to-Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under the project, "Carbon Sequestration in Synechococcus Sp.: From
Molecular Machines to Hierarchical Modeling".

The following paper describe the basic parallel algorithms used in LAMMPS. If you use LAMMPS results in
your published work, please cite this paper and include a pointer to the LAMMPS WWW Site
(http://lammps.sandia.gov):

S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19
(1995).

Other papers describing specific algorithms used in LAMMPS are listed under the Citing LAMMPS link of the
LAMMPS WWW page.

The Publications link on the LAMMPS WWW page lists papers that have cited LAMMPS. If your paper is not
listed there for some reason, feel free to send us the info. If the simulations in your paper produced cool pictures
or animations, we'll be pleased to add them to the Pictures or Movies pages of the LAMMPS WWW site.

The core group of LAMMPS developers is at Sandia National Labs:

¢ Steve Plimpton, sjplimp at sandia.gov

10

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://lammps.sandia.gov
http://lammps.sandia.gov/cite.html
http://lammps.sandia.gov/papers.html
http://lammps.sandia.gov/pictures.html
http://lammps.sandia.gov/movies.html

¢ Aidan Thompson, athomps at sandia.gov
¢ Paul Crozier, pscrozi at sandia.gov

The following folks are responsible for significant contributions to the code, or other aspects of the LAMMPS
development effort. Many of the packages they have written are somewhat unique to LAMMPS and the code
would not be as general-purpose as it is without their expertise and efforts.

¢ Axel Kohlmeyer (Temple U), akohlmey at gmail.com, SVN and Git repositories, indefatigable mail list
responder, USER-CG-CMM and USER-OMP packages

¢ Roy Pollock (LLNL), Ewald and PPPM solvers

¢ Mike Brown (ORNL), brownw at ornl.gov, GPU package

¢ Greg Wagner (Sandia), gjwagne at sandia.gov, MEAM package for MEAM potential

¢ Mike Parks (Sandia), mlparks at sandia.gov, PERI package for Peridynamics

¢ Rudra Mukherjee (JPL), Rudranarayan.M.Mukherjee at jpl.nasa.gov, POEMS package for articulated
rigid body motion

® Reese Jones (Sandia) and collaborators, rjones at sandia.gov, USER-ATC package for atom/continuum
coupling

¢ Jlya Valuev (JIHT), valuev at physik.hu-berlin.de, USER-AWPMD package for wave-packet MD

¢ Christian Trott (U Tech Ilmenau), christian.trott at tu-ilmenau.de, USER-CUDA package

¢ Andres Jaramillo-Botero (Caltech), ajaramil at wag.caltech.edu, USER-EFF package for electron force
field

¢ Pieter in' t Veld (BASF), pieter.intveld at basf.com, USER-EWALDN package for 1/r*N long-range
solvers

¢ Christoph Kloss (JKU), Christoph.Kloss at jku.at, USER-LIGGGHTS package for granular models and
granular/fluid coupling

¢ Metin Aktulga (LBL), hmaktulga at Ibl.gov, USER-REAXC package for C version of ReaxFF

¢ Georg Gunzenmuller (EMI), georg.ganzenmueller at emi.thg.de, USER-SPH package

As discussed in Section_history, LAMMPS originated as a cooperative project between DOE labs and industrial
partners. Folks involved in the design and testing of the original version of LAMMPS were the following:

¢ John Carpenter (Mayo Clinic, formerly at Cray Research)

¢ Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)
¢ Steve Lustig (Dupont)

¢ Jim Belak (LLNL)

11

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

2. Getting Started

This section describes how to build and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution

2.2 Making LAMMPS

2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library

2.6 Running LAMMPS

2.7 Command-line options

2.8 Screen output

2.9 Tips for users of previous versions

2.1 What's in the LAMMPS distribution

When you download LAMMPS you will need to unzip and untar the downloaded file with the following
commands, after placing the file in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub-directories:

README |text file
LICENSE [the GNU General Public License (GPL)

bench benchmark problems

couple code coupling examples, using LAMMPS as a library

doc documentation

examples |simple test problems

potentials [embedded atom method (EAM) potential files

src source files

tools pre- and post-processing tools

If you download one of the Windows executables from the download page, then you just get a single file:
lmp_windows.exe
Skip to the Running LAMMPS sections for info on how to launch these executables on a Windows box.

The Windows executables for serial or parallel only include certain packages and bug-fixes/upgrades listed on this
page up to a certain date, as stated on the download page. If you want something with more packages or that is
more current, you'll have to download the source tarball and build it yourself from source code using Microsoft
Visual Studio, as described in the next section.

12

http://lammps.sandia.gov
http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html

2.2 Making LAMMPS

This section has the following sub-sections:

® Read this first

¢ Steps to build a LAMMPS executable

¢ Common errors that can occur when making LAMMPS
¢ Additional build tips

¢ Building for a Mac

¢ Building for Windows

Read this first:

Building LAMMPS can be non-trivial. You may need to edit a makefile, there are compiler options to consider,
additional libraries can be used (MPI, FFT, JPEG), LAMMPS packages may be included or excluded, some of
these packages use auxiliary libraries which need to be pre-built, etc.

Please read this section carefully. If you are not comfortable with makefiles, or building codes on a Unix
platform, or running an MPI job on your machine, please find a local expert to help you. Many compiling,
linking, and run problems that users have are often not LAMMPS issues - they are peculiar to the user's system,
compilers, libraries, etc. Such questions are better answered by a local expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about a line
of LAMMPS source code), then please post a question to the LAMMPS mail list.

If you succeed in building LAMMPS on a new kind of machine, for which there isn't a similar Makefile for in the
src/MAKE directory, send it to the developers and we can include it in the LAMMPS distribution.

Steps to build a LAMMPS executable:
Step 0

The src directory contains the C++ source and header files for LAMMPS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for many machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, you can type a command like:

make linux
or
gmake mac

Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will build LAMMPS more quickly.

If you get no errors and an executable like Imp_linux or Imp_mac is produced, you're done; it's your lucky day.

Note that by default only a few of LAMMPS optional pacakges are installed. To build LAMMPS with optional
packages, see this section below.

Step 1

If Step 0 did not work, you will need to create a low-level Makefile for your machine, like Makefile.foo. You
should make a copy of an existing src/MAKE/Makefile.* as a starting point. The only portions of the file you

13

http://lammps.sandia.gov/mail.html

need to edit are the first line, the "compiler/linker settings" section, and the "LAMMPS-specific settings" section.
Step 2

Change the first line of scc/MAKE/Makefile.foo to list the word "foo" after the "#", and whatever other options it
will set. This is the line you will see if you just type "make".

Step 3

The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems. You
can also use mpicc which will typically be available if MPI is installed on your system, though you should check
which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with Intel CPUs, we
suggest using the commercial Intel icc compiler, which can be downloaded from Intel's compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler can't
create dependency files, then you'll need to create a Makefile.foo patterned after Makefile.storm, which uses
different rules that do not involve dependency files. Note that when you build LAMMPS for the first time on a
new platform, a long list of *.d files will be printed out rapidly. This is not an error; it is the Makefile doing its
normal creation of dependencies.

Step 4

The "system-specific settings" section has several parts. Note that if you change any -D setting in this section, you
should do a full re-compile, after typing "make clean" (which will describe different clean options).

The LMP_INC variable is used to include options that turn on ifdefs within the LAMMPS code. The options that
are currently recogized are:

¢ -DLAMMPS_GZIP

¢ -DLAMMPS_JPEG

¢ -DLAMMPS_MEMALIGN

¢ -DLAMMPS_XDR

¢ -DLAMMPS_SMALLBIG

s -DLAMMPS_BIGBIG

e -DLAMMPS_SMALLSMALL
¢ -DLAMMPS_LONGLONG_TO_LONG
¢ -DPACK_ARRAY

¢ -DPACK_POINTER

¢ -DPACK_MEMCPY

The read_data and dump commands will read/write gzipped files if you compile with -DLAMMPS_GZIP. It
requires that your Unix support the "popen" command.

If you use -DLAMMPS_JPEG, the dump image command will be able to write out JPEG image files. If not, it

will only be able to write out text-based PPM image files. For JPEG files, you must also link LAMMPS with a
JPEQG library, as described below.

14

http://www.intel.com/software/products/noncom

Using -DLAMMPS_MEMALIGN= enables the use of the posix_memalign() call instead of malloc() when large

chunks or memory are allocated by LAMMPS. This can help to make more efficient use of vector instructions of
modern CPUS, since dynamically allocated memory has to be aligned on larger than default byte boundaries (e.g.
16 bytes instead of 8 bytes on x86 type platforms) for optimal performance.

If you use -DLAMMPS_XDR, the build will include XDR compatibility files for doing particle dumps in XTC
format. This is only necessary if your platform does have its own XDR files available. See the Restrictions section
of the dump command for details.

Use at most one of the -DLAMMPS_SMALLBIG, -DLAMMPS_BIGBIG, -D-DLAMMPS_SMALLSMALL
settings. The default is -DLAMMPS_SMALLBIG. These refer to use of 4-byte (small) vs 8-byte (big) integers
within LAMMPS, as described in src/lmptype.h. The only reason to use the BIGBIG setting is to enable
simulation of huge molecular systems with more than 2 billion atoms. The only reason to use the SMALLSMALL
setting is if your machine does not support 64-bit integers.

The -DLAMMPS_LONGLONG_TO_LONG setting may be needed if your system or MPI version does not
recognize "long long" data types. In this case a "long" data type is likely already 64-bits, in which case this setting
will convert to that data type.

Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY options can make for faster
parallel FFTs (in the PPPM solver) on some platforms. The -DPACK_ARRAY setting is the default. See the
kspace_style command for info about PPPM. See Step 6 below for info about building LAMMPS with an FFT
library.

Step 5
The 3 MPI variables are used to specify an MPI library to build LAMMPS with.

If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc” to build LAMMPS, you should be able to leave these 3 variables blank;
the MPI wrapper knows where to find the needed files. If not, and MPI is installed on your system in the usual
place (under /usr/local), you also may not need to specify these 3 variables. On some large parallel machines
which use "modules" for their compile/link environements, you may simply need to include the correct module in
your build environment. Or the parallel machine may have a vendor-provided MPI which the compiler has no
trouble finding.

Failing this, with these 3 variables you can specify where the mpi.h file (MPI_INC) and the MPI library file
(MPI_PATH) are found and the name of the library file (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH2 or OpenMPI. MPICH can be downloaded
from the Argonne MPI site. OpenMPI can be downloaded from the OpenMPI site. Other MPI packages should
also work. If you are running on a big parallel platform, your system people or the vendor should have already
installed a version of MPI, which is likely to be faster than a self-installed MPICH or OpenMPI, so find out how
to build and link with it. If you use MPICH or OpenMPI, you will have to configure and build it for your
platform. The MPI configure script should have compiler options to enable you to use the same compiler you are
using for the LAMMPS build, which can avoid problems that can arise when linking LAMMPS to the MPI
library.

If you just want to run LAMMPS on a single processor, you can use the dummy MPI library provided in
src/STUBS, since you don't need a true MPI library installed on your system. See the scc/MAKE/Makefile.serial
file for how to specify the 3 MPI variables in this case. You will also need to build the STUBS library for your
platform before making LAMMPS itself. From the src directory, type "make stubs", or from the STUBS dir, type

15

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org

"make" and it should create a libmpi.a suitable for linking to LAMMPS. If this build fails, you will need to edit
the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp provides a CPU timer function called MPI_Wtime() that calls gettimeofday() . If your
system doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the
ANSI-standard function clock() rolls over after an hour or so, and is therefore insufficient for timing long
LAMMPS simulations.

Step 6

The 3 FFT variables allow you to specify an FFT library which LAMMPS uses (for performing 1d FFTs) when
running the particle-particle particle-mesh (PPPM) option for long-range Coulombics via the kspace_style
command.

LAMMPS supports various open-source or vendor-supplied FFT libraries for this purpose. If you leave these 3
variables blank, LAMMPS will use the open-source KISS FFT library, which is included in the LAMMPS
distribution. This library is portable to all platforms and for typical LAMMPS simulations is almost as fast as
FFTW or vendor optimized libraries. If you are not including the KSPACE package in your build, you can also
leave the 3 variables blank.

Otherwise, select which kinds of FFTs to use as part of the FFT_INC setting by a switch of the form
-DFFT_XXX. Recommended values for XXX are: MKL, SCSL, FFTW2, and FFTW3. Legacy options are:
INTEL, SGI, ACML, and T3E. For backward compatability, using -DFFT_FFTW will use the FFTW?2 library.
Using -DFFT_NONE will use the KISS library described above.

You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables, so the compiler and linker can find
the needed FFT header and library files. Note that on some large parallel machines which use "modules" for their
compile/link environements, you may simply need to include the correct module in your build environment. Or
the parallel machine may have a vendor-provided FFT library which the compiler has no trouble finding.

FFTW is a fast, portable library that should also work on any platform. You can download it from www.fftw.org.
Both the legacy version 2.1.X and the newer 3.X versions are supported as -DFFT_FFTW?2 or -DFFT_FFTW3.
Building FFTW for your box should be as simple as ./configure; make. Note that on some platforms FFTW2 has
been pre-installed, and uses renamed files indicating the precision it was compiled with, e.g. sfftw.h, or dfftw.h
instead of fftw.h. In this case, you can specify an additional define variable for FFT_INC called -DFFTW_SIZE,
which will select the correct include file. In this case, for FFT_LIB you must also manually specify the correct
library, namely -Isfftw or -l1dfftw.

The FFT_INC variable also allows for a -DFFT_SINGLE setting that will use single-precision FFTs with PPPM,
which can speed-up long-range calulations, particularly in parallel or on GPUs. Fourier transform and related
PPPM operations are somewhat insensitive to floating point truncation errors and thus do not always need to be
performed in double precision. Using the -DFFT_SINGLE setting trades off a little accuracy for reduced memory
use and parallel communication costs for transposing 3d FFT data. Note that single precision FFTs have only
been tested with the FFTW3, FFTW2, MKL, and KISS FFT options.

Step 7
The 3 JPG variables allow you to specify a JPEG library which LAMMPS uses when writing out JPEG files via
the dump image command. These can be left blank if you do not use the -DLAMMPS_JPEG switch discussed

above in Step 4, since in that case JPEG output will be disabled.

A standard JPEG library usually goes by the name libjpeg.a and has an associated header file jpeglib.h.

16

http://kissfft.sf.net
http://www.fftw.org

Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables, so that the compiler and linker can find it.

As before, if these header and library files are in the usual place on your machine, you may not need to set these
variables.

Step 8

Note that by default only a few of LAMMPS optional pacakges are installed. To build LAMMPS with optional
packages, see this section below, before proceeding to Step 9.

Step 9

That's it. Once you have a correct Makefile.foo, you have installed the optional LAMMPS packages you want to
include in your build, and you have pre-built any other needed libraries (e.g. MPI, FFT, package libraries), all you
need to do from the src directory is type something like this:

make foo
or
gmake foo

You should get the executable Imp_foo when the build is complete.

Errors that can occur when making LAMMPS:

IMPORTANT NOTE: If an error occurs when building LAMMPS, the compiler or linker will state very explicitly
what the problem is. The error message should give you a hint as to which of the steps above has failed, and what
you need to do in order to fix it. Building a code with a Makefile is a very logical process. The compiler and
linker need to find the appropriate files and those files need to be compatible with LAMMPS source files. When a
make fails, there is usually a very simple reason, which you or a local expert will need to fix.

Here are two non-obvious errors that can occur:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's native make doesn't support wildcard expansion in a makefile. Try gmake
instead of make. If that doesn't work, try using a -f switch with your make command to use a pre-generated
Makefile.list which explicitly lists all the needed files, e.g.

make makelist
make —-f Makefile.list linux
gmake —-f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build LAMMPS. Note that you should include/exclude any
desired optional packages before using the "make makelist" command.

(2) If you get an error that says something like 'identifier "atoll" is undefined', then your machine does not support
"long long" integers. Try using the -DLAMMPS_LONGLONG_TO_LONG setting described above in Step 4.

Additional build tips:

(1) Building LAMMPS for multiple platforms.

17

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_target where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean-all" or "make clean-foo" will delete *.o0 object files created when LAMMPS is built, for
either all builds or for a particular machine.

(3) Changing the size limits in src/lmptype.h

If you are running a very large problem (billions of atoms or more) and get a run-time error about the system
being too big, either on a per-processor basis or in total size, then you may need to change one or more settings in
src/lmptype.h and re-compile LAMMPS.

As the documentation in that file explains, you have basically two choices to make:

¢ set the data type size of integer atom IDs to 4 or 8 bytes
e set the data type size of integers that store the total system size to 4 or 8 bytes

The default for atom IDs is 4-byte integers since there is a memory and communication cost for 8-byte integers.
Non-molecular problems do not need atom IDs so this does not restrict their size. Molecular problems (which use
IDs to define molecular topology), are limited to about 2 billion atoms (2731) with 4-byte IDs. With 8-byte IDs
they are effectively unlimited in size (2°63).

The default for total system size quantities (like the number of atoms or timesteps) is 8-byte integers by default
which is effectively unlimited in size (2763). If your system or MPI implementation does not support 8-byte
integers, an error will be generated, and you will need to set "bigint" to 4-byte integers. This restricts your total
system size to about 2 billion atoms or timesteps (2*31).

Note that in src/lmptype.h there are also settings for the MPI data types associated with the integers that store
atom IDs and total system sizes, which need to be set consistent with the associated C data types.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
about 2 billion atoms per processor (2231), which should not normally be a restriction since such a problem
would have a huge per-processor memory footprint due to neighbor lists and would run very slowly in terms of
CPU secs/timestep.

Building for a Mac:

OS Xis BSD Unigx, so it should just work. See the src/MAKE/Makefile.mac file.

Building for Windows:

The LAMMPS download page has an option to download both a serial and parallel pre-built Windows exeutable.
See the Running LAMMPS section for instructions for running these executables on a Windows box.

If the pre-built executable doesn't have the options you want, then you can build LAMMPS from its source files
on a Windows box. One way to do this is install and use cygwin to build LAMMPS with a standard Linus make,

just as you would on any Linux box; see src/MAKE/Makefile.cygwin.

There is a also a scc/WINDOWS directory that contains project files for Microsoft Visual Studio 2005, which
should also work with later versions of VS. That directory contains a README.txt file which provides

18

instructions for building LAMMPS from source code using Visual Studio that are hopefully easy to follow for
Windows and VS users.

Four VS project options are provided. The first includes the default packages MANYBODY, MOLECULE, and
KSPACE). The second includes all standard packages (except GPU, MEAM, and REAX which are not yet
included because they require NVIDIA or Fortran compilation). The third includes all standard packages (with the
exceptions) and some user packages. The included user packages are USER-EFF, USER-CG-CMM, and
USER-REAXC. The fourth project includes the USER-AWPMD package.

2.3 Making LAMMPS with optional packages
This section has the following sub-sections:

® Package basics

¢ Including/excluding packages

¢ Packages that require extra libraries

¢ Additional Makefile settings for extra libraries

Package basics:

The source code for LAMMPS is structured as a set of core files which are always included, plus optional
packages. Packages are groups of files that enable a specific set of features. For example, force fields for
molecular systems or granular systems are in packages. You can see the list of all packages by typing "make
package" from within the src directory of the LAMMPS distribution.

If you use a command in a LAMMPS input script that is specific to a particular package, you must have built
LAMMPS with that package, else you will get an error that the style is invalid or the command is unknown.
Every command's doc page specfies if it is part of a package. You can also type

lmp_machine -h

to run your executable with the optional -h command-line switch for "help", which will list the styles and
commands known to your executable.

There are two kinds of packages in LAMMPS, standard and user packages. More information about the contents
of standard and user packages is given in Section_packages of the manual. The difference between standard and
user packages is as follows:

Standard packages are supported by the LAMMPS developers and are written in a syntax and style consistent
with the rest of LAMMPS. This means we will answer questions about them, debug and fix them if necessary,
and keep them compatible with future changes to LAMMPS.

User packages have been contributed by users, and always begin with the user prefix. If they are a single
command (single file), they are typically in the user-misc package. Otherwise, they are a a set of files grouped
together which add a specific functionality to the code.

User packages don't necessarily meet the requirements of the standard packages. If you have problems using a
feature provided in a user package, you will likely need to contact the contributor directly to get help. Information
on how to submit additions you make to LAMMPS as a user-contributed package is given in this section of the
documentation.

Including/excluding packages:

19

To use or not use a package you must include or exclude it before building LAMMPS. From the src directory, this
is typically as simple as:

make yes-colloid
make g++

or

make no-manybody
make g++

Some packages have individual files that depend on other packages being included. LAMMPS checks for this and
does the right thing. I.e. individual files are only included if their dependencies are already included. Likewise, if
a package is excluded, other files dependent on that package are also excluded.

The reason to exclude packages is if you will never run certain kinds of simulations. For some packages, this will
keep you from having to build auxiliary libraries (see below), and will also produce a smaller executable which
may run a bit faster.

When you download a LAMMPS tarball, these packages are pre-installed in the src directory: KSPACE,
MANYBODY,MOLECULE. When you download LAMMPS source files from the SVN or Git repositories, no
packages are pre-installed.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package in lower-case, e.g. name = kspace for the KSPACE package or name = user-atc for the USER-ATC
package. You can also type "make yes-standard", "make no-standard", "make yes-user", "make no-user", "make
yes-all" or "make no-all" to include/exclude various sets of packages. Type "make package" to see the all of the

package-related make options.

IMPORTANT NOTE: Inclusion/exclusion of a package works by simply moving files back and forth between the
main src directory and sub-directories with the package name (e.g. srtc/KSPACE, src/USER-ATC), so that the
files are seen or not seen when LAMMPS is built. After you have included or excluded a package, you must
re-build LAMMPS.

Additional package-related make options exist to help manage LAMMPS files that exist in both the src directory
and in package sub-directories. You do not normally need to use these commands unless you are editing
LAMMPS files or have downloaded a patch from the LAMMPS WWW site.

Typing "make package-update" will overwrite src files with files from the package sub-directories if the package
has been included. It should be used after a patch is installed, since patches only update the files in the package
sub-directory, but not the src files. Typing "make package-overwrite" will overwrite files in the package
sub-directories with src files.

Typing "make package-status" will show which packages are currently included. Of those that are included, it will
list files that are different in the src directory and package sub-directory. Typing "make package-diff" lists all
differences between these files. Again, type "make package" to see all of the package-related make options.

Packages that require extra libraries:

A few of the standard and user packages require additional auxiliary libraries to be compiled first. If you get a
LAMMPS build error about a missing library, this is likely the reason. The source code or hooks to these libraries
is included in the LAMMPS distribution under the "lib" directory. Look at the lib/README file for a list of these
or see Section_packages of the doc pages.

20

Each lib directory has a README file (e.g. lib/reax/ README) with instructions on how to build that library.
Typically this is done in this manner:

make —-f Makefile.g++

in the appropriate directory, e.g. in lib/reax. Some of the libraries do not build this way. Some of the directories do
not even have source code for the library, since you are expected to download and build it separately. Again, see
the libary README file for details.

If you are building the library, you will need to use a Makefile that is a match for your system. If one of the
provided Makefiles is not appropriate for your system you will need to edit or add one. For example, in the case
of Fortran-based libraries, your system must have a Fortran compiler, the settings for which will need to be listed
in the Makefile.

When you have built one of these libraries, there are 2 things to check:

(1) The file libname.a should now exist in lib/name. E.g. lib/reax/libreax.a. This is the library file LAMMPS will
link against. One exception is the lib/cuda library which produces the file liblammpscuda.a, because there is
already a system library libcuda.a.

(2) The file Makefile.lammps should exist in lib/name. E.g. lib/cuda/Makefile.lammps. This file may be
auto-generated by the build of the library, or you may need to make a copy of the appropriate provided file (e.g.
lib/meam/Makefile.lammps.gfortran). Either way you should insure that the settings in this file are appropriate for
your system.

There are typically 3 settings in the Makefile.lammps file (unless some are blank or not needed): a SYSINC,
SYSPATH, and SYSLIB setting, specific to this package. These are settings the LAMMPS build will import
when compiling the LAMMPS package files (not the library files), and linking to the auxiliary library. They
typically list any other system libraries needed to support the package and where to find them. An example is the
BLAS and LAPACK libraries needed by the USER-ATC package. Or the system libraries that support calling
Fortran from C++, as the MEAM and REAX packages do.

(3) One exception to these rules is the lib/linalg directory, which is simply BLAS and LAPACK files used by the
USER-ATC package (and possibly other packages in the future). If you do not have these libraries on your
system, you can use one of the Makefiles in this directory (which you may need to modify) to build a dummy
BLAS and LAPACK library. It can then be included in the lib/atc/Makefile.lammps file as part of the SYSPATH
and SYSLIB lines so that LAMMPS will build properly with the USER-ATC package.

Note that if these settings are not correct for your box, the LAMMPS build will likely fail.

2.4 Building LAMMPS via the Make.py script

The src directory includes a Make.py script, written in Python, which can be used to automate various steps of the
build process.

You can run the script from the src directory by typing either:

Make.py
python Make.py

which will give you info about the tool. For the former to work, you may need to edit the 1st line of the script to
point to your local Python. And you may need to insure the script is executable:

21

chmod +x Make.py
The following options are supported as switches:

o -i filel file2 ...

¢ -p packagel package? ...

¢ -u packagel package? ...

¢ -¢ packagel argl arg2 package? ...
e -0 dir

¢ -b machine

¢ s suffix1 suffix2 ...

o [dir

*-jN

¢ -h switch1 switch2 ...

Help on any switch can be listed by using -h, e.g.
Make.py -h -1 -p

At a hi-level, these are the kinds of package management and build tasks that can be performed easily, using the
Make.py tool:

¢ install/uninstall packages and build the associated external libs (use -p and -u and -e)

¢ install packages needed for one or more input scripts (use -i and -p)

¢ build LAMMPS, either in the src dir or new dir (use -b)

¢ create a new dir with only the source code needed for one or more input scripts (use -i and -0)

The last bullet can be useful when you wish to build a stripped-down version of LAMMPS to run a specific
script(s). Or when you wish to move the minimal amount of files to another platform for a remote LAMMPS
build.

Note that using Make.py is not a substitute for insuring you have a valid src/MAKE/Maketfile.foo for your system,
or that external library Makefiles in any lib/* directories you use are also valid for your system. But once you
have done that, you can use Make.py to quickly include/exclude the packages and external libraries needed by
your input scripts.

2.5 Building LAMMPS as a library

LAMMPS itself can be built as a library, which can then be called from another application or a scripting
language. See this section for more info on coupling LAMMPS to other codes. Building LAMMPS as a library is
done by typing

make makelib
make —-f Makefile.lib foo

where foo is the machine name. Note that inclusion or exclusion of any desired optional packages should be done
before typing "make makelib". The first "make" command will create a current Makefile.lib with all the file
names in your src dir. The 2nd "make" command will use it to build LAMMPS as a library. This requires that
Makefile.foo have a library target (lib) and system-specific settings for ARCHIVE and ARFLAGS. See
Makefile.linux for an example. The build will create the file liblmp_foo.a which another application can link to.

When used from a C++ program, the library allows one or more LAMMPS objects to be instantiated. All of
LAMMPS is wrapped in a LAMMPS_NS namespace; you can safely use any of its classes and methods from

22

within your application code, as needed.

When used from a C or Fortran program or a scripting language, the library has a simple function-style interface,
provided in src/library.cpp and src/library.h.

See the sample codes couple/simple/simple.cpp and simple.c as examples of C++ and C codes that invoke
LAMMPS thru its library interface. There are other examples as well in the couple directory which are discussed
in Section_howto 10 of the manual. See Section_python of the manual for a description of the Python wrapper
provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h contain the C-style interface to LAMMPS. See Section_howto 19 of the
manual for a description of the interface and how to extend it for your needs.

2.6 Running LAMMPS

By default, LAMMPS runs by reading commands from stdin; e.g. Imp_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples or bench directory. Input scripts are
named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run a standard Lennard-Jones benchmark on a Linux box, using mpirun to launch a
parallel job:

cd src

make linux

cp lmp_linux ../bench

cd ../bench

mpirun -np 4 lmp_linux <in.lj

See this page for timings for this and the other benchmarks on various platforms.

On a Windows box, you can skip making LAMMPS and simply download an executable, as described above,
though the pre-packaged executables include only certain packages.

To run a LAMMPS executable on a Windows machine, first decide whether you want to download the non-MPI
(serial) or the MPI (parallel) version of the executable. Download and save the version you have chosen.

For the non-MPI version, follow these steps:

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

® Move to the directory where you have saved Imp_win_no-mpi.exe (e.g. by typing: cd "Documents").

e At the command prompt, type "Imp_win_no-mpi -in in.lj", replacing in.lj with the name of your
LAMMPS input script.

For the MPI version, which allows you to run LAMMPS under Windows on multiple processors, follow these
steps:

e Download and install MPICH?2 for Windows.

¢ You'll need to use the mpiexec.exe and smpd.exe files from the MPICH2 package. Put them in same
directory (or path) as the LAMMPS Windows executable.

23

http://lammps.sandia.gov/bench.html
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

¢ Move to the directory where you have saved Imp_win_mpi.exe (e.g. by typing: cd "Documents").

¢ Then type something like this: "mpiexec -np 4 -localonly Imp_win_mpi -in in.]}", replacing in.lj with the
name of your LAMMPS input script.

¢ Note that you may need to provide smpd with a passphrase --- it doesn't matter what you type.

¢ In this mode, output may not immediately show up on the screen, so if your input script takes a long time
to execute, you may need to be patient before the output shows up.

¢ Alternatively, you can still use this executable to run on a single processor by typing something like:
"lmp_win_mpi -in in.]j".

The screen output from LAMMPS is described in the next section. As it runs, LAMMPS also writes a log.lammps
file with the same information.

Note that this sequence of commands copies the LAMMPS executable (Imp_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,
rather than leave it as the directory where you launch mpirun from (if you launch Imp_linux on its own and not
under mpirun). If that happens, LAMMPS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See Section_errors for a discussion of the various kinds of errors
LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you should get
identical answers on any number of processors and on any machine. In practice, numerical round-off can cause
slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run out
of memory, you must run on more processors or setup a smaller problem.

2.7 Command-line options

At run time, LAMMPS recognizes several optional command-line switches which may be used in any order.
Either the full word or a one-or-two letter abbreviation can be used:

e -c or -cuda

® ¢ or -echo

® -jor-in

¢ -h or -help

e -l or -log

® -p or -partition
e -pl or -plog

® -ps or -pscreen
® _r or -reorder

® _sC Or -screen
e _sf or -suffix

® _y or -var

For example, Imp_ibm might be launched as follows:

mpirun -np 16 Imp_ibm -v f tmp.out -1 my.log —-sc none <in.alloy
mpirun -np 16 Ilmp_ibm -var f tmp.out -log my.log —-screen none <in.alloy

24

Here are the details on the options:

—-cuda on/off

Explicitly enable or disable CUDA support, as provided by the USER-CUDA package. If LAMMPS is built with
this package, as described above in Section 2.3, then by default LAMMPS will run in CUDA mode. If this switch
is set to "off", then it will not, even if it was built with the USER-CUDA package, which means you can run
standard LAMMPS or with the GPU package for testing or benchmarking purposes. The only reason to set the
switch to "on", is to check if LAMMPS was built with the USER-CUDA package, since an error will be generated
if it was not.

—echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

—-in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one-partition mode.
If it is not specified, LAMMPS reads its input script from stdin - e.g. Imp_linux < in.run. This is a required switch
when running LAMMPS in multi-partition mode, since multiple processors cannot all read from stdin.

—help

Print a list of options compiled into this executable for each LAMMPS style (atom_style, fix, compute, pair_style,
bond_style, etc). This can help you know if the command you want to use was included via the appropriate
package. LAMMPS will print the info and immediately exit if this switch is used.

-log file

Specify a log file for LAMMPS to write status information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.lammps file is created with hi-level status information. Each
partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in multi-partition
mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For both
one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a log
command in the input script will override this setting. Option -plog will override the name of the partition log
files file.N.

-partition 8x2 4 5 ...

Invoke LAMMPS in multi-partition mode. When LAMMPS is run on P processors and this switch is not used,
LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

Running with multiple partitions can e useful for running multi-replica simulations, where each replica runs on on
one or a few processors. Note that with MPI installed on a machine (e.g. your desktop), you can run on more

25

(virtual) processors than you have physical processors.

To run multiple independent simulatoins from one input script, using multiple partitions, see Section_howto 4 of
the manual. World- and universe-style variables are useful in this context.

-plog file

Specify the base name for the partition log files, so partition N writes log information to file.N. If file is none,
then no partition log files are created. This overrides the filename specified in the -log command-line option. This
option is useful when working with large numbers of partitions, allowing the partition log files to be suppressed
(-plog none) or placed in a sub-directory (-plog replica_files/log.lammps) If this option is not used the log file for
partition N is log.Jammps.N or whatever is specified by the -log command-line option.

-pscreen file

Specify the base name for the partition screen file, so partition N writes screen information to file.N. If file is
none, then no partition screen files are created. This overrides the filename specified in the -screen command-line
option. This option is useful when working with large numbers of partitions, allowing the partition screen files to
be suppressed (-pscreen none) or placed in a sub-directory (-pscreen replica_files/screen). If this option is not
used the screen file for partition N is screen.N or whatever is specified by the -screen command-line option.

—-reorder nth N
-reorder custom filename

Reorder the processors in the MPI communicator used to instantiate LAMMPS, in one of several ways. The
original MPI communicator ranks all P processors from 0 to P-1. The mapping of these ranks to physical
processors is done by MPI before LAMMPS begins. It may be useful in some cases to alter the rank order. E.g. to
insure that cores within each node are ranked in a desired order. Or when using the run_style verlet/split
command with 2 partitions to insure that a specific Kspace processor (in the 2nd partition) is matched up with a
specific set of processors in the 1st partition. See the Section_accelerate doc pages for more details.

If the keyword nth is used with a setting NV, then it means every Nth processor will be moved to the end of the
ranking. This is useful when using the run_style verlet/split command with 2 partitions via the -partition
command-line switch. The first set of processors will be in the first partition, the 2nd set in the 2nd partition. The
-reorder command-line switch can alter this so that the 1st N procs in the 1st partition and one proc in the 2nd
partition will be ordered consecutively, e.g. as the cores on one physical node. This can boost performance. For
example, if you use "-reorder nth 4" and "-partition 9 3" and you are running on 12 processors, the processors will
be reordered from

0123456789 1011

to

012456289103 711

so that the processors in each partition will be

01245638910
3711

See the "processors" command for how to insure processors from each partition could then be grouped optimally
for quad-core nodes.

26

If the keyword is custom”, then a file that specifies a permutation of the processor ranks is also specified. The
format of the reorder file is as follows. Any number of initial blank or comment lines (starting with a "#"
character) can be present. These should be followed by P lines of the form:

IJ

where P is the number of processors LAMMPS was launched with. Note that if running in multi-partition mode
(see the -partition switch above) P is the total number of processors in all partitions. The I and J values describe a
permutation of the P processors. Every I and J should be values from O to P-1 inclusive. In the set of P I values,
every proc ID should appear exactly once. Ditto for the set of P J values. A single I,J pairing means that the
physical processor with rank I in the original MPI communicator will have rank J in the reordered communicator.

Note that rank ordering can also be specified by many MPI implementations, either by environment variables that
specify how to order physical processors, or by config files that specify what physical processors to assign to each
MPI rank. The -reorder switch simply gives you a portable way to do this without relying on MPI itself. See the
processors out command for how to output info on the final assignment of physical processors to the LAMMPS
simulation domain.

—-screen file

Specify a file for LAMMPS to write its screen information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and you will
see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed. Option -pscreen will override the name of the partition screen files file.N.

-suffix style

Use variants of various styles if they exist. The specified style can be opt, omp, gpu, or cuda. These refer to
optional packages that LAMMPS can be built with, as described above in Section 2.3. The "opt" style corrsponds
to the OPT package, the "omp" style to the USER-OMP package, the "gpu" style to the GPU package, and the
"cuda" style to the USER-CUDA package.

As an example, all of the packages provide a pair_style lj/cut variant, with style names lj/cut/opt, lj/cut/omp,
lj/cut/gpu, or lj/cut/cuda. A variant styles can be specified explicitly in your input script, e.g. pair_style lj/cut/gpu.
If the -suffix switch is used, you do not need to modify your input script. The specified suffix (opt,omp,gpu,cuda)
is automatically appended whenever your input script command creates a new atom, pair, fix, compute, or run
style. If the variant version does not exist, the standard version is created.

For the GPU package, using this command-line switch also invokes the default GPU settings, as if the command
"package gpu force/neigh 0 0 1" were used at the top of your input script. These settings can be changed by using
the package gpu command in your script if desired.

For the OMP package, using this command-line switch also invokes the default OMP settings, as if the command
"package omp *" were used at the top of your input script. These settings can be changed by using the package

omp command in your script if desired.

The suffix command can also set a suffix and it can also turn off/on any suffix setting made via the command line.

-var name valuel value2 ...

27

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). An index-style variable will be created and populated with the subsequent values, e.g. a set of filenames.
Using this command-line option is equivalent to putting the line "variable name index valuel value2 ..." at the
beginning of the input script. Defining an index variable as a command-line argument overrides any setting for
the same index variable in the input script, since index variables cannot be re-defined. See the variable command
for more info on defining index and other kinds of variables and this section for more info on using variables in
input scripts.

NOTE: Currently, the command-line parser looks for arguments that start with "-" to indicate new switches. Thus
you cannot specify multiple variable values if any of they start with a "-", e.g. a negative numeric value. It is OK

non

if the first valuel starts with a "-", since it is automatically skipped.

2.8 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant actions
it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various initializations
and prints the amount of memory (in MBytes per processor) that the simulation requires. It also prints details of
the initial thermodynamic state of the system. During the run itself, thermodynamic information is printed
periodically, every few timesteps. When the run concludes, LAMMPS prints the final thermodynamic state and a
total run time for the simulation. It then appends statistics about the CPU time and storage requirements for the
simulation. An example set of statistics is shown here:

Loop time of 49.002 on 2 procs for 2004 atoms

Pair time (%) = 35.0495 (71.5267)
Bond time (%) = 0.092046 (0.187841)
Kspce time (%) = 6.42073 (13.103)
Neigh time (%) = 2.73485 (5.5811)

Comm time (%) = 1.50291 (3.06703)
Outpt time (%) = 0.013799 (0.0281601)
Other time (%) = 2.13669 (4.36041)
Nlocal: 1002 ave, 1015 max, 989 min
Histogram: 1 0 0 0 0 0 0 0 0 1

Nghost: 8720 ave, 8724 max, 8716 min
Histogram: 1 0 0 0 0 0 0 0 0 1

Neighs: 354141 ave, 361422 max, 346860 min

Histogram: 1 0 0 0 0 0 0 0 0 1

Total # of neighbors = 708282

Ave neighs/atom = 353.434

Ave special neighs/atom = 2.34032
Number of reneighborings = 42
Dangerous reneighborings = 2

The first section gives the breakdown of the CPU run time (in seconds) into major categories. The second section
lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair-wise neighbors stored per processor.
The max and min values give the spread of these values across processors with a 10-bin histogram showing the
distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair-wise neighbors and special neighbors that LAMMPS keeps
track of (see the special_bonds command). The number of times neighbor lists were rebuilt during the run is given
as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list rebuilding
(see the neigh_modify command), then dangerous reneighborings are those that were triggered on the first
timestep atom movement was checked for. If this count is non-zero you may wish to reduce the delay factor to

28

insure no force interactions are missed by atoms moving beyond the neighbor skin distance before a rebuild takes
place.

If an energy minimization was performed via the minimize command, additional information is printed, e.g.

Minimization stats:
E initial, next-to-last, final = -0.895962 -2.94193 -2.94342
Gradient 2-norm init/final= 1920.78 20.9992
Gradient inf-norm init/final= 304.283 9.61216
Iterations = 36
Force evaluations = 177

The first line lists the initial and final energy, as well as the energy on the next-to-last iteration. The next 2 lines
give a measure of the gradient of the energy (force on all atoms). The 2-norm is the "length" of this force vector;
the inf-norm is the largest component. The last 2 lines are statistics on how many iterations and force-evaluations
the minimizer required. Multiple force evaluations are typically done at each iteration to perform a 1d line
minimization in the search direction.

If a kspace_style long-range Coulombics solve was performed during the run (PPPM, Ewald), then additional
information is printed, e.g.

FFT time (% of Kspce) = 0.200313 (8.34477)
FFT Gflps 3d ld-only = 2.31074 9.19989

The first line gives the time spent doing 3d FFTs (4 per timestep) and the fraction it represents of the total KSpace
time (listed above). Each 3d FFT requires computation (3 sets of 1d FFTs) and communication (transposes). The
total flops performed is SNlog_2(N), where N is the number of points in the 3d grid. The FFTs are timed with and
without the communication and a Gflop rate is computed. The 3d rate is with communication; the 1d rate is
without (just the 1d FFTs). Thus you can estimate what fraction of your FFT time was spent in communication,
roughly 75% in the example above.

2.9 Tips for users of previous LAMMPS versions

The current C++ began with a complete rewrite of LAMMPS 2001, which was written in F90. Features of earlier
versions of LAMMPS are listed in Section_history. The FO90 and F77 versions (2001 and 99) are also freely
distributed as open-source codes; check the LAMMPS WWW Site for distribution information if you prefer those
versions. The 99 and 2001 versions are no longer under active development; they do not have all the features of
C++ LAMMPS.

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in C++
LAMMPS:

(1) The names and arguments of many input script commands have changed. All commands are now a single
word (e.g. read_data instead of read data).

(2) All the functionality of LAMMPS 2001 is included in C++ LAMMPS, but you may need to specify the
relevant commands in different ways.

(3) The format of the data file can be streamlined for some problems. See the read_data command for details. The
data file section "Nonbond Coeff" has been renamed to "Pair Coeff" in C++ LAMMPS.

(4) Binary restart files written by LAMMPS 2001 cannot be read by C++ LAMMPS with a read_restart
command. This is because they were output by F90 which writes in a different binary format than C or C++ writes

or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a text data

29

http://lammps.sandia.gov

file. Then edit the data file as necessary before using the C++ LAMMPS read_data command to read it in.
(5) There are numerous small numerical changes in C++ LAMMPS that mean you will not get identical answers

when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory should be close if
you have setup the problem for both codes the same.

30

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

3. Commands

This section describes how a LAMMPS input script is formatted and the input script commands used to define a
LAMMPS simulation.

3.1 LAMMPS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script

LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:
(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of

commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the 2nd
case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for
the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define which
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect. For example, the read_data command initializes
the system by setting up the simulation box and assigning atoms to processors. If default values are not desired,
the processors and boundary commands need to be used before read_data to tell LAMMPS how to map
processors to the simulation box.

31

http://lammps.sandia.gov

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the last printable character on the line is a "&" character (with no surrounding quotes), the command is
assumed to continue on the next line. The next line is concatenated to the previous line by removing the "&"
character and newline. This allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded. See an exception in
(6). Note that a comment after a trailing "&" character will prevent the command from continuing on the next
line. Also note that for multi-line commands a single leading "#" will comment out the entire command.

(3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string.
See an exception in (6). If the $ is followed by curly brackets, then the variable name is the text inside the curly
brackets. If no curly brackets follow the $, then the variable name is the single character immediately following
the $. Thus ${myTemp} and $x refer to variable names "myTemp" and "x". See the variable command for details
of how strings are assigned to variables and how they are substituted for in input script commands.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) If you want text with spaces to be treated as a single argument, it can be enclosed in either double or single
quotes. E.g.

print "Volume = $v"
print 'Volume = $v'

The quotes are removed when the single argument is stored internally. See the dump modify format or if
commands for examples. A "#" or "$" character that is between quotes will not be treated as a comment indicator
in (2) or substituted for as a variable in (3).

IMPORTANT NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a print
command as part of an if or run every command), then the double and single quotes can be nested in the usual
manner. See the doc pages for those commands for examples. Only one of level of nesting is allowed, but that
should be sufficient for most use cases.

3.3 Input script structure
This section describes the structure of a typical LAMMPS input script. The "examples" directory in the LAMMPS

distribution contains many sample input scripts; the corresponding problems are discussed in Section_example,
and animated on the LAMMPS WWW Site.

32

http://lammps.sandia.gov

A LAMMPS input script typically has 4 parts:

1. Initialization

2. Atom definition

3. Settings

4. Run a simulation
The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.
(1) Initialization
Set parameters that need to be defined before atoms are created or read-in from a file.

The relevant commands are units, dimension, newton, processors, boundary, atom_style, atom_modify.

If force-field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of force
fields are being used: pair_style, bond_style, angle_style, dihedral_style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read_data or
read_restart commands. These files can contain molecular topology information. Or create atoms on a lattice
(with no molecular topology), using these commands: lattice, region, create_box, create_atoms. The entire set of
atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients,
simulation parameters, output options, etc.

Force field coefficients are set by these commands (they can also be set in the read-in files): pair_coeff,
bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds.

Various simulation parameters are set by these commands: neighbor, neigh_modify, group, timestep,
reset_timestep, run_style, min_style, min_modify.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command comes
in many flavors.

Various computations can be specified for execution during a simulation using the compute, compute_modity,
and variable commands.

Output options are set by the thermo, dump, and restart commands.
(4) Run a simulation
A molecular dynamics simulation is run using the run command. Energy minimization (molecular statics) is

performed using the minimize command. A parallel tempering (replica-exchange) simulation can be run using the
temper command.

33

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some style options for some commands are part of specific LAMMPS packages, which
means they cannot be used unless the package was included when LAMMPS was built. Not all packages are
included in a default LAMMPS build. These dependencies are listed as Restrictions in the command's
documentation.

Initialization:

atom_modify, atom_style, boundary, dimension, newton, processors, units

Atom definition:

create_atoms, create_box, lattice, read_data, read_restart, region, replicate

Force fields:

angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral_coeff, dihedral_style, improper_coeff,
improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special_bonds

Settings:

communicate, group, mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep, run_style, set,
timestep, velocity

Fixes:

fix, fix_modify, unfix

Computes:

compute, compute_modify, uncompute

Output:

dump, dump image, dump_modify, restart, thermo, thermo_modify, thermo_style, undump, write_restart
Actions:

delete_atoms, delete_bonds, displace_atoms, change_box, minimize, neb prd, run, temper
Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all LAMMPS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that some style options for
some commands are part of specific LAMMPS packages, which means they cannot be used unless the package
was included when LAMMPS was built. Not all packages are included in a default LAMMPS build. These

34

dependencies are listed as Restrictions in the command's documentation.

angle_coeff angle_style [atom_modify | atom_style balance bond_coeff
bond_style boundary change_box clear communicate | compute
compute_modify| create_atoms | create_box | delete_atoms | delete_bonds | dielectric
dihedral_coeff | dihedral_style | dimension |displace_atoms dump dump image
dump_modify echo fix fix_modify group if
improper_coeff |improper_style include jump kspace_modify [kspace_style
label lattice log mass minimize |[min_modify
min_style neb neigh_modify| neighbor newton next
package pair_coeff pair_modify pair_style pair_write partition
prd print processors quit read_data |read_restart
region replicate [reset_timestep restart run run_style
set shell special_bonds suffix tad temper
thermo thermo_modify| thermo_style timestep uncompute undump
unfix units variable velocity write_restart

Fix styles

See the fix command for one-line descriptions of each style or click on the style itself for a full description:

adapt addforce append/atoms aveforce ave/atom |ave/correlate| ave/histo ave/spatial
ave/time bond/break bond/create bond/swap box/relax deform deposit drag
dt/reset efield enforce2d evaporate external freeze gcme gravity
heat indent langevin lineforce momentum move msst neb
nph nphug nph/asphere nph/sphere npt npt/asphere | npt/sphere nve
nve/asphere |nve/asphere/noforce| nve/limit nve/line nve/noforce| nve/sphere | nve/tri nvt
nvt/asphere nvt/sllod nvt/sphere orient/fcc planeforce poems pour [press/berendsen
print geg/comb reax/bonds reax/c/bonds recenter restrain rigid rigid/nve
rigid/nvt setforce shake spring spring/rg | spring/self srd store/force
store/state | temp/berendsen | temp/rescale |thermal/conductivity tmd ttm viscosity viscous
wall/colloid wall/gran wall/harmonic wall/lj126 wall/lj93 | wall/piston |wall/reflect| wall/region
wall/srd

These are fix styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

addtorque atc imd |langevin/eff| meso |meso/stationary
nph/eff npt/eff nve/eff| nvt/eff [nvt/sllod/eff| geq/reax
smd |temp/rescale/eff

These are accelerated fix styles, which can be used if LAMMPS is built with the appropriate accelerated package.

freeze/cuda| addforce/cuda aveforce/cuda enforce2d/cuda gravity/cuda | gravity/omp
npt/cuda nve/cuda nve/sphere/omp nvt/cuda geg/comb/omp |setforce/cuda
shake/cuda |temp/berendsen/cuda [temp/rescale/cuda [temp/rescale/limit/cuda| viscous/cuda

35

Compute styles

See the compute command for one-line descriptions of each style or click on the style itself for a full description:

angle/local atom/molecule bond/local | centro/atom | cluster/atom cna/atom
com com/molecule coord/atom |damage/atom |dihedral/local| displace/atom
erotate/asphere| erotate/sphere |event/displace| group/group | gyration |gyration/molecule
heat/flux improper/local ke ke/atom msd msd/molecule
pair pair/local pe pe/atom pressure property/atom
property/local |property/molecule rdf reduce |reduce/region slice
stress/atom temp temp/asphere | temp/com |temp/deform | temp/partial
temp/profile temp/ramp temp/region | temp/sphere ti
These are compute styles contributed by users, which can be used if LAMMPS is built with the appropriate
package.
ackland/atom ke/eff ke/atom/eff |meso_e/atom |[meso_rho/atom |meso_t/atom
temp/eff [temp/deform/eff|temp/region/eff| temp/rotate

These are accelerated compute styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

|pe/cuda|pressure/cuda temp/cuda |temp/partial/cuda

Pair_style potentials

See the pair_style command for an overview of pair potentials. Click on the style itself for a full description:

none hybrid hybrid/overlay adp
airebo beck born born/coul/long
born/coul/wolf brownian brownian/poly buck
buck/coul/cut buck/coul/long colloid comb
coul/cut coul/debye coul/long coul/wolf
dipole/cut dpd dpd/tstat dsmc
eam eam/alloy eam/fs eim
gauss gayberne gran/hertz/history gran/hooke
gran/hooke/history| hbond/dreiding/l; hbond/dreiding/morse kim
line/lj lj/charmm/coul/charmm (lj/charmm/coul/charmm/implicit| lj/charmm/coul/long
lj/class2 lj/class2/coul/cut lj/class2/coul/long lj/cut
lj/cut/coul/cut lj/cut/coul/debye lj/cut/coul/long lj/cut/coul/long/tip4p
lj/expand lj/gromacs lj/gromacs/coul/gromacs lj/smooth
lj/smooth/linear 1j96/cut lubricate lubricate/poly
lubricateU lubricateU/poly meam morse
peri/lps peri/pmb reax rebo
resquared soft SW table
tersoff tersoff/zbl tri/lj yukawa
yukawa/colloid

36

These are pair styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

awpmd/cut | buck/coul coul/diel dipole/sf
eam/cd edip eff/cut gauss/cut
lj/coul lj/sdk lj/sdk/coul/long 1j/sf
meam/spline| reax/c |sph/heatconduction sph/idealgas
sph/lj sph/thosum| sph/taitwater |sph/taitwater/morris
tersoff/table
These are accelerated pair styles, which can be used if LAMMPS is built with the appropriate accelerated
package.
adp/omp airebo/omp born/coul/long/cuda born/coul/long/omp
born/coul/wolf/omp born/omp brownian/omp brownian/poly/omp
buck/coul/cut/cuda buck/coul/cut/gpu buck/coul/cut/omp buck/coul/long/cuda
buck/coul/long/gpu buck/coul/long/omp buck/coul/omp buck/cuda
buck/gpu buck/omp colloid/omp comb/omp
coul/cut/omp coul/debye/omp coul/long/gpu coul/long/omp
coul/wolf dipole/cut/omp dipole/sf/omp dpd/omp
dpd/tstat/omp eam/alloy/cuda eam/alloy/gpu eam/alloy/omp
eam/alloy/opt eam/cd/omp eam/cuda eam/fs/cuda
eam/fs/gpu eam/fs/omp eam/fs/opt eam/gpu
eam/omp eam/opt edip/omp eim/omp
gauss/omp gayberne/gpu gayberne/omp gran/hertz/history/omg
gran/hooke/cuda gran/hooke/history/omp gran/hooke/omp hbond/dreiding/lj/omp

hbond/dreiding/morse/omp

line/lj/omp

lj/charmm/coul/charmm/cuda

lj/charmm/coul/charmm/c

lj/charmm/coul/charmm/implicit/cuda

lj/charmm/coul/charmm/implicit/omp

lj/charmm/coul/long/cuda

lj/charmm/coul/long/gp

lj/charmm/coul/long/omp

lj/charmm/coul/long/opt

lj/charmm/coul/pppm/omp

lj/class2/coul/cut/cuda

lj/class2/coul/cut/omp

lj/class2/coul/long/cuda

lj/class2/coul/long/gpu

lj/class2/coul/pppm/om

lj/class2/coul/long/omp lj/class2/cuda lj/class2/gpu lj/class2/omp
lj/coul/omp lj/cut/coul/cut/cuda lj/cut/coul/cut/gpu lj/cut/coul/cut/omp
lj/cut/coul/debye/cuda lj/cut/coul/debye/omp lj/cut/coul/long/cuda lj/cut/coul/long/gpu

lj/cut/coul/long/omp lj/cut/coul/long/opt lj/cut/coul/long/tip4p/omp lj/cut/coul/long/tip4p/oj
lj/cut/coul/pppm/omp lj/cut/coul/pppm/tip4p/omp lj/cut/cuda lj/cut/experimental/cud
lj/cut/gpu lj/cut/omp lj/cut/opt lj/expand/cuda
lj/expand/gpu lj/expand/omp lj/gromacs/coul/gromacs/cuda |lj/gromacs/coul/gromacs/c
lj/gromacs/cuda lj/gromacs/omp lj/sdk/gpu lj/sdk/omp
lj/sdk/coul/long/gpu lj/sdk/coul/long/omp lj/sf/omp lj/smooth/cuda
lj/smooth/omp lj/smooth/linear/omp 1j96/cut/cuda 1j96/cut/gpu
1j96/cut/omp lubricate/omp lubricate/poly/omp morse/cuda
morse/gpu morse/omp morse/opt peri/lps/omp
peri/pmb/omp rebo/omp resquared/gpu resquared/omp
soft/omp sw/cuda sw/omp table/gpu
table/omp tersoff/cuda tersoff/omp tersoff/table/omp
tersoff/zbl/omp tri/lj/omp yukawa/gpu yukawa/omp

37

yukawa/colloid/omp

Bond_style potentials

See the bond_style command for an overview of bond potentials. Click on the style itself for a full description:

none hybrid class2 fene
fene/expand harmonic morse nonlinear
quartic table

These are bond styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

These are accelerated bond styles, which can be used if LAMMPS is built with the appropriate accelerated

package.

harmonic/shift |harmonic/shift/cut

class2/omp

fene/omp

fene/expand/omp | harmonic/omp

harmonic/shift/omp

harmonic/shift/cut/omp

morse/omp

nonlinear/omp

quartic/omp

table/omp

Angle_style potentials

See the angle_style command for an overview of angle potentials. Click on the style itself for a full description:

none hybrid charmm class2
cosine cosine/delta | cosine/periodic | cosine/squared
harmonic table

These are angle styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

These are accelerated angle styles, which can be used if LAMMPS is built with the appropriate accelerated

|sdk |cosine/ shift|cosine/shift/exp |dipole |

package.
charmm/omp class2/omp cosine/omp cosine/delta/omp
cosine/periodic/omp |cosine/shift/omp|cosine/shift/exp/omp [cosine/squared/omp
harmonic/omp table/omp

Dihedral_style potentials

See the dihedral_style command for an overview of dihedral potentials. Click on the style itself for a full

description:

These are dihedral styles contributed by users, which can be used if LAMMPS is built with the appropriate

package.

none

hybrid

charmm

class2

harmonic

helix

multi/harmonic

opls

cosine/shift/exp |table |

38

These are accelerated dihedral styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

charmm/omp class2/omp cosine/shift/exp/omp | harmonic/omp

helix/omp |multi/harmonic/omp opls/omp

Improper_style potentials

See the improper_style command for an overview of improper potentials. Click on the style itself for a full
description:

none hybrid class2 cvff

harmonic umbrella

These are accelerated improper styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

class2/omp cvff/omp harmonic/omp | umbrella/omp

Kspace solvers

See the kspace_style command for an overview of Kspace solvers. Click on the style itself for a full description:

ewald | pppm | pppmlcz | pppmitipdp
These are Kspace solvers contributed by users, which can be used if LAMMPS is built with the appropriate
package.

| ewald/n |

These are accelerated Kspace solvers, which can be used if LAMMPS is built with the appropriate accelerated
package.

ewald/omp | pppm/cuda pppm/gpulpppm/omp
pppm/cg/omp |pppm/proxy

39

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

4. Packages

This section gives a quick overview of the add-on packages that extend LAMMPS functionality.

4.1 Standard packages
4.2 User packages

LAMMPS includes many optional packages, which are groups of files that enable a specific set of features. For
example, force fields for molecular systems or granular systems are in packages. You can see the list of all
packages by typing "make package" from within the src directory of the LAMMPS distribution.

See Section_start 3 of the manual for details on how to include/exclude specific packages as part of the LAMMPS
build process, and for more details about the differences between standard packages and user packages in

LAMMPS.

Below, the packages currently availabe in LAMMPS are listed. For standard packages, just a one-line description
is given. For user packages, more details are provided.

4.1 Standard packages

The current list of standard packages is as follows:

Package Description Author(s) Doc page Example | Library
ASPHERE aspherical particles - howto ellipse -
CLASS2 class 2 force fields - pair_style lj/class2 - -
COLLOID colloidal particles - atom_style colloid | colloid -
C . i pair_style . i
DIPOLE point dipole particles dipole/cut dipole
Fast Lubrication Kumar & Bybee & Higdon pair_style
FLD . ; - -
Dynamics (D) lubricateU
GPU GPU-enabled potentials Mike Brown (ORNL) Section accelerate | gpu lib/gpu
GRANULAR granular systems - >howto pour -
. Smirichinski & Elliot & . . . -
KIM openKIM potentials Tadmor (3) pair_style kim kim lib/kim
KSPACE long-range Coulombic - kspace_style peptide -
solvers
MANYBODY| many-body potentials - pair_style tersoff | shear -
MEAM modified EAM potential Greg Wagner (Sandia) pair_style meam | meam |lib/meam
MC Monte Carlo options - fix gemc - -
MOLECULE molecular. system force - howto peptide -
fields
OPT optimized pair potentials Fischer & R(lgl ie & Natoli Section accelerate - -
PERI Peridynamics models Mike Parks (Sandia) pair_style peri peri -
POEMS Rudra Mukherjee (JPL) fix poems rigid |[lib/poems

40

http://lammps.sandia.gov

coupled rigid body
motion
REAX ReaxFF potential Aidan Thompson (Sandia) pair_style reax reax lib/reax
REPLICA multi-replica methods - howto tad -
SHOCK shock loading methods - fix msst - -
SRD stochastic rf)tation i fix srd ord i
dynamics
XTC dumps in XTC format - dump - -

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the package.
(1) The FLD package was created by Amit Kumar and Michael Bybee from Jonathan Higdon's group at UIUC.

(2) The OPT package was created by James Fischer (High Performance Technologies), David Richie, and Vincent
Natoli (Stone Ridge Technolgy).

(3) The KIM package was created by Valeriu Smirichinski, Ryan Elliott, and Ellad Tadmor (U Minn).

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script command
implemented as part of the package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input script
that uses the package. E.g. "peptide" refers to the examples/peptide directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it is
built. These are in the lib directory of the distribution. This section of the manual gives details on the 2-step build
process with external libraries.

4.2 User packages

The current list of user-contributed packages is as follows:

Package Description Author(s) Doc page Example Pic/movie | Library
USER-MISC single-file | {;spR MISC/README | USER-MISC/README . . -
contributions
USER-ATC atom—to-coptmuum Jone§ & Templeton & fix atc USER/atc atc lib/atc
coupling Zimmerman (2)
USER-AWPMD | wave-packet MD Ilya Valuev (JIHT) pair_style awpmd/cut | USER/awpmd - lib/awpmd
A coarse-graining Axel Kohlmeyer . . i i
USER-CG-CMM model (Temple U) pair_style lj/sdk USER/cg-cmm cg
USER-CUDA NVIDIAGPU | Christian Trott (U Tech Section accelerate USER/cuda - lib/cuda
styles Ilmenau)
USER-EFF electron force field Andres Jaramillo-Botero pair_style eff/cut USER/eff eff -
(Caltech)
USER-EWALDN| Ewald for 1/R*n | Pieter in' t Veld (BASF) kspace_style - - -
USER-OMP OpenMP threaded Axel Kohlmeyer Section accelerate i i i
styles (Temple U)
USER-REAXC Metin Aktulga (LBNL) pair_style reaxc reax - -

41

http://lammps.sandia.gov/pictures.html#atc
http://lammps.sandia.gov/pictures.html#cg
http://lammps.sandia.gov/movies.html#eff

C version of
ReaxFF
smoothed particle | Georg Ganzenmuller .
USER-SPH hydrodynamics (EMI) userguide.pdf USER/sph sph

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the package.
(2) The ATC package was created by Reese Jones, Jeremy Templeton, and Jon Zimmerman (Sandia).

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script command
implemented as part of the package, or to additional documentation provided witht he package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input script
that uses the package. E.g. "peptide" refers to the examples/peptide directory. USER/cuda refers to the
examples/USER/cuda directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it is
built. These are in the lib directory of the distribution. This section of the manual gives details on the 2-step build
process with external libraries.

More details on each package, from the USER-blah/README file is given below.

USER-MISC package

The files in this package are a potpourri of (mostly) unrelated features contributed to LAMMPS by users. Each
feature is a single pair of files (*.cpp and *.h).

More information about each feature can be found by reading its doc page in the LAMMPS doc directory. The
doc page which lists all LAMMPS input script commands is as follows:

Section_commands
User-contributed features are listed at the bottom of the fix, compute, pair, etc sections.
The list of features and author of each is given in the src/USER-MISC/README file.

You should contact the author directly if you have specific questions about the feature or its coding.

USER-ATC package
This package implements a "fix atc" command which can be used in a LAMMPS input script. This fix can be
employed to either do concurrent coupling of MD with FE-based physics surrogates or on-the-fly post-processing

of atomic information to continuum fields.

See the doc page for the fix atc command to get started. At the bottom of the doc page are many links to
additional documentation contained in the doc/USER/atc directory.

There are example scripts for using this package in examples/USER/atc.

This package uses an external library in lib/atc which must be compiled before making LAMMPS. See the
lib/atc/README file and the LAMMPS manual for information on building LAMMPS with external libraries.

42

http://lammps.sandia.gov/movies.html#sph

The primary people who created this package are Reese Jones (rjones at sandia.gov), Jeremy Templeton (jatempl
at sandia.gov) and Jon Zimmerman (jzimmer at sandia.gov) at Sandia. Contact them directly if you have
questions.

USER-AWPMD package

This package contains a LAMMPS implementation of the Antisymmetrized Wave Packet Molecular Dynamics
(AWPMD) method.

See the doc page for the pair_style awpmd/cut command to get started.

There are example scripts for using this package in examples/USER/awpmd.

This package uses an external library in lib/awpmd which must be compiled before making LAMMPS. See the
lib/awpmd/README file and the LAMMPS manual for information on building LAMMPS with external

libraries.

The person who created this package is Ilya Valuev at the JIHT in Russia (valuev at physik.hu-berlin.de). Contact
him directly if you have questions.

USER-CG-CMM package
This package implements 3 commands which can be used in a LAMMPS input script:

e pair_style lj/sdk
e pair_style lj/sdk/coul/long
¢ angle_style sdk

These styles allow coarse grained MD simulations with the parametrization of Shinoda, DeVane, Klein, Mol Sim,
33, 27 (2007) (SDK), with extensions to simulate ionic liquids, electrolytes, lipids and charged amino acids.

See the doc pages for these commands for details.
There are example scripts for using this package in examples/USER/cg-cmm.

This is the second generation implementation reducing the the clutter of the previous version. For many systems
with electrostatics, it will be faster to use pair_style hybrid/overlay with lj/sdk and coul/long instead of the
combined lj/sdk/coul/long style. since the number of charged atom types is usually small. For any other coulomb
interactions this is now required. To exploit this property, the use of the kspace_style pppm/cg is recommended
over regular pppm. For all new styles, input file backward compatibility is provided. The old implementation is
still available through appending the /old suffix. These will be discontinued and removed after the new
implementation has been fully validated.

The current version of this package should be considered beta quality. The CG potentials work correctly for
"normal" situations, but have not been testing with all kinds of potential parameters and simulation systems.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

43

USER-CUDA package

This package provides acceleration of various LAMMPS pair styles, fix styles, compute styles, and long-range
Coulombics via PPPM for NVIDIA GPUs.

See this section of the manual to get started:
Section_accelerate
There are example scripts for using this package in examples/USER/cuda.

This package uses an external library in lib/cuda which must be compiled before making LAMMPS. See the
lib/cuda/README file and the LAMMPS manual for information on building LAMMPS with external libraries.

The person who created this package is Christian Trott at the University of Technology Ilmenau, Germany
(christian.trott at tu-ilmenau.de). Contact him directly if you have questions.

USER-EFF package

This package contains a LAMMPS implementation of the electron Force Field (eFF) currently under development
at Caltech, as described in A. Jaramillo-Botero, J. Su, Q. An, and W.A. Goddard III, JCC, 2010. The eFF potential
was first introduced by Su and Goddard, in 2007.

eFF can be viewed as an approximation to QM wave packet dynamics and Fermionic molecular dynamics,
combining the ability of electronic structure methods to describe atomic structure, bonding, and chemistry in
materials, and of plasma methods to describe nonequilibrium dynamics of large systems with a large number of
highly excited electrons. We classify it as a mixed QM-classical approach rather than a conventional force field
method, which introduces QM-based terms (a spin-dependent repulsion term to account for the Pauli exclusion
principle and the electron wavefunction kinetic energy associated with the Heisenberg principle) that reduce,
along with classical electrostatic terms between nuclei and electrons, to the sum of a set of effective pairwise
potentials. This makes eFF uniquely suited to simulate materials over a wide range of temperatures and pressures
where electronically excited and ionized states of matter can occur and coexist.

The necessary customizations to the LAMMPS core are in place to enable the correct handling of explicit electron
properties during minimization and dynamics.

See the doc page for the pair_style eff/cut command to get started.
There are example scripts for using this package in examples/USER/eff.
There are auxiliary tools for using this package in tools/eff.

The person who created this package is Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).
Contact him directly if you have questions.

USER-EWALDN package

This package implements 3 commands which can be used in a LAMMPS input script: pair_style lj/coul,
pair_style buck/coul, and kspace_style ewald/n.

The "kspace_style ewald/n" command is similar to standard Ewald for charges, but also enables the
Lennard-Jones interaction, or any 1/r*N interaction to be of infinite extent, instead of being cutoff. LAMMPS pair

44

potentials for long-range Coulombic interactions, such as lj/cut/coul/long can be used with ewald/n. The two new
pair_style commands provide the modifications for the short-range LJ and Buckingham interactions that can also
be used with ewald/n.

Another advantage of kspace_style ewald/n is that it can be used with non-orthogonal (triclinic symmetry)
simulation boxes, either for just long-range Coulombic interactions, or for both Coulombic and 1/r*N LJ or
Buckingham, which is not currently possible for other kspace styles such as PPPM and ewald.

See the doc pages for these commands for details.

The person who created these files is Pieter in' t Veld while at Sandia. He is now at BASF (pieter.intveld at
basf.com). Contact him directly if you have questions.

USER-OMP package

This package provides OpenMP multi-threading support and other optimizations of various LAMMPS pair styles,
dihedral styles, and fix styles.

See this section of the manual to get started:
Section_accelerate

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-REAXC package

This package contains a implementation for LAMMPS of the ReaxFF force field. ReaxFF uses
distance-dependent bond-order functions to represent the contributions of chemical bonding to the potential
energy. It was originally developed by Adri van Duin and the Goddard group at CalTech.

The USER-REAXC version of ReaxFF (pair_style reax/c), implemented in C, should give identical or very
similar results to pair_style reax, which is a ReaxFF implementation on top of a Fortran library, a version of
which library was originally authored by Adri van Duin.

The reax/c version should be somewhat faster and more scalable, particularly with respect to the charge
equilibration calculation. It should also be easier to build and use since there are no complicating issues with
Fortran memory allocation or linking to a Fortran library.

For technical details about this implemention of ReaxFF, see this paper:

Parallel and Scalable Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques, H. M.
Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama, Parallel Computing, in press (2011).

See the doc page for the pair_style reax/c command for details of how to use it in LAMMPS.

The person who created this package is Hasan Metin Aktulga (hmaktulga at 1bl.gov), while at Purdue University.
Contact him directly, or Aidan Thompson at Sandia (athomps at sandia.gov), if you have questions.

45

USER-SPH package

This package implements smoothed particle hydrodynamics (SPH) in LAMMPS. Currently, the package has the
following features:

* Tait, ideal gas, Lennard-Jones equation of states, full support for complete (i.e. internal-energy dependent)
equations of state * plain or Monaghans XSPH integration of the equations of motion * density continuity or

density summation to propagate the density field * commands to set internal energy and density of particles from
the input script * output commands to access internal energy and density for dumping and thermo output

See the file doc/USER/sph/SPH_LAMMPS_userguide.pdf to get started.
There are example scripts for using this package in examples/USER/sph.
The person who created this package is Georg Ganzenmuller at the Fraunhofer-Institute for High-Speed

Dynamics, Ernst Mach Institute in Germany (georg.ganzenmueller at emi.thg.de). Contact him directly if you
have questions.

46

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

5. Accelerating LAMMPS performance

This section describes various methods for improving LAMMPS performance for different classes of problems
running on different kinds of machines.

5.1 OPT package

5.2 USER-OMP package

5.3 GPU package

5.4 USER-CUDA package

5.5 Comparison of GPU and USER-CUDA packages

Accelerated versions of various pair_style, fixes, computes, and other commands have been added to LAMMPS,
which will typically run faster than the standard non-accelerated versions, if you have the appropriate hardware on
your system.

The accelerated styles have the same name as the standard styles, except that a suffix is appended. Otherwise, the
syntax for the command is identical, their functionality is the same, and the numerical results it produces should
also be identical, except for precision and round-off issues.

For example, all of these variants of the basic Lennard-Jones pair style exist in LAMMPS:

e pair_style lj/cut

® pair_style lj/cut/opt
® pair_style lj/cut/omp
e pair_style lj/cut/gpu
e pair_style lj/cut/cuda

Assuming you have built LAMMPS with the appropriate package, these styles can be invoked by specifying them
explicitly in your input script. Or you can use the -suffix command-line switch to invoke the accelerated versions
automatically, without changing your input script. The suffix command allows you to set a suffix explicitly and to
turn off/on the comand-line switch setting, both from within your input script.

Styles with an "opt" suffix are part of the OPT package and typically speed-up the pairwise calculations of your
simulation by 5-25%.

Styles with an "omp" suffix are part of the USER-OMP package and allow a pair-style to be run in multi-threaded
mode using OpenMP. This can be useful on nodes with high-core counts when using less MPI processes than
cores is advantageous, e.g. when running with PPPM so that FFTs are run on fewer MPI processors or when the

many MPI tasks would overload the available bandwidth for communication.

Styles with a "gpu" or "cuda" suffix are part of the GPU or USER-CUDA packages, and can be run on NVIDIA
GPUs associated with your CPUs. The speed-up due to GPU usage depends on a variety of factors, as discussed
below.

To see what styles are currently available in each of the accelerated packages, see Section_commands 5 of the
manual. A list of accelerated styles is included in the pair, fix, compute, and kspace sections.

The following sections explain:

¢ what hardware and software the accelerated styles require

47

http://lammps.sandia.gov

¢ how to build LAMMPS with the accelerated packages in place
¢ what changes (if any) are needed in your input scripts

¢ guidelines for best performance

e speed-ups you can expect

The final section compares and contrasts the GPU and USER-CUDA packages, since they are both designed to
use NVIDIA GPU hardware.

5.1 OPT package

The OPT package was developed by James Fischer (High Performance Technologies), David Richie, and Vincent
Natoli (Stone Ridge Technologies). It contains a handful of pair styles whose compute() methods were rewritten
in C++ templated form to reduce the overhead due to if tests and other conditional code.

The procedure for building LAMMPS with the OPT package is simple. It is the same as for any other package
which has no additional library dependencies:

make yes-opt
make machine

If your input script uses one of the OPT pair styles, you can run it as follows:

Imp_machine -sf opt <in.script
mpirun -np 4 lmp_machine -sf opt <in.script

You should see a reduction in the "Pair time" printed out at the end of the run. On most machines and problems,
this will typically be a 5 to 20% savings.

5.2 USER-OMP package

The USER-OMP package was developed by Axel Kohlmeyer at Temple University. It provides multi-threaded
versions of most pair styles, all dihedral styles and a few fixes in LAMMPS. The package currently uses the
OpenMP interface which requires using a specific compiler flag in the makefile to enable multiple threads;
without this flag the corresponding pair styles will still be compiled and work, but do not support multi-threading.

Building LAMMPS with the USER-OMP package:

The procedure for building LAMMPS with the USER-OMP package is simple. You have to edit your machine
specific makefile to add the flag to enable OpenMP support to the CCFLAGS and LINKFLAGS variables. For
the GNU compilers for example this flag is called -fopenmp. Check your compiler documentation to find out
which flag you need to add. The rest of the compilation is the same as for any other package which has no
additional library dependencies:

make yes—-user-omp
make machine

Please note that this will only install accelerated versions of styles that are already installed, so you want to install
this package as the last package, or else you may be missing some accelerated styles. If you plan to uninstall some
package, you should first uninstall the USER-OMP package then the other package and then re-install
USER-OMP, to make sure that there are no orphaned omp style files present, which would lead to compilation
erTors.

48

If your input script uses one of regular styles that are also exist as an OpenMP version in the USER-OMP package
you can run it as follows:

env OMP_NUM_THREADS=4 lmp_serial -sf omp -in in.script
env OMP_NUM_THREADS=2 mpirun -np 2 lmp_machine -sf omp -in in.script
mpirun -x OMP_NUM_THREADS=2 -np 2 lmp_machine -sf omp -in in.script

The value of the environment variable OMP_NUM_THREADS determines how many threads per MPI task are
launched. All three examples above use a total of 4 CPU cores. For different MPI implementations the method to
pass the OMP_NUM_THREADS environment variable to all processes is different. Two different variants, one
for MPICH and OpenMP], respectively are shown above. Please check the documentation of your MPI
installation for additional details. Alternatively, the value provided by OMP_NUM_THREADS can be overridded
with the package omp command. Depending on which styles are accelerated in your input, you should see a
reduction in the "Pair time" and/or "Bond time" and "Loop time" printed out at the end of the run. The optimal
ratio of MPI to OpenMP can vary a lot and should always be confirmed through some benchmark runs for the
current system and on the current machine.

Restrictions:

None of the pair styles in the USER-OMP package support the "inner", "middle", "outer" options for r-RESPA
integration, only the "pair" option is supported.

Parallel efficiency and performance tips:

In most simple cases the MPI parallelization in LAMMPS is more efficient than multi-threading implemented in
the USER-OMP package. Also the parallel efficiency varies between individual styles. On the other hand, in
many cases you still want to use the omp version - even when compiling or running without OpenMP support -
since they all contain optimizations similar to those in the OPT package, which can result in serial speedup.

Using multi-threading is most effective under the following circumstances:

¢ Individual compute nodes have a significant number of CPU cores but the CPU itself has limited memory
bandwidth, e.g. Intel Xeon 53xx (Clovertown) and 54xx (Harpertown) quad core processors. Running one
MPI task per CPU core will result in significant performance degradation, so that running with 4 or even
only 2 MPI tasks per nodes is faster. Running in hybrid MPI+OpenMP mode will reduce the inter-node
communication bandwidth contention in the same way, but offers and additional speedup from utilizing
the otherwise idle CPU cores.
¢ The interconnect used for MPI communication is not able to provide sufficient bandwidth for a large
number of MPI tasks per node. This applies for example to running over gigabit ethernet or on Cray XT4
or XTS5 series supercomputers. Same as in the aforementioned case this effect worsens with using an
increasing number of nodes.
The input is a system that has an inhomogeneous particle density which cannot be mapped well to the
domain decomposition scheme that LAMMPS employs. While this can be to some degree alleviated
through using the processors keyword, multi-threading provides a parallelism that parallelizes over the
number of particles not their distribution in space.
Finally, multi-threaded styles can improve performance when running LAMMPS in "capability mode",
i.e. near the point where the MPI parallelism scales out. This can happen in particular when using as
kspace style for long-range electrostatics. Here the scaling of the kspace style is the performance limiting
factor and using multi-threaded styles allows to operate the kspace style at the limit of scaling and then
increase performance parallelizing the real space calculations with hybrid MPI+OpenMP. Sometimes
additional speedup can be achived by increasing the real-space coulomb cutoff and thus reducing the
work in the kspace part.

49

The best parallel efficiency from omp styles is typically achieved when there is at least one MPI task per physical
processor, i.e. socket or die.

Using threads on hyper-threading enabled cores is usually counterproductive, as the cost in additional memory
bandwidth requirements is not offset by the gain in CPU utilization through hyper-threading.

A description of the multi-threading strategy and some performance examples are presented here

5.3 GPU package

The GPU package was developed by Mike Brown at ORNL. It provides GPU versions of several pair styles and
for long-range Coulombics via the PPPM command. It has the following features:

® The package is designed to exploit common GPU hardware configurations where one or more GPUs are
coupled with many cores of a multi-core CPUs, e.g. within a node of a parallel machine.

e Atom-based data (e.g. coordinates, forces) moves back-and-forth between the CPU(s) and GPU every
timestep.

¢ Neighbor lists can be constructed on the CPU or on the GPU

® The charge assignement and force interpolation portions of PPPM can be run on the GPU. The FFT
portion, which requires MPI communication between processors, runs on the CPU.

¢ Asynchronous force computations can be performed simultaneously on the CPU(s) and GPU.

e LAMMPS-specific code is in the GPU package. It makes calls to a generic GPU library in the lib/gpu
directory. This library provides NVIDIA support as well as more general OpenCL support, so that the
same functionality can eventually be supported on a variety of GPU hardware.

Hardware and software requirements:

To use this package, you currently need to have specific NVIDIA hardware and install specific NVIDIA CUDA
software on your system:

® Check if you have an NVIDIA card: cat /proc/driver/nvidia/cards/0

¢ Go to http://www.nvidia.com/object/cuda_get.html

e Install a driver and toolkit appropriate for your system (SDK is not necessary)

e Follow the instructions in lammps/lib/gpu/README to build the library (see below)
® Run lammps/lib/gpu/nvc_get_devices to list supported devices and properties

Building LAMMPS with the GPU package:

As with other packages that include a separately compiled library, you need to first build the GPU library, before
building LAMMPS itself. General instructions for doing this are in this section of the manual. For this package,
do the following, using a Makefile in lib/gpu appropriate for your system:

cd lammps/lib/gpu
make —f Makefile.linux
(see further instructions in lammps/lib/gpu/README)

If you are successful, you will produce the file lib/libgpu.a.

Now you are ready to build LAMMPS with the GPU package installed:

cd lammps/src
make yes-gpu

50

http://sites.google.com/site/akohlmey/software/lammps-icms/lammps-icms-tms2011-talk.pdf?attredirects=0&d=1

make machine

Note that the lo-level Makefile (e.g. scc/MAKE/Makefile.linux) has these settings: gpu_SYSINC, gpu_SYSLIB,
gpu_SYSPATH. These need to be set appropriately to include the paths and settings for the CUDA system
software on your machine. See src/MAKE/Makefile.g++ for an example.

GPU configuration

When using GPUs, you are restricted to one physical GPU per LAMMPS process, which is an MPI process
running on a single core or processor. Multiple MPI processes (CPU cores) can share a single GPU, and in many
cases it will be more efficient to run this way.

Input script requirements:
Additional input script requirements to run pair or PPPM styles with a gpu suffix are as follows:

¢ To invoke specific styles from the GPU package, you can either append "gpu" to the style name (e.g.
pair_style lj/cut/gpu), or use the -suffix command-line switch, or use the suffix command.

¢ The newton pair setting must be off.

® The package gpu command must be used near the beginning of your script to control the GPU selection
and initialization settings. It also has an option to enable asynchronous splitting of force computations
between the CPUs and GPUs.

As an example, if you have two GPUs per node and 8 CPU cores per node, and would like to run on 4 nodes (32
cores) with dynamic balancing of force calculation across CPU and GPU cores, you could specify

package gpu force/neigh 0 1 -1

In this case, all CPU cores and GPU devices on the nodes would be utilized. Each GPU device would be shared
by 4 CPU cores. The CPU cores would perform force calculations for some fraction of the particles at the same
time the GPUs performed force calculation for the other particles.

Timing output:

As described by the package gpu command, GPU accelerated pair styles can perform computations
asynchronously with CPU computations. The "Pair" time reported by LAMMPS will be the maximum of the time
required to complete the CPU pair style computations and the time required to complete the GPU pair style
computations. Any time spent for GPU-enabled pair styles for computations that run simultaneously with bond,
angle, dihedral, improper, and long-range calculations will not be included in the "Pair" time.

When the mode setting for the package gpu command is force/neigh, the time for neighbor list calculations on the
GPU will be added into the "Pair" time, not the "Neigh" time. An additional breakdown of the times required for
various tasks on the GPU (data copy, neighbor calculations, force computations, etc) are output only with the
LAMMPS screen output (not in the log file) at the end of each run. These timings represent total time spent on the
GPU for each routine, regardless of asynchronous CPU calculations.

Performance tips:

Generally speaking, for best performance, you should use multiple CPUs per GPU, as provided my most
multi-core CPU/GPU configurations.

Because of the large number of cores within each GPU device, it may be more efficient to run on fewer processes
per GPU when the number of particles per MPI process is small (100's of particles); this can be necessary to keep

51

the GPU cores busy.

See the lammps/lib/gpu/README file for instructions on how to build the GPU library for single, mixed, or
double precision. The latter requires that your GPU card support double precision.

5.4 USER-CUDA package

The USER-CUDA package was developed by Christian Trott at U Technology Ilmenau in Germany. It provides
NVIDIA GPU versions of many pair styles, many fixes, a few computes, and for long-range Coulombics via the
PPPM command. It has the following features:

® The package is designed to allow an entire LAMMPS calculation, for many timesteps, to run entirely on
the GPU (except for inter-processor MPI communication), so that atom-based data (e.g. coordinates,
forces) do not have to move back-and-forth between the CPU and GPU.

® The speed-up advantage of this approach is typically better when the number of atoms per GPU is large

¢ Data will stay on the GPU until a timestep where a non-GPU-ized fix or compute is invoked. Whenever a
non-GPU operation occurs (fix, compute, output), data automatically moves back to the CPU as needed.
This may incur a performance penalty, but should otherwise work transparently.

e Neighbor lists for GPU-ized pair styles are constructed on the GPU.

® The package only supports use of a single CPU (core) with each GPU.

Hardware and software requirements:

To use this package, you need to have specific NVIDIA hardware and install specific NVIDIA CUDA software
on your system.

Your NVIDIA GPU needs to support Compute Capability 1.3. This list may help you to find out the Compute
Capability of your card:

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

Install the Nvidia Cuda Toolkit in version 3.2 or higher and the corresponding GPU drivers. The Nvidia Cuda
SDK is not required for LAMMPSCUDA but we recommend it be installed. You can then make sure that its
sample projects can be compiled without problems.

Building LAMMPS with the USER-CUDA package:

As with other packages that include a separately compiled library, you need to first build the USER-CUDA
library, before building LAMMPS itself. General instructions for doing this are in this section of the manual. For
this package, do the following, using settings in the lib/cuda Makefiles appropriate for your system:

¢ Go to the lammps/lib/cuda directory

e If your CUDA toolkit is not installed in the default system directoy /usr/local/cuda edit the file
lib/cuda/Makefile.common accordingly.

® Type "make OPTIONS", where OPTIONS are one or more of the following options. The settings will be
written to the lib/cuda/Makefile.defaults and used in the next step.

precision=N to set the precision level

N = 1 for single precision (default)

N = 2 for double precision

N = 3 for positions in double precision

N = 4 for positions and velocities in double precision

52

arch=M to set GPU compute capability
M = 20 for CC2.0 (GF100/110, e.g. C2050,GTX580,GTX470) (default)
M = 21 for CC2.1 (GF104/114, e.g. GTX560, GTX460, GTX450)
M = 13 for CCl.3 (GF200, e.g. C1060, GTX285)
prec_timer=0/1 to use hi-precision timers
0 = do not use them (default)
1 = use these timers
this is usually only useful for Mac machines
dbg=0/1 to activate debug mode
0 = no debug mode (default)
1 = yes debug mode
this is only useful for developers
cufft=1 to determine usage of CUDA FFT library
0 = no CUFFT support (default)
in the future other CUDA-enabled FFT libraries might be supported

¢ Type "make" to build the library. If you are successful, you will produce the file lib/libcuda.a.

Now you are ready to build LAMMPS with the USER-CUDA package installed:

cd lammps/src
make yes-user—cuda
make machine

Note that the LAMMPS build references the lib/cuda/Makefile.common file to extract setting specific CUDA
settings. So it is important that you have first built the cuda library (in lib/cuda) using settings appropriate to your
system.

Input script requirements:
Additional input script requirements to run styles with a cuda suffix are as follows:

¢ To invoke specific styles from the USER-CUDA package, you can either append "cuda" to the style name
(e.g. pair_style lj/cut/cuda), or use the -suffix command-line switch, or use the suffix command. One
exception is that the kspace_style pppm/cuda command has to be requested explicitly.

¢ To use the USER-CUDA package with its default settings, no additional command is needed in your
input script. This is because when LAMMPS starts up, it detects if it has been built with the
USER-CUDA package. See the -cuda command-line switch for more details.

¢ To change settings for the USER-CUDA package at run-time, the package cuda command can be used
near the beginning of your input script. See the package command doc page for details.

Performance tips:

The USER-CUDA package offers more speed-up relative to CPU performance when the number of atoms per
GPU is large, e.g. on the order of tens or hundreds of 1000s.

As noted above, this package will continue to run a simulation entirely on the GPU(s) (except for inter-processor
MPI communication), for multiple timesteps, until a CPU calculation is required, either by a fix or compute that is
non-GPU-ized, or until output is performed (thermo or dump snapshot or restart file). The less often this occurs,
the faster your simulation will run.

53

5.5 Comparison of GPU and USER-CUDA packages

Both the GPU and USER-CUDA packages accelerate a LAMMPS calculation using NVIDIA hardware, but they
do it in different ways.

As a consequence, for a particular simulation on specific hardware, one package may be faster than the other. We
give guidelines below, but the best way to determine which package is faster for your input script is to try both of
them on your machine. See the benchmarking section below for examples where this has been done.

Guidelines for using each package optimally:

The GPU package allows you to assign multiple CPUs (cores) to a single GPU (a common configuration
for "hybrid" nodes that contain multicore CPU(s) and GPU(s)) and works effectively in this mode. The
USER-CUDA package does not allow this; you can only use one CPU per GPU.

The GPU package moves per-atom data (coordinates, forces) back-and-forth between the CPU and GPU
every timestep. The USER-CUDA package only does this on timesteps when a CPU calculation is
required (e.g. to invoke a fix or compute that is non-GPU-ized). Hence, if you can formulate your input
script to only use GPU-ized fixes and computes, and avoid doing I/O too often (thermo output, dump file
snapshots, restart files), then the data transfer cost of the USER-CUDA package can be very low, causing
it to run faster than the GPU package.

The GPU package is often faster than the USER-CUDA package, if the number of atoms per GPU is
"small". The crossover point, in terms of atoms/GPU at which the USER-CUDA package becomes faster
depends strongly on the pair style. For example, for a simple Lennard Jones system the crossover (in
single precision) is often about S0K-100K atoms per GPU. When performing double precision
calculations the crossover point can be significantly smaller.

Both packages compute bonded interactions (bonds, angles, etc) on the CPU. This means a model with
bonds will force the USER-CUDA package to transfer per-atom data back-and-forth between the CPU
and GPU every timestep. If the GPU package is running with several MPI processes assigned to one
GPU, the cost of computing the bonded interactions is spread across more CPUs and hence the GPU
package can run faster.

When using the GPU package with multiple CPUs assigned to one GPU, its performance depends to
some extent on high bandwidth between the CPUs and the GPU. Hence its performance is affected if full
16 PCle lanes are not available for each GPU. In HPC environments this can be the case if S2050/70
servers are used, where two devices generally share one PCle 2.0 16x slot. Also many multi-GPU
mainboards do not provide full 16 lanes to each of the PCle 2.0 16x slots.

Differences between the two packages:

The GPU package accelerates only pair force, neighbor list, and PPPM calculations. The USER-CUDA
package currently supports a wider range of pair styles and can also accelerate many fix styles and some
compute styles, as well as neighbor list and PPPM calculations.

The USER-CUDA package does not support acceleration for minimization.

The USER-CUDA package does not support hybrid pair styles.

The USER-CUDA package can order atoms in the neighbor list differently from run to run resulting in a
different order for force accumulation.

The USER-CUDA package has a limit on the number of atom types that can be used in a simulation.
The GPU package requires neighbor lists to be built on the CPU when using exclusion lists or a triclinic
simulation box.

The GPU package uses more GPU memory than the USER-CUDA package. This is generally not a
problem since typical runs are computation-limited rather than memory-limited.

Examples:

54

The LAMMPS distribution has two directories with sample input scripts for the GPU and USER-CUDA
packages.

¢ Jammps/examples/gpu = GPU package files
¢ lammps/examples/USER/cuda = USER-CUDA package files

These contain input scripts for identical systems, so they can be used to benchmark the performance of both
packages on your system.

Benchmark data:

NOTE: We plan to add some benchmark results and plots here for the examples described in the previous section.

Simulations:
1. Lennard Jones

® 256,000 atoms
e 2.5 A cutoff
¢ 0.844 density

2. Lennard Jones

® 256,000 atoms
® 5.0 A cutoff
¢ (0.844 density

3. Rhodopsin model

® 256,000 atoms
¢ 10A cutoff
e Coulomb via PPPM

4. Lihtium-Phosphate

® 295650 atoms
e |15A cutoff
e Coulomb via PPPM

Hardware:
Workstation:

e 2x GTX470
®i7950@3GHz

¢ 24Gb DDR3 @ 1066Mhz
® CentOS 5.5

e CUDA 3.2

® Driver 260.19.12

eStella:

55

¢ 6 Nodes

¢ 2xC2050

¢ 2xQDR Infiniband interconnect(aggregate bandwidth 80GBps)
¢ Intel X5650 HexCore @ 2.67GHz

e SL 5.5

e CUDA 3.2

® Driver 260.19.26

Keeneland:

e HP SL-390 (Ariston) cluster

¢ 120 nodes

¢ 2x Intel Westmere hex-core CPUs
® 3xC2070s

¢ QDR InfiniBand interconnect

56

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

6. How-to discussions
This section describes how to perform common tasks using LAMMPS.

6.1 Restarting a simulation

6.2 2d simulations

6.3 CHARMM, AMBER, and DREIDING force fields
6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations

6.6 Granular models

6.7 TIP3P water model

6.8 TIP4P water model

6.9 SPC water model

6.10 Coupling LAMMPS to other codes

6.11 Visualizing LAMMPS snapshots

6.12 Triclinic (non-orthogonal) simulation boxes

6.13 NEMD simulations

6.14 Extended spherical and aspherical particles

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting and computing temperature
6.17 Walls

6.18 Elastic constants

6.19 Library interface to LAMMPS

6.20 Calculating thermal conductivity

6.21 Calculating viscosity

The example input scripts included in the LAMMPS distribution and highlighted in Section_example also show
how to setup and run various kinds of simulations.

6.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same input
script. Each run will continue from where the previous run left off. Or binary restart files can be saved to disk
using the restart command. At a later time, these binary files can be read via a read_restart command in a new
script. Or they can be converted to text data files and read by a read_data command in a new script. This section
discusses the restart2data tool that is used to perform the conversion.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then issue a
new run command to continue where the previous run left off. They illustrate what settings must be made in the

new script. Details are discussed in the documentation for the read_restart and read_data commands.

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the original
script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart

added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

57

http://lammps.sandia.gov

This script could be used to read the st restart file and re-run the last 50 timesteps:

read_restart tmp.restart.50

neighbor 0.4 bin

neigh_modify every 1 delay 1

fix 1 all nve

fix 2 all langevin 1.0 1.0 10.0 904297
timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the restart file:
units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be used, since their
settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodynamic data match at step
50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is because
the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alternate approach, the restart file could be converted to a data file using this tool:

restart2data tmp.restart.50 tmp.restart.data

Then, this script could be used to re-run the last 50 steps:

units 173
atom_style bond
pair_style 1j/cut 1.12
pair_modify shift yes
bond_style fene

special_bonds 0.0 1.0 1.0

read_data tmp.restart.data

neighbor 0.4 bin

neigh_modify every 1 delay 1

fix 1 all nve

fix 2 all langevin 1.0 1.0 10.0 904297
timestep 0.012

reset_timestep 50
run 50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_coeff
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset_timestep
command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data files.

58

6.2 2d simulations
Use the dimension command to specify a 2d simulation.
Make the simulation box periodic in z via the boundary command. This is the default.

If using the create box command to define a simulation box, set the z dimensions narrow, but finite, so that the
create_atoms command will tile the 3d simulation box with a single z plane of atoms - e.g.

create box 1 -10 10 -10 10 -0.25 0.25

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z coordinate
so it falls inside the z-boundaries of the box - e.g. 0.0.

Use the fix enforce2d command as the last defined fix to insure that the z-components of velocities and forces are
zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes will be
zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for 2d models.
IMPORTANT NOTE: Some models in LAMMPS treat particles as extended spheres, as opposed to point

particles. In 2d, the particles will still be spheres, not disks, meaning their moment of inertia will be the same as in
3d.

6.3 CHARMM, AMBER, and DREIDING force fields

A force field has 2 parts: the formulas that define it and the coefficients used for a particular system. Here we only
discuss formulas implemented in LAMMPS that correspond to formulas commonly used in the CHARMM,
AMBER, and DREIDING force fields. Setting coefficients is done in the input data file via the read_data
command or in the input script with commands like pair_coeff or bond_coeff. See Section_tools for additional
tools that can use CHARMM or AMBER to assign force field coefficients and convert their output into LAMMPS
nput.

See (MacKerell) for a description of the CHARMM force field. See (Cornell) for a description of the AMBER
force field.

These style choices compute force field formulas that are consistent with common options in CHARMM or
AMBER. See each command's documentation for the formula it computes.

¢ bond_style harmonic

¢ angle_style charmm

¢ dihedral_style charmm

e pair_style lj/charmm/coul/charmm

¢ pair_style lj/charmm/coul/charmm/implicit
e pair_style lj/charmm/coul/long

¢ special_bonds charmm
¢ special_bonds amber

DREIDING is a generic force field developed by the Goddard group at Caltech and is useful for predicting

59

http://www.wag.caltech.edu

structures and dynamics of organic, biological and main-group inorganic molecules. The philosophy in
DREIDING is to use general force constants and geometry parameters based on simple hybridization
considerations, rather than individual force constants and geometric parameters that depend on the particular
combinations of atoms involved in the bond, angle, or torsion terms. DREIDING has an explicit hydrogen bond
term to describe interactions involving a hydrogen atom on very electronegative atoms (N, O, F).

See (Mayo) for a description of the DREIDING force field

These style choices compute force field formulas that are consistent with the DREIDING force field. See each
command's documentation for the formula it computes.

¢ bond_style harmonic
¢ bond_style morse

¢ angle_style harmonic
¢ angle_style cosine
¢ angle_style cosine/periodic

¢ dihedral_style charmm
¢ improper_style umbrella

® pair_style buck

® pair_style buck/coul/cut
¢ pair_style buck/coul/long
® pair_style lj/cut

® pair_style lj/cut/coul/cut
® pair_style lj/cut/coul/long

¢ pair_style hbond/dreiding/lj
¢ pair_style hbond/dreiding/morse

¢ special_bonds dreiding

6.4 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

units 17
atom_style atomic
read_data data.lj
run 10000

run 10000

run 10000

run 10000

run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

60

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize LAMMPS. For example, this script

units 1j

atom_style atomic
read_data data.lj

run 10000

clear

units 1j

atom_style atomic
read_data data.lj.new
run 10000

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.polymer

variable d index runl run2 run3 run4 run5 run6 run7 run8
shell cd $d

read_data data.polymer

run 10000

shell cd ..

clear

next d

jump in.polymer

would run 8 simulations in different directories, using a data.polymer file in each directory. The same concept
could be used to run the same system at 8 different temperatures, using a temperature variable and storing the
output in different log and dump files, for example

variable a loop 8

variable t index 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
log log.$Sa

read data.polymer

velocity all create $t 352839
fix 1 all nvt $t $t 100.0
dump 1 all atom 1000 dump.S$a
run 100000

next t

next a

jump in.polymer

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running LAMMPS on a single partition of processors. LAMMPS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if LAMMPS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next t" and "next a" commands would need to be replaced with a single "next a t" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

61

6.5 Multi-replica simulations

Several commands in LAMMPS run mutli-replica simulations, meaning that multiple instances (replicas) of your
simulation are run simultaneously, with small amounts of data exchanged between replicas periodically.

These are the relevant commands:

¢ neb for nudged elastic band calculations
¢ prd for parallel replica dynamics

¢ tad for temperature accelerated dynamics
¢ temper for parallel tempering

NEB is a method for finding transition states and barrier energies. PRD and TAD are methods for performing
accelerated dynamics to find and perform infrequent events. Parallel tempering or replica exchange runs different
replicas at a series of temperature to facilitate rare-event sampling.

These command can only be used if LAMMPS was built with the "replica” package. See the Making LAMMPS
section for more info on packages.

In all these cases, you must run with one or more processors per replica. The processors assigned to each replica
are determined at run-time by using the -partition command-line switch to launch LAMMPS on multiple
partitions, which in this context are the same as replicas. E.g. these commands:

mpirun -np 16 lmp_linux -partition 8x2 -in in.temper
mpirun -np 8 lmp_linux -partition 8xl -in in.neb

would each run 8 replicas, on either 16 or 8 processors. Note the use of the -in command-line switch to specify the
input script which is required when running in multi-replica mode.

Also note that with MPI installed on a machine (e.g. your desktop), you can run on more (virtual) processors than
you have physical processors. Thus the above commands could be run on a single-processor (or few-processor)
desktop so that you can run a multi-replica simulation on more replicas than you have physical processors.

6.6 Granular models

Granular system are composed of spherical particles with a diameter, as opposed to point particles. This means
they have an angular velocity and torque can be imparted to them to cause them to rotate.

To run a simulation of a granular model, you will want to use the following commands:
e atom_style sphere
¢ fix nve/sphere
o fix gravity
This compute
e compute erotate/sphere

calculates rotational kinetic energy which can be output with thermodynamic info.

Use one of these 3 pair potentials, which compute forces and torques between interacting pairs of particles:

62

® pair_style gran/history
® pair_style gran/no_history
® pair_style gran/hertzian

These commands implement fix options specific to granular systems:
o fix freeze
¢ fix pour
e fix viscous

¢ fix wall/gran

The fix style freeze zeroes both the force and torque of frozen atoms, and should be used for granular system
instead of the fix style setforce.

For computational efficiency, you can eliminate needless pairwise computations between frozen atoms by using
this command:

¢ neigh_modify exclude

6.7 TIP3P water model

The TIP3P water model as implemented in CHARMM (MacKerell) specifies a 3-site rigid water molecule with
charges and Lennard-Jones parameters assigned to each of the 3 atoms. In LAMMPS the fix shake command can
be used to hold the two O-H bonds and the H-O-H angle rigid. A bond style of harmonic and an angle style of
harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP3P-CHARMM model with a cutoff. The K values can be used if a flexible TIP3P model (without fix shake) is
desired. If the LJ epsilon and sigma for HH and OH are set to 0.0, it corresponds to the original 1983 TIP3P
model (Jorgensen).

O mass = 15.9994
H mass = 1.008

O charge =-0.834
H charge = 0.417

LJ epsilon of OO =0.1521
LJ sigma of OO = 3.1507
LJ epsilon of HH = 0.0460
LJ sigma of HH = 0.4000
LJ epsilon of OH = 0.0836
LJ sigma of OH = 1.7753

K of OH bond =450
10 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

63

These are the parameters to use for TIP3P with a long-range Coulombic solver (Ewald or PPPM in LAMMPS),
see (Price) for details:

O mass = 15.9994
H mass = 1.008

O charge =-0.830
H charge =0.415

LJ epsilon of OO =0.102
LJ sigma of OO = 3.188
LJ epsilon, sigma of OH, HH = 0.0

K of OH bond =450
r0 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

Wikipedia also has a nice article on water models.

6.8 TIP4P water model

The four-point TIP4P rigid water model extends the traditional three-point TIP3P model by adding an additional
site, usually massless, where the charge associated with the oxygen atom is placed. This site M is located at a
fixed distance away from the oxygen along the bisector of the HOH bond angle. A bond style of harmonic and an
angle style of harmonic or charmm should also be used.

A TIP4P model is run with LAMMPS using two commands:

e pair_style lj/cut/coul/long/tip4p
¢ kspace_style pppm/tip4p

Note that only a TIP4P model with long-range Coulombics is currently implemented. A cutoff version may be
added in the future. for both models, the bond lengths and bond angles should be held fixed using the fix shake
command.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP4P model with a cutoff (Jorgensen). Note that the OM distance is specified in the pair_style command, not as

part of the pair coefficients.

O mass = 15.9994
H mass = 1.008

O charge =-1.040
H charge = 0.520

r0 of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.15

64

http://en.wikipedia.org/wiki/Water_model

LJ epsilon of O-O = 0.1550

LJ sigma of O-O =3.1536

LJ epsilon, sigma of OH, HH = 0.0

These are the parameters to use for TIP4P with a long-range Coulombic solver (Ewald or PPPM in LAMMPS):

O mass = 15.9994
H mass = 1.008

O charge =-1.0484
H charge = 0.5242

r0 of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.1250

LJ epsilon of O-O =0.16275

LJ sigma of O-O = 3.16435

LJ epsilon, sigma of OH, HH = 0.0

Wikipedia also has a nice article on water models.

6.9 SPC water model

The SPC water model specifies a 3-site rigid water molecule with charges and Lennard-Jones parameters assigned
to each of the 3 atoms. In LAMMPS the fix shake command can be used to hold the two O-H bonds and the
H-O-H angle rigid. A bond style of harmonic and an angle style of harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
SPC model.

O mass = 15.9994
H mass = 1.008

O charge =-0.820
H charge =0.410

LJ epsilon of OO =0.1553
LJ sigma of OO =3.166
LJ epsilon, sigma of OH, HH = 0.0

r0 of OH bond = 1.0
theta of HOH angle = 109.47

Note that as originally proposed, the SPC model was run with a 9 Angstrom cutoff for both LJ and Coulommbic
terms. It can also be used with long-range Coulombics (Ewald or PPPM in LAMMPS), without changing any of

the parameters above, though it becomes a different model in that mode of usage.

The SPC/E (extended) water model is the same, except the partial charge assignemnts change:

65

http://en.wikipedia.org/wiki/Water_model

O charge =-0.8476
H charge = 0.4238

See the (Berendsen) reference for more details on both the SPC and SPC/E models.

Wikipedia also has a nice article on water models.

6.10 Coupling LAMMPS to other codes

LAMMPS is designed to allow it to be coupled to other codes. For example, a quantum mechanics code might
compute forces on a subset of atoms and pass those forces to LAMMPS. Or a continuum finite element (FE)
simulation might use atom positions as boundary conditions on FE nodal points, compute a FE solution, and
return interpolated forces on MD atoms.

LAMMPS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, LAMMPS is the driver code. During its
timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to LAMMPS
as a library. This is the way the POEMS package that performs constrained rigid-body motion on groups of atoms
is hooked to LAMMPS. See the fix_poems command for more details. See this section of the documentation for
info on how to add a new fix to LAMMPS.

(2) Define a new LAMMPS command that calls the other code. This is conceptually similar to method (1), but in
this case LAMMPS and the other code are on a more equal footing. Note that now the other code is not called
during the timestepping of a LAMMPS run, but between runs. The LAMMPS input script can be used to alternate
LAMMPS runs with calls to the other code, invoked via the new command. The run command facilitates this with
its every option, which makes it easy to run a few steps, invoke the command, run a few steps, invoke the
command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with LAMMPS thru files that the
command writes and reads.

See Section_modify of the documentation for how to add a new command to LAMMPS.

(3) Use LAMMPS as a library called by another code. In this case the other code is the driver and calls LAMMPS
as needed. Or a wrapper code could link and call both LAMMPS and another code as libraries. Again, the run
command has options that allow it to be invoked with minimal overhead (no setup or clean-up) if you wish to do
multiple short runs, driven by another program.

Examples of driver codes that call LAMMPS as a library are included in the "couple" directory of the LAMMPS
distribution; see couple/README for more details:

¢ simple: simple driver programs in C++ and C which invoke LAMMPS as a library

¢ lammps_quest: coupling of LAMMPS and Quest, to run classical MD with quantum forces calculated by
a density functional code

¢ Jammps_spparks: coupling of LAMMPS and SPPARKS, to couple a kinetic Monte Carlo model for grain
growth using MD to calculate strain induced across grain boundaries

66

http://en.wikipedia.org/wiki/Water_model
http://www.rpi.edu/~anderk5/lab
http://dft.sandia.gov/Quest
http://www.sandia.gov/~sjplimp/spparks.html

This section of the documentation describes how to build LAMMPS as a library. Once this is done, you can
interface with LAMMPS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of LAMMPS, pass it an
input script to process, or execute individual commands, all by invoking the correct class methods in LAMMPS.
From C or Fortran you can make function calls to do the same things. See Section_python of the manual for a
description of the Python wrapper provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h contain the C-style interface to LAMMPS. See Section_howto 19 of the
manual for a description of the interface and how to extend it for your needs.

Note that the lammps_open() function that creates an instance of LAMMPS takes an MPI communicator as an
argument. This means that instance of LAMMPS will run on the set of processors in the communicator. Thus the
calling code can run LAMMPS on all or a subset of processors. For example, a wrapper script might decide to
alternate between LAMMPS and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to LAMMPS and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of LAMMPS to perform different
calculations.

6.11 Visualizing LAMMPS snapshots

LAMMPS itself does not do visualization, but snapshots from LAMMPS simulations can be visualized (and
analyzed) in a variety of ways.

LAMMPS snapshots are created by the dump command which can create files in several formats. The native
LAMMPS dump format is a text file (see "dump atom" or "dump custom") which can be visualized by the xmovie
program, included with the LAMMPS package. This produces simple, fast 2d projections of 3d systems, and can
be useful for rapid debugging of simulation geometry and atom trajectories.

Several programs included with LAMMPS as auxiliary tools can convert native LAMMPS dump files to other
formats. See the Section_tools doc page for details. The first is the ch2lmp tool, which contains a lammps2pdb
Perl script which converts LAMMPS dump files into PDB files. The second is the Imp2arc tool which converts
LAMMPS dump files into Accelrys' Insight MD program files. The third is the Imp2cfg tool which converts
LAMMPS dump files into CFG files which can be read into the AtomEye visualizer.

A Python-based toolkit distributed by our group can read native LAMMPS dump files, including custom dump
files with additional columns of user-specified atom information, and convert them to various formats or pipe
them into visualization software directly. See the Pizza.py WWW site for details. Specifically, Pizza.py can
convert LAMMPS dump files into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe LAMMPS dump
files directly into the Raster3d and RasMol visualization programs. Pizza.py has tools that do interactive 3d
OpenGL visualization and one that creates SVG images of dump file snapshots.

LAMMPS can create XYZ files directly (via "dump xyz") which is a simple text-based file format used by many
visualization programs including VMD.

LAMMPS can create DCD files directly (via "dump dcd") which can be read by VMD in conjunction with a
CHARMM PSF file. Using this form of output avoids the need to convert LAMMPS snapshots to PDB files. See
the dump command for more information on DCD files.

LAMMPS can create XTC files directly (via "dump xtc") which is GROMACS file format which can also be read
by VMD for visualization. See the dump command for more information on XTC files.

67

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

6.12 Triclinic (non-orthogonal) simulation boxes

By default, LAMMPS uses an orthogonal simulation box to encompass the particles. The boundary command sets
the boundary conditions of the box (periodic, non-,periodic, etc). The orthogonal box has its "origin" at
(xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by a = (xhi-x10,0,0); b = (0,yhi-ylo,0);
¢ = (0,0,zhi-zlo). The 6 parameters (xlo,xhi,ylo,yhi,zlo,zhi) are defined at the time the simluation box is created,
e.g. by the create_box or read_data or read_restart commands. Additionally, LAMMPS defines box size
parameters Ix,ly,1z where Ix = xhi-xlo, and similarly in the y and z dimensions. The 6 parameters, as well as
Ix,ly,lz, can be output via the thermo_style custom command.

LAMMPS also allows simulations to be perfored in triclinic (non-orthogonal) simulation boxes shaped as a
parallelepiped with triclinic symmetry. The parallelepiped has its "origin" at (xlo,ylo,zlo) and is defined by 3 edge
vectors starting from the origin given by a = (xhi-x10,0,0); b = (Xy,yhi-ylo,0); ¢ = (xz,yz,zhi-zlo). Xy,xz,yz can be
0.0 or positive or negative values and are called "tilt factors" because they are the amount of displacement applied
to faces of an originally orthogonal box to transform it into the parallelepiped. Note that in LAMMPS the triclinic
simulation box edge vectors a, b, and ¢ cannot be arbitrary vectors. As indicated, a must be aligned with the x
axis, b must be in the xy plane, and c is arbitrary. However, this is not a restriction since it is possible to rotate
any set of 3 crystal basis vectors so that they meet this restriction.

There is no requirement that a triclinic box be periodic in any dimension, though it typically should be in at least
the 2nd dimension of the tilt (y in xy) if you want to enforce a shift in periodic boundary conditions across that
boundary. Some commands that work with triclinic boxes, e.g. the fix deform and fix npt commands, require
periodicity or non-shrink-wrap boundary conditions in specific dimensions. See the command doc pages for
details.

The 9 parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) are defined at the time the simluation box is created. This
happens in one of 3 ways. If the create_box command is used with a region of style prism, then a triclinic box is
setup. See the region command for details. If the read_data command is used to define the simulation box, and the
header of the data file contains a line with the "xy xz yz" keyword, then a triclinic box is setup. See the read_data
command for details. Finally, if the read_restart command reads a restart file which was written from a simulation
using a triclinic box, then a triclinic box will be setup for the restarted simulation.

Note that you can define a triclinic box with all 3 tilt factors = 0.0, so that it is initially orthogonal. This is
necessary if the box will become non-orthogonal, e.g. due to the fix npt or fix deform commands. Alternatively,
you can use the change_box command to convert a simulation box from orthogonal to triclinic and vice versa.

As with orthogonal boxes, LAMMPS defines triclinic box size parameters 1x,ly,1z where 1x = xhi-xlo, and
similarly in the y and z dimensions. The 9 parameters, as well as 1x,ly,1z, can be output via the thermo_style
custom command.

To avoid extremely tilted boxes (which would be computationally inefficient), no tilt factor can skew the box
more than half the distance of the parallel box length, which is the 1st dimension in the tilt factor (x for xz). For
example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and 5.
Similarly, both xz and yz must be between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if
the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are
geometrically all equivalent. If the box tilt exceeds this limit during a dynamics run (e.g. via the fix deform
command), then the box is "flipped" to an equivalent shape with a tilt factor within the bounds, so the run can
continue. See the fix deform doc page for further details.

The one exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case, the

limits on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom
positions due to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will simply

68

become inefficient, due to the highly skewed simulation box.
Triclinic crystal structures are often defined using three lattice constants a, b, and ¢, and three angles alpha, beta
and gamma. Note that in this nomenclature, the a, b, and c lattice constants are the scalar lengths of the edge

vectors a, b, and ¢ defined above. The relationship between these 6 quantities (a,b,c,alpha,beta,gamma) and the
LAMMPS box sizes (Ix,ly,lz) = (xhi-xlo,yhi-ylo,zhi-zlo) and tilt factors (xy,xz,yz) is as follows:

¥ = ly*+xy?

2 2 2
¢ = lz°+xz"+yz
Xy * Xz + 1y * yz

cosq =
b*c
X7
cosi = —
C
XV
cosy = ——

The inverse relationship can be written as follows:

Ix = a
xy = bcos~y
X7 = ccos/fd

2 EZ 2
]-}Ii" ?i }i"
bxccosa — XY * XZ

The values of a, b, ¢ , alpha, beta , and gamma can be printed out or accessed by computes using the thermo_style
custom keywords cella, cellb, cellc, cellalpha, cellbeta, cellgamma, respectively.

As discussed on the dump command doc page, when the BOX BOUNDS for a snapshot is written to a dump file
for a triclinic box, an orthogonal bounding box which encloses the triclinic simulation box is output, along with
the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS xy xz yz
x1lo_bound xhi_bound xy
ylo_bound yhi_bound xz

69

zlo_bound zhi_bound yz

This bounding box is convenient for many visualization programs and is calculated from the 9 triclinic box
parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) as follows:

xlo_bound = xlo + MIN(0.0,xy,xz,xy+x2z)
xhi_bound = xhi + MAX(0.0,xy,xz,xy+x2z)
ylo_bound = ylo + MIN(0.0,yz)
yhi_bound = yhi + MAX(0.0,yz)

zlo_bound = zlo
zhi_bound = zhi

These formulas can be inverted if you need to convert the bounding box back into the triclinic box parameters,
e.g. xlo = xlo_bound - MIN(0.0,xy,xz,Xy+Xxz).

One use of triclinic simulation boxes is to model solid-state crystals with triclinic symmetry. The lattice command
can be used with non-orthogonal basis vectors to define a lattice that will tile a triclinic simulation box via the
create_atoms command.

A second use is to run Parinello-Rahman dyanamics via the fix npt command, which will adjust the xy, xz, yz tilt
factors to compensate for off-diagonal components of the pressure tensor. The analalog for an energy
minimization is the fix box/relax command.

A third use is to shear a bulk solid to study the response of the material. The fix deform command can be used for
this purpose. It allows dynamic control of the xy, xz, yz tilt factors as a simulation runs. This is discussed in the
next section on non-equilibrium MD (NEMD) simulations.

6.13 NEMD simulations

Non-equilibrium molecular dynamics or NEMD simulations are typically used to measure a fluid's rheological
properties such as viscosity. In LAMMPS, such simulations can be performed by first setting up a non-orthogonal
simulation box (see the preceding Howto section).

A shear strain can be applied to the simulation box at a desired strain rate by using the fix deform command. The
fix nvt/sllod command can be used to thermostat the sheared fluid and integrate the SLLOD equations of motion
for the system. Fix nvt/sllod uses compute temp/deform to compute a thermal temperature by subtracting out the
streaming velocity of the shearing atoms. The velocity profile or other properties of the fluid can be monitored via
the fix ave/spatial command.

As discussed in the previous section on non-orthogonal simulation boxes, the amount of tilt or skew that can be
applied is limited by LAMMPS for computational efficiency to be 1/2 of the parallel box length. However, fix
deform can continuously strain a box by an arbitrary amount. As discussed in the fix deform command, when the
tilt value reaches a limit, the box is flipped to the opposite limit which is an equivalent tiling of periodic space.
The strain rate can then continue to change as before. In a long NEMD simulation these box re-shaping events
may occur many times.

In a NEMD simulation, the "remap" option of fix deform should be set to "remap v", since that is what fix
nvt/sllod assumes to generate a velocity profile consistent with the applied shear strain rate.

An alternative method for calculating viscosities is provided via the fix viscosity command.

70

6.14 Extended spherical and aspherical particles

Typical MD models treat atoms or particles as point masses. Sometimes, however, it is desirable to have a model
with finite-size particles such as spheres or aspherical ellipsoids. The difference is that such particles have a
moment of inertia, rotational energy, and angular momentum. Rotation is induced by torque from interactions
with other particles.

LAMMPS has several options for running simulations with these kinds of particles. The following aspects are
discussed in turn:

¢ atom styles

® pair potentials

® time integration

¢ computes, thermodynamics, and dump output
¢ rigid bodies composed of extended particles

Atom styles

There are 2 atom styles that allow for definition of finite-size particles: sphere and ellipsoid. The peri atom style
also treats particles as having a volume, but that is internal to the pair_style peri potentials. The dipole atom style
is most often used in conjunction with finite-size particles.

The sphere style defines particles that are spheriods and each particle can have a unique diameter and mass (or
density). These particles store an angular velocity (omega) and can be acted upon by torque. The "set" command
can be used to modify the diameter and mass of individual particles, after then are created.

The ellipsoid style defines particles that are ellipsoids and thus can be aspherical. Each particle has a shape,
specified by 3 diameters, and mass (or density). These particles store an angular momentum and their orientation
(quaternion), and can be acted upon by torque. They do not store an angular velocity (omega), which can be in a
different direction than angular momentum, rather they compute it as needed. The "set" command can be used to
modify the diameter, orientation, and mass of individual particles, after then are created. It also has a brief
explanation of what quaternions are.

The dipole style does not define extended particles, but is often used in conjunction with spherical particles, via a
command like

atom_style hybrid sphere dipole

This is because when dipoles interact with each other, they induce torques, and a particle must be extended (i.e.
have a moment of inertia) in order to respond and rotate. See the atom_style dipole command for details. The
"set" command can be used to modify the orientation and length of the dipole moment of individual particles,
after then are created.

Note that if one of these atom styles is used (or multiple styles via the atom_style hybrid command), not all
particles in the system are required to be finite-size or aspherical. For example, if the 3 shape parameters are set to
the same value, the particle will be a sphere rather than an ellipsoid. If the 3 shape parameters are all set to 0.0 or
if the diameter is set to 0.0, it will be a point particle. If the length of the dipole moment is set to zero, the particle
will not have a point dipole associated with it. The pair styles used to compute pairwise interactions will typically
compute the correct interaction in these simplified (cheaper) cases. Pair_style hybrid can be used to insure the
correct interactions are computed for the appropriate style of interactions. Likewise, using groups to partition
particles (ellipsoids versus spheres versus point particles) will allow you to use the appropriate time integrators
and temperature computations for each class of particles. See the doc pages for various commands for details.

71

Also note that for 2d simulations, finite-size spheres and ellipsoids are still treated as 3d particles, rather than as
circular disks or ellipses. This means they have the same moment of inertia for a 3d extended object. When their
temperature is coomputed, the correct degrees of freedom are used for rotation in a 2d versus 3d system.

Pair potentials

When a system with extended particles is defined, the particles will only rotate and experience torque if the force
field computes such interactions. These are the various pair styles that generate torque:

¢ pair_style gran/history

¢ pair_style gran/hertzian

® pair_style gran/no_history
¢ pair_style dipole/cut

® pair_style gayberne

® pair_style resquared

¢ pair_style lubricate

The granular pair styles are used with spherical particles. The dipole pair style is used with atom_style dipole,
which could be applied to spherical or ellipsoidal particles. The GayBerne and REsquared potentials require
ellipsoidal particles, though they will also work if the 3 shape parameters are the same (a sphere). The lubrication
potential works with spherical particles.

Time integration

There are 3 fixes that perform time integration on extended spherical particles, meaning the integrators update the
rotational orientation and angular velocity or angular momentum of the particles:

¢ fix nve/sphere
¢ fix nvt/sphere
¢ fix npt/sphere

Likewise, there are 3 fixes that perform time integration on ellipsoids as extended aspherical particles:

¢ fix nve/asphere
¢ fix nvt/asphere
¢ fix npt/asphere

The advantage of these fixes is that those which thermostat the particles include the rotational degrees of freedom
in the temperature calculation and thermostatting. Other thermostats can be used with fix nve/sphere or fix
nve/asphere, such as fix langevin or fix temp/berendsen, but those thermostats only operate on the translational
kinetic energy of the extended particles.

Note that for mixtures of point and extended particles, you should only use these integration fixes on groups
which contain extended particles.

Computes, thermodynamics, and dump output

There are 4 computes that calculate the temperature or rotational energy of extended spherical or aspherical
particles (ellipsoids):

¢ compute temp/sphere

¢ compute temp/asphere
¢ compute erotate/sphere

72

¢ compute erotate/asphere

These include rotational degrees of freedom in their computation. If you wish the thermodynamic output of
temperature or pressure to use one of these computes (e.g. for a system entirely composed of extended particles),
then the compute can be defined and the thermo_modify command used. Note that by default thermodynamic
quantities will be calculated with a temperature that only includes translational degrees of freedom. See the
thermo_style command for details.

The dump custom command can output various attributes of extended particles, including the dipole moment
(mu), the angular velocity (omega), the angular momentum (angmom), the quaternion (quat), and the torque (tq)
on the particle.

Rigid bodies composed of extended particles

The fix rigid command treats a collection of particles as a rigid body, computes its inertia tensor, sums the total
force and torque on the rigid body each timestep due to forces on its constituent particles, and integrates the
motion of the rigid body.

If any of the constituent particles of a rigid body are extended particles (spheres or ellipsoids), then their
contribution to the inertia tensor of the body is different than if they were point particles. This means the
rotational dynamics of the rigid body will be different. Thus a model of a dimer is different if the dimer consists
of two point masses versus two extended sphereoids, even if the two particles have the same mass. Extended
particles that experience torque due to their interaction with other particles will also impart that torque to a rigid
body they are part of.

See the "fix rigid" command for example of complex rigid-body models it is possible to define in LAMMPS.

Note that the fix shake command can also be used to treat 2, 3, or 4 particles as a rigid body, but it always
assumes the particles are point masses.

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
There are four basic kinds of LAMMPS output:

¢ Thermodynamic output, which is a list of quantities printed every few timesteps to the screen and logfile.

¢ Dump files, which contain snapshots of atoms and various per-atom values and are written at a specified
frequency.

¢ Certain fixes can output user-specified quantities to files: fix ave/time for time averaging, fix ave/spatial
for spatial averaging, and fix print for single-line output of variables. Fix print can also output to the
screen.

® Restart files.

A simulation prints one set of thermodynamic output and (optionally) restart files. It can generate any number of
dump files and fix output files, depending on what dump and fix commands you specify.

As discussed below, LAMMPS gives you a variety of ways to determine what quantities are computed and
printed when the thermodynamics, dump, or fix commands listed above perform output. Throughout this
discussion, note that users can also add their own computes and fixes to LAMMPS which can then generate

values that can then be output with these commands.

The following sub-sections discuss different LAMMPS command related to output and the kind of data they

73

operate on and produce:

¢ Global/per-atom/local data

¢ Scalar/vector/array data

¢ Thermodynamic output

¢ Dump file output

¢ Fixes that write output files

¢ Computes that process output quantities
¢ Fixes that process output quantities

¢ Computes that generate values to output
¢ Fixes that generate values to output

¢ Variables that generate values to output
¢ Summary table of output options and data flow between commands

Global/per-atom/local data

Various output-related commands work with three different styles of data: global, per-atom, or local. A global
datum is one or more system-wide values, e.g. the temperature of the system. A per-atom datum is one or more
values per atom, e.g. the kinetic energy of each atom. Local datums are calculated by each processor based on the
atoms it owns, but there may be zero or more per atom, e.g. a list of bond distances.

Scalar/vector/array data

Global, per-atom, and local datums can each come in three kinds: a single scalar value, a vector of values, or a 2d
array of values. The doc page for a "compute" or "fix" or "variable" that generates data will specify both the style
and kind of data it produces, e.g. a per-atom vector.

When a quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID in this case is the ID of a compute. The leading "c_" would be replaced by
"f " for a fix, or "v_" for a variable:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

c_ID[I][J] |one element of array

In other words, using one bracket reduces the dimension of the data once (vector -> scalar, array -> vector). Using
two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar values as input can
typically also process elements of a vector or array.

Thermodynamic output

The frequency and format of thermodynamic output is set by the thermo, thermo_style, and thermo_modify
commands. The thermo_style command also specifies what values are calculated and written out. Pre-defined
keywords can be specified (e.g. press, etotal, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the value to be output. In each case, the compute, fix,
or variable must generate global values for input to the thermo_style custom command.

Dump file output

Dump file output is specified by the dump and dump_modify commands. There are several pre-defined formats
(dump atom, dump xtc, etc).

There is also a dump custom format where the user specifies what values are output with each atom. Pre-defined

74

atom attributes can be specified (id, x, fx, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the values to be output. In each case, the compute,
fix, or variable must generate per-atom values for input to the dump custom command.

There is also a dump local format where the user specifies what local values to output. A pre-defined index
keyword can be specified to enumuerate the local values. Two additional kinds of keywords can also be specified
(c_ID, f_ID), where a compute or fix or variable provides the values to be output. In each case, the compute or fix
must generate local values for input to the dump local command.

Fixes that write output files

Sevarl fixes take various quantities as input and can write output files: fix ave/time, fix ave/spatial, fix ave/histo,
fix ave/correlate, and fix print.

The fix ave/time command enables direct output to a file and/or time-averaging of global scalars or vectors. The
user specifies one or more quantities as input. These can be global compute values, global fix values, or variables
of any style except the atom style which produces per-atom values. Since a variable can refer to keywords used by
the thermo_style custom command (like temp or press) and individual per-atom values, a wide variety of
quantities can be time averaged and/or output in this way. If the inputs are one or more scalar values, then the fix
generate a global scalar or vector of output. If the inputs are one or more vector values, then the fix generates a
global vector or array of output. The time-averaged output of this fix can also be used as input to other output
commands.

The fix ave/spatial command enables direct output to a file of spatial-averaged per-atom quantities like those
output in dump files, within 1d layers of the simulation box. The per-atom quantities can be atom density (mass or
number) or atom attributes such as position, velocity, force. They can also be per-atom quantities calculated by a
compute, by a fix, or by an atom-style variable. The spatial-averaged output of this fix can also be used as input to
other output commands.

The fix ave/histo command enables direct output to a file of histogrammed quantities, which can be global or
per-atom or local quantities. The histogram output of this fix can also be used as input to other output commands.

The fix ave/correlate command enables direct output to a file of time-correlated quantities, which can be global
scalars. The correlation matrix output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file,
periodically during a running simulation. The line can contain one or more variable values for any style variable
except the atom style). As explained above, variables themselves can contain references to global values
generated by thermodynamic keywords, computes, fixes, or other variables, or to per-atom values for a specific
atom. Thus the fix print command is a means to output a wide variety of quantities separate from normal
thermodynamic or dump file output.

Computes that process output quantities

The compute reduce and compute reduce/region commands take one or more per-atom or local vector quantities
as inputs and "reduce" them (sum, min, max, ave) to scalar quantities. These are produced as output values which
can be used as input to other output commands.

The compute slice command take one or more global vector or array quantities as inputs and extracts a subset of

their values to create a new vector or array. These are produced as output values which can be used as input to
other output commands.

75

The compute property/atom command takes a list of one or more pre-defined atom attributes (id, x, fx, etc) and
stores the values in a per-atom vector or array. These are produced as output values which can be used as input to
other output commands. The list of atom attributes is the same as for the dump custom command.

The compute property/local command takes a list of one or more pre-defined local attributes (bond info, angle
info, etc) and stores the values in a local vector or array. These are produced as output values which can be used
as input to other output commands.

The compute atom/molecule command takes a list of one or more per-atom quantities (from a compute, fix,
per-atom variable) and sums the quantities on a per-molecule basis. It produces a global vector or array as output
values which can be used as input to other output commands.

Fixes that process output quantities

The fix ave/atom command performs time-averaging of per-atom vectors. The per-atom quantities can be atom
attributes such as position, velocity, force. They can also be per-atom quantities calculated by a compute, by a fix,
or by an atom-style variable. The time-averaged per-atom output of this fix can be used as input to other output
commands.

The fix store/state command can archive one or more per-atom attributes at a particular time, so that the old
values can be used in a future calculation or output. The list of atom attributes is the same as for the dump custom
command, including per-atom quantities calculated by a compute, by a fix, or by an atom-style variable. The
output of this fix can be used as input to other output commands.

Computes that generate values to output

Every compute in LAMMPS produces either global or per-atom or local values. The values can be scalars or
vectors or arrays of data. These values can be output using the other commands described in this section. The doc
page for each compute command describes what it produces. Computes that produce per-atom or local values
have the word "atom" or "local" in their style name. Computes without the word "atom" or "local" produce global
values.

Fixes that generate values to output

Some fixes in LAMMPS produces either global or per-atom or local values which can be accessed by other
commands. The values can be scalars or vectors or arrays of data. These values can be output using the other
commands described in this section. The doc page for each fix command tells whether it produces any output
quantities and describes them.

Variables that generate values to output

Every variables defined in an input script generates either a global scalar value or a per-atom vector (only
atom-style variables) when it is accessed. The formulas used to define equal- and atom-style variables can contain
references to the thermodynamic keywords and to global and per-atom data generated by computes, fixes, and
other variables. The values generated by variables can be output using the other commands described in this
section.

Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from LAMMPS. Each
command produces output data of some kind and/or writes data to a file. Most of the commands can take data
from other commands as input. Thus you can link many of these commands together in pipeline form, where data
produced by one command is used as input to another command and eventually written to the screen or to a file.

76

Note that to hook two commands together the output and input data types must match, e.g. global/per-atom/local
data and scalar/vector/array data.

Also note that, as described above, when a command takes a scalar as input, that could be an element of a vector
or array. Likewise a vector input could be a column of an array.

Command

Input

Output

thermo_style custom

global scalars

screen, log file

dump custom per-atom vectors dump file

dump local local vectors dump file

fix print global scalar from variable screen, file

print global scalar from variable screen

computes N/A global/per-atom/local scalar/vector/array
fixes N/A global/per-atom/local scalar/vector/array
variables global scalars, per-atom vectors global scalar, per-atom vector

compute reduce

per-atom/local vectors

global scalar/vector

compute slice

global vectors/arrays

global vector/array

compute property/atom

per-atom vectors

per-atom vector/array

compute property/local

local vectors

local vector/array

compute atom/molecule

per-atom vectors

global vector/array

fix ave/atom

per-atom vectors

per-atom vector/array

fix ave/time

global scalars/vectors

global scalar/vector/array, file

fix ave/spatial

per-atom vectors

global array, file

fix ave/histo

global/per-atom/local scalars and vectors

global array, file

fix ave/correlate

global scalars

global array, file

fix store/state

per-atom vectors

per-atom vector/array

6.16 Thermostatting, barostatting, and computing temperature

Thermostatting means controlling the temperature of particles in an MD simulation. Barostatting means
controlling the pressure. Since the pressure includes a kinetic component due to particle velocities, both these
operations require calculation of the temperature. Typically a target temperature (T) and/or pressure (P) is
specified by the user, and the thermostat or barostat attempts to equilibrate the system to the requested T and/or P.

Temperature is computed as kinetic energy divided by some number of degrees of freedom (and the Boltzmann
constant). Since kinetic energy is a function of particle velocity, there is often a need to distinguish between a
particle's advection velocity (due to some aggregate motiion of particles) and its thermal velocity. The sum of the
two is the particle's total velocity, but the latter is often what is wanted to compute a temperature.

LAMMPS has several options for computing temperatures, any of which can be used in thermostatting and
barostatting. These compute commands calculate temperature, and the compute pressure command calculates

pressure.

® compute temp

e compute temp/sphere
e compute temp/asphere
e compute temp/com

77

¢ compute temp/deform
¢ compute temp/partial

¢ compute temp/profile

e compute temp/ramp

¢ compute temp/region

All but the first 3 calculate velocity biases (i.e. advection velocities) that are removed when computing the
thermal temperature. Compute temp/sphere and compute temp/asphere compute kinetic energy for extended
particles that includes rotational degrees of freedom. They both allow, as an extra argument, which is another
temperature compute that subtracts a velocity bias. This allows the translational velocity of extended spherical or
aspherical particles to be adjusted in prescribed ways.

Thermostatting in LAMMPS is performed by fixes, or in one case by a pair style. Four thermostatting fixes are
currently available: Nose-Hoover (nvt), Berendsen, Langevin, and direct rescaling (temp/rescale). Dissipative
particle dynamics (DPD) thermostatting can be invoked via the dpd/tstat pair style:

e fix nvt

¢ fix nvt/sphere

¢ fix nvt/asphere

¢ fix nvt/sllod

¢ fix temp/berendsen
¢ fix langevin

¢ fix temp/rescale

¢ pair_style dpd/tstat

Fix nvt only thermostats the translational velocity of particles. Fix nvt/sllod also does this, except that it subtracts
out a velocity bias due to a deforming box and integrates the SLLOD equations of motion. See the NEMD
simulations section of this page for further details. Fix nvt/sphere and fix nvt/asphere thermostat not only
translation velocities but also rotational velocities for spherical and aspherical particles.

DPD thermostatting alters pairwise interactions in a manner analagous to the per-particle thermostatting of fix
langevin.

Any of the thermostatting fixes can use temperature computes that remove bias for two purposes: (a) computing
the current temperature to compare to the requested target temperature, and (b) adjusting only the thermal
temperature component of the particle's velocities. See the doc pages for the individual fixes and for the
fix_modify command for instructions on how to assign a temperature compute to a thermostatting fix. For
example, you can apply a thermostat to only the x and z components of velocity by using it in conjunction with
compute temp/partial.

IMPORTANT NOTE: Only the nvt fixes perform time integration, meaning they update the velocities and
positions of particles due to forces and velocities respectively. The other thermostat fixes only adjust velocities;
they do NOT perform time integration updates. Thus they should be used in conjunction with a constant NVE
integration fix such as these:

¢ fix nve
¢ fix nve/sphere

¢ fix nve/asphere

Barostatting in LAMMPS is also performed by fixes. Two barosttating methods are currently available:
Nose-Hoover (npt and nph) and Berendsen:

78

¢ fix npt

¢ fix npt/sphere

¢ fix npt/asphere

¢ fix nph

¢ fix press/berendsen

The fix npt commands include a Nose-Hoover thermostat and barostat. Fix nph is just a Nose/Hoover barostat; it
does no thermostatting. Both fix nph and fix press/bernendsen can be used in conjunction with any of the
thermostatting fixes.

As with the thermostats, fix npt and fix nph only use translational motion of the particles in computing T and P
and performing thermo/barostatting. Fix npt/sphere and fix npt/asphere thermo/barostat using not only translation
velocities but also rotational velocities for spherical and aspherical particles.

All of the barostatting fixes use the compute pressure compute to calculate a current pressure. By default, this
compute is created with a simple compute temp (see the last argument of the compute pressure command), which
is used to calculated the kinetic componenet of the pressure. The barostatting fixes can also use temperature
computes that remove bias for the purpose of computing the kinetic componenet which contributes to the current
pressure. See the doc pages for the individual fixes and for the fix_modify command for instructions on how to
assign a temperature or pressure compute to a barostatting fix.

IMPORTANT NOTE: As with the thermostats, the Nose/Hoover methods (fix npt and fix nph) perform time
integration. Fix press/berendsen does NOT, so it should be used with one of the constant NVE fixes or with one
of the NVT fixes.

Finally, thermodynamic output, which can be setup via the thermo_style command, often includes temperature
and pressure values. As explained on the doc page for the thermo_style command, the default T and P are setup
by the thermo command itself. They are NOT the ones associated with any thermostatting or barostatting fix you
have defined or with any compute that calculates a temperature or pressure. Thus if you want to view these values
of T and P, you need to specify them explicitly via a thermo_style custom command. Or you can use the
thermo_modify command to re-define what temperature or pressure compute is used for default thermodynamic
output.

6.17 Walls
Walls in an MD simulation are typically used to bound particle motion, i.e. to serve as a boundary condition.

Walls in LAMMPS can be of rough (made of particles) or idealized surfaces. Ideal walls can be smooth,
generating forces only in the normal direction, or frictional, generating forces also in the tangential direction.

Rough walls, built of particles, can be created in various ways. The particles themselves can be generated like any
other particle, via the lattice and create_atoms commands, or read in via the read_data command.

Their motion can be constrained by many different commands, so that they do not move at all, move together as a
group at constant velocity or in response to a net force acting on them, move in a prescribed fashion (e.g. rotate
around a point), etc. Note that if a time integration fix like fix nve or fix nvt is not used with the group that
contains wall particles, their positions and velocities will not be updated.

¢ fix aveforce - set force on particles to average value, so they move together

¢ fix setforce - set force on particles to a value, e.g. 0.0
o fix freeze - freeze particles for use as granular walls

79

¢ fix nve/noforce - advect particles by their velocity, but without force
¢ fix move - prescribe motion of particles by a linear velocity, oscillation, rotation, variable

The fix move command offers the most generality, since the motion of individual particles can be specified with
variable formula which depends on time and/or the particle position.

For rough walls, it may be useful to turn off pairwise interactions between wall particles via the neigh_modify
exclude command.

Rough walls can also be created by specifying frozen particles that do not move and do not interact with mobile
particles, and then tethering other particles to the fixed particles, via a bond. The bonded particles do interact with
other mobile particles.

Idealized walls can be specified via several fix commands. Fix wall/gran creates frictional walls for use with
granular particles; all the other commands create smooth walls.

o fix wall/reflect - reflective flat walls

o fix wall/lj93 - flat walls, with Lennard-Jones 9/3 potential

o fix wall/lj126 - flat walls, with Lennard-Jones 12/6 potential

¢ fix wall/colloid - flat walls, with pair_style colloid potential

¢ fix wall/harmonic - flat walls, with repulsive harmonic spring potential
¢ fix wall/region - use region surface as wall

¢ fix wall/gran - flat or curved walls with pair_style granular potential

The [j93, [j126, colloid, and harmonic styles all allow the flat walls to move with a constant velocity, or oscillate
in time. The fix wall/region command offers the most generality, since the region surface is treated as a wall, and
the geometry of the region can be a simple primitive volume (e.g. a sphere, or cube, or plane), or a complex
volume made from the union and intersection of primitive volumes. Regions can also specify a volume "interior"
or "exterior" to the specified primitive shape or union or intersection. Regions can also be "dynamic" meaning
they move with constant velocity, oscillate, or rotate.

The only frictional idealized walls currently in LAMMPS are flat or curved surfaces specified by the fix wall/gran
command. At some point we plan to allow regoin surfaces to be used as frictional walls, as well as triangulated
surfaces.

6.18 Elastic constants

Elastic constants characterize the stiffness of a material. The formal definition is provided by the linear relation
that holds between the stress and strain tensors in the limit of infinitesimal deformation. In tensor notation, this is
expressed as s_ij = C_ijkl * e_kl, where the repeated indices imply summation. s_ij are the elements of the
symmetric stress tensor. e_kl are the elements of the symmetric strain tensor. C_ijkl are the elements of the fourth
rank tensor of elastic constants. In three dimensions, this tensor has 374=81 elements. Using Voigt notation, the
tensor can be written as a 6x6 matrix, where C_ij is now the derivative of s_i w.r.t. e_j. Because s_i is itself a
derivative w.r.t. e_i, it follows that C_ij is also symmetric, with at most 7*6/2 = 21 distinct elements.

At zero temperature, it is easy to estimate these derivatives by deforming the simulation box in one of the six
directions using the change_box command and measuring the change in the stress tensor. A general-purpose

script that does this is given in the examples/elastic directory described in this section.

Calculating elastic constants at finite temperature is more challenging, because it is necessary to run a simulation
that perfoms time averages of differential properties. One way to do this is to measure the change in average

80

stress tensor in an NVT simulations when the cell volume undergoes a finite deformation. In order to balance the
systematic and statistical errors in this method, the magnitude of the deformation must be chosen judiciously, and
care must be taken to fully equilibrate the deformed cell before sampling the stress tensor. Another approach is to
sample the triclinic cell fluctuations that occur in an NPT simulation. This method can also be slow to converge
and requires careful post-processing (Shinoda)

6.19 Library interface to LAMMPS

As described in Section_start 4, LAMMPS can be built as a library, so that it can be called by another code, used
in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to LAMMPS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking LAMMPS directly. The C++ code in the functions illustrates how to invoke
internal LAMMPS operations. Note that LAMMPS classes are defined within a LAMMPS namespace
(LAMMPS_NYS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void lammps_open (int, char **, MPI_Comm, void **);
void lammps_close (void *);

void lammps_file(void *, char *);

char *lammps_command (void *, char *);

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command-line arguments when LAMMPS is run in stand-alone mode from the command line, and a MPI
communicator for LAMMPS to run under. It returns a ptr to the LAMMPS object that is created, and which is
used in subsequent library calls. The lammps_open() function can be called multiple times, to create multiple
instances of LAMMPS.

LAMMPS will run on the set of processors in the communicator. This means the calling code can run LAMMPS
on all or a subset of processors. For example, a wrapper script might decide to alternate between LAMMPS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
LAMMPS and half to the other code and run both codes simultaneously before syncing them up periodically. Or
it might instantiate multiple instances of LAMMPS to perform different calculations.

The lammps_close() function is used to shut down an instance of LAMMPS and free all its memory.

The lammps_file() and lammps_command() functions are used to pass a file or string to LAMMPS as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of LAMMPS
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the lammps_command() calls with other calls to extract information from LAMMPS, perform its own operations,
or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *lammps_extract_global (void *, char *)

void *lammps_extract_atom(void *, char ¥*)

void *lammps_extract_compute (void *, char *, int, int)

void *lammps_extract_fix(void *, char *, int, int, int, int)
void *lammps_extract_variable(void *, char *, char *)

int lammps_get_natoms (void ¥*)

void lammps_get_coords (void *, double *)

void lammps_put_coords (void *, double *)

81

These can extract various global or per-atom quantities from LAMMPS as well as values calculated by a
compute, fix, or variable. The "get" and "put" operations can retrieve and reset atom coordinates. See the
library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
LAMMPS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you
add can access or change any LAMMPS data you wish. The couple and python directories have example C++ and
C and Python codes which show how a driver code can link to LAMMPS as a library, run LAMMPS on a subset
of processors, grab data from LAMMPS, change it, and put it back into LAMMPS.

6.20 Calculating thermal conductivity

The thermal conductivity kappa of a material can be measured in at least 3 ways using various options in
LAMMPS. (See this section of the manual for an analogous discussion for viscosity). The thermal conducitivity
tensor kappa is a measure of the propensity of a material to transmit heat energy in a diffusive manner as given by
Fourier's law

J = -kappa grad(T)

where J is the heat flux in units of energy per area per time and grad(T) is the spatial gradient of temperature. The
thermal conductivity thus has units of energy per distance per time per degree K and is often approximated as an
isotropic quantity, i.e. as a scalar.

The first method is to setup two thermostatted regions at opposite ends of a simulation box, or one in the middle
and one at the end of a periodic box. By holding the two regions at different temperatures with a thermostatting
fix, the energy added to the hot region should equal the energy subtracted from the cold region and be
proportional to the heat flux moving between the regions. See the paper by Ikeshoji and Hafskjold for details of
this idea. Note that thermostatting fixes such as fix nvt, fix langevin, and fix temp/rescale store the cumulative
energy they add/subtract. Alternatively, the fix heat command can used in place of thermostats on each of two
regions, and the resulting temperatures of the two regions monitored with the "compute temp/region" command or
the temperature profile of the intermediate region monitored with the fix ave/spatial and compute ke/atom
commands.

The second method is to perform a reverse non-equilibrium MD simulation using the fix thermal/conductivity
command which implements the INEMD algorithm of Muller-Plathe. Kinetic energy is swapped between atoms
in two different layers of the simulation box. This induces a temperature gradient between the two layers which
can be monitored with the fix ave/spatial and compute ke/atom commands. The fix tallies the cumulative energy
transfer that it performs. See the fix thermal/conductivity command for details.

The third method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the heat flux to kappa. The heat flux can be calculated from the fluctuations of per-atom
potential and kinetic energies and per-atom stress tensor in a steady-state equilibrated simulation. This is in
contrast to the two preceding non-equilibrium methods, where energy flows continuously between hot and cold
regions of the simulation box.

The compute heat/flux command can calculate the needed heat flux and describes how to implement the
Green_Kubo formalism using additional LAMMPS commands, such as the fix ave/correlate command to
calculate the needed auto-correlation. See the doc page for the compute heat/flux command for an example input
script that calculates the thermal conductivity of solid Ar via the GK formalism.

82

6.21 Calculating viscosity

The shear viscosity eta of a fluid can be measured in at least 3 ways using various options in LAMMPS. (See this
section of the manual for an analogous discussion for thermal conductivity). Eta is a measure of the propensity of
a fluid to transmit momentum in a direction perpendicular to the direction of velocity or momentum flow.
Alternatively it is the resistance the fluid has to being sheared. It is given by

J = -eta grad(Vstream)

where J is the momentum flux in units of momentum per area per time. and grad(Vstream) is the spatial gradient
of the velocity of the fluid moving in another direction, normal to the area through which the momentum flows.
Viscosity thus has units of pressure-time.

The first method is to perform a non-equlibrium MD (NEMD) simulation by shearing the simulation box via the
fix deform command, and using the fix nvt/sllod command to thermostat the fluid via the SLLOD equations of
motion. The velocity profile setup in the fluid by this procedure can be monitored by the fix ave/spatial command,
which determines grad(Vstream) in the equation above. E.g. the derivative in the y-direction of the Vx component
of fluid motion or grad(Vstream) = dVx/dy. In this case, the Pxy off-diagonal component of the pressure or stress
tensor, as calculated by the compute pressure command, can also be monitored, which is the J term in the
equation above. See this section of the manual for details on NEMD simulations.

The second method is to perform a reverse non-equilibrium MD simulation using the fix viscosity command
which implements the INEMD algorithm of Muller-Plathe. Momentum in one dimension is swapped between
atoms in two different layers of the simulation box in a different dimension. This induces a velocity gradient
which can be monitored with the fix ave/spatial command. The fix tallies the cuammulative momentum transfer
that it performs. See the fix viscosity command for details.

The third method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the stress/pressure tensor to eta. This can be done in a steady-state equilibrated simulation
which is in contrast to the two preceding non-equilibrium methods, where momentum flows continuously through
the simulation box.

Here is an example input script that calculates the viscosity of liquid Ar via the GK formalism:

Sample LAMMPS input script for viscosity of liquid Ar

units real

variable T equal 86.4956

variable V equal vol

variable dt equal 4.0

variable p equal 400 # correlation length
variable s equal 5 # sample interval
variable d equal $p*$s # dump interval

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K/ Boltzmann

variable atm2Pa equal 101325.0

variable A2m equal 1.0e-10

variable fs2s equal 1.0e-15

variable convert equal ${atm2Pa}*${atm2Pa}*S${fs2s}*${A2m}*S${A2m}*${A2m}

setup problem

dimension 3
boundary pPpPpP

83

lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1

region box block 0 4 0 4 0 4
create_box 1 box

create_atoms 1 box

mass 1 39.948

pair_style 1j/cut 13.0
pair_coeff * * (0.2381 3.405
timestep S{dt}

thermo $d

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

viscosity calculation, switch to NVE if desired

#unfix NVT
#fix NVE all nve

reset_timestep 0

variable pxy equal pxy
variable pxz equal pxz
variable pyz equal pyz
fix SS all ave/correlate $s $p $d &

V_pxy V_pxz v_pyz type auto file SO0St.dat ave running
variable scale equal S${convert}/ (${kB}*S$T)*SV*S$s*s{dt}
variable vll equal trap(f_SS[3/)*${scale}
variable v22 equal trap(f_SS[4/)*${scale}
variable v33 equal trap(f_SS[5/)*${scale}

thermo_style custom step temp press v_pxy Vv_pxz v_pyz v_vll v_v22 v_v33
run 100000

variable v equal (v_vll+v_v22+v_v33)/3.0
variable ndens equal count (all)/vol
print "average viscosity: $v [Pa.s/ @ ST K, ${ndens} /A"3"

(Berendsen) Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(Horn) Horn, Swope, Pitera, Madura, Dick, Hura, and Head-Gordon, J] Chem Phys, 120, 9665 (2004).

(Ikeshoji) Ikeshoji and Hafskjold, Molecular Physics, 81, 251-261 (1994).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

84

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

(Price) Price and Brooks, J Chem Phys, 121, 10096 (2004).

(Shinoda) Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).

85

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

7. Example problems

The LAMMPS distribution includes an examples sub-directory with several sample problems. Each problem is in
a sub-directory of its own. Most are 2d models so that they run quickly, requiring at most a couple of minutes to

run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. Some use a data file (data.*) of initial coordinates as additional input. A few sample log

file outputs on different machines and different numbers of processors are included in the directories to compare

your answers to. E.g. a log file like log.crack.foo.P means it ran on P processors of machine "foo".

The dump files produced by the example runs can be animated using the xmovie tool described in the Additional

Tools section of the LAMMPS documentation. Animations of many of these examples can be viewed on the

Movies section of the LAMMPS WWW Site.

These are the sample problems in the examples sub-directories:

colloid

big colloid particles in a small particle solvent, 2d system

comb

models using the COMB potential

crack

crack propagation in a 2d solid

point dipolar particles, 2d system

dipole

€im

NaCl using the EIM potential

ellipse

ellipsoidal particles in spherical solvent, 2d system

flow

Couette and Poiseuille flow in a 2d channel

friction

frictional contact of spherical asperities between 2d surfaces

indent

spherical indenter into a 2d solid

meam

MEAM test for SiC and shear (same as shear examples)

melt

rapid melt of 3d L] system

micelle

self-assembly of small lipid-like molecules into 2d bilayers

min

energy minimization of 2d LJ melt

msst

MSST shock dynamics

neb

nudged elastic band (NEB) calculation for barrier finding

nemd

non-equilibrium MD of 2d sheared system

obstacle

flow around two voids in a 2d channel

peptide

dynamics of a small solvated peptide chain (5-mer)

peri

Peridynamic model of cylinder impacted by indenter

pour

pouring of granular particles into a 3d box, then chute flow

prd

parallel replica dynamics of a vacancy diffusion in bulk Si

reax

RDX and TATB models using the ReaxFF

rigid

rigid bodies modeled as independent or coupled

shear

sideways shear applied to 2d solid, with and without a void

srd

stochastic rotation dynamics (SRD) particles as solvent

Here is how you might run and visualize one of the sample problems:

cd indent
cp ../../src/lmp_linux .
lmp_linux <in.indent

copy LAMMPS executable to this dir
run the problem

86

http://lammps.sandia.gov
http://lammps.sandia.gov

Running the simulation produces the files dump.indent and log.lammps. You can visualize the dump file as
follows:

../../tools/xmovie/xmovie -scale dump.indent

There is also an ELASTIC directory with an example script for computing elastic constants, using a zero
temperature Si example. See the in.elastic file for more info.

There is also a USER directory which contains subdirectories of user-provided examples for user packages. See

the README files in those directories for more info. See the doc/Section_start.html file for more info about user
packages.

87

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

8. Performance & scalability

LAMMPS performance on several prototypical benchmarks and machines is discussed on the Benchmarks page
of the LAMMPS WWW Site where CPU timings and parallel efficiencies are listed. Here, the benchmarks are
described briefly and some useful rules of thumb about their performance are highlighted.

These are the 5 benchmark problems:

1. LJ = atomic fluid, Lennard-Jones potential with 2.5 sigma cutoff (55 neighbors per atom), NVE
integration

2. Chain = bead-spring polymer melt of 100-mer chains, FENE bonds and LJ pairwise interactions with a
27(1/6) sigma cutoff (5 neighbors per atom), NVE integration

3. EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45 neighbors per atom), NVE
integration

4. Chute = granular chute flow, frictional history potential with 1.1 sigma cutoff (7 neighbors per atom),
NVE integration

5. Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ cutoff
(440 neighbors per atom), particle-particle particle-mesh (PPPM) for long-range Coulombics, NPT
integration

The input files for running the benchmarks are included in the LAMMPS distribution, as are sample output files.
Each of the 5 problems has 32,000 atoms and runs for 100 timesteps. Each can be run as a serial benchmarks (on
one processor) or in parallel. In parallel, each benchmark can be run as a fixed-size or scaled-size problem. For
fixed-size benchmarking, the same 32K atom problem is run on various numbers of processors. For scaled-size
benchmarking, the model size is increased with the number of processors. E.g. on 8 processors, a 256K-atom
problem is run; on 1024 processors, a 32-million atom problem is run, etc.

A useful metric from the benchmarks is the CPU cost per atom per timestep. Since LAMMPS performance scales
roughly linearly with problem size and timesteps, the run time of any problem using the same model (atom style,
force field, cutoff, etc) can then be estimated. For example, on a 1.7 GHz Pentium desktop machine (Intel icc
compiler under Red Hat Linux), the CPU run-time in seconds/atom/timestep for the 5 problems is

Problem:| LJ Chain | EAM | Chute |Rhodopsin
CPU/atom/step:[4.55E-6 [2.18E-6 [9.38E-6 |2.18E-6 | 1.11E-4

Ratioto LJ:[1.0 0.48 2.06 0.48 24.5

The ratios mean that if the atomic LJ system has a normalized cost of 1.0, the bead-spring chains and granular
systems run 2x faster, while the EAM metal and solvated protein models run 2x and 25x slower respectively. The
bulk of these cost differences is due to the expense of computing a particular pairwise force field for a given
number of neighbors per atom.

Performance on a parallel machine can also be predicted from the one-processor timings if the parallel efficiency
can be estimated. The communication bandwidth and latency of a particular parallel machine affects the
efficiency. On most machines LAMMPS will give fixed-size parallel efficiencies on these benchmarks above
50% so long as the atoms/processor count is a few 100 or greater - i.e. on 64 to 128 processors. Likewise,
scaled-size parallel efficiencies will typically be 80% or greater up to very large processor counts. The benchmark
data on the LAMMPS WWW Site gives specific examples on some different machines, including a run of 3/4 of a
billion LJ atoms on 1500 processors that ran at 85% parallel efficiency.

88

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

9. Additional tools

LAMMPS is designed to be a computational kernel for performing molecular dynamics computations. Additional
pre- and post-processing steps are often necessary to setup and analyze a simulation. A few additional tools are
provided with the LAMMPS distribution and are described in this section.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing setup,
analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is available for
download from the Pizza.py WWW site.

Note that many users write their own setup or analysis tools or use other existing codes and convert their output to
a LAMMPS input format or vice versa. The tools listed here are included in the LAMMPS distribution as
examples of auxiliary tools. Some of them are not actively supported by Sandia, as they were contributed by
LAMMPS users. If you have problems using them, we can direct you to the authors.

The source code for each of these codes is in the tools sub-directory of the LAMMPS distribution. There is a
Makefile (which you may need to edit for your platform) which will build several of the tools which reside in that
directory. Some of them are larger packages in their own sub-directories with their own Makefiles.

e amber2lmp

® binary2txt

e ch2Imp

¢ chain

® createatoms
e data2xmovie
® eam database
® cam generate
o eff

® emacs

® ipp

® Imp2arc

® Imp2cfg

¢ Imp2vmd

¢ matlab

® micelle2d

* msi2lmp

¢ pymol_asphere
¢ python

® reax

e restart2data
¢ thermo_extract
® vim

® xmovie

amber2imp tool

The amber2lmp sub-directory contains two Python scripts for converting files back-and-forth between the
AMBER MD code and LAMMPS. See the README file in amber2lmp for more information.

89

http://lammps.sandia.gov
http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

These tools were written by Keir Novik while he was at Queen Mary University of London. Keir is no longer
there and cannot support these tools which are out-of-date with respect to the current LAMMPS version (and
maybe with respect to AMBER as well). Since we don't use these tools at Sandia, you'll need to experiment with
them and make necessary modifications yourself.

binary2txt tool

The file binary2txt.cpp converts one or more binary LAMMPS dump file into ASCII text files. The syntax for
running the tool is

binary2txt filel file2 ...

which creates filel.txt, file2.txt, etc. This tool must be compiled on a platform that can read the binary file created
by a LAMMPS run, since binary files are not compatible across all platforms.

ch2Iimp tool

The ch2lmp sub-directory contains tools for converting files back-and-forth between the CHARMM MD code
and LAMMPS.

They are intended to make it easy to use CHARMM as a builder and as a post-processor for LAMMPS. Using
charmm2lammps.pl, you can convert an ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.

See the README file in the ch2lmp sub-directory for more information.

These tools were created by Pieter in't Veld (pjintve at sandia.gov) and Paul Crozier (pscrozi at sandia.gov) at
Sandia.

chain tool

The file chain.f creates a LAMMPS data file containing bead-spring polymer chains and/or monomer solvent
atoms. It uses a text file containing chain definition parameters as an input. The created chains and solvent atoms
can strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it.
The syntax for running the tool is

chain <def.chain > data.file

See the def.chain or def.chain.ab files in the tools directory for examples of definition files. This tool was used to
create the system for the chain benchmark.

createatoms tool

The tools/createatoms directory contains a Fortran program called create Atoms.f which can generate a variety of
interesting crystal structures and geometries and output the resulting list of atom coordinates in LAMMPS or
other formats.

See the included Manual.pdf for details.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov.

90

data2xmovie tool

The file data2xmovie.c converts a LAMMPS data file into a snapshot suitable for visualizing with the xmovie
tool, as if it had been output with a dump command from LAMMPS itself. The syntax for running the tool is

data2xmovie options <infile > outfile

See the top of the data2xmovie.c file for a discussion of the options.

eam database tool

The tools/eam_database directory contains a Fortran program that will generate EAM alloy setfl potential files for
any combination of 16 elements: Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, Zr. The files can
then be used with the pair_style eam/alloy command.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov, and is based on his paper:

X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B, 69, 144113 (2004).

eam generate tool
The tools/eam_generate directory contains several one-file C programs that convert an analytic formula into a
tabulated embedded atom method (EAM) setfl potential file. The potentials they produce are in the potentials

directory, and can be used with the pair_style eam/alloy command.

The source files and potentials were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com).

eff tool

The tools/eff directory contains various scripts for generating structures and post-processing output for
simulations using the electron force field (eFF).

These tools were provided by Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).

emacs tool

The tools/emacs directory contains a Lips add-on file for Emacs that enables a lammps-mode for editing of input
scripts when using Emacs, with various highlighting options setup.

These tools were provided by Aidan Thompson at Sandia (athomps at sandia.gov).

ipp tool

The tools/ipp directory contains a Perl script ipp which can be used to facilitate the creation of a complicated file
(say, a lammps input script or tools/createatoms input file) using a template file.

ipp was created and is maintained by Reese Jones (Sandia), rjones at sandia.gov.

See two examples in the tools/ipp directory. One of them is for the tools/createatoms tool's input file.

91

Imp2arc tool

The ImpZ2arc sub-directory contains a tool for converting LAMMPS output files to the format for Accelrys' Insight
MD code (formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool was updated for the current LAMMPS C++ version by Jeff Greathouse at Sandia (jagreat at sandia.gov).

Imp2cfg tool

The Imp2cfg sub-directory contains a tool for converting LAMMPS output files into a series of *.cfg files which
can be read into the AtomEye visualizer. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

Imp2vmd tool

The Imp2vmd sub-directory contains a README.txt file that describes details of scripts and plugin support
within the VMD package for visualizing LAMMPS dump files.

The VMD plugins and other supporting scripts were written by Axel Kohlmeyer (akohlmey at
cmm.chem.upenn.edu) at U Penn.

matlab tool

The matlab sub-directory contains several MATLAB scripts for post-processing LAMMPS output. The scripts
include readers for log and dump files, a reader for EAM potential files, and a converter that reads LAMMPS
dump files and produces CFG files that can be visualized with the AtomEye visualizer.

See the README.pdf file for more information.

These scripts were written by Arun Subramaniyan at Purdue Univ (asubrama at purdue.edu).

micelle2d tool

The file micelle2d.f creates a LAMMPS data file containing short lipid chains in a monomer solution. It uses a
text file containing lipid definition parameters as an input. The created molecules and solvent atoms can strongly
overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it. The syntax for
running the tool is

micelle2d <def.micelle2d > data.file

See the def.micelle2d file in the tools directory for an example of a definition file. This tool was used to create the
system for the micelle example.

msi2lmp tool

The msi2lmp sub-directory contains a tool for creating LAMMPS input data files from Accelrys' Insight MD code
(formerly MSI/Biosym and its Discover MD code). See the README file for more information.

92

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.ks.uiuc.edu/Research/vmd
http://www.mathworks.com
http://mt.seas.upenn.edu/Archive/Graphics/A

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool may be out-of-date with respect to the current LAMMPS and Insight versions. Since we don't use it at
Sandia, you'll need to experiment with it yourself.

pymol_asphere tool

The pymol_asphere sub-directory contains a tool for converting a LAMMPS dump file that contains orientation
info for ellipsoidal particles into an input file for the PyMol visualization package.

Specifically, the tool triangulates the ellipsoids so they can be viewed as true ellipsoidal particles within PyMol.
See the README and examples directory within pymol_asphere for more information.

This tool was written by Mike Brown at Sandia.

python tool

The python sub-directory contains several Python scripts that perform common LAMMPS post-processing tasks,
such as:

e extract thermodynamic info from a log file as columns of numbers

¢ plot two columns of thermodynamic info from a log file using GnuPlot

e sort the snapshots in a dump file by atom ID

¢ convert multiple NEB dump files into one dump file for viz

e convert dump files into XYZ, CFG, or PDB format for viz by other packages

These are simple scripts built on Pizza.py modules. See the README for more info on Pizza.py and how to use
these scripts.

reax tool

The reax sub-directory contains stand-alond codes that can post-process the output of the fix reax/bonds command
from a LAMMPS simulation using ReaxFF. See the README.txt file for more info.

These tools were written by Aidan Thompson at Sandia.

restart2data tool

The file restart2data.cpp converts a binary LAMMPS restart file into an ASCII data file. The syntax for running
the tool is

restart2data restart-file data-file (input-file)

Input-file is optional and if specified will contain LAMMPS input commands for the masses and force field
parameters, instead of putting those in the data-file. Only a few force field styles currently support this option.

This tool must be compiled on a platform that can read the binary file created by a LAMMPS run, since binary
files are not compatible across all platforms.

Note that a text data file has less precision than a binary restart file. Hence, continuing a run from a converted data
file will typically not conform as closely to a previous run as will restarting from a binary restart file.

93

http://pymol.sourceforge.net
http://www.sandia.gov/~sjplimp/pizza.html

If a "%" appears in the specified restart-file, the tool expects a set of multiple files to exist. See the restart and
write_restart commands for info on how such sets of files are written by LAMMPS, and how the files are named.

thermo_extract tool
The thermo_extract tool reads one of more LAMMPS log files and extracts a thermodynamic value (e.g. Temp,
Press). It spits out the time,value as 2 columns of numbers so the tool can be used as a quick way to plot some

quantity of interest. See the header of the thermo_extract.c file for the syntax of how to run it and other details.

This tool was written by Vikas Varshney at Wright Patterson AFB (vikas.varshney at gmail.com).

vim tool

The files in the tools/vim directory are add-ons to the VIM editor that allow easier editing of LAMMPS input
scripts. See the README.txt file for details.

These files were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com)

xmovie tool

The xmovie tool is an X-based visualization package that can read LAMMPS dump files and animate them. It is
in its own sub-directory with the tools directory. You may need to modify its Makefile so that it can find the
appropriate X libraries to link against.

The syntax for running xmovie is

xmovie options dump.filel dump.file2 ...

If you just type "xmovie" you will see a list of options. Note that by default, LAMMPS dump files are in scaled
coordinates, so you typically need to use the -scale option with xmovie. When xmovie runs it opens a
visualization window and a control window. The control options are straightforward to use.

Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he spent a summer at Sandia. It displays 2d
projections of a 3d domain. While simple in design, it is an amazingly fast program that can render large numbers
of atoms very quickly. It's a useful tool for debugging LAMMPS input and output and making sure your
simulation is doing what you think it should. The animations on the Examples page of the LAMMPS WWW site
were created with xmovie.

I've lost contact with Mike, so I hope he's comfortable with us distributing his great tool!

94

http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

10. Modifying & extending LAMMPS

This section describes how to customize LAMMPS by modifying and extending its source code.

10.1 Atom styles

10.2 Bond, angle, dihedral, improper potentials

10.3 Compute styles

10.4 Dump styles

10.5 Dump custom output options

10.6 Fix styles which include integrators, temperature and pressure control, force constraints, boundary
conditions, diagnostic output, etc

10.7 Input script commands

10.8 Kspace computations

10.9 Minimization styles

10.10 Pairwise potentials

10.11 Region styles

10.12 Thermodynamic output options

10.13 Variable options

10.14 Submitting new features for inclusion in LAMMPS

LAMMPS is designed in a modular fashion so as to be easy to modify and extend with new functionality. In fact,
about 75% of its source code is files added in this fashion.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to LAMMPS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of LAMMPS. Information about how to do this is provided below.

The best way to add a new feature is to find a similar feature in LAMMPS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of LAMMPS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class (except for
exceptions described below, where you can make small edits to existing files). Creating a new class requires 2
files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods to work as
a new option. Depending on how different your new feature is compared to existing features, you can either
derive from the base class itself, or from a derived class that already exists. Enabling LAMMPS to invoke the new
class is as simple as putting the two source files in the src dir and re-building LAMMPS.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of LAMMPS more complex or cause side-effect bugs.

Here is a concrete example. Suppose you write 2 files pair_foo.cpp and pair_foo.h that define a new class PairFoo

that computes pairwise potentials described in the classic 1997 paper by Foo, et al. If you wish to invoke those
potentials in a LAMMPS input script with a command like

pair_style foo 0.1 3.5

then your pair_foo.h file should be structured as follows:

95

http://lammps.sandia.gov

#ifdef PAIR_CLASS
PairStyle (foo,PairFoo)
#else

(class definition for PairFoo)

#endif

where "foo" is the style keyword in the pair_style command, and PairFoo is the class name defined in your

pair_foo.cpp and pair_foo.h files.

When you re-build LAMMPS, your new pairwise potential becomes part of the executable and can be invoked

with a pair_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by

your new class.

As illustrated by this pairwise example, many kinds of options are referred to in the LAMMPS documentation as
the "style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in

that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of LAMMPS. Virtual functions in the base class header file which are set = 0 are ones you

must define in your new derived class to give it the functionality LAMMPS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Additionally, new output options can be added directly to the thermo.cpp, dump_custom.cpp, and variable.cpp

files as explained below.

Here are additional guidelines for modifying LAMMPS and adding new functionality:

¢ Think about whether what you want to do would be better as a pre- or post-processing step. Many

computations are more easily and more quickly done that way.

¢ Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a bunch of

data on a single processor and analyze it. You run the risk of seriously degrading the parallel efficiency.

¢ If your new feature reads arguments or writes output, make sure you follow the unit conventions

discussed by the units command.

¢ [f you add something you think is truly useful and doesn't impact LAMMPS performance when it isn't

used, send an email to the developers. We might be interested in adding it to the LAMMPS distribution.
See further details on this at the bottom of this page.

10.1 Atom styles

Classes that define an atom style are derived from the AtomVec class and managed by the Atom class. The atom

style determines what quantities are associated with an atom. A new atom style can be created if one of the
existing atom styles does not define all the arrays you need to store and communicate with atoms.

Atom_vec_atomic.cpp is a simple example of an atom style.

Here is a brief description of methods you define in your new derived class. See atom_vec.h for details.

init

one time setup (optional)

grow

re-allocate atom arrays to longer lengths (required)

96

http://lammps.sandia.gov/authors.html

grow_reset make array pointers in Atom and AtomVec classes consistent (required)

copy copy info for one atom to another atom's array locations (required)
pack_comm store an atom's info in a buffer communicated every timestep (required)
pack_comm_vel add velocity info to communication buffer (required)
pack_comm_hybrid store extra info unique to this atom style (optional)

unpack_comm retrieve an atom's info from the buffer (required)

unpack_comm_vel also retrieve velocity info (required)

unpack_comm_hybrid |retreive extra info unique to this atom style (optional)

pack_reverse store an atom's info in a buffer communicating partial forces (required)

pack_reverse_hybrid |[store extra info unique to this atom style (optional)

unpack_reverse retrieve an atom's info from the buffer (required)

unpack_reverse_hybrid |retreive extra info unique to this atom style (optional)

pack_border store an atom's info in a buffer communicated on neighbor re-builds (required)
pack_border_vel add velocity info to buffer (required)

pack_border_hybrid [store extra info unique to this atom style (optional)

unpack_border retrieve an atom's info from the buffer (required)

unpack_border_vel also retrieve velocity info (required)

unpack_border_hybrid |retreive extra info unique to this atom style (optional)

pack_exchange store all an atom's info to migrate to another processor (required)
unpack_exchange retrieve an atom's info from the buffer (required)

size_restart number of restart quantities associated with proc's atoms (required)
pack_restart pack atom quantities into a buffer (required)

unpack_restart unpack atom quantities from a buffer (required)

create_atom create an individual atom of this style (required)

data_atom parse an atom line from the data file (required)
data_atom_hybrid parse additional atom info unique to this atom style (optional)
data_vel parse one line of velocity information from data file (optional)
data_vel_hybrid parse additional velocity data unique to this atom style (optional)
memory_usage tally memory allocated by atom arrays (required)

The constructor of the derived class sets values for several variables that you must set when defining a new atom
style, which are documented in atom_vec.h. New atom arrays are defined in atom.cpp. Search for the word
"customize" and you will find locations you will need to modify.

10.2 Bond, angle, dihedral, improper potentials

Classes that compute molecular interactions are derived from the Bond, Angle, Dihedral, and Improper classes.
New styles can be created to add new potentials to LAMMPS.

Bond_harmonic.cpp is the simplest example of a bond style. Ditto for the harmonic forms of the angle, dihedral,
and improper style commands.

Here is a brief description of common methods you define in your new derived class. See bond.h, angle.h,
dihedral.h, and improper.h for details and specific additional methods.

97

init check if all coefficients are set, calls init_style (optional)
init_style check if style specific conditions are met (optional)
compute compute the molecular interactions (required)

settings apply global settings for all types (optional)

coeff set coefficients for one type (required)

equilibrium_distance

length of bond, used by SHAKE (required, bond only)

equilibrium_angle

opening of angle, used by SHAKE (required, angle only)

write & read_restart

writes/reads coeffs to restart files (required)

single

force and energy of a single bond or angle (required, bond or angle only)

memory_usage

tally memory allocated by the style (optional)

10.3 Compute styles

Classes that compute scalar and vector quantities like temperature and the pressure tensor, as well as classes that

compute per-atom quantities like kinetic energy and the centro-symmetry parameter are derived from the

Compute class. New styles can be created to add new calculations to LAMMPS.

Compute_temp.cpp is a simple example of computing a scalar temperature. Compute_ke_atom.cpp is a simple

example of computing per-atom kinetic energy.

Here is a brief description of methods you define in your new derived class. See compute.h for details.

nit

perform one time setup (required)

init_list

neighbor list setup, if needed (optional)

compute_scalar |compute a scalar quantity (optional)

compute_vector |compute a vector of quantities (optional)

compute_peratom |[compute one or more quantities per atom (optional)

compute_local

compute one or more quantities per processor (optional)

pack_comm

pack a buffer with items to communicate (optional)

unpack_comm

unpack the buffer (optional)

pack_reverse

pack a buffer with items to reverse communicate (optional)

unpack_reverse |unpack the buffer (optional)

remove_bias

remove velocity bias from one atom (optional)

remove_bias_all [remove velocity bias from all atoms in group (optional)

restore_bias

restore velocity bias for one atom after remove_bias (optional)

restore_bias_all |same as before, but for all atoms in group (optional)

memory_usage |tally memory usage (optional)

10.4 Dump styles

98

10.5 Dump custom output options

Classes that dump per-atom info to files are derived from the Dump class. To dump new quantities or in a new
format, a new derived dump class can be added, but it is typically simpler to modify the DumpCustom class
contained in the dump_custom.cpp file.

Dump_atom.cpp is a simple example of a derived dump class.

Here is a brief description of methods you define in your new derived class. See dump.h for details.

write_header |write the header section of a snapshot of atoms

count count the number of lines a processor will output
pack pack a proc's output data into a buffer
write_data |write a proc's data to a file

See the dump command and its custom style for a list of keywords for atom information that can already be
dumped by DumpCustom. It includes options to dump per-atom info from Compute classes, so adding a new
derived Compute class is one way to calculate new quantities to dump.

Alternatively, you can add new keywords to the dump custom command. Search for the word "customize" in
dump_custom.cpp to see the half-dozen or so locations where code will need to be added.

10.6 Fix styles

In LAMMPS, a "fix" is any operation that is computed during timestepping that alters some property of the
system. Essentially everything that happens during a simulation besides force computation, neighbor list
construction, and output, is a "fix". This includes time integration (update of coordinates and velocities), force
constraints or boundary conditions (SHAKE or walls), and diagnostics (compute a diffusion coefficient). New
styles can be created to add new options to LAMMPS.

Fix_setforce.cpp is a simple example of setting forces on atoms to prescribed values. There are dozens of fix
options already in LAMMPS; choose one as a template that is similar to what you want to implement.

Here is a brief description of methods you can define in your new derived class. See fix.h for details.

setmask

determines when the fix is called during the timestep (required)

init

initialization before a run (optional)

setup_pre_exchange

called before atom exchange in setup (optional)

setup_pre_force

called before force computation in setup (optional)

setup

called immediately before the 1st timestep and after forces are computed (optional)

min_setup_pre_force

like setup_pre_force, but for minimizations instead of MD runs (optional)

min_setup

like setup, but for minimizations instead of MD runs (optional)

initial_integrate

called at very beginning of each timestep (optional)

pre_exchange

called before atom exchange on re-neighboring steps (optional)

pre_neighbor

called before neighbor list build (optional)

pre_force

called after pair & molecular forces are computed (optional)

post_force

called after pair & molecular forces are computed and communicated (optional)

final_integrate

called at end of each timestep (optional)

99

end_of_step

called at very end of timestep (optional)

write_restart

dumps fix info to restart file (optional)

restart

uses info from restart file to re-initialize the fix (optional)

grow_arrays

allocate memory for atom-based arrays used by fix (optional)

copy_arrays

copy atom info when an atom migrates to a new processor (optional)

pack_exchange

store atom's data in a buffer (optional)

unpack_exchange

retrieve atom's data from a buffer (optional)

pack_restart

store atom's data for writing to restart file (optional)

unpack_restart

retrieve atom's data from a restart file buffer (optional)

size_restart

size of atom's data (optional)

maxsize_restart

max size of atom's data (optional)

setup_pre_force_respa

same as setup_pre_force, but for rRESPA (optional)

initial_integrate_respa

same as initial_integrate, but for rRESPA (optional)

post_integrate_respa

called after the first half integration step is done in rRESPA (optional)

pre_force_respa

same as pre_force, but for rRESPA (optional)

post_force_respa

same as post_force, but for rRESPA (optional)

final_integrate_respa

same as final_integrate, but for rRESPA (optional)

min_pre_force

called after pair & molecular forces are computed in minimizer (optional)

min_post_force

called after pair & molecular forces are computed and communicated in minmizer
(optional)

min_store

store extra data for linesearch based minimization on a LIFO stack (optional)

min_pushstore

push the minimization LIFO stack one element down (optional)

min_popstore

pop the minimization LIFO stack one element up (optional)

min_clearstore

clear minimization LIFO stack (optional)

min_step reset or move forward on line search minimization (optional)
min_dof report number of degrees of freedom added by this fix in minimization (optional)
max_alpha report maximum allowed step size during linesearch minimization (optional)

pack_comm

pack a buffer to communicate a per-atom quantity (optional)

unpack_comm

unpack a buffer to communicate a per-atom quantity (optional)

pack_reverse_comm

pack a buffer to reverse communicate a per-atom quantity (optional)

unpack_reverse_comm

unpack a b